
A Pragmatic Approach to Membership Inferences on Machine Learning Models

Yunhui Long1, Lei Wang2, Diyue Bu2, Vincent Bindschaedler3,

Xiaofeng Wang2, Haixu Tang2, Carl A. Gunter1, and Kai Chen4,5

1University of Illinois at Urbana-Champaign
2Indiana University Bloomington

3University of Florida
4SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences

5School of Cyber Security, University of Chinese Academy of Sciences

Abstract—Membership Inference Attacks (MIAs) aim to
determine the presence of a record in a machine learning
model’s training data by querying the model. Recent work
has demonstrated the effectiveness of MIA on various ma-
chine learning models and corresponding defenses have been
proposed. However, both attacks and defenses have focused
on an adversary that indiscriminately attacks all the records
without regard to the cost of false positives or negatives. In
this work, we revisit membership inference attacks from the
perspective of a pragmatic adversary who carefully selects
targets and make predictions conservatively. We design a
new evaluation methodology that allows us to evaluate the
membership privacy risk at the level of individuals and
not only in aggregate. We experimentally demonstrate that
highly vulnerable records exist even when the aggregate
attack precision is close to 50% (baseline). Specifically, on
the MNIST dataset, our pragmatic adversary achieves a
precision of 95.05% whereas the prior attack only achieves
a precision of 51.7%.

1. Introduction

Recent progress on machine learning has led to tech-
nological innovations for applications such as autonomous
driving, face recognition, and natural language processing.
But it has also uncovered new privacy threats. For exam-
ple, in a Membership Inference Attack (MIA), an attacker
queries a machine learning model in order to infer whether
a specific target record was part of the training dataset.

Although seemingly benign, inferring an individual’s
membership in a dataset can have serious privacy impli-
cations. For example, if the machine learning model was
trained using medical records of patients suffering from a
sensitive medical condition (e.g., cancer) then a successful
membership inference is devastating as it reveals medical
conditions an individual suffers from. A different way of
conceptualizing membership inference is as a kind of re-
identification attack from aggregated information (here the
machine learning model). Viewed this way, as suggested
in [26], protecting membership information is critical.

Recently, Shokri et al. [30] demonstrated the first MIA
on classification models using only black-box access. This
spurred further research into MIAs in a machine learn-
ing context [11], [28], [35]. In addition, some defensive
measures have been proposed by Nasr et al. [24]. Despite

this promising new research, there remains concerns about
whether MIA indicate serious risks for widely used ma-
chine learning models. The concerns are two-fold. First,
some prior attacks require the adversary to have control of
the training algorithm [31], [35], which may not always
be realistic in practice. Second, despite recent work [11],
[28], [30], [35], it remains unclear what it means for
membership inferences to be successful and what is the
actual privacy risk. For example, what does it mean for
an adversary to achieve 80% precision? What sensitive
information does he learn about individuals in the dataset?
Is the risk to all individuals the same or is there disparate
vulnerability [6], [34]? What if the attack achieves only
51.7% precision?

Unfortunately, the attack methodology of prior work is
ill-suited to answer these questions because it provides an
incomplete picture of the risk. Indeed, prior work often
measures the risk with respect to an indiscriminate ad-
versary whose attack success is averaged over all targets,
without regard to the cost of false positives or negatives.
For example, (in one case) prior work [30] reports an
attack precision of 51.7% (whereas the random guessing
baseline is 50%). This unequivocally demonstrates the
existence of successful MIAs but does little to elucidate
the actual privacy risk because it is compatible with two
vastly different scenarios: (1) 1.7% of individuals having
their membership status permanently and unequivocally at
risk and the other 98.3% being safe; and (2) all individuals
having a probability of 0.517 (instead of 0.5) of having
their membership status correctly guessed (and anything
in between these scenarios). In terms of privacy violation,
the first scenario is arguably much more serious.

In this paper, we propose a new attacker profile and
corresponding methodology. We consider a pragmatic
adversary who carefully selects targets based on their
(perceived) vulnerability to membership inference and at-
tempts to minimize false positives by trading off coverage
for precision. We propose novel attacks that better match
this setting and allows us to distinguish between two
critical aspects of membership inference: (a) the attacker’s
success averaged over targets, and (b) the attacker’s suc-
cess for a specific target averaged over the random id-
iosyncrasies of the model’s training data and choices dur-
ing training (e.g., initial random weights values). From a
privacy perspective, both (a) and (b) should be minimized
by prospective defenses. In fact, differential privacy [8],
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the only defense with provable privacy guarantee, puts
a tight bound on both. However, insofar as prior work
has largely focused on (a), corresponding defenses may
inadvertently overlook (b).

Our study reveals that a pragmatic adversary can
achieve high precision (e.g., 95.05% on MNIST) in cases
where prior work’s methodology implies only barely
above-the-baseline precision (i.e., 51.7%). It is worth
noting that such findings occur even when the machine
learning model is not overfitted, a setting for which prior
work on black-box MIA reports significantly lower risk
of membership privacy violation.

More specifically, our study finds that pre-selecting
vulnerable records is an essential step to successfully
attack well-generalized machine learning models. With-
out it, the attack has poor performance. With it, the
pragmatic attack is able to infer membership of target
records with high precision. This is because by focusing
on those records likely to be vulnerable, it is easier for
the attacker to detect those records’ specific influence
on the model. Furthermore, we find that the influence
of vulnerable target records is far reaching and can be
detected through indirect inferences that query the model
on enhancing records related to the target records. In
some cases, such indirect inferences outperform direct
inferences. Moreover, the existence of enhancing records
casts doubt on the effectiveness of defenses which rely
on or aim to detect MIAs, because enhancing records
often look nothing like the target record. Finally, we find
that although regularization is effective in reducing the
membership inference risk of some vulnerable individuals,
it does not eliminate the risk for all individuals. Even
when the model is regularized with a (relatively) large
coefficient (i.e., λ = 0.01), the pragmatic attacker is able
to identify a vulnerable record and infer its membership
with almost maximal precision.

2. Background

2.1. Membership Inference Attacks

In a membership inference attack, the adversary’s goal
is to infer the membership status of a target individual’s
data in the input dataset to some computation. For a
survey, the adversary wishes to ascertain, from aggregate
survey responses, whether the individual participated in
the survey. For machine learning, the adversary wishes
to ascertain whether the target’s record was part of the
dataset used to train a specific model. A successful MIA
is a privacy violation because it indicates that the target
individual is identifiable from the aggregated statistics or
models.

One of the first prominent examples of MIA oc-
curs in the context of Genome-Wide Association Studies
(GWAS). The seminal work of Homer et al. [13] show
that p-values, a type of aggregated statistics routinely
published when reporting the results of studies, could
be used to successfully infer membership status. The
experiment is performed on 86 individuals, all of which
can be identified with few false positives. Although this
attack requires that the adversary know the genome of the
target individual, it teaches an important lesson: seem-
ingly harmless aggregate statistics may contain sufficient

information for successful membership inferences, which
leads to re-identification of individuals in the study. As
a consequence of this attack, NIH removed all aggregate
data of GWAS from public websites [36].

More recently, it was shown that machine learning
models are vulnerable to black-box membership infer-
ence attacks. Shokri et al. [30] cast the attack into a
classification problem and show that an attack classifier
can infer record membership with a precision of 93.5%,
when the target model is overfitted and has a testing
accuracy around 65%. However, the membership infer-
ence precision drops to 51.7% for models with testing
accuracy greater than 90%. Hayes et al. [11] show that
similar attacks are possible on generative target models,
and Salem et al. [28] show that the attacker can also
succeed only with access to data drawn from a different
distribution and without knowledge of the target model
structure. Similar to Shokri et al. [30], these attacks only
work on overfitted models and indiscriminatively attack
all records in the training dataset.

2.2. Evaluation Metrics for MIA

In their attacks against aggregated location data,
Pyrgelis et al. [27] formalized MIA as a distinguishability
game: the adversary tries to distinguish the membership
of a set of users with probability greater than 0.5. The ad-
versary’s advantage is calculated as his chance of winning
the game over random guessing.

Similarly, Yeom et al. [35] proposed formalization
of MIA on machine learning models. They defined the
adversary advantage as the probability of winning the
distinguishing game over random guessing, where the
probability is calculated over the selection of target record,
randomness in the training process, and attack strategy.

Besides adversary advantage, attack precision is an-
other commonly used metric for MIA. Both Shokri et
al. [30] and Salem et al. [28] evaluated their attacks by
the attack precision over a set of records containing a mix
of members and non-members.

However, both the adversary advantage and the attack
precision are calculated over a set of randomly picked
records. This setup intrinsically assumes that the adversary
would launch indiscriminate attacks on all the records.
Meanwhile, in practice, an adversary could carefully select
the attack targets and only perform attacks on the ones that
are perceived to be vulnerable.

3. Adversary Model

We consider an adversary mounting a MIA against
already trained machine learning models. We assume that
the adversary has black-box access to the target models,
i.e., he can issue arbitrary queries and retrieve the answers
(e.g., the probability vector) from the models; the number
of queries, however, may be limited.

In this section, we formulate the attack model used in
prior MIAs as the indiscriminate attack and propose our
more pragmatic attack model.

3.1. Indiscriminate Attack

In an indiscriminate attack, an attacker performs the
attack over a set of randomly picked records, and the
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attack advantage is evaluated over all the records. Let D
be a set of records, and A be the training algorithm. The
attack could be described as the following distinguishing
game between a user and an adversary:

1) The user randomly splits D into a training set Strain

and a testing set Stest of the same size.
2) The user trains a model M = A(Strain). The adver-

sary has black-box access to M .
3) ∀r ∈ D, xr = 1 if r ∈ Strain, otherwise xr = 0.
4) ∀r ∈ D, the adversary obtains a guess x′

r ∈ {0, 1}.
5) ∀r ∈ D, the adversary succeeds if x′

r = xr, other-
wise the adversary fails.

The adversary’s probability of success p is calculated
as the number of successes of the adversary divided by the
number of records in D. Prior work on MIA have used two
metrics to evaluate the performance of an indiscriminate
attack: the attack accuracy and the adversary advantage.
In most attacks [28], [30], the attack performance is
evaluated by the attack accuracy, which equals to the prob-
ability of success p, or the attack precision, which is the
probability of success among all the positive inferences. In
addition, Yeom et al. [35] defined the adversary advantage
as the probability of winning the distinguishing game over
random guessing, and the advantage is calculated as 2p−1.

3.2. Pragmatic Attack

Although the indiscriminate attack model has been
widely adopted in prior attacks and defenses, it ignores
the potential influence of the cost of attacks and false
positives. In this paper, we consider a pragmatic attack,
where the adversary carefully selects attack targets and
tries to minimize false positives. Let D be a set of records,
and A be the training algorithm. We formalize the attack
process as the following distinguishing game:

1) The adversary chooses a target r ∈ D.
2) The user randomly splits D into a training set Strain

and a testing set Stest of the same size.
3) The user trains a model M = A(Strain). The adver-

sary has black-box access to M .
4) xr = 1 if r ∈ Strain, otherwise xr = 0.
5) The adversary produces a guess x′

r ∈ {1,⊥} and
performs an attack only if x′

r = 1.
6) If x′

r = 1 and xr = 1, the adversary succeeds. If
x′
r = 1 and xr = 0, the adversary fails.

In practice, this attack process is carried out only
once, and the attacker’s advantage is his/her probability of
winning the game. This probability is calculated over the
randomness that is not controlled by the attacker, which
includes the selection of the training dataset Strain and the
randomness of the training algorithm A. However, due to
the complexity of ML models, it is challenging to obtain a
theoretical bound on this probability. Therefore, we take
a numerical analysis approach and estimate it using the
Monte Carlo method. Specifically, we repeat the steps
(2)-(6) to uniformly sampling the random space, which
gives us a relatively accurate estimation of the success
probability of an attack.

Pragmatic attacks are different from indiscriminate
attacks in two aspects. First, instead of naively attacking
all the records, a pragmatic adversary carefully selects
the attack targets to avoid wasting time and resources on

records that are unlikely to be vulnerable to membership
inferences. The process of target record selection greatly
reduces the chance of making false predictions and in-
creases the probability of success. Second, a pragmatic
adversary tries to minimize false positives because there
is often a high cost for making false accusations. In a
pragmatic attack, an adversary makes a positive inference
(i.e., x′

r = 1) only if she has high confidence that the target
record is in the training dataset, otherwise she makes no
inferences (i.e., x′

r = ⊥).
We define two metrics to evaluate the performance of

the attack: (1) the precision of the attack is the proba-
bility of success among all the positive inferences (i.e.
Pr[xr = 1 | x′

r = 1]); (2) the coverage of the attack is the
probability of making a positive inference when the target
record is in the training dataset (i.e. Pr[x′

r = 1 | xr = 1]).
We evaluate the attack precision and coverage of each
target record over the randomness of the training algorithm
and sampling of training dataset.

The adversary makes a false positive inference when
x′
r = 1 and xr = 0. False positives are often associated

with high cost and could reduce the adversary’s credibility,
so a pragmatic adversary attempts to minimize the number
of false positives and maximize the attack precision. The
adversary makes no inferences when x′

r = ⊥, so a low
coverage does not incur extra cost for the adversary.
Therefore, it is acceptable to have a relatively low attack
coverage.

3.3. Adversary Knowledge

Similar as the previous work [30], we further assume
that the adversary either (1) knows the structure of the
target model (e.g., the depth and the number of neurons
in each layer of the neural network) and the training
algorithm used to build the model, or (2) has black-box
access to the machine learning algorithm used to train the
model. We also assume that the adversary has some prior
knowledge about the population from which the training
records are drawn. Specifically, the adversary can access
a set of records that are drawn independently from that
population, which may or may not overlap with the actual
training data for the target models; but the adversary does
not have any additional information about whether these
records are present in the training data. These records
can often be obtained from a public dataset with similar
attributes or from previous data breaches.

4. Pragmatic Membership Inference Attack

4.1. Attack Overview

The goals of our attack are different from the goals of
an indiscriminate attack in two aspects: (1) the adversary
is only interested in positive membership inferences be-
cause positive membership information is more valuable
to the adversary and more risky to the users. Positive
membership inference allows the adversary to associate
public available information (i.e., the machine learning
models) with some identifiable auxiliary information (i.e.,
the record of an individual known to the adversary).
Because this association is similar to re-identifying indi-
viduals in an anonymized dataset, positive membership
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Figure 1: Attack Overview. Our attack consists of 3 steps. First, the adversary selects vulnerable records from a group
of target records. Second, the adversary generate queries related to the vulnerable records and query the target models.
Finally, the adversary identifies target models that are trained with the vulnerable records. The adversary only makes
a positive membership inference if a target model’s predictions strongly indicate the presence of a target record in its
training dataset. Otherwise, the adversary makes no inferences. In the above example, the adversary would infer that
target model 1 is trained with record A and target model 2 is trained with records A and B. However, the adversary
would not make any inferences on record C and target models 4,5,6 because the predictions of the models do not give
it high confidence for positive inferences.

inference attack has been considered as a type of re-
identification attack in prior work [26]. Moreover, given
a correct positive membership inference, the adversary
knows that the individual is a participant of a study, which
may further leak more information about that individual.
(2) The adversary wants to re-identify individuals in the
training dataset with high precision because false infer-
ences can be costly. Around these goals, we design a
three-step pragmatic attack as shown in Fig. 1. Below,
we briefly explain each step of the attack.

Step 1: Selecting Vulnerable Target Records. In an
overfitted model, almost all records are vulnerable to MIA,
so a indiscriminate attack can achieve high precision.
However, when the model is well-generalized, the model
gives similar predictions to members and non-members
of the training dataset. Therefore, identifying vulnerable
target records is the key to an effective pragmatic attack.
First, we select vulnerable records by estimating the num-
ber of neighbors they have in the sample space represented
by the records available to the adversary. Records with
fewer neighbors are more vulnerable under MIA because
they are more likely to impose unique influence on the
machine learning models. In order to identify neighbors
of a given record, we train reference models to imitate
the behavior of target models. We further construct a new
feature vector for each record based on the intermediate
outputs of reference models on this record, which implies
this record’s influence on the target machine learning
model.

Step 2: Identifying Vulnerable Models. Next, we
query the target models and identify the models that
are trained on target records. Specifically, we design two
attack methods distinguished by their queries to the target
models: A direct inference attack infers the membership
of a target record based on the model’s prediction on that
record; an indirect inference attack infers the membership

of a target record based on the record’s influence on
the model’s predictions on seemingly uncorrelated records
(called enhancing records). We use novel techniques that
iteratively search for and select enhancing records. Our
indirect inferences using the enhancing records can suc-
cessfully infer the presence of a target record without
querying it. Moreover, the indirect inferences sometimes
outperform direct inferences by accumulating more in-
formation from multiple queries. Note that although we
design and evaluate our attack with multiple target records
and target models, in practice, the adversary may choose
a single target model or a single target record to attack.

Step 3: Inferring Positive Membership. Finally, we
make positive membership inference over the combina-
tions of all target records and target models. Since there
is often a high cost when making incorrect inferences,
we only infer a target record to be in the target model if
the predictions of the model indicate a high probability of
success in the attack. We use hypothesis testing methods
to make the decision: under the null hypothesis the record
is not present in the training dataset; under the alternative
hypothesis the target record is in the training dataset. We
reject the null hypothesis when the p-value is smaller than
a cut-off threshold.

4.2. Building Reference Models

We exploit a target record’s unique influence on the
outputs of a machine learning model to infer the presence
of the record in the training set of the target model (called
target training set). To identify such influence, we need to
estimate the model’s behavior when the target record is
not in the target training set. To achieve this goal, we
build reference models, which are trained using the same
algorithm on reference datasets sampled from the same
space as the target training set, but not containing the
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Figure 2: Last layer output of a two-layer neural network.
We use the last layer output of locally trained nueral
networks as features for vulnerable record selection.

Figure 3: Features for vulnerable records selection. We
concatenate intermediate outputs of locally trained ref-
erence models and use them as features for vulnerable
records selection.

target record. The process of building reference models
are illustrated below.

To start with, we need to construct k reference datasets
with the same size as the target training set. Since most
practical machine learning models are trained on large
training datasets, it is difficult for an adversary to get
access to an even larger dataset with k times records as the
target training set. Consequently, if we build the reference
datasets by sampling without replacement from the whole
set of reference records, the resulting datasets may share
many records, and the reference models built from them
would be alike and give similar outputs. To address this
issue, we use bootstrap sampling [9] to generate the
reference datasets, where each dataset is sampled with
replacement. Bootstrap sampling reduces overlaps among
reference datasets, providing a better approximation of
datasets sampled from distribution of the target training
set. Each reference dataset is then used to train a reference
model using the same training algorithms as used for
training the target model.

4.3. Selecting Vulnerable Records

Not all training records are vulnerable to MIA. In
general, we want to measure the potential influence of
a target record so as to select vulnerable records with the
greatest influences and subject them to MIA in the subse-
quent steps. It is worth noting that, although the training

records imposing unique influence on the model are often
outlier records (i.e., with distinct feature vectors) in the
training set, the outlier records do not always have unique
influence on the model because the training algorithm may
decide that some features should be given higher weights
than others and some features should be combined in the
model. For example, a neural network trained on hand
written digit datasets learns the contour of written digits
is more important feature than individual pixels [20].
Therefore, instead of using the input features, we extract
high level features more relevant to the classification task
to detect vulnerable records.

Specifically, when attacking neural networks (e.g., see
Figure 2 for a two-layer fully connected neural network),
we construct new feature vectors by concatenating the
outputs of the last layer before the Softmax function from
the reference models (Figure 3), as the deeper layers in
the network are more correlated with the classification
output [12]. For other classification models without inter-
mediate layers, the new feature vector can be generated
by concatenating the model’s prediction vectors. We then
measure the unique influences of each record using its
new feature vector. Let f be the the new feature vector of
the record r. We call two records r1 and r2 neighbors if
the cosine distance between their feature vectors f1 and
f2 is smaller than a neighbor-threshold α.

Note that the neighboring records are difficult to be
distinguished by MIA because they have similar influence
on the model. When a neighbor of r occurs in the training
dataset, the model may behave as if r is used to train
the model, leading to the incorrect membership inference
result. Our goal is to select the vulnerable records in the
entire record space with fewer or no neighbors likely
to be present in the training set (assuming the training
records are independently drawn from the record space)
as putative targets of MIA.

Given a training dataset with N records and a refer-
ence dataset with N ′ records, both sampled from the same
record space, and a target record r, we count the number
of neighbors of r in the reference dataset, denoted as N ′

n.
Then, the expected number of neighbors of r in the train-

ing dataset, Nn, can be estimated as E [Nn] = N ′
n × N ′

N .
A record r is considered to be potentially vulnerable

(and as the attack object), only if E [Nn] < β, where β
is the probability-threshold for target record selection. We
stress that the approach for vulnerable records selection
presented here relies only on the record space (represented
by the reference records accessible by an adversary) and
the reference models (built using reference records), and
is independent of the target model; as a result, the com-
putation can be done off-line even when used to attack a
machine learning as a service (MLaaS).

4.4. Direct Inference

In a pragmatic attack, the goal of the adversary is
to achieve high precision on the selected target records
instead of all the records. Therefore, we attack each target
record separately by computing the deviation between its
output given by the target model and those given by the
reference models. We expect that each training record has
a unique influence on the model, which can be measured
by comparing the target model’s output with the output
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Figure 4: Steps for generating enhancing records.

of reference models (trained without the target record)
on the record. We quantify the difference between the
outputs using the log loss function. Given a classifier M
and a record r with class label yr, let pyr

be M ’s output
probability of class label yr. The log loss function [23]
L (M, r) is defined as:

L (M, r) = − log pyr
.

The log loss function is commonly used as a crite-
rion function [23] when training neural network models.
L (M, r) is small when M gives high probabilities on
correct labels.

Given a target model M , a target record r, and k
reference models, we first obtain the log loss of all the
reference models on r as L1, L2, . . . , Lk. We view these
losses as samples independently drawn from a distribution
D(L), and estimate the empirical cumulative distribution
function (CDF) of DL as F (L), which takes a real-valued
loss L as input. We use the shape-preserving piecewise
cubic interpolation [32] to smooth the estimated CDF.
Based on the log loss of the target model M on the
target record r, L (M, r), we estimate the confidence of
r to be present in the training set by performing a left-
tailed hypothesis test: under the null hypothesis H0, r is
not present in the training set (i.e., L (M, r) is randomly
drawn from D(L)), while under the alternative hypothesis
r is used to train M (i.e., L (M, r) is smaller than samples
in D(L) because of the influence of r in the training).
Therefore, we calculate the p-value as:

p = F (L (M, r)) ,

which gives the confidence that r is used for training M
only if p is smaller than a threshold (e.g. 0.01) so that the
null hypothesis is rejected.

4.5. Indirect Inference

Besides reducing a model’s loss on its own, a train-
ing record also influences the model’s outputs on other
records. This influence is desirable to improve model
generalization: in order to give correct predictions on
unseen records, a model needs to use the correlation
it learns from a training record to make predictions on
queries with similar features. On the other hand, however,
these influences can be exploited by an adversary to
obtain more information about the target record through
multiple queries to enhance MIA. Interestingly, we show
that MIA can be achieved by queries of records seemingly
uncorrelated with the target record, making the attack hard
to detect and defend against.

The key challenge for inference without querying
the target record is to efficiently identify the enhancing

Figure 5: Building positive reference models by updating
the model with the training set including the reference
records plus the target record.

records whose outputs from the target model are expected
to be influenced by the target record. To address this
problem, we develop a method consisting of the follow-
ing steps: random record generation, record clustering,
enhancing record selection, and enhancing records opti-
mization (as shown in Figure 4).

Random Record Generation. To start with, we ran-
domly generate records from which the enhancing records
are selected. Specifically, we adopt one of the following
two methods for random record generation: (1) when the
feature space is relatively small, we uniformly sample
records from the whole feature space; (2) when the feature
space is large, since the chance of getting enhancing
records by uniform sampling is slim, we generate random
records by adding noise to pre-selected vulnerable target
records. We use Gaussian noise for numerical attributes
and candle noise [38] for categorical attributes.

Enhancing Record Selection. To identify records
whose target model’s output may be influenced by the
target record r, we approximate the target model’s be-
havior using a group of positive reference models that are
trained using reference records plus the target record r. To
save the effort of retraining the positive reference models,
we add the target record into batches sampled from the
original reference dataset and update the reference models
by training on the batches plus the target record. Figure 5
shows the process of updating reference models.

We select the enhancing records by comparing the
predictions between the positive reference models (i.e.,
“in models”) and the original reference models (that are
trained without the target records, i.e., “out models”). We
denote the ith original and the ith positive reference model
as Mrefi and Mr

refi
, respectively. Given a record r with

class label yr and another arbitrary record q, let M (q, yr)
be the model M ’s output probability of yr on the query
q. We calculate r’s influence on q as follows:

I (r, q) =
1

k

k∑
i=1

t
(
Mr

refi
(q, yr)−Mrefi (q, yr)

)
, (1)

where k is the total number of original (or positive)
reference models, and t is a threshold function defined
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as follows:

t (x) =

{
1 if x > 0,

0 otherwise.

Algorithm 1 Enhancing Records Selection Algorithm

1: procedure selectθ(q) � Input a random query

2: I (r, q)←∑k
i=1 t

(
Mr

refi
(q, yr)−Mrefi (q, yr)

) /
k

3: if I > θ then
4: Accept q � Use q in MIA
5: else
6: Reject q

We identify a randomly generated record q as an
enhancing record for the record r if I(r, q) approaches
1, which indicates that adding r to the training dataset
almost always increase the models’ output probability on
the class label yr for the query q. In practice, we use q in
the MIA on the target record r only if I(r, q) is greater
than a threshold θ (e.g. 0.95). Algorithm 1 summarizes
the entire algorithm for query selection.

Enhancing Record Optimization. When the target
model has a large record space (e.g., with high-dimension
feature vectors), the chance of finding an enhancing record
among randomly generated records is slim. To address this
issue, we propose an algorithm to search for enhancing
records for a target record r by optimizing the following
objective function:

max
q

I (r, q) , (2)

where I (r, q) is the influence function defined in Equa-
tion 1. Optimizing I (r, q) is time-consuming because
I (r, q) consists of a non-differentiable threshold function
t. Therefore, instead of solving the optimization function
in equation 2, For simplification, we approximate the
maximization of I (r, q) with the minimization of the sum
of multiple hinge loss functions defined as follows [10]:

min
q

k∑
i=1

max
(
0, γ − (

Mr
refi

(q, yr)−Mrefi (q, yr)
))

,

(3)
where γ is a parameter indicating the margin width. If
a randomly generated record are rejected by the query
selection algorithm, we minimize the objective function
in Equation 3 using gradient descent [7] to check if the
resulting record is acceptable as an enhancing record.

Record Clustering (Optional). Note that it is in-
efficient to repeat the query selection and optimization
algorithms on all random records because the predictions
of the models on most records are highly correlated: the
models giving high output probabilities on some record
are also likely to give high output probabilities on corre-
lated records. To improve the efficiency of query selection,
we propose an algorithm to identify the least correlated
enhancing records from a large number of randomly gen-
erated records.

First, we estimate the correlation between records
based on the model’s predictions on them. We construct
a feature vector fq for a record q by concatenating the
reference models’ outputs on it (Figure 6). If two queries

Figure 6: Generating query features for query selection.

q1 and q2 have highly correlated feature vectors, the
models’ outputs on q2 do not add much information to
the models’ outputs on q1.

Next, we formulate the problem of selecting a subset
of least correlated records as a graph theoretical problem.
We build a graph where records are the nodes and pairwise
correlation between records is the weight on edges con-
necting the corresponding nodes. This allows us to recast
our problem as the k-lightest subgraph problem [33],
which is NP-hard. We obtain an approximate solution
using hierarchical clustering [15]. For this, we cluster the
records into k disjoint clusters based on their pairwise
cosine distance. Finally, in each cluster, we select the
record with least average cosine distance to all other
records in the same cluster.

As shown in Figure 4, we use the enhancing record
clustering algorxithm before the enhancing record selec-
tion and enhancing record optimization steps to improve
the efficiency of the attack.

Indirect Inference with Multiple Queries. After
identifying multiple enhancing records, we repeat the
attack in section 4.4 by querying each of these records. Be-
cause the outputs on these queries may be correlated, we
combine the resulting p-values using Kost’s method [18],
with the covariance matrix estimated from the query fea-
tures generated in the query selection step (Figure 6).

5. Evaluation

5.1. Experimental Setup

We evaluated the performance of our attack from the
following three aspects: the precision of the attack, the
coverage of the attack, and the effectiveness of vulnerable
record selection method.

For each dataset, We constructed 100 target models.
To get a better understanding of MIA’s performance, we
wanted the baseline precision to be 0.5 for each target
record. That is, each target record should occur in 50 out
of the 100 target models. Therefore, we generated training
datasets by randomly splitting the target records into two
datasets of the same size, each serving as a training set
for a target model. We repeated this process 50 times and
generated the training datasets for 100 target models.

The precision of the attack is the percentage of suc-
cessful inferences (i.e., the target record is indeed in the
training dataset) among all inferences. The coverage of the
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(a) p-values for all MNIST records (b) p-values for selected MNIST records (c) attack performance on MNIST

(d) p-values for all Adult records (e) p-values for selected Adult records (f) attack performance on Adult

(g) p-values for all Cancer records (h) p-values for selected Cancer records (i) attack performance on Cancer

Figure 7: Evaluation of MIA on MNIST, Adult, and Cancer dataset. In (a), (d), and (g), we performed hypothesis testing
on all records over 100 target models. There was no significant difference between the distributions of p-values for
models trained with the target record (labeled “in”) and models trained without the target record (labeled “out”). This
result indicates that the attack cannot achieve high precision without the step of vulnerable record selection. In (b),
(e), and (h), we performed the same hypothesis testing on the selected vulnerable records over 100 target models. Our
attack was effective because there was a distinction between the p-value distributions of “in” models and “out” models.
Most models with a small p-value were models trained with the target record (i.e. “in” models). (c), (f), and (i) show
the varying precision and coverage with cut-off p-value ranging from 0.005 to 0.05. Our attack focused on achieving
high attack precision because false accusations can be costly for attackers.

attack is the percentage of successful inferences among all
the cases that the target record is in the training set (i.e. 50
times the number of records). In practice, a high precision
is often more important than a high coverage because
there is usually a high cost associated with making false
inferences.

We define true positive (TP) to be the case that the
target record is indeed in the training dataset when the
adversary inferred it as in and false positive (FP) to be
the case that the target record is not in the training dataset
when the adversary inferred it as in. We evaluate the
effectiveness of our vulnerable record selection method
by looking at the true positives and false positives of each
vulnerable record under different selection criteria.

5.2. Dataset

UCI Adult. The UCI Adult dataset [21] is a dataset
extracted from 1994 American Community Survey. It
contains 48,842 records and 14 attributes. The attributes
are demographic features and the classification task is to
predict whether an individual’s salary is above $50K a
year. We normalized the numerical attributes in the dataset
and used one-hot encoding to construct the binary repre-
sentation of categorical features. We randomly selected
20,000 records for training target models, and each train-
ing dataset contains 10,000 records. The remaining 28,842
records served as the adversary’s background knowledge.

UCI Cancer. The UCI cancer dataset [21] contains
699 records and 10 numerical features ranging between
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(a) MNIST Dataset (b) Adult Dataset (c) Cancer Dataset

Figure 8: Effectiveness of vulnerable record selection in a pragmatic attack. We evaluated the effectiveness of vulnerable
record selection by plotting the number of true positive inferences and false positive inferences of each selected record.
Each point in the figure represents a target record. Points can overlap because the attack can have the same performance
on different records. For each target record, the attack was performed over 100 target models (50 “in” models and 50
“out” models). Records selected under different criteria were plotted with different colors and shapes. Records with
cosine distance smaller than α were considered as neighbors. We selected records with probability threshold β. That
is, the probability that the record’s neighbor would occur in the training dataset was smaller than β. Points at the upper
left corner are more vulnerable to MIA than those near the baseline. Most of the points are above baseline. This result
demonstrates that our vulnerable record selection method is effective. Moreover, by adopting a strict selection criterion
(large α and small β) we identified records that can be attacked with high precision (e.g., red points in the figures).

1 to 10. The features are characteristics of the cell in
an image of a fine needle aspirate (FNA) of a breast
mass. The classification task is to determine whether the
cell is malignant or benign. We randomly selected 200
records for training, and each training dataset contains
100 records. The remaining 499 records served as the
adversary’s background knowledge.

MNIST Dataset. The MNIST dataset [19] is an
image dataset of handwritten digits with 60,000 handwrit-
ten training examples and 10,000 testing examples. The
images are normalized such that the digits are positioned
at the center of the 28x28 pixel field. The classification
task is to predict which digit is represented in an image.
We randomly selected 20,000 images for training and
40,000 images as the adversary’s background knowledge.
Each training set for target models and reference mod-
els contains 10,000 images. We used the 10,000 testing
images to calculate testing accuracy.

5.3. Models

Neural Network. For the Adult dataset, we con-
structed a fully connected neural network with 2 hidden
layers with 10 units and 5 units respectively. We use Tanh
as the activation function and SoftMax as the output
layer. The model is trained with batchsize of 100 and
20,000 epochs. For the MNIST dataset, we constructed
2 convolutional layers with ReLu as the activation func-
tion, followed with max pooling layers. We then added
a fully connected layer of 1,024 neurons, and we also
used dropout techniques to reduce overfitting. Finally, we
added an output layer and a Softmax layer. The model is
trained with batchsize of 50 and 10,000 epochs. For the
Cancer dataset, we used a vanilla neural network with no
hidden layer. The model is trained with batchsize of 10
and 3,000 epochs.

Dataset (Model) Vulnerable
Records Precision Coverage

MNIST 27 95.05% 66.89%
Adult 13 73.91% 5.23%

Cancer 5 88.89% 3.20%
MNIST (Google) 1 100% 4%
Adult (Google) 7 80% 2.67%

TABLE 1: Performance of Direct Inference. We mea-
sured the performance of a direct inference attack by
its precision and coverage. To achieve a high precision,
we selected a few vulnerable records (neighbor threshold
α = 0.2 for MNIST, 0.4 for Adult, and 0.1 for Cancer;
probability threshold β = 0.1), and made positive infer-
ences only when attack confidence is high (p ≤ 0.01).

Google ML Engine. Since the Google Predictions
API [2] used in the prior attack is deprecated, we used
Google ML Engine [1] to train target models on ML
cloud. When training the model, we used the sample code
provided by Google, which has pre-built model struc-
tures for training models on Adult dataset and MNIST
dataset. Specifically, for Adult dataset, the sample code
uses Google estimator [3] which hides low-level model
structure from the user; for MNIST dataset, the sample
code builds a neural network with 2 fully-connected hid-
den layers.

5.4. Direct Inference

We evaluated the performance of direct inferences by
their precision and coverage on different datasets and
models. We set a fixed vulnerable record selection crite-
rion for each dataset. The neighbor threshold α was 0.2,
0.4, and 0.1 for MNIST, Adult, and Cancer respectively.
This threshold represented the maximum cosine similarity
between neighbors. Records with cosine similarity smaller
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Dataset (Model) Training
Accuracy

Testing
Accuracy

Adult 0.85± 0.01 0.85
Cancer 0.95± 0.04 0.94± 0.03
MNIST 0.99 0.98

Adult (Google) 0.84± 0.03 0.84± 0.02
MNIST (Google) 0.90 0.90

TABLE 2: Training and Testing Accuracy of Target Mod-
els. All the target models were well-generalized models
with difference between training and testing accuracy
smaller than 0.01.

than α were considered as neighbors. Therefore, this
threshold varied for different datasets depending on the
dimensionality of records. We evaluated the influence of
this threshold later in this section. We selected records
with probability threshold β = 0.1. That is, the likelihood
that a neighbor of the record occurs in the training dataset
was smaller than 0.1.

In Fig. 7 we plotted the average number of models
per record with different attack p-values. The models
trained with the target records are labeled as “in” and
the models trained without the target records are labeled
as “out”. The attack was effective only when there was a
distinction between the p-value distribution of “in” models
and “out” models. The figure shows the necessity of
selecting vulnerable records before doing the inferences.
When the attack hypothesis testing was performed on all
target records, the p-value distributions of “in” models
and “out” models were indistinguishable. Therefore, the
attack was unlikely to have a high precision no matter
what p-value cutoff we selected. On the other hand, when
we performed the same hypothesis testing on the selected
vulnerable records, there was a clear distinction between
the p-value distributions of “in” models and “out” models,
which led to successful membership inference attacks.

The cut-off p threshold controls the trade-off between
precision and coverage. We would only make a positive
inference if the p-value obtained from the attack is smaller
than the threshold. Since there is a cost for false infer-
ences, we chose small p thresholds in the attack. In Fig. 7,
we plotted the different attack precision and coverage
obtained by cut-off p threshold varying between 0.005 to
0.05.

Our attack mechanism was less effective on the Adult
Google ML model since we did not have access to the
exact model structure due to the use of Google estimator.
Instead, we used raw features to select target records. This
limitation reduced the number of vulnerable target records
we identified from 13 to 7. However, it also shows that
the attack is possible even when the adversary does not
know the model structure.

5.5. Selection of Vulnerable Records

The p-value distributions in Fig. 7 shows the impor-
tance of vulnerable records selection. We further explored
how this step influenced the attack performance by chang-
ing the neighbor threshold α and the probability threshold
β. Fig. 8 shows the records selected by different selection
thresholds. Each point in the figure represents a target
record. Points at the upper left corner are more vulnerable

Figure 9: Vulnerable Examples in MNIST Dataset

Dataset Cut-off
p-value

Prec.
(direct)

Coverage
(direct)

Prec.
(indirect)

Coverage
(indi-
rect)

Adult
0.01 - 0 1 14%
0.1 70.83% 34% 75% 24%

Cancer
0.01 1 6% - 0
0.1 66.67% 52% 88.89% 16%

MNIST
0.01 96.15% 1 1 2%
0.1 89.29% 1 52.38% 22%

TABLE 3: Comparison between direct and indirect in-
ferences. We performed the attack on the same selected
record with direct inference and indirect inference. The
result indicates that membership inference attack is fea-
sible without directly querying the target record. On the
Adult dataset, indirect inferences even outperformed direct
inferences.

to MIA than those near the baseline. Smaller neighbor
thresholds or higher probability thresholds increased the
number of selected vulnerable target records. However, as
we tried to attack more records at the same time, there
was a higher chance that we would make false positive
inferences due to the influence of a record similar to one
of the target records, which decreased the attack precision.

To study what kinds of records are vulnerable, we
plotted the vulnerable target records selected from MNIST
dataset with α = 0.2 and β = 0.1 (Figure 9). As
we expected, some of the vulnerable target records are
outliers in the dataset. However, some vulnerable exam-
ples actually increase model utility by providing rare but
useful features for the classification task. For example,
the images of the digit 8 written in different directions
may help a model on recognizing similar written digits
in testing examples. However, since these images are rare
in the dataset, they have a unique influence on the target
models, making them vulnerable to our attack, and the fact
that this influence is useful in predicting unseen examples
does not mitigate the risk.

5.6. Indirect Inference

For some vulnerable target records, we achieved the
same level of attack performance by querying enhancing
records. For each dataset, we randomly sampled 5, 000
records, selected 50 of them by record clustering, and
tested them with the enhancing record selection algorithm.
If less than 10 enhancing records were selected, we ran
the enhancing record optimization algorithm to improve
the records. The initial records for the Cancer dataset
and the Adult dataset were randomly sampled from the
feature space while the records for the MNIST dataset
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Figure 10: A vulnerable record from MNIST with its two
enhancing records. In practice, it is difficult to find out
what the target record is, by looking at the enhancing
records used by an adversary.

were generated by adding noise to the target records due
to the large feature space.

We selected 1 target record in each dataset. For the
Cancer dataset, we selected 47 enhancing records whose
euclidean distance to the target record range between 6
and 19.3 with a selection criterion I (r, q) > 0.95. Since
the Cancer dataset has relatively low dimensional features,
enough enhancing records were accepted, and enhancing
record optimization was not needed. For the Adult dataset,
we relaxed the enhancing record selection criterion to
I (r, q) > 0.9 and found 15 enhancing records after the
optimization step. For the MNIST dataset, we further
relaxed the enhancing record criterion to I (r, q) > 0.8
due to the high dimensional feature space. We identified
41 enhancing records generated by adding noise to the
target record.

Table 3 shows the performance of indirect inferences.
For both the Cancer dataset and the Adult dataset, at-
tacking with the enhancing records has compatible per-
formance as querying the target record. Moreover, for
the Adult dataset, querying the target record did not suc-
cessfully infer any cases with a 0.01 cut-off p-value, but
by combining the predictions on enhancing records, we
achieved a precision of 1 and a coverage of 14%. For the
MNIST dataset, we achieved a precision of 1 and a cov-
erage of 2% when p ≤ 0.01. Although this performance
is less impressive compared to a direct inference on the
same record (whose precision and recall are both close to
1) it’s still an indication that membership inference attack
can succeed without querying the target record.

The effectiveness of indirect inferences shows that
prior defenses [16], [25] based on direct inferences could
fail to eliminate the risk of membership inferences. More-
over, we plotted both the target record and the enhancing
records and found that the enhancing records in no means
represent the target record, indicating that our attack is
hard to detect (Figure 10).

5.7. Influence of Regularization

Regularization is a common method for improving
model generalization. It is shown to be an effective de-
fense against prior MIAs [30]. To study its effectiveness
on our attack, we applied L2 regularization on neural net-
works trained on MNIST set even though the models were
not overfitted. In doing so, we limited the model capacity
which increased the risk of underfitting. Specifically, when
the regularization coefficient λ went from 0.001 to 0.01,
testing accuracy decreased by 0.01 indicating that the
model might be underfitted due to over regularization.

Regularization
Coefficient λ

Training
Acc.

Test
Acc.

# of
Target

Records

Prec. Coverage

0 0.99 0.98 52 90.84% 68.31%
0.001 0.99 0.99 1 1 54.8%
0.01 0.98 0.98 1 93.36% 4%

TABLE 4: Attack Performance w.r.t. Regularization (α =
0.2, β = 2, p ≤ 0.01) on MNIST dataset. We applied
L2 regularization with varying coefficients λ. Experiment
results show that applying regularization reduced, but did
fully eliminate the privacy risk of a pragmatic adversary.

Dataset Attack Confidence
Threshold

Precision Coverage

Cancer
(3 records)

0.8 50.25% 40%
0.9 - 0

Adult
(13 records)

0.6 66.67% 4.92%
0.7 - 0

MNIST
(27 records)

0.6 50% 56.25%
0.7 19.6% 6.25%
0.8 - 0

TABLE 5: Performance of the attack of Shokri et al. [30]
on the same target models and the same target records.
To imitate the attack strategy of a pragmatic adversary,
we performed prior attack on the selected target records
and made predictions only when the attack classifier has
high confidence. However, the prior indiscriminative at-
tack could not achieve high precision even under a low
coverage.

Table 4 shows model accuracy and attack performance
before and after applying L2 regularization with varying
coefficients λ. Applying regularization reduced the num-
ber of vulnerable target records in the dataset, but did
not completely eliminate the privacy risk. The remaining
vulnerable records were attacked with high precision.
Specifically, when L2 regularization was applied with
coefficient λ = 0.01, we still identified 1 vulnerable target
record, which was inferred with precision close to 1.

Applying regularization mitigated the model’s privacy
risk of some vulnerable individuals but did not eliminate
the risk of all individuals. Moreover, since the most vul-
nerable record was identified with high precision, regular-
ization may not be a good approach when the data owner
wants to provide privacy protection for all individuals
whose records are in the dataset.

5.8. Comparison with Indiscriminative Attacks

To compare with the attack proposed by Shokri et
al. [30], we reproduced the attack on the same target
models and the same vulnerable records in our attack.
Specifically, we trained one attack classifier per class for
each dataset. The attack classifiers are neural networks
with one hidden layer of 64 units. We used ReLU as the
activation function and SoftMax as the output layer. We
only performed the attack when the probability given by
the attack classifier was higher than a certain threshold
(called attack confidence threshold). We evaluated the
performance of the attack under various attack threshold
as shown in Table 5. The attack precision was relatively
low (e.g. < 70%) on all three datasets even when a high
attack confidence threshold was used.
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6. Discussion

In this section, we explain the limitations of our at-
tack, and further discuss the potential mitigation to the
information leaks in machine learning models.

6.1. Limitations

We view our attack as preliminary because our tech-
niques for identifying outliers cannot find all vulnerable
instances: it is possible that some instances not considered
to be outliers by our current design still exert unique
influences on the model, which need to be better under-
stood in the follow-up research. Moreover, the current
way to search for enhancing records, through filtering
out random queries, is inefficient, and often does not
produce any results. More effective solutions could utilize
a targeted search based upon a better understanding about
the relations between the target record and other records.
Fundamentally, it remains unclear how much information
about the training set is leaked out through querying
a machine learning model and whether more sensitive
techniques can be developed to capture even small signals
for a record’s unique impact.

6.2. Mitigation

Differential Privacy. Differential privacy has been
shown to limit the advantage of membership inference
attacks [35]. However, the protection of differential pri-
vacy comes at the price of loss in model utility. Recent
work has shown that current mechanisms for differentially
private machine learning rarely offer acceptable utility-
privacy trade-offs for complex learning tasks [16]. For
example, the differentially private deep learning model [4]
suffers a 10% accuracy loss on MNIST (under ε = 1) and
achieves only 65% accuracy on CIFAR10 (whereas state-
of-art non-private models can achieve 99% accuracy).
While differential privacy training of ML models is a
viable option in some scenarios, the goal and main focus
of our work is to provide a better understanding of non-
differentially private models. This is an important research
goal for two reasons. First, because the utility cost of
differential privacy can only be justified if there is in
fact a significant privacy risk when models are not trained
to be differentially private. Second, because the research
can shed light on other less costly privacy protection
mechanisms such as privacy-preserving training record
selection.

Adversarial Regularization. Prior research has
used adversarial regularization [25] and adversarial ex-
amples [16] as defenses against membership inference
attacks. However, both defenses assume an indiscrimi-
nate adversary that trains an attack classifier based on
the model’s direct prediction on the target records. In
contrast, the pragmatic attack strategy in our work is more
sophisticated, and our indirect queries are hard to identify.
Therefore, it is challenging to model the attacker for
privacy regularization or to generate adversarial examples
for the attack.

Generalization and perturbation. As mentioned
earlier, generalization has a limited effect on mitigating

our more sophisticated membership inference attack: as
demonstrated in our study, even after applying the L2 reg-
ularization (with a coefficient of 0.01), a vulnerable record
in MNIST dataset can still be attacked with a precision
of 1 (Section 5.7). Adding noise to the training set or to
the model to achieve differential privacy can suppress this
information leak [8]. However, in the presence of high-
dimensional data, which is particularly vulnerable to our
attack, perturbation significantly undermines the utility
of the model before its privacy risk can be effectively
controlled [17]. So we believe that a practical solution
could be to apply generalization and perturbation together
with proper training set selection, detecting and removing
those vulnerable training instances.

Training record selection. We believe that there is
a fundamental contention between selecting useful train-
ing instances, which bring in additional information, and
suppressing their unique influence to protect their privacy.
An important step we could take here is to automatically
identify outliers and drop those not contributing much
to the utility of the model. To this end, new techniques
need to be developed to balance risk and utility for those
risky instances. A machine learning model could be built
to automatically decide whether an instance should be
included in the training set or not.

7. Related Work

Membership Inference Attacks. Membership infer-
ence attacks were first proposed by Homer et al. [13] in the
context of Genome-Wide Association Studies (GWAS).
They successfully inferred membership status from ag-
gregated statistics. As a consequence of this attack, NIH
has removed all aggregate data of GWAS from public
websites [36]. Shokri et al. [30] proposed the first black-
box MIA on machine learning models. Following this
work, there have been extensive research on membership
inference attacks. Salem et al. [28] showed that MIA could
succeed with less shadow models and weaker assumptions
on the adversary. Yeom et al. [35] formalized MIA under
the framework of a distinguishing game and defined the
adversary’s advantage. Nasr et al. [25] proposed white-
box attacks for both centralized and federated learning
models. However, these attacks are all evaluated under
an indiscriminate adversary that naively attacks all the
records. In this paper, we consider a pragmatic adversary
that carefully selects the target records. We demonstrate
that this more sophisticated adversary could achieve high
precision on models which the inference from indiscrim-
inate adversaries is close to random guessing.

Disparate Vulnerability. Prior work show that both
membership inference attacks and differential privacy
have disparate affect on under-represented groups. Yaghini
et al. [34] show that under-represented groups have higher
privacy risk. Bagdasaryan et al. [6] demonstrate that
differentially private stochastic gradient descent incurs a
higher accuracy loss on under-represented classes and
subgroups. In this work, we demonstrate that attackers can
leverage disparate vulnerability to perform high-precision
membership inference attacks on selected records in a
well-generalized model.
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Defenses against MIA. Different defenses against
MIA have been proposed. Shokri et al. [30] and Salem
et al. [28] have both showed that model generalization
techniques, such as regularization, dropout, and model
stacking, are effective in protecting against indiscriminate
membership inference attacks. However, our work shows
that a pragmatic adversary can still achieve high precision
on selected records even after regularization. Recent work
proposed using adversarial training [24] and adversarial
examples [16] as defenses for membership inference at-
tacks. Nasr et al. [24] added a privacy regularization term
to the loss function of a model, and formulated the model
training process as a min-max problem. Jia et al. [16]
added perturbations to make the prediction vector an
adversarial example of the attack classifier. However, both
defenses assume the adversary to train an attack classifier
on the target record’s predictions, which is equivalent to an
indiscriminate adversary based on direct inferences. Yet,
this assumption does not hold for our pragmatic adversary
with more sophisticated attack strategies. For example,
neither the privacy term in [24] or the attack classifier
in [16] could represent our strategies for target record
selection and indirect inferences.

Privacy and Model Generalization. There is a
connection between privacy and model generalization.
Differential privacy can improve model generalization
when data is reused for validation [8]. Moreover, the prior
membership inference attack [30] achieves high precision
on highly overfitted models while barely works on non-
overfitted ones. Previous research also points out that pri-
vacy leakage can happen on non-overfitted models when
the adversary has control over the training algorithm.
Specifically, the adversary can encode private informa-
tion of the training dataset into the predictions of well-
generalized models [31]. These two attacks [30], [31]
can be formalized under a uniform theoretical frame-
work [35]. The risk of membership inferences can be em-
pirically measured based on the influence of each training
record [22].

Privacy-Preserving Machine Learning. Differential
privacy [8] is a prominent way to formalize privacy against
membership inference. It has been applied to various
machine learning models including decision trees [14],
logistic regression [37], and neural networks [4], [29].
However, there are no generic methods to achieve dif-
ferential privacy for all useful machine learning models.
More importantly, even if these methods are developed,
their applications to real-world machine learning problems
may significantly decrease the accuracy of the models, and
thus will reduce their utility [5].

8. Conclusions
In this paper, we take a step forward to better under-

standing information leaks from machine learning models.
In contrast to prior work, we consider a more pragmatic
adversary who carefully selects targets and makes pre-
dictions conservatively. We demonstrate new membership
inference attacks allowing such an adversary to identify
vulnerable targets, and we deploy a novel methodology to
evaluate the risk. Our results show that this new method-
ology better reflects the privacy risk of membership in-
ference. In fact, it highlights cases where prior work

underestimates the risk, achieving low attack precision
(barely above the random-guessing baseline), whereas our
pragmatic adversary still achieves high precision (at the
cost of lower coverage). Specifically, our study reveals
that a pragmatic adversary can achieve high precision
(e.g., 95.05% on MNIST) in cases where prior work’s
methodology implies only barely above-the-baseline pre-
cision (i.e., 51.7%). In addition, our study highlights the
conflict between selecting informative training instances
and preventing their identification through their unique
influences on the model, and points to the direction of
using training data analysis and selection to complement
existing approaches.

This work was supported in part by NSF CNS 13-
30491 (THaW). The views expressed are those of the au-
thors only.
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R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 15 479–15 488.
[Online]. Available: http://papers.nips.cc/paper/9681-differential-
privacy-has-disparate-impact-on-model-accuracy.pdf
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