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Abstract—Two adaptive group testing models are studied 

based on zero-error criterion in this paper. Firstly, for the 

single-stage group testing model, the analytical expression of 

optimal number of grouping members without integer 

constraints is given. Secondly, the optimal number of grouping 

members with integer constraints are given by numerical 

calculation. Finally, a grouping coefficient-based multistage 

model and the principles for selecting optimal grouping 

coefficient are proposed. The results of this paper can help 

medical institutions to improve group testing efficiency of 

infection detection of COVID-19. 
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I. INTRODUCTION 

Since January 2020, a pandemic caused by COVID-19 has 
been spreading across the globe. More than thirteen million 
people have been infected by early July. How to control the 
pandemic is a great challenge for all mankind, and an 
important issue for the building of smart cities[1].  

The first step to control the spread of the virus is to detect 
those who are already infected. The detection test commonly 
used now is the PCR- nucleic acid test. If the test result is 
positive, the individual tested will be considered infected; if 
negative, not infected. Currently, the PCR test takes about two 
hours to get the test result of a single case. However, the 
number of people need to take the test in big cities often 
reaches thousands to even millions. Individual PCR test is not 
efficient enough. Therefore, finding a more efficient detection 
method is of vital importance for blocking the spreading of 
COVID-19. 

Comparing with individual testing, group testing is a more 
efficient method which tests mixed samples of a group of 
people. If the result of the test is negative, all the people in this 
group are considered not infected. If the result of the test is 
positive, there is at least one carrier of COVID-19 in the 
group. Then, individual tests need to be carried out to find the 
carrier(s) in this group.  

Some factors are crucial to the detection efficiency of 
group testing, such as the size of the sample pool, the number 
of group members, and the design of the detection algorithms. 
When the number of individuals in each group is 1, the 
detection efficiency will be the same as that of individual test. 
When the number of individuals in each group is large, the 
infected individuals are uniformly distributed in the sample 
pool, and the probability of infection is high, group testing 
may take longer time, which is less efficient. 

Therefore, to ensure that the efficiency of group testing is 
higher than that of individual testing, the group testing 
algorithm should be carefully designed, taking into 
consideration variables such as the size of the sample pool, the 
probability of infection and the number of group samples. 

From a strict mathematical perspective, some variables such 
as the size of the sample pool and the number of groups are 
integers. Usually it is difficult to find an analytical solution for 
optimization problems with integer constraints.  

Dorfman [2] first proposed the idea of group testing and a 
single-stage grouping model. To solve the problem of finding 
the optimal numbers of grouping members, he used numerical 
calculation method, ignoring integer constraints. He also 
pointed out that no simple general solution to this problem can 
be found. Subsequently, Sobel et al.[3-4] proposed that binary 
splitting method could be used to improve the efficiency of 
group testing. The group testing models, such as those of 
Dorfman's and Sobel’s, which continuously adapt to the 
change of test dataset in the detection process, are called 
adaptive group testing models, which have been further 
studied and improved by other researchers [5-6]. Another 
important type of models are non-adaptive. These models 
focus on the design of a pre-defined test array [7] and 
decoding algorithms. Such models are often based on 
permutation and combinatorial methods, so whether the 
number of infected individuals in the sample pool is known in 
advance will influence the design of the test array and 
decoding algorithms.    

The study in this paper is mainly based on adaptive group 
testing model. Firstly, for the single-stage adaptive group 
testing, this paper gives an analytical expression of the optimal 
number of individuals in a group based on the probability of 
infection. Secondly, this paper presents a multistage grouping 
model with integer constraints, which is more general than 
binary splitting model. Based on the results of this paper, the 
optimal number of grouping members can be directly found 
according to the probability of infection, and the efficiency 
improvement of group testing can be estimated. 

The rest of the paper is organized as follows: in the second 
section, the basic principles of group testing and notations are 
introduced; in the third section, the analysis and simulation 
results of two different models, the single-stage model and the 
multistage model, are presented; the conclusion is given in the 
fourth section. 

II. BASIC PRINCIPLES

A. Characteristic Analysis of COVID-19

COVID-19 is a highly contagious virus. Accurate
detection of infection is crucial to the control of the spread of 
this virus. The probability of infection varies in different 
regions and the number of infected people in a pool is usually 
unknown in advance. In view of the above characteristics, this 
paper adopts the following design principles:  

First, an adaptive group testing model is used, which 
means the number of groups for the current stage of testing is 
determined by the results of the previous stage of testing. 
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Second, the criterion of zero-error detection is used. 
Because COVID-19 is extremely contagious and has a high 
fatality rate, missing one infected individual may have serious 
consequences. The zero-error criterion requires that the final 
testing result should be accurate. False detection result is not 
allowed.  

Meanwhile, for the convenience of analysis, the following 
assumptions are taken in this paper: First, the i.i.d. prior is 
taken in this paper, i.e., each individual is infected 
independently with identical distribution. Second, the 
noiseless assumption is taken to simplify the problem, which 
means the PCR test results of the infected samples must be 
positive and those of the non-infected must be negative. 

B. Expression of the Results of Group Testing 

In this paper, the positive test result is denoted as 1 and the 
negative test result as 0. The principle of group testing is 
similar to the operation of Boolean inclusive OR, which 
means, as long as there is one or more than one positive 
samples in a group, the testing outcome of this group is 1. The 
testing outcome is 0 only when all the individuals in the group 
are negative.  

C. Notations and Remarks 

The following notations will be used in this paper: 

⑨ M: the number of samples in the testing pool. 

⑨ t: the time required for a single test. 

⑨ p: the probability of each individual being not infected.  

⑨ ✂: the grouping coefficient, where ✄ � ✂ ✁ ✄☎✆. 

⑨ ✞☛: the number of individuals corresponding to the ith 

group, where ✞☛ ✌ ✝✞✂☛✟✠ ✡ ✌ ☞✠ ✍ ✠ ✎. 

⑨ ✎: the maximum number of grouping stages, where 

✞✂✏ ✁ ☞ and ✎ ✑
✒✓✔ ✕

✖
✒✓✔✗ . 

⑨ ✘☛: the number of groups in the ith stage of grouping.  

⑨ EIR: the group testing efficiency improvement ratio. 

Remarks: 

⑨ The final testing time of the adaptive group testing is 
a random variable, and only the mean value of this 
random variable is considered in this paper. 

⑨ The group testing efficiency improvement ratio (EIR) 
is defined as the ratio of the grouping testing time to 
the one-by-one serially individual testing time.  

⑨ Testing for different groups is assumed to be 
processed serially, i.e., the parallel detection process 
is not considered in this paper. 

III. PROBLEM MODELS 

In this section, the following two grouping models are 
studied: 

✙ Model 1: Single-stage group testing, i.e., the sample 
pool is divided into testing groups only once, and then 
the members of groups with positive results are tested 
one by one to detect the infected individuals. Model 1 
is further divided into two cases, with case (a) as an 
analytical mathematical model without integer 

constraints, and case (b) as a numerical model with 
integer constraints. 

✚ Model 2: Multistage group testing, i.e., the sample 
pool is grouped in multiple stages until the number of 
members in the final suspicious group is 1, to ensure 
the accuracy of the test.   

A. Model 1 (a) : Single-Stage Group Testing (without 

integer constraints) 

The testing process of this model is as follows: 

✛ In the grouping stage, the sample pool is grouped 
according to the grouping coefficient ✜ ✢✜ ✣ ✢✤✥✤✦✧★✩, 
i.e., the number of individuals in each group is ✪✜, 

where ✪✜ ✫ ✬. Then the number of groups is G =
✭
✮, 

and the time for testing all groups after the first 

grouping is 
✭
✮ ✯. 

✰ After the grouping stage, the individuals in the 
positive groups are tested one by one. Since the 
probability of not being infected for an individual is p 
and the individuals are independent of each other, the 
mean value of the number of groups with positive 

testing results is 
✱
✲ ✳✴ ✵ ✶✷✲✸ . Therefore, the time 

for this step is 
✱
✲ ✳✴ ✵ ✶✷✲✸✹✺✻ ✼ ✳✴ ✵ ✶✷✲✸✹✻. 

If the group testing method is not adopted and each 
individual is tested one by one, the testing time is ✹✻ . 
Compared with the one-by-one detection method, the testing 
efficiency improvement ✽✾ of Model 1 (a) is 

✽✿❀ ✼
❁❂
❃❄❅✿❆❇❈❃❉❊❋●

❊● ❍ ✿
❊■ ❏ ❑▲ ▼ ◆❊■❖ .  P◗❘

Let ❙ ❍ ❚❯, then the optimization problem can be defined 
as 

❱❲❳❨❩✿ ❬❑❙❖ ❍ ✿
❨ ▼ ◆❨ ❏ ▲ ❭       P❪❘ 

By taking the first derivative of the objective function, we 
can find the solution of this optimization problem, where ❙ 
satisfies 

❙❫◆❨❴❳◆ ❍ ▼▲ .                              P❵❛ 
When the actual probability of infection is small, i.e., ❜ ❝

❞, the approximate analytical solution can be obtained, which 
is 

❡❢ ❝ ❣❤ ✿
✐❥❦ .                            ❧♠❛ 

Fig. 1 illustrates the curves of (2) with ❜ ♥ ♦♣qr ♦♣qqr
♦♣qqqr ♦♣qqqq, where the abscissa is the number of group 
members, and the ordinate is the efficiency improvement 
ratio. From Fig. 1, it can be found that, when ❜ ♥ ♦♣qr ♦♣qqr
♦♣qqqr ♦♣qqqq, the corresponding optimal numbers of group 
member are 4,11,32 and 101. 

According to (4), it is interesting that the optimal result is 
determined only by the individual probability of infection, i.e. 
s t ✉. In Fig. 2, we compare the approximate results of (4) to 
the ideal optimal values of (2).  

 



 

 

 
Fig. 1. EIR of Model 1(a) for different values of p   

 
Fig. 2. The relation between optimal number of testing group member and 

the probability of infection. The blue line corresponds to numerical solution 

of (2), and the Diamonds correspond to the approximate solutions of (4). 

 

It can be seen from Fig. 2 that the approximate value of (4) 
is nearly the same as the ideal optimal value of (2) when � ✌
✄✁✂☎ ✄✁✂✂☎ ✄✁✂✂✂☎ ✄✁✂✂✂✂ . Therefore, we believe that ✞☛ ✆

✝✟ ✠
✡☞✍  can be used as a valid analytical solution for the case 

of Model 1(a). 

B. Model 1 (b) : Single-Stage Group Testing (with integer 

constraints) 

For Model 1 (b), which refers to the single-stage group 
testing method with integer constraints, the testing procedure 
is as follows: 

⑨ In the grouping stage, the sample pool is grouped 
according to the grouping coefficient ✎, and the total 

number of groups in the grouping stage is G=✒ ✏
✑✏✓✔✕, 

where the number of individuals in the 1st to the (G-
1)th group is ✖✗✘✙, and the number of individuals in 
the Gth group is ✚ ✛ ✗ ✜ ✢✣ ✜ ✤✥✖✗✘✙✦ ✧ ★ ✚ ✩
✖✗✘✙✪ It is obvious that ✫ ✬

✭✬✮✯✰ is the number of tests 

for this stage of group testing. 

✱ After the grouping stage, the individuals in the 
positive groups are tested one by one. The mean value 
of the number of groups with positive results is 
✲
✳ ✴✵ ✶ ✷✸✳✹ . Therefore, the time of this step is 

✲
✳ ✴✵ ✶ ✷✸✳✹✺✻✼ ✽ ✴✵ ✶ ✷✸✳✹✺✼. 

Therefore, the EIR of Model 1 (b) is 

 
Fig. 3 Relationship between EIR and the number of group members 

(M=10000) 
 

✾✲✿ ✽
❀❁ ❂
❃❂❄❅❆❇❀❁

❂
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where, 

❘ ❙ ✸
❍✸✳■❚ is the number of tests in the grouping stage. 

❘ ❯❙ ✸
❍✸✳■❚ ✶ ✵❱ ❲✵ ✶ ✷❍✸✳■❳❨✺✻❩  is the number of 

further tests on individuals of positive groups. 

❘ ✴✵ ✶ ✷❬✹❭ is the number of further tests if the result 
of the last group with N individuals is positive. 

In Fig. 3, the relationships between ✾✲✿ and the number of 
group members of different p values are illustrated, where 
M=10000. It is found that although the curves with integer 
constraints show some jitters, the main shapes are almost the 
same as those in Fig. 1, where the integer constraints are 
ignored. 

By comparing the curves in Figs. 1, 2 and 3, we can reach 
the following conclusions: 

1) Model 1 has similar optimization results in the cases 
of both (a) and (b). 

2) ❪❫ ❴ ❵❛ ❜
❝❞❡ can be used as a valid approximation 

for the optimal number of grouping members for 
Model 1. 

C. Model 2: Multistage Group Testing 

Considering that the number of individuals in the sample 
pool is usually large, for simplicity, we assume that the 
number of individuals in the last group is the same as that in 
other groups. The multistage testing process is as follows: 

1) In the first stage, the total number of individuals to 
be tested is M, the number of individuals in each 
group is ❢❣ ❤ ✐❢❥❦, the number of groups is ❧❣ ❤
✐ ♠
♥♠♦♣❦, the testing time is q❣ ❤ ❧❣q , and the mean 

value of the number of positive groups is r❣ ❤
❧❣st ✉ ✈♠❣✇. 

2) In the second stage, the positive groups are further 
grouped according to the grouping coefficient ❥. The 
number of individuals in each group is ❢① ❤ ✐❢❥①❦, 
so there are ❧① ❤ ✐♠②③②♠④ ❦  groups. The testing time 

is q① ❤ ❧①q , and the mean value of the number of 
positive groups is r① ❤ ❧①st ✉ ✈♠④✇. 
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3) The positive groups are further grouped in the 
subsequent stages until the final Dth stage; 

4) The number of total stages is at most ✞ ❤ ✐�✁✂♦
❣
♠❦, 

where the number of individuals in the group in the 
final stage should satisfy ✐❢❥☛❦ ❤ t , which will 
guarantee that the infected individuals can be 
accurately detected. 

According to the above process, the total testing time is 

✄ ❤ q☎ ❧✆☛
✆✝❣  .                           (6) 

Therefore, the EIR of Model 2 is 

✟① ❤
✠ ✡☞✌
✍
☞✎✏

♠✌ ❤ ✠ ✡☞
✍
☞✎✏

♠  .             (7) 

It is difficult to get analytical result for this model, so we 
give numerical simulation results directly in Figs. 4 and 5. 

Figs. 4 and 5 show the relationship between EIR and 
grouping coefficient ✑  under different probabilities of 
infection with M as 1000 and 10000 respectively. From these 
two figures, we can find that the performance behaviors of 
grouping coefficients ✑  can be discussed in two different 
regions, which is summarized as follows: 

1) In Fig. 4, where the total number of individuals is 
1000, Region A corresponds to ✑ ✒ ✓✔✓✕ , while 
Region B corresponds to ✑ ✖ ✓✔✓✕. 

2) In Fig. 5, where the total number of individuals is 
10000, Region A corresponds to ✑ ✒ ✓✔✓✗ , while 
Region B corresponds to ✑ ✖ ✓✔✓✗. 

In Region A, the shapes of the curves are similar to those 
in Figs. 1 and 3. At the same time, it is observed that in this 
region, if the probability of infection is high, there is a unique 
optimal grouping coefficient that corresponds to the optimal 
EIR. If the probability of infection is small, the testing 
efficiency will continuously improve with the increase of ✘. 

In Region B, in the case of high probability of infection, 
the testing efficiency ratio fluctuates dramatically. Sometimes 
EIR is even greater than 1, indicating that group testing is not 
a good choice for this situation. In the case of small probability 
of infection, group testing is still helpful to the improvement 
of detection efficiency. 

Based on the above analysis, when the probability of 
infection is high, to ensure a robust performance, we should 
find the optimal grouping coefficient in Region A. When the 
probability of infection is small, we should use the maximum 
possible grouping coefficient in Region B. 

 
Fig. 4  EIR of multistage group testing method versus ✙ (M=1000) 

 

Fig. 5  EIR of multistage group testing method versus ✙ (M= 10,000) 

IV. CONCLUSION 

Aiming at increasing the testing efficiency for the 
infection detection of COVID-19, two adaptive group testing 
models are studied based on zero-error criterion. The models 
can help medical institutions to determine the critical 
parameters of single-stage and multistage group testing 
methods.  

In real application, the uncertainties of the models 
proposed in this paper might occur due to the lack of a priori 
knowledge of the individual infection probability and the 
dilution of positive samples in a group which leads to the 
existence of false test outcomes. Future studies will focus on 
using observed infection probability to adaptively refine the 
models and taking the false detection probability as an 
additional parameter in the models. 
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