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Abstract—The use of facial masks in public spaces has become
a social obligation since the wake of the COVID-19 global
pandemic and the identification of facial masks can be imperative
to ensure public safety. Detection of facial masks in video footages
is a challenging task primarily due to the fact that the masks
themselves behave as occlusions to face detection algorithms due
to the absence of facial landmarks in the masked regions. In
this work, we propose an approach for detecting facial masks in
videos using deep learning. The proposed framework capitalizes
on the MTCNN face detection model to identify the faces and
their corresponding facial landmarks present in the video frame.
These facial images and cues are then processed by a neoteric
classifier that utilises the MobileNetV2 architecture as an object
detector for identifying masked regions. The proposed framework
was tested on a dataset which is a collection of videos capturing
the movement of people in public spaces while complying with
COVID-19 safety protocols. The proposed methodology demon-
strated its effectiveness in detecting facial masks by achieving
high precision, recall, and accuracy.

Index Terms—Face mask detection, Deep Learning, Computer
Vision

I. INTRODUCTION

With the ever swift development of machine learning al-
gorithms and methodologies in recent times, the task of face
detection has been addressed to a large extent. For instance,
the face detection model proposed in [1] achieves a precision
of 93% even when detecting multiple faces. Due to the
advancement of facial detectors, numerous applications such
as real-time face recognition systems [2], security surveillance
systems [3], etc. have been developed.

Despite the success of such existing techniques, there is an
increasing demand for the development of robust and more
efficient face detection models. In particular, the detection of
masked faces proves to be a challenging and arduous task
for existing face detection models due to several reasons.
Firstly, traditional face detection algorithms are based on the
extraction of handcrafted features. The Viola Jones face detec-
tor [4] uses Haar features with the integral images technique
to extract facial features. Other feature extraction techniques
include the utilisation of the Histogram of Gradients (HOG)
[5], Fast Fourier Transform (FFT) and Local Binary Patterns
(LBP) [6]. With advancements in the field of deep learning,
neural networks can now learn features without utilising prior
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knowledge for forming feature extractors such as the You Only
Look Once (YOLO) algorithm [7].

The pressing concern with the aforementioned approaches
when it comes to face mask detection is that the face masks,
with their visual diversity and various orientations behave as
occlusions and variable noise to the models. This leads to
a lack of local facial features, resulting in the failure of even
state-of-the-art face detection models. Moreover, there is a lack
of large datasets with labeled images of faces with facial masks
required in order to analyse the vital characteristics common to
masked faces, thus accounting for the low accuracy of existing
models. These factors together justify the challenging nature
of masked face detection in the field of image processing.

During the COVID-19 pandemic, everyone is advised to
wear face masks in public [8]. According to the World Health
Organization (WHO), masks can be used for source control
(worn by an infected individual to inhibit further transmission)
or for the protection of healthy people. At the time of writing,
the global pandemic has infected over 11 million people
worldwide and has led to over half a million casualties [9]. The
wide-scale usage of face masks poses a challenge on public
face detection based security systems such as those present in
airports, which are unable to detect facial masks. Since the
improper removal of masks can lead to contracting the virus,
it has become essential to improve facial detectors that rely
on facial cues, so that detection can be performed accurately
even with inadequately exposed faces.

II. RELATED WORKS AND LITERATURE

In this section, we review some similar works done in this
domain. As elucidated in section I, although research on face
detection has been going on for decades and has achieved great
success, algorithms and methodologies that are earmarked for
face mask detection are limited.

Ge et al. [10] developed a deep learning methodology to
detect masked faces using LLE-CNNs, which outperforms
state-of-the-art detectors by at least 15%. In the given work,
the authors introduced a new dataset called MAsked FAces
(MAFA), containing 35,806 images of masked faces having
different orientations and occlusion degrees. The proposed
LLE-CNNs consist of three modules - proposal module,
embedding module and verification module. The proposal



module first combines two CNNs to extract candidate facial
regions from the input image and represents them with high
dimensional descriptors. After that, the embedding module
is turns these descriptors into similarity based descriptors
using Locally Linear Embedding algorithms and dictionaries
trained on a set of faces, comprised of masked and unmasked
images. Finally, the verification module is used to identify
candidate facial regions and refine their positions with the help
of classification and regression tasks.

Nair et al. [11] utilised the Viola Jones object detection
framework to detect masked faces in surveillance videos.
The authors argued that detecting cosmetic components such
as face masks takes a significantly longer period than face
detection. The framework uses the Viola Jones face detection
algorithm to detect the eyes and face of subjects. If eyes are
recognised and later the face is recognised as well, it signifies
that no face mask was used. However, if eyes are recognised
but the face is not, it signifies that a face mask was worn by
the person in consideration.

Bu et al. [12] built a CNN-based cascaded face detector
framework, consisting of three convolutional neural networks.
The first CNN, Mask-1 is a very shallow fully convolutional
layer network with 5 layers that gives a probability of being a
masked face for each detection window, followed by a Non-
maximum Supression (NMS) to merge overlapping candidates.
Mask-2 is a deeper CNN with 7 layers, which resizes the
candidate windows and also sets a detection threshold from
the previous CNN. Mask-3 is also a 7 layer CNN which
resizes the input windows it receives and gives a likelihood
of whether it belongs to a masked face based on a preset
threshold. After NMS, the remaining detection windows are
the predicted detection results.

Coming to more recent methodologies, Jiang et. al. [13]
developed RetinaFaceMask, which is a novel framework for
accurately and efficiently detecting face masks. The proposed
framework is a one-stage detector which consists of a feature
pyramid network to combine high-level semantic data with
numerous feature maps. The authors propose a novel context
attention module for the detection of face masks in addition to
a cross-class object removal algorithm that discards predictions
with low confidence values. The authors state that their model
performs 2.3% and 1.5% more than the baseline result in
face and mask detection precision respectively, and 11.0% and
5.9% higher than baseline for recall.

III. PROPOSED APPROACH

In this section, we elucidate our proposed framework,
which is illustrated in Figure 1. The proposed framework
aims to detect whether people in the video footage of a public
area are wearing face masks or not. In order to do so, we
first detect the face of the person and then determine if a
facial mask is present on the face. It is to be noted that the
terms ‘face mask’ and ‘facial mask’ are used interchangeably
throughout this work.

Video
Frame

Face Detection

P-Net

R-Net

; MTCNN

O-Net

Facial
regions

Facial Mask
Prediction

Fig. 1: Workflow of proposed framework

A. Face Detection

For the task of face detection, we utilized the Multi-
Task Cascaded Convolutional Neural Network (MTCNN) [14]
as the baseline model. The model is a cascaded structure
comprising of three stages of deep convolutional networks that
predict the facial landmarks.

The input image is initially resized to different scales in
order to build an image pyramid, which behaves as input to
the three-staged network elucidated below:

o Stage 1 consists of a Fully Convolutional Network (FCN)
called Proposal Network (P-Net) [14], which is used to
obtain the potential candidate windows in the input image
pyramid and their bounding box regression vectors. In
other words, P-Net is responsible for proposing candidate
facial regions from the input image. These estimated
bounding box regression vectors are used to calibrate the
candidate windows obtained, after which non-maximum
suppression (NMS) is used to combine largely overlap-
ping candidates.

o Stage 2 consists of a CNN called Refine Network (R-
Net) [14] to which all the candidate windows obtained
from the previous stage are fed. R-Net mainly works to
filter these candidate windows. This network rejects a
large number of false candidates and utilises bounding
box regression to calibrate the candidates obtained. For
each candidate window, the offset between itself and the
nearest ground-truth is predicted, denoted by L. The
learning task is a regression problem and Euclidean loss
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is applied for each sample z; as:
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where 2°% is the target of the network and y%°% is the
ground-truth coordinate.

o Stage 3 comprises of a CNN called O-Ner [14], which
is responsible for proposing facial landmarks from the
candidate facial regions obtained from the previous stage.
O-Net outputs facial landmark locations, namely the eyes,
nose, and mouth regions of the face. Similar to the
task of bounding box regression, the detection of facial
landmarks is a regression problem and the following
Euclidean loss is minimised:
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where glandmark jg the facial landmark coordinate pre-
dicted by the network and y!2"¥mar* is the ground-truth
coordinate.

For the task of face classification, the learning target can be
formulated as a binary classification problem.
For each sample x;, cross-entropy loss used was:

Lt = —(y¥logp; + (1 — y")(1 — logp;))  (3)

where p; is the probability produced by the network that the
sample was a face and y¢* € {0,1} is the ground-truth label.

The output of this stage is the spatial coordinates of the
bounding boxes enclosing the facial regions of the subjects in
the frame.

B. Facial Mask Prediction

For the task of identifying faces which are covered by a
facial mask, we utilised the MobileNetV2 architecture [15],
which is an effective feature extractor for object detection and
segmentation. MobileNetV2 was chosen due to its ability to
be deployed effortlessly on edge devices.

MobileNetV2 uses depth-wise separable convolutions much
like its predecessor, but the main residual block has some
key alterations from its predecessor [16]. The new residual
block in MobileNetV2, known as the bottleneck residual block
is illustrated in Figure 2. There are a total of 3 convolu-
tional layers in a block, where the latter two are: a depth-
wise convolution that filters the input and a 1x1 point-wise
convolution. However, this 1x1 convolution is quite different.
This projection layer projects input data with a higher number
of dimensions (channels) into a tensor with a much lower
number of dimensions. As this layer suppresses the amount
of data that flows through the network and the output of each
block is a bottleneck, it is known as a bottleneck residual
block. Hence, the input and output of the block are low-
dimensional tensors whereas the filtering that takes place
inside the block is on high-dimensional tensors. The other
key aspect of MobileNetV2 is the residual connection. This
primarily aids with the flow of gradients through the network
during backpropagation.

Each layer has batch normalisation and the activation func-
tion used is ReLU6. However, an activation function is not
applied to the output of the projection layer. Since this layer
outputs low-dimensional data, succeeding this layer with non-
linearity could destroy valuable information.

\
1x1 Expansion Layer

BatchNorm
RelLu6

Y

3x3 Depthwise
convolution

BatchNorm
RelLu6

Y
1x1 Projection Layer

BatchNorm

Fig. 2: Bottleneck Residual block

The full MobileNetV2 architecture, as illustrated in Figure
3, comprises of 17 bottleneck residual blocks in a row. This
is followed by a regular 1x1 convolution. We utilise this base
model of the MobileNetV2 architecture as a feature extractor
for facial mask detection. We create a facial mask classifier
using 4 layers, succeeding the earlier mentioned architecture.
We downsample each 2x2 feature map using the average
pooling layer (i.e. they are flattened) to produce a single long
feature vector for classification. After passing through a ReLU
activation function, we use a softmax function as illustrated
in 3 to get the probability distribution over the predicted
classifications. This is how the facial mask classifier is able to
predict whether a subject in a given frame is wearing a facial
mask or not.

The facial regions obtained from the face detection model
discussed in Face Detection (Section III-A) are passed as input
to the aforementioned facial mask classifier and the output is
a bounding box over each face region, with the label ‘Mask’
indicating the presence of a face mask or ‘No Mask” when no
face mask is worn by the subject in consideration. This output
is illustrated in Figure 6.

IV. EXPERIMENTAL EVALUATION

In this section, we discuss the dataset used for conducting
this study and the results obtained by the proposed approach.
The experiments were conducted on Google Colab [17] with
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Fig. 3: Facial mask classifier constructed using MobileNetV2
architecture

Intel(R) Xeon(R) 2.00 GHz CPU, NVIDIA Tesla T4 GPU, 16
GB GDDR6 VRAM and 13 GB RAM. All programs were
written in Python - 3.6 and utilised OpenCV - 4.2.0, Keras -
2.3.0 and TensorFlow - 2.2.0.

A. Dataset Used

The dataset used in this work is a collection of footage
videos of public places from multiple geographical locations,
compiled from YouTube. There are a total of 15 video samples
in the dataset, each with an average duration of 1 minute. The
videos capture the movement of people in public areas after
the imposition of various safety rules and regulations in wake
of the COVID-19 pandemic. The videos showcase people
from multiple ethnicities and also capture different types of
face masks worn by the public. Our dataset contains videos
captured using different specifications of cameras and has a
multitude of camera angles, varying illumination conditions,
noise, and an average frames per second (FPS) of 30. Figure
5 illustrates a few sample videos present in this dataset.

B. Experimental Results and Statistics

The proposed approach has been evaluated by measuring
the precision, recall, and accuracy metrics of the face detection
model and facial mask classifier respectively.

Fig. 4: Visualisation of the results obtained by the proposed
approach

ey

Fig. 5: Some samples from the video dataset used in this work

TP
Precision = —— x 1 4
recision = 7 P x 100% (@)
T
Recall = m—m x 100% (5)
TP+TN
Accumcy_TP—I—TN+FP—|—FNXIOO% 6)

where TP, TN, FP and FN denote the true positive, true
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Fig. 6: Some instances of the results obtained by the proposed approach

negative, false positive, and false negative observations respec-
tively.

1) Face Detection: The face detection model mentioned
in Section III-A achieved a precision of 94.50%, recall of
86.38%, and accuracy of 81.84% on the chosen dataset.

2) Facial Mask Prediction: The facial mask classifier men-
tioned in Section III-B achieved a precision of 84.39%, recall
of 80.92%, and accuracy of 81.74% on the chosen dataset.

TABLE I: Comparison of proposed framework with Cascaded
framework for mask detection [12]

Approach Accuracy | Recall
Proposed Framework | 81.74% 80.92%
Cascaded framgwork 36.6% 37.83%
for mask detection

TABLE II: Comparison of proposed framework with Reti-
naFaceMask [13]

Approach - Face . .Mask
Precision  Recall Precision  Recall
Proposed Framework | 94.50% | 86.38% | 84.39% | 80.92%
RetinaFaceMask 83.0% | 95.6% 823% | 89.1%
with MobileNet . : : :

Table I compares our proposed framework to the cascaded
framework used in [12]. The higher accuracy of the cascaded
framework is due to the fact that it was designed to work
on images rather than videos. Also, the “MASKED FACE”
dataset [12] which was used to test the cascaded framework
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comprises of people wearing head gear. On the other hand,
the dataset used to evaluate our proposed framework captures
the various types of face masks worn by the public as a
precautionary measure for disease control.

Table II compares our proposed framework to RetinaMask
[13]. It can be observed that our proposed framework achieves
a higher precision value in detecting masks and faces as
compared to RetinaMask. However, RetinaMask achieves a
higher recall as the dataset it was evaluated on comprises of
images of a close-up of people’s faces which accounts for
their better recall figures in detecting masks and faces. Also,
the authors of RetinaMask do not mention the effectiveness
of their model in detecting multiple faces at once, while our
model works well in detecting multiple faces, as illustrated in
Figure 6.

Finally, our proposed framework has also been tested on
a video dataset unlike the aforesaid approaches which deal
with image datasets. The video dataset used to evaluate the
proposed framework contains videos taken using different
specifications of cameras and has a multitude of camera
angles, varying illumination conditions and noise. Thus, the
proposed approach will perform well on real world camera
captures.

C. Analysis of the proposed approach

From the earlier discussion, it can be observed that the
effectiveness of the facial mask classifier depends on the
effectiveness of the face detection model. If the face detection



model fails to detect a face or incorrectly identifies an object as
a face, the performance of the facial mask classifier is affected.

The following key observations were made about the effec-
tiveness of the proposed approach:

1) It is able to detect facial masks on subjects present at a
considerable distance from the camera.

It performed well even in scenarios where the public
areas captured were crowded.

It satisfactorily detected the presence of facial masks on
subjects not directly facing the camera (i.e. only a side
profile of the face was visible) in most cases.

It was able to identify subjects who were incorrectly
wearing a facial mask (i.e. the mask was not covering
their mouth and nose) and labeled them as ‘No Mask’.

2)

3)

4)

These observations are illustrated in Figure 6.

V. CONCLUSIONS AND FUTURE WORK

In this work, a new approach for detecting face masks
from videos is proposed. A highly effective face detection
model is used for obtaining facial images and cues. A distinct
facial classifier is built using deep learning for the task of
determining the presence of a face mask in the facial images
detected. The resulting approach is robust and is evaluated on a
custom dataset obtained for this work. The proposed approach
was found to be effective as it portrayed high precision,
recall, and accuracy values on the chosen dataset which
contained videos with varying occlusions and facial angles.
The effectiveness of the facial mask classifier largely confides
on the ability of the face detection algorithm to accurately
identify faces in the video frames. This could be the subject
of future research in this direction.
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