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Abstract—We introduce and study reward sharing schemes
(RSS) that promote the fair formation of stake pools in
collaborative projects that involve a large number of stake-
holders such as the maintenance of a proof-of-stake (PoS)
blockchain. Our mechanisms are parameterized by a target
value for the desired number of pools. We show that by
properly incentivizing participants, the desired number of
stake pools is a Nash equilibrium arising from rational play.
Our equilibria also exhibit an efficiency / security tradeoff via
a parameter that calibrates between including pools with the
smallest cost and providing protection against Sybil attacks,
the setting where a single stakeholder creates a large number
of pools in the hopes to dominate the collaborative project.
We then describe how RSS can be deployed in the PoS
setting, mitigating a number of potential deployment attacks
and protocol deviations that include censoring transactions,
performing Sybil attacks with the objective to control the
majority of stake, lying about the actual cost and others.
Finally, we experimentally demonstrate fast convergence to
equilibria in dynamic environments where players react to
each other’s strategic moves over an indefinite period of
interactive play. We also show how simple reward sharing
schemes that are seemingly more ‘“fair”, perhaps counterin-
tuitively, converge to centralized equilibria.

Index Terms—delegation games, proof of stake, cryptocur-
rencies, decentralization, congestion games, non-myopic
equilibria

1. Introduction

One of the main open questions in blockchain systems
research is developing reward mechanisms that incentivize
honest protocol execution and decentralization. Bitcoin,
the dominant example of proof-of-work blockchains, has
been criticized for its susceptibility to protocol deviation
attacks (e.g., selfish-mining [15] and mining games [23]),
its tendency to centralise via the creation of mining pools
[11, [20], [27], [42], and its high-energy expenditure.
To address mainly the latter problem, many proof-of-
stake (PoS) [5], [12], [24], [29] blockchains have been
proposed. Despite progress in the understanding of the
security properties of PoS blockchains, designing a ro-
bust incentive mechanism that promotes decentralization
remains open.

We can abstract the problem that is to be solved as
follows. Consider a society of agents that have stake in
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a joint effort that is recorded in a ledger and want to
run a collaborative project (which might be maintaining
the ledger itself). Stakeholders actively engaged in the
project will incur operational costs (potentially different
across the stakeholder population) and hence the project
should provide some rewards to offset these costs. The
stakeholders have the option to actively participate in
maintenance or abstain from it. We will assume that the
project can draw funds from a reward pool enabling,
potentially at regular intervals, to distribute in some way
a reward R to the stakeholders. In the PoS setting, the
reward pool can be facilitated either via the creation of
new cryptocurrency, the collection of transaction fees, or
a combination thereof. A viable solution would thus be
in the form of a reward sharing scheme which will take
as input the current snapshot of the collaborative project
and distribute the rewards R to all stakeholders. The aim is
that, after potentially multiple iterations of reward sharing,
there are still agents, who incentivized by the rewards, are
engaged in maintenance (for if not, the project should be
considered dead). Beyond being viable, a solution also
needs to possess additional desirable characteristics, e.g.,
it is decentralised in the sense that a sufficient number of
distinct stakeholders are active in the project.

There are three dominant approaches that have been
considered in the PoS context. In the “direct democracy”
approach, every stakeholder participates proportionally to
their stake, which has downside that the operational costs
can be so high that they discourage participation from
small stakeholders resulting in so-called “whales” com-
pletely dominating the system or, in the worst-case, having
operations stopping altogether. In the “jury” approach,
followed by PoS systems like [11], [29], a random subset
of k stakeholders is elected at various intervals to carry
out the task, which has the downside that either the jury
tenure is short and most of the nodes need to be either
constantly operationally ready without necessarily doing
anything, or the jury tenure is long (or predictable way
ahead of time) and then the risk of someone subverting
the project by paying the elected nodes with small stake is
high. Finally, in the “representative democracy” approach,
broadly followed by [10], [24], [26], the stakeholders can
empower other stakeholders to represent them in project
maintenance and subsequently share the rewards. Given
that empowering is performed via stake as recorded in
the ledger, representatives can be thought to form “stake
pools” in analogy to the mining pools of Bitcoin. The
focus of this work is to develop reward mechanisms and



analyze them game theoretically for this third approach.
Our Results. In our setting there are n agents or players
with stakes s = (s1,...,s,) and a private vector of
operational costs for running a stake pool ¢ = (¢y, ..., ¢y)
for each one of players, should any of them choose to do
so. Without loss of generality we assume s;,¢; € (0,1)
for all 7 and 21 s; < 1. The stake is publicly recorded in
some way but without necessarily identifying how much
stake belongs to each player, the player identities, or even
their number n. The cost stems from the inherent task of
maintenance the players are supposed to perform if they
setup a pool; in the PoS setting which is our primary focus
that would be the cost of setting up a server that receives,
organizes and verifies transactions to be recorded in the
ledger. Each player mainly decides whether to participate
directly or delegate its stake to another stakeholder to act
on their behalf — or even split its stake into multiple such
activities (see below about “Sybil behavior”). Delegation
creates pools of stakeholders, where each pool consists of
its leader who participates directly and its members that
delegate their stake to the pool. The game is determined
by the reward scheme that determines the way by which
the total reward R is distributed to the pools and how
individual pool rewards are distributed to the pool mem-
bers. Looking ahead, we will focus on the class of reward
schemes that allocate reward r(o,\) to a pool of total
stake o and allocated pool leader stake \; we call r the
reward function. The other component of a reward scheme
determines how the pool reward r(o, A) is distributed to
the pool leader and pool members. It makes sense that the
reward for the pool leader is different from the reward for
pool members to compensate the pool leader for the cost
it incurs by contributing to the collaborative project as
well as to incentivize them to take the initiative to form
a pool. We focus on reward schemes that distribute the
pool reward as follows: the pool leader gets an amount to
cover its cost of running the project as well as a fraction
m; of the remaining amount which we call its (profit)
margin. The remaining amount is distributed among the
pool members, including the pool leader, proportionally to
the stake that they contributed to the pool. In our analysis
we will take advantage of automatic enforcement of our
reward scheme, as e.g., this can be guaranteed by a smart
contract built-in the underlying ledger.

Given a reward sharing scheme that belongs to the
above class, the players will pick their strategy that de-
termines whether they will run a pool or not and whether
they will allocate some or all of their stake to pools created
by other players. Natural questions about these games are:
Do they have pure equilibria? Do they possess desirable
properties such as decentralisation? Do the best-response
dynamics converge fast to them?

An important and interesting observation here is that
the standard notion of utility and Nash equilibrium for this
game fails to capture what we intuitively expect to happen.
The reason is that at a Nash equilibrium the players do not
have to take into account the impact their selection will
make on the moves of the other players. In particular, all
Nash equilibria (if they exist) will have margins m; = 1
for a simple reason: once the other players select their
strategies and in particular the allocation of their stake, the
best response of a pool leader is to increase its margin as
much as possible. Similar situations occur in other games,

such as the Cournot competition [18]. The appropriate

framework for such games is to consider non-myopic

utilities, i.e., consider equilibria in a setting where utility is
defined in a non-myopic fashion, accounting for the effects

that a certain move of a player will incur anticipating a

strategic response by the other players.

Our main result is the introduction and analysis of a
novel reward sharing scheme that is parameterized by (1)
the desired number of pools k, and (2) a Sybil resilience
parameter «. The two parameters can be selected to
fine-tune two desirable properties of the resulting con-
figuration. The primary property is decentralisation and
fairness, which is captured by the creation of k pools of
roughly the same size 1/k. The secondary property we are
interested in is Sybil resilience, which is captured by being
able to influence the equilibrium configuration so that it
takes the parties’ stake into account. Our mechanism is
described in the following definition.

Definition 1 (A Sybil-resilient cap-and-margin reward
scheme). Given a target number of pools k¥ € N,
and a Sybil resilience parameter @ € [0,00), the
reward function r(o, \) of a pool with total stake o,
out of which A stake belongs to the pool leader, is
proportional to o’ + a/], i.e.,

(1) r(o,\) ~ o’ +a' )
where ¢/ = min{c,8}, 8 = 1/k, and o' =
o’ =) (

a2 =2 0=0/B) he proportionality factor is selected
so that the sum of rewards does not exceed the avail-
able funds.

If the primary aim of the reward scheme, i.e., to have
pools of size 0 = 8 = 1/k, is achieved, then o/ = «
and the expression in the reward function simplifies to
r(o,A) = o+ a, that is, a linear combination of the pool
stake and the stake of the pool leader. The expression in
r(o,A) for pool size ¢ # [ has been selected to get a
Nash equilibrium with the desired properties. Note also
that when a pool has stake o > /3, the additional stake
above 3 is essentially ignored. We will call such a pool
saturated.

Our main theorem about this reward sharing scheme
is the following.

Theorem 1 (Informal statement). There exists a Nash
equilibrium for the reward scheme of Definition 1 that
satisfies

o exactly k pools are created, each of size 1/k,
o the pool leaders are the players with the highest
value of

R
2 P(si,ci) = ySi) T — Ci
?2) (si,ci) =71(B,8:) T a ci,
where s; and ¢; are the stake and cost of player ¢,
and R is the total reward distributed to the players,
and
« players have no incentive to lie about their cost c;.

The quantity P(s;,¢;) in (2) is the potential profit of
stakeholder ¢ when this player creates a pool using their
whole stake s; and the pool attracts total stake /3.

It follows immediately from the above theorem that we
obtain an equilibrium that achieves the primary decentral-
ization and fairness objective. Regarding Sybil resilience,
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observe that the potential of the players is controlled by
the parameter . When o = 0, the pool leaders are the
players with the smallest cost (resulting in the most cost-
effective equilibrium) while as o grows, the stake backing
up the pools starts to become more and more relevant
in the equilibrium configuration, with the extreme case
when o — oo and the costs of all players are roughly
equal when the stakepools will be managed by backing
up each pool with the largest amount of stake possible.
We illustrate how we can facilitate Sybil resilience by
calibrating the o parameter in the sense that any Sybil
behaving player at the equilibrium has to invest resources
linear in the number of identities (i.e., stake-pools in our
setting) that they register, arguably the best one can hope
for in the anonymous setting we operate. We note that
although the above reward function may at first appear
rather complicated, there is a strong justification behind it
(cf. Section 4).

Non-myopic utility and dynamics. We also tackle the
question of whether the equilibrium guaranteed by our the-
oretical analysis is effectively reachable when players are
engaged in the game. We consider non-myopic dynamics
with players applying a natural best-responce strategy to
each other’s moves in succession. Specifically, the players
compute the desirability of each announced pool, which
is the answer to the following question of the players:
“if T allocate a small stake = to pool j, how much do I
expect to gain?”. In other words, the desirability is the
marginal reward of pool j provided that it will become a
successful pool and obtain stake /3. A non-myopic player
then assumes that each of the & most desirable pools will
increase in size to become saturated and the remaining
pools will end up with the stake of their pool leader, and
allocates its stake accordingly. The player is non-myopic
as they judge pools by their potential to issue profits, not
their current membership size which potentially might be
quite small especially at the beginning of the game. For
pool leaders the situation is similar, but they have also
to compute their margin. To do so, they calculate the
maximum possible margin that still allows them to be
one of the k& most desirable pools. The question then is
whether these dynamics converge? how fast? and to which
equilibrium? We provide experimental evidence that un-
der reasonable assumptions of the stake distribution (for
example, Pareto distribution) and of the cost distribution
(for example, uniform distribution in an interval), the
dynamics converge quickly to our Nash equilibrium that
has k saturated pools and the characteristic that all pools
are formed by the players that are ranked best according
to potential profit as predicted by the theoretical analysis.

Equilibria and incentive compatibility. Our reward sharing
scheme has a Nash equilibrium in which the reward is
distributed fairly among all stakeholders, except for pool
leaders that get an additional gain (Proposition 2). A nice
property of this additional gain is that, all else being equal,
it increases by at most dx whenever the pool leader’s
cost decreases by dx. This means that our reward sharing
scheme is incentive compatible: no player will benefit by
lying about its cost.

Deployment considerations in the PoS setting. We provide
a comprehensive list of potential attacks and deviations as
well as how they are mitigated in a deployment of our
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RSS in the setting of a PoS protocol such as [24]. These
include “rich get richer” considerations censorship' and
Sybil attacks, as well as how to deal with underperforming
pool leaders that fail to meet their obligations in terms of
maintaining the service.

Related work. A number of previous works considered
the incentives of mining pools in the setting of PoW-
based cryptocurrencies (as opposed to PoS-based ones)
such as Bitcoin [14], [36], [37], [40]. The main differences
between mining pools in Bitcoin and stake pools in our
setting are that (i) in Bitcoin all pool members perform
mining and hence incur costs, while in PoS setting, only
the pool leader runs the underlying protocol and incurs
a cost while delegators have no cost, (ii) in Bitcoin each
pool leader can choose a different way to reward pool
members/miners while in our setting we prescribe a spe-
cific way for rewards to be shared between pool members.
Regarding centralization, Arnosti and Weinberg, [1], have
established that some level of centralisation takes place in
Bitcoin in settings where differences in electricity costs
are present between the miners. Also according to [27] in
a setting where each unit of resource has a different value
depending on the distribution of the resources among the
players, miners have incentives to create coalitions. These
results are inline with our (even more centralised) negative
result on fair RSS’s for the PoS setting, cf. Section 2.2.
Another aspect we do not explore here, is the instability
of such protocols when the rewards come mostly from
transaction fees; this was explored in [6], [42].

With respect to PoS blockchain systems, a different
and notable approach to stake pools is to use the stake
as voting power to elect a number of representatives, all
of equal power, as in delegated PoS (DPoS) [26]; for
example, the cryptocurrency EOS [21] has 21 representa-
tives (called block producers). This type of scheme differs
from ours in that (i) the incentives of voters are not taken
into account thus issues of low voter participation are
not addressed, (ii) elected representatives, despite getting
equal power, are rewarded according to votes received;
this inconsistency between representation and power may
result in a relatively small fraction of stake controlling
the system (e.g., at some point, controlling EOS delegates
representing just 2.2% of stakeholders was sufficient to
halt the system,” which ideally could withstand a ra-
tio less than 1/3), (iii) it may leave a large fraction
of stakeholders without representation (e.g., in EOS, at
some point, only 8% of total stake is represented by the
21 leading delegates?). Yet another alternative to stake
pools is that of Casper [5], where players can propose
themselves as “validators” committing some of their stake
as collateral. The committed stake can be “slashed” in case
of a proven protocol deviation. This type of scheme differs
from ours in that (i) stakeholders wishing to abstain from
protocol maintenance operations have no prescribed way
of contributing to the mechanism (as in the case of voting
in DPoS or joining a stake pool in our setting), (ii) a small
fraction of stake may end up controlling the system while
at the same time leaving a lot of stake decoupled from
the protocol operation; this is because substantial barriers

1. A censorship attack happens when the current pool leaders block
new pool registrations.

2. Statistics extracted from http://eos.dapptools.info/#/block-producers
on July 27th, 2018.



may be imposed in becoming a validator (e.g., in the EIP
proposal for Casper® it is suggested that 1500 ETH will
be the minimum deposit, which, at the time of writing is
more than $370K); this can make it infeasible for many
parties to engage directly; on the other hand reducing this
threshold drastically may make the entry barrier too low
and hence still allow a small amount of stake to control the
system. As a separate point, it is worth noting that for both
the above approaches there is no known game theoretic
analysis that establishes a similar result to the one pre-
sented herein, i.e., that the mechanism can provably lead
to a Nash equilibrium with desirable decentralisation char-
acteristics that include a high number of protocol actors
and Sybil attack resilience. The compounding of wealth
in PoS cryptocurrencies was studied in [16] where a new
notion denoted by “equitability” is introduced to measure
how much players can increase their initial fraction of
stake. Also they prove that a “geometric" reward function
is the best choice for optimizing equitability under certain
assumptions; we remark that it is a folklore belief that
PoS systems are inherently less equitable than ones based
on PoW, however this belief seems to be unfounded,
cf. [22]. With respect to equitability we show that by
calibrating our Sybil resilience parameter to be small our
system becomes “equitable” in the sense of providing
similar rewards to stake pool leaders independently of
their wealth.

From a game-theoretic perspective, our setting has
certain similarities to cooperative game theory in which
coalitions of players have a value. In our setting the
players have weights (stake) and they are allowed to split
it into various coalitions (pools). Our objective is to have a
given number of equal-weight coalitions, which contrasts
with the typical question in cooperative game theory on
how the values of the coalitions are distributed (e.g., core
or Shapley value) in such a way that the grand coalition is
stable [32]. Actually, the games that we study are variants
of congestion games with rewards on a network of parallel
links, one for every potential pool. The reward on each
link is determined by the reward function, which essen-
tially determines an atomic splittable congestion game.
But unlike simple atomic splittable congestion games [30],
our games have different reward for pool leaders and for
pool members. There are two main research directions for
such games: whether they have unique equilibria and how
to efficiently compute them [3]. Regarding the question
of unique inner equilibria the most relevant paper to our
inner game is [31] (but see also [2], [35]) which shows
that under general continuity and convexity assumptions,
games on parallel links have unique equilibria. However,
the conditions on convexity do not meet our design ob-
jectives and they do not seem to be useful in our setting.

Our work is related to two aspects of delegation
games, which are games that address the benefits and other
strategic considerations for players delegating to someone
else to play a game on their behalf, such as owners of
firms hiring CEO’s to run a company. The first aspect
is somewhat superficially related to this work in pool
formation the pool members delegate their power to pool
leaders. The second aspect which is much more relevant
to our approach is that delegation changes the utility

3. See https://eips.ethereum.org/EIPS/eip-1011.
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of the players (for example, by considering “credible
threats” [38], [39]) or creates a two-stage game [17], [41],
[43]. A typical two-stage delegation game is non-myopic
Cournot competition [18] in which in the outer game the
firms (players) decide whether to be profit-maximizers or
revenue-maximizers, while in the inner game they play a
simple Cournot competition [28]. Unlike our case, the in-
ner Cournot competition has a simple unique equilibrium
which defines a simple two-stage game.

Another research area that is relevant to this work
is mechanism design, because participants may have an
incentive not to reveal their true parameters, e.g., the cost
for running a pool [30], [44].

In the proof of work setting, [19] considers reward
sharing rules for proof-of-work systems under the assump-
tion of discounted expected utility and identifies schemes
that achieve fairness. Furthermore, an axiomatic approach
to reward schemes of proof-of-work systems is taken in [8]
in order to study fairness, symmetry, budget balancing and
other properties. Unlike our work that considers incentives
for pool formation with desirable properties, these two
papers study intrinsic properties of the system given an
existing pool formation.

Finally, after the first version of the present paper was
made public (on the arXiv repository, cf. [4]), another
work, [25], studied a parameterized notion of decentral-
ization, where, in an ideal system, all participants should
exert the same power in running the system, independently
of their stake. This is a significantly more demanding
notion of decentralization than the one considered here,
where in an ideal system, participants exert power pro-
portional to their stake. It is argued in [25] that in order
for a system to achieve full decentralization, there must
exist a strictly positive Sybil cost, that is, the cost of
running two or more nodes should be higher when the
nodes belong to the same entity than to multiple entities.
Clearly in systems with anonymous users, Sybil costs
cannot be positive and such concept of decentralization
is impossible.

Organization The remaining of the paper is organized as
follows. First in Section 2.1 we describe the general con-
cept of reward sharing schemes for stake pool formation.
In Section 2.2 we study a particular, simple and seemingly
“fair” reward sharing scheme that follows the logic re-
wards are provided in the Bitcoin protocol. We show that
it fails to decentralize. Then, in Section 2.3 we present
“cap-and-margin” reward sharing schemes, the class of
schemes we introduce and study. The formal treatment of
the stake pools game is provided in Section 3 that includes
the definition of the relevant utility functions. In Section 4
we put forth our scheme; its game theoretic analysis is
presented in Section 4.2 in the constrained setting where
players declare at most one stake-pool. This restriction is
then lifted in Section 4.3 where we also study the Sybil
resilience properties of the scheme. Finally, we present our
experimental results in Section 5. In Appendix A we first
go over deployment considerations and then provide some
further analysis about Sybil attacks in Appendix B. Some
omitted proofs are given in Appendix C. A more refined
two-stage game theoretic analysis of our main result from
Section 4 is provided in Appendix D. Finally an addendum
to our experiments section can be found in Appendix E.



2. Reward Sharing Schemes

For an overview of our notations we refer to Figure 5.

2.1. Model and Definitions

There are n stakeholders (aka players) with stakes
s = (S1,...,8,) such that > ;s; = 1 and costs
¢ = (c1,...,cp) (all assumed non-zero real values). The
value s; represents the i-th player’s stake in the collabo-
rative project (which is e.g., maintaining the blockchain),
while the value c¢; represents the i-th player’s cost, should
he decide to be active in the project’s maintenance. The
players want to engage in the collaborative project and
each player decides whether to participate directly by acti-
vating its pool or delegate his stake to other stakeholders.
The total stake that is delegated to an active stakeholder
j (note that the sum of all players’ stakes is 1 so with the
term “‘stake” we mean relative stake) forms a stakepool,
we will call such a pool 7;, indexed by its pool leader
j, and we will denote by o; the total stake delegated to
this pool by all players, including the pool-leader j. We
will use a; ; to denote the stake that player ¢ allocates to
pool 7;. The pools participate in the collaborative project
through their leaders and this participation incurs cost c;
for pool leader j. This cost is fixed for each player and
does not depend on the size of the pool. To incentivize the
stakeholders and pool leaders to form pools and work for
the collaborative project, we introduce a reward scheme.
We assume that there is a fixed reward R to be distributed
among all pools. A reward scheme determines the way by
which the reward R is distributed to the pools and pool
members, and the central issue of this work is to determine
reward schemes with desired properties.

We assume that the stakeholders are rational in the
sense that they want to maximize their utility and that
there are no externalities, i.e., outside factors that affect
the reward of the pool and the players.

Our primary objective is to incentivize the stakehold-
ers to form a certain number of pools (smaller than the
number of players). We further want no pool to have a
disproportionally large size, so that no group can exert
disproportionally large influence. Ideally, we want to find
a reward scheme that, at equilibrium, leads to the creation
of many almost equal-stake pools independently of (i)
number of players (ii) the distribution of stake and costs
(iii) the degree of concurrency in selecting a strategy. This
seems like an impossible task?, so we have to settle for so-
lutions that achieve the above goals approximately under
some natural assumptions about the distribution of stake
and costs and about the equilibria selection dynamics.

We summarize the model here. Formal definitions of

the concepts follow next.
Reward sharing schemes (RSS) for stake pools. The
class of reward sharing schemes we investigate is param-
eterised by a function 7 : [0,1]2 — Rx( and operates as
follows.

4. Actually, here is a simple reward scheme that achieves all goals:
give no reward to the pools, unless there are many equal-stake pools,
in which case each pool gets reward R/k. However, we are interested
in reward schemes that can lead to a good Nash equilibrium starting at
the state in which all players play no-participation and following natural
symmetric, almost myopic dynamics, such as repeatedly having a random
player playing best-response.
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The reward scheme distributes a total fixed amount
R to the pools according to their stake o; and the
stake of their pool leader a; ;. In particular pool
m; gets reward (o, a; ;) with Y, r(03,a;;) < R.
Note that we don’t have to distribute the whole
amount R. Formally, the function r(-,-) takes the
stake of a pool and the stake of the pool leader
allocated to this pool and returns the payment for
this pool so that: Y. r(0y,a;,) < R.

7(0,0) = 0, which means that a pool with no stake
will get zero rewards.

The reward r(o;,a;;) of each pool 7; is shared
among its pool leader and its stakeholders. This
may be done in a number of ways but in any
case, the pool leader should get an amount c;
min(¢;, (0, a; ;) to cover the declared cost for
running the pool. We will focus our investiga-
tion on reward schemes that are proportional, i.e.,
those schemes that have the property that the ratio
of the rewards obtained by stakeholder j; over
the rewards of stakeholder jo in pool m; equals
aj, i/aj,.i» with the only exception being for pool
leaders who may be considered for additional re-
wards.

The stake pools game and utility function. Based on
a reward scheme as described above, we can define the
stake pools game where the strategies of the players are
their allocations of their stake to their own as well as
the other available pools. In this game each player ¢ tries
to maximize his utility. The rewards of a pool 7; are
r(oi,a;,;) and the cost the pool leader/operator incurs
for running this pool is ¢;. The pool operator gets his
cost reimbursed, apart from that, all rewards are split
proportional to stake. So if a player i with cost ¢; runs
a pool with total stake o;, his utility u;; from this pool

Y is
T(Ui7ai,i) -

WUii = { i, (T(Ui,ai,i) _

for r(0y,a;:) < ¢,
otherwise,

Ci
@i )
and a player j # i delegating stake a;; to that pool m;
will get rewards

uj,’i = { ci)

from that pool. We define the utility of each player j
to be u; = Y . u;,. Given the above, the hard question
is to define the reward sharing scheme, and importantly
r(-,-), so that the underlying stake pools game has Nash
equilibria that meet (at least) our primary objective: having
a large number of active pools.

0

aj.i
(247

for (03, ;i) < ¢,

(r(os, aii) — otherwise

2.2. Fair RSS’s and their Failure to Decentralise

In this subsection we will show that if we use a
“fair” reward sharing scheme, then we will end up in an
equilibrium with at most one pool, which means that this
scheme fails our decentralization objective.

Specifically consider the fair allocation that sets
r(oi,a;,;) = 0;- R, i.e., pools are rewarded proportionally
to their size. For simplicity we will take R = 1. (Note
that if we consider R = 1 then all the costs are between



zero and one.) Moreover, we will assume that all pool
participants are also treated fairly receiving rewards pro-
portionally to the stake they have delegated in the pool of
their choice.

We prove the following (see the full version of this
paper in [4] for the proof) the following theorem:

Theorem 2. Given the above reward sharing scheme: (I)

There is no equilibrium where more than one pool is
created.
(II) If there exists ¢ such that s; > ¢; then the only
equilibria are the following: there exists just one pool,
say m; and it holds (i) ¢; < 1 and (ii) s; - ¢; < ¢
for each member j of this pool (iii) all players have
delegated their stake to ;.

Experimental results — dynamics. Given the above the-
orem, we then experimentally investigate how fast such
systems centralize. We use three different initial states for
these experiments:

1) “Maximally decentralized”, where every player
whose cost ¢; is lower than his stake s; runs a
pool and all other players are passive.

2) “Inactive”, where no player runs a pool.

3) “Nicely decentralized”, where ten players run a

pool, and the others delegate to these pools in a
way that makes them all equally big.

Our experiments show that the convergence to the results
predicted by the theory is fast: If at least one player has
stake greater than cost and hence runs a pool, all players
will end up delegating all their stake to this single pool
ending up in a “dictatorial” single pool configuration.
The simulation in the experiment has players selected at
random taking turns and playing best-response attempting
to maximise their utility. More details regarding how the
experiments are executed refer to Section 5 where we
overview our experiments.

In Figures 1, 2 and 3 we present a graphical represen-
tation of the experiments. Different colors correspond to
different pools. The x-axis represents time while the y-
axis the stakeholders. Costs are uniformly selected in the
specified range. Stake is following a Pareto distribution.

In the following theorem (i) we generalise the im-
possibility result to the case of any function r for which
(r(o,A) — ¢)/o is strictly increasing in o and (ii) we
prove that there are configurations for which there is
no equilibrium with a number of pools smaller than the
number of players in the case of a strictly decreasing
(r(o,A\) —c¢)/o in o.

r(o,A\) — ¢
Theorem 3. 1) If ———
increasing in o € (%0, 1] then there is no equilibrium
with more than one pool. Note that a fair reward
function r(o, \) = o is such an example.
1) If 7(o,\) = r(o) a continuous and strictly in-
r(o,\) —¢

as a function of o is strictly

creasing function on ¢ and as a function

of o is strictly decreasing in o € [00, 1], where og
such that r(og) — ¢ > 0, then there is an assignment
of costs and stakes to the players such that there is
no equilibrium with fewer than n pools where n the
number of players. We will assume for the proof that
each player can delegate to a pool stake at least S‘"‘%
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where f € (1, 00) and sy, the minimum stake among
all the players.

For the proofs see the full version of this paper in [4].

2.3. RSS with Cap and Margin

Motivated by the failure of the fair reward sharing
scheme, in this section we will put forth a wider class
of reward sharing schemes that fare better (as we will
demonstrate) in terms of incentivizing players to create
many pools of similar size.

Our first key observation for a reward function to
have better potential for decentralization is that while it
should be increasing for small values of the pool’s stake,
something that will incentivize players to join together
in pools to share their costs, the rewards should plateaux
after a certain point in order to discourage the creation of
large pools, or equivalently to incentivize the breakup of
large pools into smaller ones. This suggests that rewards
will be capped.

Our second observation is that it is sensible to treat
pool leaders in a preferential way with respect to rewards.
Recall that in the case when the rewards of the pool are
more than the cost, the cost is subtracted from the rewards
of the pool and, if we treat everyone proportionally, the
pool leader should get the same rewards as a pool member
having delegated the same stake to the pool. On the other
hand, in the case when the pool does not get enough
rewards to compensate its operational cost then the differ-
ence is paid by the pool leader. So the pool leader bears an
extra risk compared to regular pool members and it makes
sense to be compensated for that. Thus, in our reward
scheme we will consider that the pool leader can ask for an
extra reward compared to the other members. This reward
will be a fraction of the pool’s profit and this fraction will
be denoted by the margin value m. The margin will be
part of the strategy of potential pool leaders.

Reward sharing scheme with cap and margin. A re-
ward scheme for stake pools that incorporates the above
features will be called reward sharing scheme with cap
and margin. Formally :

Definition 2 (Reward sharing schemes with cap and mar-
gin). A reward sharing scheme with cap and margin
is a reward sharing scheme that (1) is parameterised
by a function r : [0,1]2 — Rx¢ (that takes as input
the stake o; of a pool 7; and the stake a;; of the
pool leader allocated to this pool and returns the total
reward for this pool) and a value £ € N and satisfies
the following properties:

(as before) >0 r(0i,a;;) < R, where R the
total rewards.

(as before) r(0,0) = 0.

W > 0, when 0 < 8 def % This
means that the reward function is increasing for
small values of pool’s stake to incentivize players
to join together in pools to share the cost.

VA r(o,\) = r(B8,\) when o > . This means
that the reward function is constant for large values
of the pool’s stake to discourage the creation of
large pools.
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Figure 1. Example dynamics for the fair reward sharing scheme (¢ € [0.001, 0.002]) showing centralisation after about 100 iterations with n = 100
players. Initially, the players are “maximally decentralzed”. Here and in all following similar diagrams, the vertical line indicates the time when

equilibrium is reached.
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Figure 2. Example dynamics for the fair reward sharing scheme (¢ € [0.001, 0.002]) showing centralisation after about 100 iterations with n = 100

players. Initially, no stake-pools exist.
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Figure 3. Example dynamics for the fair reward sharing scheme (c € [0.001, 0.002]) showing centralisation after about 100 iterations with n = 100

players. Initially, the players are “nicely decentralized”.

(2) the reward r(o;, a; ;) of each pool 7; is shared among
its pool leader and its stakeholders. The pool leader
gets an amount ¢; = min(¢;, (04, a;,;)) to cover the
declared cost for running the pool. A fraction m; of the
remaining amount (7(0;, a;,;) —c; ) is the pool leader
compensation for running the pool. This fraction is re-
ferred to as margin. The rest (1—m;)-(r(0;, a; ;)—c; )
is distributed to the stakeholders of the pool, including
the pool leader, proportionally to their contributed
stake.

To analyze the outcome of a reward scheme, we need
to define the game induced by it, which in turn depends
on our assumptions about how far-sighted the players
are when calculating their best response. We analyze the
natural assumption that each player computes their utility
using the estimated final size of the pools (under the
assumption that the other players act in the same way).
The utility of the players in this setting depends on the
desirability D;(S"N) = (1—m;)P()\j, ¢;) T of pool 7},
where P();,¢) = r(8,\;) — c is the potential profit of
the pool when it is saturated. Each player ranks the pools
according to their desirability and computes the expected
stake oM of them (this is related to the non-myopic
stake, see definition 7), which is either max(/3,0;), when
the pool is ranked among the k£ most desirable pools, or
simply A; + a; ;j, when the pool is not very desirable and
the player expects to be alone with the pool leader. With
this, we see that the non-myopic utility that the player
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gets by committing stake a; ; to a saturated pool m; is
Dj(SﬂW’)‘))ai,j/a]]-VM. The utility of the pool leaders is
computed accordingly.

3. Stake Pools Game Formal Treatment

The stake pools game with cap and margin. Without
loss of generality we assume that every player can be
the leader of only one pool and each player has stake
at most 8 = 1/k; players with stake more than 8 or
wishing to create more than one pool can be thought of
as a strategic coalition of players which we analyse in
Section 4 where we consider Sybil attacks of this nature.
Below, we will use the notation: (z)* = max(0, z), and
[n] ={1,...,n}.

Definition 3 (Strategy of a player). The strategy of a

player ¢ has two parts:

e (mi, A;), where m; € [0,1] is the margin and ),
the stake that player ¢ will commit if he activates
his own pool.
SN — G that is the allocation of player
i’ stake given (1, X). When the (17, ) can be
inferred from the context we will use @; for sim-
plicity. a;; € [0, 1] denotes the stake that player
1 allocates to pool 7; so that his total allocated
stake is Z;L:1 aij < s;. This allows for stake

Si— Z?Zl a; ; of the player to remain unallocated.
In addition a7 € {0, A, }.



Definition 4 (Pools). Given a joint strategy SN the
stake allocated to a pool 7; is denoted by crj(g (7.A)y,
or simply o; for a less cluttered notation. A pool 7;
is called active when player j allocates non-zero stake
to it, that is, a; ; = A; > 0. Note that only player j
can activate pool ;. If a pool 7; is active its stake is
o; =Y., a;;, otherwise we assume that o; = 0. A
pool is called saturated when its stake is at least 3 .

The restriction that only player j can activate pool 7,
by allocating non-zero stake to it, is necessary to prevent
other players to force player j pay the cost c¢; of operating
the pool without consenting to open the pool.

Non-myopic utility for reward sharing schemes with
cap and margin. Recall that the strategy of player ¢
is either to become a pool leader with margin m; by
committing stake \; and/or to delegate his stake to other
pools.

A crucial observation is that if we extend directly the
utility we have defined in the game for stake pools so that
it includes margin, then in the game defined by the above
set of strategies, the notion of Nash equilibrium does not
match the intuitive notion of stability that an equilibrium
is supposed to provide. Note that, in the context of a
Nash equilibrium, when players try to maximize utility,
they play in a myopic way, which means that they decide
based on the current size of the pools and they do not
take into account what effect their moves have on the
moves of the other players and thus, ultimately, in the
eventual size of the pools. To see the issue, suppose
that we have reached a Nash equilibrium in this game,
that is, a set of strategies from which no player has an
incentive to deviate unilaterally. The obvious problem is
that at Nash equilibrium all margins will be 1. This is
so, because by the definition of the Nash equilibrium
the other players will keep their current strategy, and the
best response of a pool leader is to select the maximum
possible margin. Thus, if there is room to increase the
margin, the strategy cannot be a Nash equilibrium and
hence the only equilibrium, if it exists, will exhibit all
margins to be to their maximum value 1. There are two
problems here: first we definitely don’t want the margins
to be 1, and second, such an outcome is not expected to
be a stable solution anyway! (In a sense contradicting the
intuitive notion of what a Nash equilibrium is supposed
to offer). If all margins are 1, a non-myopic player (a
forward-looking player who tries to predict the final size
of the pools after the other players play) who is not a pool
leader can start a new pool with smaller margin which will
attract enough stake to make it profitable.

For these reasons, in order to analyse our reward shar-
ing schemes with cap and margin we will use a natural
non-myopic type of utility which enables the players to
be more far-sighted. Thus, in the analysis, players will
not consider myopic best responses but non-myopic best
responses. Specifically, a player computes his utility using
the estimated final size of the pools instead of the current
size of the pools. The estimated final size is either the
stake that the pool leader has allocated to this pool or the
size of a saturated pool. The latter is used when the pool
is currently ranked to belong among the most desirable
pools and the former when the pool does not belong
among them. It follows that a non-myopic player that
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considers where to allocate his stake, would want to rank
the pools with respect to the estimated reward at the Nash
equilibrium. But this reward is not well-defined because
the Nash equilibrium depends on the decisions of the other
players. It makes sense then to use a crude ranking of
the pools. Such a ranking can be based on the following
thinking: “An unsaturated pool” where I will place my
stake will also be preferred by other like-minded players if
it has relatively low margin and cost, and substantial stake
committed by the pool leader (the last one is essential only
when a # 0) so the pool will become saturated. So, I will
assume that the stake of the pool is actually 8. On the
other hand, if a pool has relatively high margin and cost
and/or not substantial stake committed by the pool leader
will not grow and will lose also its members as other
unsaturated pools offer better combination of margin and
cost. This motivates the following ranking of pools:
Definition 5 (Desirability and Potential Profit). The po-
tential profit of a saturated pool with allocated pool
leader stake A and cost ¢ is P(\,¢) = r(8,\) — c.

Given a joint strategy S(M.X) we define the desirabil-
ity of a pool 7;

)

Note that the desirability of a pool depends on its
margin, the stake of the pool leader allocated to this pool
and its cost. B
Definition 6 (Ranking). Given a joint strategy qSﬂ'(ﬁ“’\),

the rank of a pool 7; denoted by 'r'a’rz,kj(g(ﬁ‘”\)) is its

ranking with respect to the desirability Dj(g(’ﬁ"A)).

The maximum desirability gets rank 1, the second

maximum desirability gets rank 2, etc. Again to get

a less cluttered notation, we will write rank; instead
m,X)

(1 —=mj)P(Aj, ¢5)
0

lf P(}\};}Cj) Z 0
elsewhere

of 7'ankj(§'(m“\)) whenever the joint strategy S
can be inferred from the context. Ties break according
to the potential profit, specifically the pool with the
higher potential profit will be ranked higher; (with
higher we mean smaller rank) for convenience we
assume that all potential profit values are distinct. The
k most desirable pools will be these ones with rank
smaller or equal to k.

Given the ranking, we define the non-myopic stake of
a pool to be either the stake allocated by the pool leader
or the size of a saturated pool. The first one is used when
the pool does not belong to the & most desirable pools
and the second one when the pool is among them.
Definition 7 (Non-myopic stake ). The non-myopic stake
of pool 7; is defined as

@ UNM(S"W%X)) _ max(8,0;) if rank; <k
7 aj; otherwise.
To simplify the notation we use oM™ instead of

J I
aé”’f(S(’ﬁ’)‘)),ﬂaj instead of (SN, rank; instead
of rank;(S™N) and a; ; instead of a; ;(SN).
Definition 8 (Non myopic utility). The utility u;(S(™)
of player 4 from being a member of pool m; with non

: NM ;
myopic stake ;' is



ui 3 (SV) =
0, if m; is inactive (a;; = 0)
(1 —my) (r(B,\;) —¢j)F %, else if rank; < k

(L= my) (r(Nj + iy Aj) — )" 5

otherwise.

The utility uj(g (m,X)) that the pool leader j gets from
pool 7; is.

(SN =

0, if 7; is inactive

r(o MM, X)) — ¢ else if (oM Nj) —¢; <0

(r(eMM ;) = ¢;) (m]- + (1 —m;) o

N
J o;

> otherwise.

The utility of player ¢ is the sum of the utilities coming
from all pools in which he participates as a pool leader
or a pool member: u; (SN = 37w, ;(SOTY),

4. A Sybil Resilient Reward Sharing Scheme
In this section, we first outline the motivation behind
our choice of the parameterized reward function.

Motivating our solution. We propose a reward sharing
scheme with cap and margin cf. Definition 2. To moti-
vate this choice, let us first consider a reward function
r(o,\) = r(0,0) that depends only on the total stake o
of the pool (note we assume without loss of generality
that the stake of any agent or pool belongs to (0,1)
and represents the fraction of the total stake controlled
by the specific entity) and it is independent of the stake
A of the pool leader. The natural choice is to select
r(0,0) proportional to o, which has the nice property
that it rewards all players proportionally to their stake.
However as we have seen already in Section 2.2, it leads
to dictatorial equilibria in which a single pool is created.
(Note that the cost of running a stake pool remains the
same regardless its size). Moreover, it is clear that if we
want to achieve a target number of pools, say k, it is clear
any similar reward scheme cannot achieve this goal since
it is independent of the target k. This motivates a simple
modification of this reward scheme which goes a long way
in meeting this target. Consider the modification

r(o,0) ~ min{o, 8},

where [ is a constant (this is the cap) and ~ indicates
proportionality with a multiplier that guarantees that the
total reward is sufficient to pay all pools® (see Figure 4).

Recall a pool is saturated when its total stake o is at
least 3, so we can say that such a capped reward function
discourages oversaturated pools. By setting 8 = 1/k, this
reward scheme seems to provide the right incentives to
create pools of size up to S = 1/k, which naturally leads
to k pools of equal size. However, this picture is to a large
extent misleading because the usual myopic best-response
dynamics creates a single pool instead of k, because even
with this reward function, for a pool member, a saturated
pool is preferable to a pool whose reward is mainly used
to cover the cost of its leader. The good news is that, as we
will show, dynamics of non-myopic best response achieves

5. A smooth function that approximates this reward function may be
preferable to improve the dynamics of convergence to equilibrium.
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the goal by leading to an equilibrium of k£ pools of equal
size, given a reasonable definition of an appropriate non-
myopic notion of utility.

To evaluate the quality of a reward scheme, we should
compare the resulting equilibrium with an optimal solu-
tion. An optimal solution when all participants act hon-
estly and selfishly is to have k pools of equal size that are
run by pool leaders of minimal cost. This would make
the system efficient, in both computational and economic
sense. But besides efficiency, we want the system to
withstand attacks from some players that try to run many
pools, even at a loss.

Sybil behavior and resilience. In particular we want
to disincentivize Sybil strategies [13]) that create multiple
identities declaring potentially lower costs for each one.
We distinguish two types of Sybil behaviors: the first one
captures a non-utility maximizer who wants to control
50% of the system. Such level of control enables a party
to perform double spending attacks on the blockchain or
arbitrarily censor transactions. The second type of Sybil
behavior is that of a utility maximizer that creates multiple
identities with their corresponding stake-pools sharing the
same server back-end and thus also the operational costs.
Such a player limits decentralisation by reducing the
number of independent server deployments that provide
the service. Observe that this also can include coalitions
of players that decide to act as one. Such behavior cannot
be excluded in the anonymous setting that we operate.
The best possible that we can hope for is to lower bound
the stake of the Sybil player to be linear in the number of
identities that it creates. We analyse the Sybil resilience
of a reward sharing scheme by estimating the minimum
stake sp,i, needed for the Sybil behavior to be effective.

To address this issue we design a reward sharing
scheme that guarantees that players can attract stake from
other players only if they commit substantial stake to their
own pool. This is precisely the reason for considering
reward functions that depend, besides the total stake of
the pool, on the stake of the pool leader.

Ideally, we want the pools to be created by the players
ranked best according to ais; —c¢; (a linear combination of
their stake s; and their cost ¢;), where « is a nonnegative
parameter that can be adapted to trade between efficiency
and Sybil resilience. By selecting a = 0 we get the most
efficient solution, and on the other extreme, by selecting a
very large «, we can obtain a potentially inefficient solu-
tion in which the pool leaders might be the & “wealthiest”
but the Sybil resilience of the system improves.

The objective is to design a reward scheme that pro-
vides incentives to obtain an equilibrium that compares
well with the above optimal solution. On the other hand,
we feel that it is important that the mechanism is not
unnecessarily restrictive and all players have the “right”
to become pool leaders.

The natural way to accomodate this in our scheme,
would be to use the above reward function but apply it to
o+ a), a weighted sum of the total pool stake o and the
allocated pool leader stake A. With this in mind, the reward
function becomes 7(o,\) ~ min{o, 8} + a). Again
this reward function goes some way towards meeting
the objective but the best response dynamics, even non-
myopic best response dynamics, do not lead to equilibria
that resemble the optimal solution and in particular, it



Figure 4. Reward function for 8 = 1/10 with & = 0 (top) and o = 1/4
(bottom).

may create pools of very large size. The reason is that
the influence of the stake A of the pool leader when a
pool is still small is very significant. Given that the ideal
size of the pool is [, one way to alleviate this effect is
to change the influence factor o to be proportional to
the stake that the pool has already attracted, that is to
change the influence factor to o/ = a2=2. This creates
the (more minor) problem that the influence factor will not
be the same for all pools, which is quite desirable when
a parameterisation is attempted and the value of a will
be used to control Sybil attacks. The final touch in the
reward function which resolves this issue is to make the
influence of the stake of the pool leader on the factor o’
to disappear when the pool has the desired size of /3. The
resulting reward function described briefly in the informal
theorem of the introduction (Definition 1) is defined and
analyzed in the rest of the current section.

4.1. Our RSS construction

Given our target number of pools k, we define the
reward function 7, : [0, 1]2 — Rx¢ of a pool 7 with stake
o and pool leader’s allocated stake A as follows:

o' =N (1='/)
1+Oé /6 ]7

where \' = min{)\, 8}, 0’ = min{c, 8} and 3, « are fixed
parameters. A natural choice is § = 1/k, where k is the
target of number of pools. For simplicity we will write r
instead of ry.

We have: a € [0,00), k € N,(k < n) and R € R.
Note that the total rewards R and « should be selected
such as it holds also P(sg+1,ck+1) > 0.

The next proposition shows that the proposed function
is suitable for a reward sharing scheme with cap and
margin.

Proposition 1. The function (-, -) satisfies the properties
of a reward sharing scheme with cap and margin, cf.

Definition 2.

re(o,\) = o+ N a
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Proof 1. It holds Vi r(oj,a;;) > 0, as a;’i < o} and also:

11 (B=d))
D Y r(oi,ai:) <R, as w% <1 and
Z?:l[o—i +ag- a] = Z?:l oita: Z;”l:l @ii <
14+ a.
2) 7(0,0)=0.
3) When o < 3 it holds: AN -9zl -
4) VA r(o,\) =r(B,\), when o > 3 because we

have ¢’ = min{o, }.

This completes the proof.

4.2. Perfect Strategies

We define a class of strategies and we prove that they
are Nash equilibria of our game (Theorem 4). This class
has the following characteristics: exactly k pools of equal
size are created and the pool leaders are the players with
the highest value P(s,c) (when a = 0 those are the
players with the smallest cost). Recall that the players
are ordered in terms of potential profit, e.g., player 1
is the player with the highest P(s;,¢;). Recall also that
players decide to create or not a pool and how much stake
they will allocate to other pools. In addition they decide
a margin for their potential pool.

Definition 9 (Perfect strategies). We define a class of
strategies, which we will call perfect. The margins are

*

the stake allocated by each pool leader to their own
pool is equal to their whole stake and the allocations
are such that each of the first £ pools has stake .

Note that when j < k it holds rank; < k.

The following proposition gives the utilities at perfect
strategies and it follows directly from Definition 8 of the
non-myopic utilities of pool members and pool leaders
and our reward function described in this section.

1— P(spy1,Cr41)

P(sj,cj) when j < k
0

otherwise,

Proposition 2. In every perfect strategy, (i) the utilities of
the players are:
&)
i = P(Sp41, Chy1)

Si
S (P(si,¢)—P(spt1,crt1)) T

B
and (ii) the desirability of the first k£ + 1 players is the
same and equal to P(Skt1, Cht1)-

To justify the proposition note that all the players
get a fair reward, in the sense that it is a constant
P(sk+1,cx41)/8 times their stake, with the exception
of each pool leader ¢, who gets an additional reward
P(s;,¢;) — P(Sk+1, ck+1)- This additional reward can be
viewed as a bonus for the efficiency and security that the
pool leader brings to the system. We will show that every
perfect strategy is a Nash equilibrium of the game with
the defined utilities.

Theorem 4. Every perfect strategy is a Nash equilibrium.
Before presenting the proof of the theorem we start

with some definitions and preliminary results.

Definition 10 (Desirability of a player). Desirability of a
player will be the desirability of their pool. If they do



Notation

n € N, number of players.
k € N, k < n, the desired number of pools.
R € R, total reward.

¢; € (0, R), cost of player i to form a pool ;.
m; € [0, 1], margin of pool ;.

zero stake.

§eX) = (g,

1

s; € (0,1), stake of playeri. It holds >, s; = 1.

Ai € (0,1), stake that player i will commit if he activates his own pool ;.
a; = (a; 1,...a; ), allocation of player’s i stake. Zj ai; < S;.
o, stake of pool w;: 0; = Y i, a; j. We denote the vector of pool stakes by G = (o1, ..

., 0p). Pools can have

7(0, A), reward of a pool with total stake o and allocated pool leader stake \. It holds 3, r(0;,a;,;) < R.
Potential profit of a saturated pool with allocated pool leader stake A and cost ¢, P(\,¢) = r(83,\) — c.

We order the players according to P(s;, c;). Player (with rank) i is the player with the i-th highest P(s;, ¢;).

)i, joint strategy regarding allocation given (1, X). a;; € {0,\;} and Sfm’/\) = a;.

« € [0,00): parameter that can be adapted to trade between efficiency and Sybil resilience. Note that the total

rewards R and o should be selected such as it holds also P(Sk41,ck+1) > 0.

Qj,i
o

Uji = {

T(Uiaai,i) — G
(mi + (1 —m;) -

Wi, = {

to discussion above and Definitions 7,8.
(x)* = max{0, z}

0 (7’(0,;7ai,,,;) —

Qi,q

) - (r(oi, ai) —

le(g(ﬁ’x)), total (myopic) utility of player j: uj(§<’ﬁ*x)) =S u‘jyi(g(ﬁhx)).
Non-myopic utility is defined in the same way as myopic utility but by using non-myopic stake o

i) (L—my)

C;

uj?i(g‘(m,i)), (myopic) utility that player j gets from pool ;.

if’f’(O'j,, aiﬂ;) S C;
otherwise

u“(g (’7'"’“), (myopic) utility that player i gets from their own pool ;.

I'fT(O'haqjﬂj) S C;
¢;) otherwise

NM jnstead. Refer

Figure 5. Notations and concepts introduced.

not have one, their desirability will be the desirability
of a hypothetical pool with their cost, the margin they
have chosen and their personal stake.

Note that for uniformity we assume that all the players
decide a margin even if they do not create a pool. In ad-
dition, when we rank the pools in this subsection, we will
take into account also the hypothetical pools described
above. Ties break in favor of potential profit. In the two-
stage game that we examine in Appendix D we remove
these assumptions (regarding hypothetical pools and ties
as (i) we do not take into account non active pools in the
ranking because we consider their desirability as zero (ii
)ties in ranking break arbitrarily).

The following lemma is very useful and its proof
follows directly from the definition of the reward function.

Lemma 1. The quantity (r(x, s;)—c;)/« as a function of x
is increasing in (0, 8) and, if it is positive, decreasing
in (3, 00). Its maximum is achieved at = = 3.

The following lemma gives an upper bound on the
utility of pool members. We will give an equilibrium that
matches this upper bound.

Lemma 2. In every joint strategy in which some player j
is not a pool leader, their utility is at most max; D -
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(sj/B), where max; D; is the maximum desirability
among all players.

The proof is described in Appendix C.

We are now ready to present the proof of the Theorem
in Appendix C.

It is interesting to note that in the first case of the
proof of Theorem 4, the pool leader of a pool with stake
[ decreases their margin. This does not affect our equi-
librium argument since by the definition of non-myopic
stake, the stake of their pool remains the same and hence
the non-myopic utility is unaffected. But this pool will
score a higher desirability and in the real world far-sighted
pool members may prefer it and, in such case, its size
may increase beyond /3. This raises the question whether
perfect strategies are stable when the players play non-
myopically beyond the strict definition that is captured by
the way we have considered so far in the analysis. To
answer this question and understand the implications of
these far-sighted strategies, we can conduct a “two-stage”
game analysis which we present in Appendix D and in
more detail in the full version of this paper in [4].



4.3. Sybil resilience and Large stakeholders

We now turn to the analysis of Sybil attacks as well
as of the effect that large (“whale”) stakeholders have in
the game. Recall that in the previous section we restricted
players to having stake at most § = 1/k and each one
creating at most one pool, hence explicitly excluding
Sybil attacks and whale stakeholders. To remove these
constraints, we consider an extended setting that involves
a set of n < n agents, each one with (private) stake
81,...,85 and associated (private) cost ¢y, ..., Cn. Each
agent ¢ can declare themselves as a single player in the
stake-pool game as long as §; < /3, or alternatively declare
more than one players (called Sybils) splitting their stake
in some way between the declared players. This “pre-
game” stage defines a specific instance of the stake-pool
game. The utility of each agent is the sum of the utility
of all the players that the agent controls.

We analyze two scenarios in this setting. In the first
one, there is a utility non-maximizer agent with total
stake less than 1/2, who creates k/2 players, potentially
lying about their costs, with the objective of dominating
the system by creating k/2 saturated pools at the Nash
equilibrium. In the second scenario, a utility maximizer
agent creates t > 1 players that share their costs by using
the same server. In both cases, to simplify the analysis,
we will assume that the stake-pool game proceeds with
players acting rationally and independently.

For a given agent, denote by A C {1,...,n} the set
of players the agent introduces in the stakepool game. For
each A, we denote by (s!,c') the stake and cost of the
i-th player in the game, ordering them in decreasing order
of potential profit, excluding A. Moreover, the maximum
cost and the minimum stake, excluding players in A, will
be denoted ¢, and s’ respectively. We prove the
following.

Theorem 5. Consider an agent controlling a set of play-

ers A. First, if the agent has stake less than g .

A
(sk‘f‘/2+1 ~ Cmax (14 %)) then it will control fewer

R
than k/2 saturated pools at the Nash equilibrium, even
if the agent is a utility non-maximizer. Second, if the
agent is a utility maximizer with cost ¢ and stake less

A ~
than ¢- (sk‘itﬂ - w -(1+ 1)), it will control
fewer than ¢ saturated pools at the Nash equilibrium
forany £ >t > 1.

The proof is described in the full version of this paper
in [4]. We observe that in both cases, the minimum stake
needed by the Sybil attacker agent is asymptotically linear
in the number of stake pools (k/2 in the first case and ¢
in the second). Moreover, the coefficient, in both cases,
can be adjusted by suitably varying the parameter o.

In this section we provide some further context w.r.t.
the bounds provided in Theorem 5. Specifically, when

Cf}% < s, | these bounds are positive for suitable value
of a; in particular, the higher « is, the higher these bounds
become. Note that 31?/2 ., and sji_,,, are nondecreasing
in a, because the ordering of the remaining agents depends
on P(s;,¢;) and thus also in « (the higher « is the higher
impact agents’ stake has on the ordering). For example,
in the first case when R = 1 and k£ = 10, and the

stake and cost are sampled from a Pareto distribution

with parameter o = 2 and the uniform distribution from
[0.0005,0.0010] respectively, if we choose o = 0.5 then
Chjapr = 0.00076024, 57y, = 0.02002176. Then if a

non-utility attacker declares cost ¢ = 0.9 - c,f 2410 the
stake required for the attack is at least 0.0989. This is not
far from optimal, since the largest possible lower bound
is 5-0.02002176 = 0.1001088, which would apply to the
setting of negligible costs and a choice of « that goes to
+00.

Finally, we provide a probabilistic analysis of the event
that a utility non-maximizing Sybil attack with k/2 stake
pools takes place in Appendix B, under the assumption of
a Pareto distribution for stakeholders.

5. Experimental Results

We next describe our experimental evaluation.

Initialization. We simulate 100 players, and we use k =
10 for the desired number of pools. We assign stake to
each player by sampling from a Pareto distribution® with
parameter 2, truncated to ensure that no player has higher
stake than % The distribution is shown in Figure 7.

Furthermore, we assign a cost to each player, uni-
formly sampled from [cpin, Cmax), Where both ¢y, and
Cmax are configurable.

Player strategies. Each player can either lead a pool with
margin m € [0,1] or delegate freely their stake (or a
subset of it) to existing pools. Initially, there are no pools
and no player delegates their stake. When it is a player’s
turn to move, they can freely switch to another strategy:

e A pool leader can keep their pool, but change their
margin, or close their pool and delegate to other
pools.

o A player without pool can change its delegation
or start a pool.

If a pool leader decides to close their pool, all stake dele-
gated to that pool by other players automatically becomes
un-delegated.

Simulation step. In each step, we look for a player with
a move that increases the player’s utility by a minimal
amount’. If a player with such a move is found, we
apply that move and repeat. If not, we have reached an
equilibrium. We have to deal with the technical problem
that for each player, there is an infinity of potential moves
to consider. We solve the technical problem in an approx-
imate manner as follows:

e For pool moves, instead of considering all mar-
gins in [0, 1], we restrict ourselves to one or two
margins, namely 1 (to consider the case where
the player plans running a one-man pool) and the
highest margin m < 1 that has a chance (we make
this precise below) to attract members (calculated
to a precision of 10712 if such a margin exists).

o For delegation moves, we approximate the optimal
delegation strategy using a local search heuristic

6. Distributions of wealth tend to follow such a distribution, see [9],
[33] and https://en.wikipedia.org/wiki/Pareto_distribution.

7. Specifically, we consider utility unew non-trivially better than
utility ueo1q iff Unew > uolg + 107°.
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25;

Figure 6. Example dynamics of our reward sharing scheme (c € [0.001,0.002], o

stake

0.04

0.02 0.06 0.08

Figure 7. The stake-distribution used for all experiments (but see the
paragraph on other choices of the parameter at the end of this section.

(“beam search™®). Furthermore, we restrict our-
selves to a resolution of multiples of 1078 of
player stake.

How players choose their strategy in a non-myopic
way. We have the problem of how to avoid “myopic”
margin increases: It is tempting for a pool leader to
increase their margin (or for a delegating player to start
a pool with a high margin), but such a move only makes
sense if sufficiently few other players have incentive to
create more desirable pools during the next steps (this
means that the competition is low). To be more precise:
If a player A contemplates running a pool with margin
m < 1, A wants their pool to become saturated. Note that
if they wanted to run a one-man pool instead, the margin
would be irrelevant and could be set to 1. Moreover, only
pools with rank < k attract delegations and have a chance
of becoming saturated, so running a pool with margin m
only makes sense if the pool is expected to end up with
rank < k.

In order to determine whether m satisfies this condi-
tion, we look at all other players. For players who already
run pools, we assume that they will continue running their
pools and keep their margins. For each other player B,
we check whether there exists a margin m’ such that by
creating a pool with margin m’ and by assuming that that
pool would have rank m’ < k, B would increase its utility.
Let B have stake s, costs ¢ and utility w. If B manages
to create a pool with rank m’ < k, then that pool’s stake
will be o := max(s, §), and we can calculate its rewards
r. Setting ¢ := = and plugging in pool leader utility, we
are looking for the minimal margin m’ satisfying

(r—co)m + (1 —m)q] >u.

We see that » > c is a necessary condition. For ¢ = 1
(i.e. s > ), m’ = 0 is the obvious solution. For ¢ < 1,
we get

rs u—(r—cg

(r=o(1-q)’

8. See e.g., https://en.wikipedia.org/wiki/Beam_search.
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75
iteration

100 125

= 0.02) showing convergence to decentralization.

and we pick % as margin for player B. We end

up with a list of pools, one for each player, and we only
allow A to consider their pool move with margin m if A’s
pool would be amongst the £ most desirable pools in this
list.

Note that this procedure of choosing the strategy re-
flects the fact that players in our theoretical analysis try
to maximize their non-myopic utility.

Additional experiments allowing simultaneous moves.
As explained above, in each simulation step we look for
one player with an advantageous move and allow that
player to make his move. In a real-world blockchain
system however, players will probably be allowed to
move concurrently, so we did some additional experiments
allowing for this. Instead of picking just one player, we
allowed several players with utility-increasing moves to
make their move in one step. It is possible that such moves
contradict each other (for example when one player closes
a pool that a second player wants to delegate to). We
handled this by applying the moves in order and dropping
those that were invalid. Furthermore, in order to allow the
system to stabilize, we blocked players from making “pool
moves” (creating or closing a pool or changing the margin)
too often by only allowing delegation moves for a number
of steps after a player has made a pool move. Of course
before we declare an equilibrium having been reached, we
wait long enough to see whether any player wants to make
a pool move after his waiting period is over. An example
for five players being allowed to move simultaneously and
a waiting period for the next pool move of 100 steps can
be seen in Figure 9 in the Appendix.

Other choices for the parameter of the Pareto dis-
tribution. In all experiments discussed until now we
used the same stake distribution of players drawn from a
Pareto distribution with parameter 2 (shown in Figure 7).
We picked this parameter for resulting in an apparantly
realistic distribution, but our results are not sensitive to
this choice. To demonstrate this, in the full version of
this paper [4] we run additional experiments (for high
costs and high «) with different parameter values for the
distribution.
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Appendix A.
Deployment Considerations

In this section we overview various deployment con-
siderations of our RSS solution as well as we address
specific attacks and deviations against our reward shar-
ing scheme, specifically, (i) pools that underperform in
general, (ii) participants who play myopically, (iii) pools
that censor undesirable delegation transactions, (iv) pool
leaders not truthfully declaring their costs, and (v) parties
who try to gain advantage by exploiting how wealth may
compound over time (“the rich get richer” problem) in a
series of iterations of the game.

Regarding deployment, in order to facilitate the use
of an RSS within a PoS cryptocurrency, e.g., [5], [12],
[24], [29], the ledger should be enhanced to enable special
transactions which allow players to delegate their stake to
a pool and reassign it at will during the course of the exe-
cution. Describing in more detail the exact cryptographic
mechanism for performing this operation is outside the
scope of the present paper. It is sufficient to note that the
mechanism is simple and very similar to issuing public-
key certificates; see e.g., [24] for a description of such
a delegation mechanism. Recall that in a PoS cryptocur-
rency, the protocol is executed by electing participants in
some way based on the stake they possessed in the ledger;
informally every protocol message is signed on behalf of
particular coin that is verifiably elected for that particular
point of the protocol’s execution. In the stake pool setting,
the PoS protocol will be executed with the pool leaders
representing the pool members whenever the coin of a
member is elected for protocol participation.
Ill-performing stake pools. In our system, rewards for
a pool are calculated based on the declared stake of the
pool leader as well as the stake delegated to that pool.
This provides an opportunity for a pool leader to declare
a competitive pool and subsequently do not provide the
service that it promised (presumably gaining in terms of
the actual cost that system maintenance incurs). This can
be addressed by calibrating the total rewards R to depend
also on the total performance of the system as evidenced in
the distributed ledger. For instance, in a PoS blockchain,
it is possible to count the number of blocks that were
produced in a period of time and compare that value to its
expectation. In case the actual number of blocks is below
expectation we may reduce R accordingly (effectively
punishing all pools) and in this way generating a counter-
incentive to deviate from system maintenance according
to the protocol. Note that punishing all pools in case of
underperformance makes sense due to the possibility of
mining games [15], [23] which may be used by pools to at-
tack each other in case we use performance as indicator for
punishment. However, punishing everyone may be hard
to parameterise as a large reduction in R will be unfair
to genuinely performing participants (who will be losing
rewards due to the ill performance of others) while a small
reduction may be insufficient as a counterincentive. If the
underlying blockchain is also “fair” (in the sense of [34])
then it might be also possible to penalise only specific
pools that underperform and hence be able to better fine
tune performance sensitivity. It is an interesting question
to design such robust performance metrics that can be
used in the context of a reward sharing scheme.
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Players who play myopically and Rational Ignorance.
Myopic play is not in line with the way we model ratio-
nal behavior in our analysis. We explain here how it is
possible to force rational parties to play non-myopically.
With respect to pool leaders we already mentioned in
Section 2.3 that rational play cannot be myopic since the
latter leads to unstable configurations with unrealistically
high margins that are not competitive. Next we argue that
it is also possible to force pool members to play non-
myopically. The key idea is that the effect of delegation
transactions should be considered only in regular inter-
vals (as opposed to be effective immediately) and in a
certain restricted fashion. This can be achieved by e.g.,
restricting delegation instructions to a specific subset of
stakeholders at any given time in the ledger operation and
making them effective at some designated future time of
the ledger’s operation. Due to these restrictions, players
will be forced to think ahead about the play of the other
players, i.e., stakeholders will have to play based on their
understanding of how other stakeholders will as well as
the eventual size of the pools that are declared. A related
problem is that of rational ignorance, where there is some
significant inertia in terms of stakeholders engaging with
the system resulting to a large amount of stake remaining
undelegated. This can be handled by calibrating the total
rewards R to lessen according to the total active stake
delegated, in this way incentivising parties to engage with
the system.

Censorship of delegation transactions. In this attack, a
pool (or a group of pools) censors delegation transactions
that attempt to re-delegate stake or create a new pool
that is competitive to the existing ones. In the extreme
version of this attack a “cartel” of pool leaders control the
whole PoS ecosystem and prevent new (potentially more
competitive) pools from entering or existing members
from delegating their stake. Actually, this is a typical
threat to all “political” systems in which power is del-
egated to representatives. However, in PoS systems even
a single pool that does not censor attacks is sufficient to
prevent this attack assuming there is sufficient bandwidth
to record the delegation transactions in the blocks that are
contributed by that pool. It is an interesting question to
address the case where all stake pools form a coalition that
decides to prevent any more pools from being created. A
potential way forward to preventing such abuse of power
by pool leaders, is by either creating the right system
safeguards and incentives for the coalition to break or rely
on direct member participation that will override the pool
leader cartel. In this latter case, pool members acting as
system “watchdogs”, without getting any reward, could
still create alternative blocks, that take precedence over
the blocks issued by the block leader in this way creating
a ledger fork along which censorship is stopped.

Costs and incentive compatibility. In our analysis, we
assumed for simplicity that the costs are publicly known;
in reality the actual costs for participating in the collab-
orative project are known only by the player, who may
lie about it in the cost declaration. This will happen when
the players may see it as an advantage to lie about their
cost. This problem is one of mechanism design which has
objective to design an incentive compatible mechanism,
i.e., a mechanism that gives incentives to players to declare
their costs truthfully. We next argue that, in fact, our



RSS is incentive-compatible as presented. Let us consider
the perfect Nash equilibrium from Definition 9 in which
the utilities are given by Equation 5. Suppose that a
pool leader j declared a different cost ¢;, but remained
pool leader. Since P(sj,é;) — P(s;,¢j) = ¢; — &, the
player will not get any benefit from lying. To see this,
let u;(éj|c;) denote the utility when the player declares
cost ¢; instead of the true cost ¢;. Then by taking into
account the cost, we have u;(&;]¢;) = wu;(é5]c;) —¢; +¢;.
Also from Equation 5, we see that u;(cj|c;) —u;(é;]¢;) =
P(sj,cj) — P(sj,¢;). Putting them together we see that
u;j(éjle;) = wj(cjle;), thus the player has no reason to
lie. With similar reasoning, a pool leader has no reason
to lie by raising his cost so much that the rank of his
pool increases above k. Similar considerations, show that
no pool member (i.e., a player whose pool, if created,
would have had a rank at least k& + 1) has an incentive to
lie. This includes the special case of the player with rank
k+ 1. As a conclusion, we see that under the assumption
that the players end up at a perfect equilibrium, it is
a dominant strategy to declare the true cost. As a side
note, we could also adapt any similar reward scheme to
implement the Vickrey-Clarke-Groves (VCG) mechanism,
cf. [30], which applies to all mechanism design problems.
In this particular case, the VCG mechanism, would ask
the players to declare their costs ¢, but the reward scheme
would use a different vector of costs ¢ for the game.
The new costs ¢ will be such that the desirability of the
player with rank j < k would be slightly superior to the
desirability of the player with rank k + 1.

“Rich getting richer” considerations. In a PoS deploy-
ment, our game will be played in epochs with each itera-
tion succeeding the previous one. Using the mechanisms
we described above regarding censorship and Sybil re-
silience, it is easy to see that players are not bound by their
past decisions and thus they will treat each epoch as a new
independent game. A special consideration here is what
frequently is referred to as the “rich get richer” problem,
i.e., the setting where the richest stakeholder(s) amass over
time even more wealth due to receiving rewards leading to
an inherently centralised system (it is sometimes believed
that this issue is intrinsic to only PoS systems but in fact
it equally applies to PoW systems, cf. [22]). In order to
address this issue we observe that the maximum rewards
obtained by each pool at each epoch are in the range
[R/(1 + a)k, R/k] with o € [0,+00) determining the
size of the range which controls how much more rich
pools (i.e., pools with rich pool leaders who can pledge
more stake to their pool) benefit. It follows that using
« we can control the disparity created by the reward
mechanism by choosing « closer to 0, with the choice
o — 0 achieving a perfectly “egalitarian” effect where
rich pools and poor pools of the same size are receiving
exactly the same rewards, something that does not affect
the relative stake from epoch to epoch if we do not take
into account margins. Note that while this completely
equalises the power of a “rich dollar” versus a “poor
dollar” (cf. [22]) it comes with the downside of a reduction
of the system’s resilience to Sybil attacks. Given we have
no way of guaranteeing the independence of the players
as declared in the stake pool game, we offer a tradeoff
between egalitarianism and Sybil resilience.

271

Appendix B.
Sybil Resilience - Further Notes

In this addendum to Sybil resilience, we examine the
probability under reasonable probability distributions that
there exists an agent who has stake more than % -sfﬂ 1
which allows them to engage in Sybil behavior in the
above settings (i.e., with negligible costs and a choice of
« that goes to +00).

Let S; and s; = < be the absolute and the
relative stake respectivel)qi:z)flagent 7. Let S1,..., S5 be
independent samples from random variable X that follows
the upper truncated Pareto distribution [9] with parameter
a # 0. Let § and T be the minimum and maximum
value of the distribution, respectively. Then the cumulative
function of X is Fy(z) = lifi))a when 0 < z < T.
Also if X, is the stake of the agent with the r-th
smallest stake, then the cumulative function of X, is
Fy, (2) = S0, [(7)-F (2)- (1~ Fx (2))" 7. see [7]. We
also denote by S; = X;_;+1 the stake of the agent with
the i-th highest stake. Let fs, - (t) be the density function

2
of Sy, and Fp(k;ii,p) = S () (1 —p)ii
the cumulative function of Binomial distribution. The
following theorem quantifies the probability that a Sibyl
attack is possible.

S

n

Theorem 6. Assume that Si,...,S;, where S; is the
absolute stake of agent ¢, are drawn from an upper
truncated Pareto distribution with parameters «, 6, 7.

(=N Ry .
Then when 6 = o (I—3x)—1>0:
1=(g7)” 2n
Pr(s; > E .5 ) < e=0%n/3
L= 9k41) = )

where p = 7i - Fx (25).

For the proof see the full version of this paper in [4].

Note that if we take o = 1, £ = 1/100,000 and
k = 100, then in order for § to be positive, it suffices
n > 150,000, a reasonable number of users of a general
cryptocurrency. Also if we choose higher 7 or 6 and lower
T, then § will increase. It holds that ¢ is

increasing as a function of n and decreasing as a
function of 7" and «

increasing as a function of £ if and only if %
(k+2-a-n—a-k) > 1. In particular when o = 1,
0 is increasing as a function of k if and only if
T<0-n.

a pa—1

Appendix C.
Proofs of Subsection 4.2

Proof of Lemma 2. It suffices to show that player j gets
at most Dl% from every pool [. The lemma follows
directly from this by summing for all I: 3, Dl% <
max; Dy Y, % max; Dl%. The argument that for
every pool I, player j gets at most D;“2" follows directly
from the definition of the utility of pool members when
we consider the two cases depending on whether rank;
is at most k£ and more than k.



Specifically, when rank; < k, by the definition of the
utility of pool members, the utility to player j from pool
[ is DlajJ/UlN]w < Dla%l/ﬁ.

When rank; > k, his utility is given by

aj.1
(1 — ml) (T()\l +aj, )\l) — Cl)Jr m
< (1—my)(r(B,N) — cl)Jr %
a;
= Dl%7

where the inequality comes from Lemma 1.

Proof of Theorem 4. We first consider the simplified set-
ting where players are mutually exclusively pool leaders
or pool members.

Consider first a player j with rank at most k. This
player is a pool leader of a pool of size 5. We show that
none of the possible responses improves their utility:

Suppose that the player decreases their margin.
This increases their desirability so that the new
rank is still one of the first k£ ranks. Since the
non-myopic stake remains the same’, this move
will decrease the utility of the player.

Suppose that the player increases their margin.
Since before the change the first k£ + 1 players
have the same desirability, the player’s desirability
drops and the rank becomes larger than k. As a
result the player will be alone in a pool and their
utility can only decrease (Lemma 1).

Suppose that the player becomes a pool member
of other pools. By Lemma 2, their utility can be
P(sp41,cx41)s;/0 at most, which is lower that
their current utility by P(s;,¢;) — P(Sk+1, Crt1)
(by Equation 5).

We now consider a player j with rank higher than k. Again
we show that none of the possible responses improves
their utility. Notice first that by changing their allocation
of stake, it can only hurt their utility since some of
their stake ends up in pools with stake different than [,
which can only lower their utility by Lemma 1. The other
alternative is that the player becomes a pool leader. Since
their rank is higher than &, the (non-myopic) stake of the
pool contains only their own stake, which by Lemma 1 is
again no better than the current utility.

We now sketch the full argument that considers the
more complex strategies of possibly simultaneously del-
egating and creating a pool for each player (we remark
that this case is also subsumed in the two-stage game
described in Appendix D and in more detail in the full
version of this paper in [4]. Note that the desirability and
thus the rank of the pools does not depend on the size of
the pools. So if we allow strategies where a player is pool
leader and simultaneously delegates some stake to other
pools, then the perfect strategies remain Nash equilibria.
In addition, it is easily verified that Lemmas 1,2 hold also
in this case.

If a player € {1,..., k} with stake s and cost ¢ in-
creases their margin from m* to m’ and delegates

9. There is a possibility that non-myopic moves will increase the stake
of the pool above (. This is the motivation for considering a two-stage
game.
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stake s — A to other pools then their pool will have
rank higher than k£ and their utility will become
3 (r(AA) =€) + P(sg41, 1) - 552 which is

5PN 0) + P(spir, cpp) - 552

no higher than 3
rleA)—e increasing for o < 1/k (Lem-
A
5)

that is equal to their

because
mas 1). This is at most (m* + (1 — m™) -
P(s,c)+P(spq1,Crr1)- Sg’\
current utility.

If a player € {1,...,k} with stake s and cost ¢
decreases their margin from m* to m and simul-
taneously transfers stake s — A to other pools, then
the desirability of their pool remains the same,
increases or decreases. We will prove that in all
cases their utility will be at most their current
utility (m* + (1 —m*)- %) - P(s,¢).

B
1) If the desirability of their pool remains
the same, then (i) the utility for the part
of their stake that remains in their pool
denoted by A will decrease because of
the lower margin or will remain the same
and (ii) the utility for the stake that has
been transferred to other pools denoted
by s — A will also decrease because these
pools have the same desirability and their
non-myopic stake will become higher than
1/k.
If the desirability of their pool decreases,
then the rank of their pool will become
higher than k regardless the stake this
player delegated to other pools. So again
the utility for both parts of stake will de-
crease.
If the desirability of their pool increases
then their utility will become (m + (1 —
m) - %) -P(\¢)+ 7—3 cP(Skt1, Cht1) <
(m* + (1 —m*) - 3) - P(s,c) + 55
P(sk41,c641) = (m* + (L=m") - 5)
P(s,c).

If a player € {1,...,k} with stake s and cost ¢
does not change margin and transfers stake s — A
to other pools then again their utility will become
2 (r(\A) =€) + P(Spg1, crp1) - 55 because
their pool will have rank higher than l?

If a player € {k + 1,...,n} with stake s and cost
¢ creates a pool with stake A\ and delegates the
remaining stake to other pools then their pool will
have rank lower than k so their utility will be
(T(Av/\) - C) + SEA : P(Sk+1ack+1) < P(A~C) '
% + 522 P(Sp41, Crq1) Which is not higher than

B i
their current utility [% - P(Sk41,Cht1) -

2)

3)

Appendix D.
A Two-Stage Game Analysis

We will next prove that our reward sharing scheme
effectively retains the same perfect equilibria outcome of
Theorem 4 also in a more realistic two-stage or “inner-
outer game.” The advantages of this approach are as
follows: (i) it allows us to analyze non-myopic moves in
response to pool leaders changing margin or allocation,



(ii) it allows us to remove the assumption that a player
can be either a pool leader or a pool member, (iii) in this
setting when a pool has not been activated, we define its
desirability to be zero, something that gives us a more
realistic result, because in practice only pools that have
already been created will be ranked; (iv) in this game we
break ties in ranking in arbitrary ways, not only according
to potential profit. We note that similar non-myopic type of
play has already been considered in other settings, notably
in Cournot Equilibria, as is discussed in the introduction
and related work.

Our “inner-outer game” consists of two games. In the

outer game, player ¢ decides on the margin m; and on
the stake A; to be allocated to its own pool, in case the
player will decide to activate it in the inner game. So a
strategy of a player i in the outer game is a tuple (m;, ;)
of margin and allocated stake, and let (173, X) be the joint
strategy of the outer game. Each joint strategy of the outer
game determines one inner game.
_ In the inner game, the margins m and the stakes
A, which potential pool leaders would allocate to their
pools, are given, and the strategies of the players are their
allocations. So in the inner game determined by (173, A), a
strategy of player ¢ is Sl(m’)‘) = d;, and a joint strategy is
S(%) Note that if a player ¢ decides to activate its own
pool, which means a;; > 0, then the player is committed
to allocate stake \; to its own pool, where \; is part of the
strategy of the outer game. So a;; € {0, \;}. We assume,
that in the inner game the players decide their allocation
with the goal of maximizing their non-myopic utility, as
it is defined in 8. (Recall that we have assumed that each
player can create at most one pool and that the utility an
inactive pool gives to its members is zero.)

For a joint strategy (73, X) of the outer game, we define
the utility of a player j to be equal to the non-myopic
utility of this player in the equilibrium of the associated
inner game. Formally u$“*“" (11, X) = uj(g'(ﬁl‘)‘)), where
S(A) g the unique equilibrium of the inner game deter-
mined by (17, X). (We study also the case when the inner
game has more than one or no equilibrium, by defining
proper utilities and proper notion of equilibrium in this
case, see the full version of this paper in [4].)

In this framework, we describe a set of joint strategies
that (i) are approximate non-myopic Nash equilibria of the
outer game and (ii) have the characteristic that in the inner
games defined by these joint strategies, all the equilibria
form k saturated pools. Recall that a pool is saturated
when its stake is at least 3. The pool leaders of these
pools in these equilibria of the inner games are again the
players with the highest values P(s;,¢;).

The intuition for how the set of margins of these joint
strategies is determined is the following: The k players
with the highest values P(s;,¢;) set the maximum possi-
ble margin, as long as their pools belong to the k& most
desirable pools (the pools with the highest desirability),
no matter which margins the other players have currently.
Note that if all players activated a pool of size 1/k with
the same margin and their whole stake, then the & pools
with the highest potential profit (P(s;, ¢;)) would give the
highest utility to their members. The formal analysis, the
theorems and the proofs appear in the full version of this
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paper in [4].
Definition of the game. In order to also capture non-
myopic moves in response to pool leaders changing mar-
gin or allocation, we define a two-stage game, the “inner-
outer game”. Similar non-myopic play has already been
considered in other games, most notably in Cournot Equi-
libria, as is discussed in the introduction and related work.
In this section we reuse non-myopic utility and desirability
as defined in previous sections, but when a pool has not
been activated in the inner game, we define its desirability
to be zero. This gives us a more realistic result, because
in practice only pools that have already been created will
be ranked. In addition we remove the assumption that a
player can be either a pool leader or a pool member. We
order players by P(s;,¢;), and ¢ will denote the player
with the i, highest value according to this ordering. We
break ties in ranking in arbitrary ways, our analysis will
hold for all of them. In fact, we define two games here,
the inner game, which focuses on the allocation of stake,
and the outer game, which focuses on the margins and
on the stake that potential pool leaders commit to their
pools. In the outer game, player ¢ decides on their margin
m; and on how much stake \; to allocate to their pool,
should they decide to activate it in the inner game. So a
strategy of a player ¢ in the outer game is a tuple (m;, \;)
of margin and allocated stake. (173, X) is a joint strategy
of the outer game. .
In the inner game, the margins 71 and the stakes A,
that potential pool leaders would allocate to their pools,
are given, and the strategies of the players are their
allocations. So in the inner game determined by (m, \),
a strategy of player i is Sl(m‘)‘) = d;, and a joint strategy
is S0-%) Note that if a player 7 decides to activate their
own pool, which means a; ; > 0, then they are committed
to allocate stake \; to their pool, where \; is part of their
strategy of the outer game. So a;; € {0, \;}. We assume
that players decide their allocation trying to maximize
their non-myopic utility. Recall that we have assumed that
each player can create at most one pool and that the utility
that an inactive pool gives to its members is zero. Note
that each joint strategy of the outer game determines one
inner game.

D.1. Definition of Equilibria for Inner and Outer
Game

Definition 11. A joint strategy §0X) s a Nash equilib-
rium of the inner game defined by (773, A) when for
every player j

(©)

i N

uy (517, §EN) <y (57)
for every S;-("T"’A) # SJ(-m”A). This is the standard Nash
equilibrium notion when the players try to maximize

their non-myopic utility.

To define the non-myopic equilibrium of the outer
game, let us temporarily assume that there is a unique
Nash equilibrium in every inner game. Then we define
the utility of player j in the outer game, where players
have selected joint strategy (1, \), as: u$“*"(m, \) =

uj(S'(m“fX)), where S0 s the unique equilibrium of



the inner game determined by (m, X) So a joint strategy
(m, \) is an approximate e-non-myopic Nash equilibrium
of the outer game when for every player j
©) (i, Ny, X)) < ug™er (i, X) + €
for every (m/, \}) # (m;, \j).

When there are multiple equilibria in the inner game,

we define ug"“'*" (i, X) as the set of values uj(g‘(m,X)),

where S0V s a Nash equilibrium of the inner game
determined by (1, \).
Let

outer

!/
J m;

®)
N outer (,7 Y o outer (,2 Y
Uﬂ’u,tevn,up(,r?l7 )\) — sup u] (m7 /\) lf u] (TTL, )‘) 7é @,
7 —00 elsewhere.
In the same way we define:
©)
. : Q’u,tev‘ R s qmﬁer > Y
outeriov (5 3y inf u"er(m, ) if ug™r(m, \) # 0,
7 —00 elsewhere.

Note that when u$***" (1, X) is not empty, it is a non-
empty bounded subset of the reals and therefore always
has both supremum and infimum: Upper- and lower
bounds are given by R and (—max{ci,...,c,}) respec-
tively.
Definition 12.
A joint strategy (77, X) is an e-non-myopic Nash equi-
librium when for every player j

(10)
outer,up
u’

¥ (mf;,m_j, N}, X,j) < yuterlov g X) +e

) # (M, Aj).

For the formal theorems and proofs referring to the
two-stage game see the full version of this paper in [4].

/ /
for every (mj, \

Appendix E.
Experiments - Addendum

In this section we provide a more detailed description
of our experimental evaluation. An example of experiment
is shown in Figure 8 with the corresponding table illus-
trating actual values in Table 1.

Explaining the results. The outcome of each simulation
is a diagram with various plots, visualizing the dynamics,
and a table with data describing the reached equilibrium.
For the simulations reported here, we have always used
the same stake distribution (sampled randomly from a
Pareto distribution, as explained above) to make results
more comparable (see Figure 7).

dynamics displays the dynamic assignment of
stake to pools. At the end of each
simulation, once an equilibrium has
been reached, we expect all stake to
be assigned to ten pools of equal size.
shows the number of pools over time

— this should end up at ten pools.

pools
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In the tables describing the equilibrium (all found in
the full version of this paper in [4] ), the meaning of the
columns is as follows:

player Number of the player who leads the
pool. Players are ordered by their po-
tential P(s,c) (cost ¢, stake s). Our
expectation is to end up with ten pools,
led by players 1-10.

Pool rank. We expect our final pools
to have ranks 1-10.

Pool leader’s cost-rank: The player
with the lowest costs has cost-rank 1,
the player with the second lowest costs
has cost-rank 2 and so on. For low
values of «, this should be close to the
pool rank.

Pool leader’s stake-rank: The player
with the highest stake has stake-rank
1, the player with the second highest
stake has stake-rank 2 and so on. For
high values of «, this should be close
to the pool rank.

Pool costs.

Pool margin.

Pool leader’s stake.

Pool stake (including leader and mem-
bers).

Pool rewards (before distributing them
among leader and members).

Pool desirability.

rk

crk

srk

cost

margin
player stake
pool stake

reward

desirability

In the full version of this paper in [4] we show the
results of six exemplary simulations with various costs
and values for parameter o (which governs the influence
of pool leader stake on pool desirability). In all cases the
system stabilizes at 10 saturated pools.

In this version, we present as indicative the figure and
the table when costs and « are both low (Figure 8 and
Table 1)



TABLE 1. LOW COSTS, LOW STAKE INFLUENCE (c € [0.001,0.002], o = 0.02).

player rk crk stk cost margin  player stake pool stake reward desirability
1 4 54 1 0.00156856  0.00898774  0.07704926  0.10000000  0.10154099  0.099073896587544
2 5 19 5 0.00121229  0.00125302  0.02052438  0.10000000  0.10041049  0.099073896587539
3 9 5 17 0.00108188  0.00088317  0.01216771  0.10000000  0.10024335  0.099073896587511
4 3 16 7 0.00120205 0.00063505  0.01694531  0.10000000  0.10033891  0.099073896587553
5 2 6 26 0.00108805 0.00053598  0.01075376  0.10000000  0.10021508  0.099073896587558
6 1 1 81  0.00100213  0.00047005  0.00613080  0.10000000  0.10012262  0.099073896587589
7 7 3 39 0.00105867  0.00047469  0.00898080  0.10000000  0.10017962  0.099073896587522
8 6 18 8 0.00121088  0.00042690  0.01635433  0.10000000  0.10032709  0.099073896587534
9 8 2 62 0.00103849  0.00026601  0.00693720  0.10000000  0.10013874  0.099073896587515
10 10 12 16  0.00115913  0.00011986  0.01224503  0.10000000  0.10024490  0.099073896587504
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Figure 8. Low costs, low stake influence (¢ € [0.001,0.002], o = 0.02).
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Figure 9. Low costs, low stake influence (¢ € [0.001, 0.002], o = 0.02), allowing five players to make moves simultaneously, allowing pool moves

every 100 rounds.
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