
Modular Security Analysis of OAuth 2.0 in the Three-Party Setting

Xinyu Li1, 2, 3, Jing Xu1, 3, Zhenfeng Zhang1, 3, Xiao Lan4, Yuchen Wang1, 3
1TCA Laboratory, Institute of Software, Chinese Academy of Sciences, Beijing, China

2State Key Laboratory of Cryptology, Beijing, China
3University of Chinese Academy of Sciences, Beijing, China

4Cybersecurity Research Institute, Sichuan University, Chengdu, China
Email: xinyuli1920@gmail.com, xujing@iscas.ac.cn, {zfzhang, lanxiao, wangyuchen}@tca.iscas.ac.cn

Abstract—OAuth 2.0 is one of the most widely used Internet
protocols for authorization/single sign-on (SSO) and is also
the foundation of the new SSO protocol OpenID Connect.
Due to its complexity and its flexibility, it is difficult to com-
prehensively analyze the security of the OAuth 2.0 standard,
yet it is critical to obtain practical security guarantees for
OAuth 2.0.

In this paper, we present the first computationally sound
security analysis of OAuth 2.0. First, we introduce a new
primitive, the three-party authenticated secret distribution
(3P-ASD for short) protocol, which plays the role of issuing
the secret and captures the token issue process of OAuth 2.0.
As far as we know, this is the first attempt to formally ab-
stract the authorization technology into a general primitive
and then define its security. Then, we present a sufficiently
rich three-party security model for OAuth protocols, cov-
ering all kinds of authorization flows, providing reasonably
strong security guarantees and moreover capturing various
web features. To confirm the soundness of our model, we also
identify the known attacks against OAuth 2.0 in the model.
Furthermore, we prove that two main modes of OAuth 2.0
can achieve our desired security by abstracting the token
issue process into a 3P-ASD protocol. Our analysis is not
only modular which can reflect the compositional nature of
OAuth 2.0, but also fine-grained which can evaluate how the
intermediate parameters affect the final security of OAuth
2.0.

Index Terms—cryptographic protocols, provable security,
security model, OAuth, authorization

1. Introduction

OAuth 2.0 protocol [1] is commonly used as a way for
Internet users to grant websites or applications access to
their information on other websites without revealing the
users’ access credentials such as passwords. For instance,
the user of a photo-sharing website supporting OAuth
can grant a third-party photo printing service access to
her permitted photographs, without sharing her long-term
credential at the photo-sharing site with the printing site.
In practice, OAuth is also used for authentication and
serves as the foundation for the new single sign-on (SSO)
standard OpenID Connect [2]. Specifically, a user can log
in at a third-party website utilizing her identity managed

Jing Xu is the corresponding author.

by a service provider. Currently, OAuth 2.0 is being
adopted by numerous major companies such as Google,
Facebook, Microsoft, Twitter and LinkedIn, and moreover
has become the de facto authorization and authentication
protocol in mobile applications [3].

Due to its wide usage for authorization and authenti-
cation in practice, numerous studies assessing the security
of OAuth 2.0 have been published and several practi-
cal attacks have been discovered. Li et al. [4] revealed
two critical impersonation vulnerabilities in many OAuth
2.0 implementations. Chen et al. [3] performed practical
evaluations on the security of OAuth implementations of
mobile applications and found 59.7% of those applica-
tions were vulnerable. Shernan et al. [5] found 25% of
websites using OAuth 2.0 in their evaluations vulnerable
to the Cross-site Request Forgery (CSRF) attacks [6].
In addition, several unknown attacks [7] [8] on OAuth
2.0 were demonstrated using formal analysis methods.
Fortunately, the improved security recommendations for
OAuth 2.0 have been proposed and listed in the standard
[1] or security considerations [9]. These attacks stress the
need for provable security analysis of OAuth protocols.

So far, almost all analysis efforts [7] [8] [10] [11]
[12] regarding the security of OAuth were the formal
analysis in specific implementations based on the Dolev-
Yao model [13] in an automated or even manual way.
However, computationally sound security analysis is an-
other attractive option both in practice and theory, and
is gradually being required by the standards bodies, e.g.,
the analysis on TLS [14]–[16], EMV [17], QUIC [18]
[19] and EAP [20]. By the game-based approach in the
computational model, we can explore the security relations
between the target protocol and the employed primitives,
and a modular analysis can help to explore the exact
security properties that sub-protocols should satisfy to
guarantee the final security goals. Therefore, carrying out
a modular security analysis for OAuth 2.0 in the game
based model makes analysis easier and less error-prone,
which is valuable and important for protocol analysts and
designers.

1.1. Our Contributions

In this work, we aim to provide a systematic and com-
putationally sound security analysis in the computational
setting on the different modes of OAuth 2.0. However,
this is a very complex and challenging task. First, due
to the complexity of the three-party interactions and trust

276

2020 IEEE European Symposium on Security and Privacy (EuroS&P)

© 2020, Xinyu Li. Under license to IEEE.
DOI 10.1109/EuroSP48549.2020.00025

relationships in OAuth, it is not easy to model the security
for three-party protocols especially for each party with dif-
ferent roles. Second, OAuth is not a “standalone” protocol
in isolation, but rather depends on other protocols such
as TLS [21], and thus it is much harder to evaluate the
exact security of OAuth. Finally, the OAuth 2.0 standard
[1] only defines a general framework and leaves many
details unspecified. For instance, the authentication mode
used for authenticating the client by the server as well
as the channel for secure transmission is not specified.
That means that solely using the security claims from
the OAuth 2.0 standard document [1] is not sufficient
to analyze OAuth accurately, and we will have to make
some assumptions on these specifics. More specifically,
our technical contributions are threefold.

Three-party authenticated secret distribution pro-
tocols. We introduce a new primitive, referred to as three-
party authenticated secret distribution (3P-ASD for short)
protocol, which serves as a basis for OAuth protocols and
plays the role of “issuing the secret”. In a 3P-ASD proto-
col, a client can obtain a fresh secret from the server only
with the permission of an honest user, which means the
user authorizes the server to issue the secret for the client.
Although the authorization technology is widely used in
practice especially in the cloud computing environment,
surprisingly, as far as we know our work is the first attempt
to formally abstract the technology into a general primitive
and then define its security.

Stimulated by the work [22] on the compositional
security of two separated parts—key exchange protocol
and the protocol requiring symmetrically distributed keys,
in the 3P-ASD primitive, we only concentrate on how to
issue a secret securely under the permission mechanism,
without imposing any restriction on the usage of the
resulting secret. Regarding how to use it may be the
main task of the upper-layer protocols considering the 3P-
ASD protocol as a core subroutine. For instance, in an
OAuth protocol (an intuitive application of the 3P-ASD
primitive), it is by the use of the secret that the client can
get access to the user resource stored at the trusted server,
and moreover the secret has some additional restrictions
on the duration and access scope. We believe that the
separation of “how to obtain” from “how to use” plays
an important role not only in modular security analysis
but also in protocol design. As a new primitive, 3P-ASD
may be of independent value and can have many other
applications.

We then present the basic security definitional frame-
work for 3P-ASD protocols, particularly, achieving secure
entity authentication, confidentiality of the fresh secret,
and session integrity are the main security goals. Note that
here the entity authentication goal captures the notion of
“permission”, that is, the client cannot obtain the secret of
the user at the server without the user’s permission since
the adversary cannot impersonate an honest user to the
server.

Notice that our model can capture the so-called “web
attack” as in [8], which is one of the main attack vectors
against OAuth-like web based protocols where the adver-
sary can exploit features of the web platform to interfere
with messages transmitted through the web browser. To
achieve this goal, the adversary is additionally provided
with two abilities in the model. Specifically, the adversary

can maliciously send messages via an honest browser
to another website, and can also obtain some private
information from the HTTP referrer header contained in
the request of the user’s browser.

Security model for OAuth protocols in three-party
settings. Our goal is to define a sufficiently rich three-
party security model for OAuth protocols, covering all
kinds of authorization flows (different modes), providing
reasonably strong security guarantees, and capturing vari-
ous web features. Different from 3P-ASD protocols whose
main goal is how to issue secrets securely, the security
definition for OAuth protocols should capture how to use
secrets securely.

It is difficult to propose a comprehensive security
model for OAuth 2.0. The main reason is that many details
are unspecified in the standard document [1]. Therefore, in
our security model, the general execution environment and
adversarial capabilities are considered instead of the local
protocol details, which makes it feasible to accomplish the
overall analysis of OAuth 2.0. It is also difficult to define
the goal of authentication and authorization because of
each party with different roles. Our solution is that an
entry is kept by the server and the client recording each
issued secret and its associated party. By this way, more
specifically, by checking whether the secret is issued to
the specified party, the security property can be modelled.

Our model for OAuth can capture various web fea-
tures, which is more suitable for OAuth-like web-based
protocols and makes the positive security results more
meaningful. Moreover, several attacks against OAuth 2.0,
including 307 redirect attack, IdP mix-up attack and state
leak attack [8], can be identified in our model. Particularly,
we explain with our model why OAuth without counter-
measures is vulnerable, which furthermore confirms the
soundness of our model.

In addition, by the game-based approach, we can
define general models for a large class of protocols instead
of an individual OAuth instance. The Bellare-Rogaway
model [23] lays the foundation of the analysis of various
(authenticated) key exchange protocols. Similarly, the gen-
eral OAuth security model we introduce in this paper can
cover all main modes of OAuth 2.0 and a class of web-
based protocols like OAuth 1.0 [24] and OpenID Connect
[2].

Modular provable security analysis of OAuth 2.0
protocols. Stimulated by the modular security analysis
work [20] [22] [25], we abstract the core module of the
OAuth 2.0 protocols, the process of token issue, which can
be regarded as an instantiation of the 3P-ASD protocol
(See Figure 2 and Figure 3). Each mode of OAuth 2.0
is then fully defined via a specific instantiation of the
3P-ASD protocol. Since any of the intermediate or final
secrets generated during token issue can affect the final
security of OAuth 2.0, we have to be very careful during
the instantiation process.

We also prove the security of OAuth 2.0 protocols with
countermeasures via a modular approach. In particular, we
show if the token issue process of OAuth 2.0 is 3P-ASD
secure and the channel establishment protocol is ACCE
secure, then the composed OAuth 2.0 protocol is secure.
Furthermore, we prove the token issue process of both
authorization code grant and implicit grant of OAuth 2.0

277

are 3P-ASD secure, and thus both modes of OAuth 2.0
satisfy the security goals we define.

Note that the resource owner password credentials
grant and client credential grant in OAuth 2.0 are not
considered in this paper, not only due to their rare use
in practice as mentioned in [3], but also the fact that both
modes can be considered as special two-party cases and
have relatively simple proof.

In order to provide more options in practice, the OAuth
2.0 standard [1] only define a general framework, and
some details such as authentication modes and channel
establishment protocols are unspecified. In our analysis
of OAuth 2.0 protocols, both the user authentication and
the client authentication (to the server) are abstracted into
a universal authentication scheme, which means that any
authentication method satisfying the security requirements
is supported, such as password based authentication, pub-
lic key based authentication, or two-factor authentication.
Similarly, any secure protocol for channel establishment
is also generalized into an authenticated and confidential
channel establishment (ACCE) protocol. Therefore, our
analysis captures the generality and scalability property
of the OAuth 2.0 framework.

Different from all existing analyses which regard
OAuth as a whole and only judge whether OAuth satisfies
the pre-defined goals, our approach is fine-grained and
can exactly evaluate how specific parameters (generated
during 3P-ASD sub-protocol) affect the final security, by
separating the process “how to issue secrets securely”
from the process “how to use secrets securely”. Rather
than just for a modular analysis, the treatment itself in this
paper would undoubtedly be helpful to comprehensively
understand the security of OAuth and also instructive to
the design and analysis of other OAuth-like authorization
protocols.

It is also worth emphasizing that the extendibility is
one of the significant advantages of the 3P-ASD primitive,
although OAuth is just an intuitive application of the 3P-
ASD primitive where the usage of the issued secrets is
very straightforward. Recall that the composability result
in [22] can apply to not only the straightforward scenarios
(e.g., using the symmetric keys to build a secure channel),
but also more complicated applications (e.g., using the
symmetric keys as the basis for a new protocol like TLS
session resumption [25]). Similarly, the 3P-ASD primitive,
which does not make any restriction on the usage of the
issued secret, can also be applied to other more elaborated
applications.

1.2. Related Work

Security analysis of OAuth 2.0. In view of the wide
application of OAuth 2.0 in practice, formal analysis and
comprehensive evaluation are necessary for guaranteeing
its security, however, as mentioned above many analysis
efforts such as [3]–[5], [7] regarding the security of OAuth
2.0 were targeted towards finding errors in specific imple-
mentations.

Pai et al. [10] analyzed the security of OAuth 2.0 based
on the Alloy model checker and found a previously known
security weakness in [9]. In [7], Bansal et al. analyzed
the security of OAuth 2.0 using the WebSpi library and
the ProVerif analysis tool, and discovered two unknown

vulnerabilities (i.e., Covert Redirect and Social CSRF
attack). Later, Fett et al. [26] proposed a manually driven
and more expressive model (also called FKS model) for
the web infrastructure. In 2018, Jayasri et al. [12] used the
formal tool UPPAAL to carry out a formal verification of
safety, liveness and absence of deadlock properties of the
authentication code mode in OAuth 2.0.

Based on the slightly extended version of the FKS
model [26], Fett et al. [8] carried out the first extensive
formal analysis of the OAuth 2.0 standard, revealed four
unknown attacks, and furthermore proved the security of
OAuth 2.0 fixed with the countermeasures in [8]. Although
based on the Dolev-Yao model for automated analysis,
their analysis is manually driven since the underlying
FKS model is not directly suitable for automation [26].
In addition, their analysis cannot be directly applied to
the analysis of OpenID Connect, since OpenID Connect
adds specific details on top of OAuth. Later, Fett et al.
[27] carried out the formal analysis of OpenID Connect
under the FKS model from scratch. Recently, Fett et al.
[28] performed an extensive formal security analysis of
the OpenID Financial-grade API under the same model.
Indeed, our modular approach makes the security analysis
of OpenID Connect easier. Even though separate analysis
of OpenID Connect is still needed, it is just enough to
prove the token issue process satisfying 3P-ASD security,
due to the fact that the security goals of OpenID Connect
is consistent with OAuth. Specifically, the token issue pro-
cess of OpenID Connect corresponds to that of OAuth 2.0,
however, OpenID Connect introduces many new concepts
and defines an additional mode. In addition, both OpenID
Connect and OAuth 2.0 are requested to guarantee the
properties of (integrity for) authorization and (integrity
for) authentication according to [27]. Then according to
Theorem 1, if we prove the token issue process is 3P-ASD
secure, the security properties of OpenID Connect can be
achieved. Different from symbolic analysis in [8] and [27],
our analysis of OAuth and application to OpenID Connect
is also valuable.

All the above security analyses of OAuth and OpenID
Connect are based on the Dolev-Yao symbolic model [13].
In practice, both the symbolic approach and the computa-
tional approach are widely used for the security analysis
of cryptographic protocols. In the symbolic model, cryp-
tographic primitives are represented by symbolic values
and often idealized, the adversary is only restricted to
use the pre-defined primitives for computation, and the
proof is based on logical or algebraic reasoning. While
in the computational model, the cryptographic primitives
are functions applied to bitstrings, the adversary is any
probabilistic Turing machine, and the proof is a reduction
from the protocol to the underlying primitives. There-
fore, the symbolic model is more suitable for automated
tools of proofs to reduce the risk of errors in manual
proofs, whereas the computational model considers more
realistic adversaries and reduction-based proofs can help
to choose security parameters and explore the security
relation between the target protocol and the underlying
primitives. More discussions can be referred to [29] [30]
[31]. In addition, the modular computational approach
in this work further helps us to deeply understand the
security strength and design subtlety of OAuth 2.0 and
other related protocols.

278

As far as we know, the only attempt to use compu-
tational reduction based provable security in the context
of securing OAuth has, up until now, been done by Chari
et al. [32] in the universal composability (UC) security
framework [33] using a simulation based argument. Never-
theless, their analysis is not enough to ensure the practical
security of OAuth. Specifically, the ideal functionalities
are strictly weaker than the security guarantees we expect
from OAuth in practice and only the security of the
access token in OAuth is modelled, which means that
some real attacks cannot be covered. For example, in the
Mix-up attack [8] against OAuth 2.0, the adversary can
compromise the intermediate parameter (namely the code
we will introduce later) during the token issue process
and then break the authentication security of OAuth 2.0
even without the access token. Therefore, the OAuth
protocol proven secure in their security model is still
vulnerable to the Mix-up attack. Moreover, their analysis
only concentrates on the access token issue process of
the OAuth 2.0 in the authorization code grant type, not
considering the full OAuth 2.0 or other grant types, which
is incomplete. Both UC and the game-based approaches
are widely used in practice for provable security, however,
whether the analysis of OAuth 2.0 by UC framework can
also achieve the above advantages is unclear or at least
not very intuitive, which may be another interesting work
in the future.

Computational analysis of other three-party proto-
cols. In 2019, Schwenk et al. [29] proposed a rich three-
party authentication model for Kerberos-like authentica-
tion protocols based on a general match predicate instan-
tiated with the matching conversations, and gave the first
computational analysis of the unmodified Kerberos pro-
tocol. Other work like [20] [34] employed different ways
to define partners according to protocol specifics. As an
extension, in the three-party AKE protocols an additional
session key is established and thus key indistinguishability
or ACCE security is required as specified in [20] [29] [34].
By extending the ACCE model, Bhargavan et al. [35] pro-
posed the first security definition for proxied TLS, where
the client and server intend to agree on the read/write
privileges of the proxy during the TLS process to avoid
uncontrolled interceptions. Inspired by but different from
these existing models for three-party authentication or
authenticated keys exchange (AKE) protocols, our model
is designed for authorization-based protocols including
3P-ASD and OAuth. In other words, their functionalities
and goals are different, and thus it is almost impossible to
use the existing models to analyze OAuth-like protocols.

2. Preliminaries and Definitions

In this section, we briefly recall some primitives and
definitions that our analysis employs.

2.1. Matching Conversations

The concept of matching conversation [16] [23] is used
for entity authentication in AKE protocols by ensuring
honest parties cannot be forged and messages indeed come
from the party it claims to be, and we would use it for
the security definition of ACCE and 3P-ASD protocols.

Here we employ the modified version in [16] taking into
account which party sends the last message.

Definition 1. (Matching Conversation [16]) Let transcripts
TA,s and TB,t be two sequences of messages sent and
received in chronological order, by session oracles πs

A
and πt

B , respectively. We say that πs
A has a matching

conversations to πt
B if (1) TB,t is a prefix of TA,s and

πs
A has sent the last message, or (2) TA,s = TB,t and πt

B
has sent the last message.

2.2. ACCE Protocols

Authenticated and confidential channel establishment
(ACCE) protocol [16] is a protocol executed between
two parties, which combines an ordinary two-party AKE
protocol with a stateful authenticated encryption (sAE)
scheme StE = (StE.Init, StE.Enc, StE.Dec) (following
[16]). Specifically, an AKE protocol is firstly executed
to achieve mutual authentication and establish a session
key K, and then the transmitted data can be encrypted and
authenticated using an sAE scheme which is keyed by the
session key K. TLS 1.2 is one of the prime examples for
ACCE protocols.

Recall that in AKE protocols key indistinguishabil-
ity is required, which however cannot be provided by
protocols like TLS 1.2 due to the interleaving of the
key exchange phase and the message encryption phase
[16]. A secure ACCE protocol aims at establishing a
secure communication channel in the sense of sAE, which
requires that (i) entity authentication, any session reaches
acceptance only when it has a unique matching conver-
sation; and (ii) channel security, all data is transmitted
over an authenticated and confidential channel. The chan-
nel security captures both integrity and privacy, and to
distinguish these two properties in the proof, we define
them separately as in [20]. The security requirements for
ACCE protocols capture exactly the properties expected
from protocols like TLS 1.2 in practice.

Similar to the security model of AKE protocols, the
adversary in ACCE protocols can interact with the session
oracle πi

U by issuing the Send, Reveal and Corrupt queries
to forward messages, learn the session keys and learn the
long-term secret key respectively, where πi

U models party
U executing the i-the session of an ACCE instance. More
details can be referred to [16]. In addition, queries Encrypt
(for encryption) and Decrypt (for decryption) are added to
allow the adversary to interact with the established channel
as depicted in Figure 1.

The goal of the adversary is to break the entity au-
thentication, channel integrity or privacy of a fresh session
oracle πi

U , where πi
U is considered to be fresh if U and its

peer are not corrupted, and moreover πi
U and its matching

oracle πj
V (if exists) are not revealed.

Definition 2. (Entity Authentication) An adversary A
breaks the entity authentication security with the advan-
tage AdvACCE−ea

CHAN,A if there exists an fresh oracle πi
U that

accepts without a matching conversation.
An ACCE protocol CHAN provides entity authen-

tication, if for all PPT adversaries A, AdvACCE−ea
CHAN,A is

negligible.

Definition 3. (Channel Integrity) An adversary A
breaks the channel integrity security with the advantage

279

 (

0 1

0 1

0 0
0

1 1
1

Encrypt(, , , ,) :
(1) If has not reached acceptance
 or | | | |, return

(2)
StE.Enc(, , ,)

(4) StE.Enc(, , ,)
[]

1
(3) () ,

() ,
(5) ,,) (

i
U

i
U

e e

e e
b b

ee

m m len H

m m
u u
C st m st
C st m st

C

K len H
K len H

C u t sts)
(6) Return []C u

 return

Decrypt(, ,) :
(1) If has not reached acceptance,

return
(2) 1

() ()(3) StE.Dec
(4) If [] 1

f
 or

 1,
, then

(5)
(6) Return

I

i
U

i
U

d d

C v

C H

v v
m st K H C st
v u C flag
flag m

Figure 1: Encrypt and Decrypt oracles. m0 and m1 are two
messages, len is the length parameter and H is the header data.

b← {0, 1} is randomly sampled by πi
U . The list

−→
C is initialized

to ∅. The counters u and v as well as the variable flag are
initialized to 0. ste and std denote the states for encryption and
decryption respectively, and are initialized by the initialization
algorithm StE.Init of StE. StE.Enc and StE.Dec denote the
encryption and decryption algorithm of StE respectively.

AdvACCE−int
CHAN,A if A makes a Decrypt query for a fresh

session πi
U and obtains something other than ⊥.

An ACCE protocol CHAN provides channel integrity,
if for all PPT adversaries A, AdvACCE−int

CHAN,A is negligible.

Definition 4. (Channel Privacy) An adversary A
breaks the channel privacy security with the advan-

tage AdvACCE−priv
CHAN,A if it terminates with the output (πi

U ,

b′), such that πi
U is fresh and πi

U .b = b′, where

AdvACCE−priv
CHAN,A =|Pr[πi

U .b = b′]− 1
2 |.

An ACCE protocol CHAN provides channel privacy,

if for all PPT adversaries A, AdvACCE−priv
CHAN,A is negligible.

Definition 5. (ACCE Security) We say that a protocol Π is
ACCE-secure, if Π satisfies entity authentication, channel
integrity, and channel privacy.

Note that, if only the server S is authenticated by
default in many ACCE protocols like TLS, then only the
ACCE security at the side of client C can be guaranteed
since the adversary can trivially impersonate the unau-
thenticated C. Specifically, C only accepts with unique
matching conversation, and the channel at C’s side satis-
fies integrity and privacy properties.

2.3. Universal Authentication Schemes

A universal authentication scheme auth consists of
three PPT algorithms (Gen, Auth, Ver) such that:

(1) The key-generation algorithm Gen takes as input the
security parameter 1λ, and outputs an authentica-
tion/verification key pair (sk, vk).

(2) The authentication credential generation algorithm
Auth takes as input the authentication key sk and a
message m ∈ {0, 1}∗, and outputs a credential cre ←
Authsk(m).

(3) The deterministic verification algorithm Ver takes as
input a verification key vk, a message m, and a
credential cre. It outputs a bit b, with b = 1 meaning
valid and b = 0 invalid. We write this as b = Vervk(m,
cre).

It is required that for any key k output by Gen(1λ),
and any m ∈ {0, 1}∗, it holds that Verk(m, Authsk(m))
= 1.

To define the security of a universal authentication
scheme auth = (Gen, Auth, Ver), we consider the follow-
ing security experiment ExpSUF-CMA

auth,A between an adversary
A and a challenger C.

(1) C runs Gen(1λ) to generate a key pair (sk, vk).
(2) The adversary A is given an oracle access to

Authsk(·).
(3) Eventually A outputs a pair (m∗, cre).
(4) A succeeds and the experiment outputs 1 if and only

if Vervk(m∗, cre) = 1 and cre was not outputted by
Authsk(m

∗) before.

Definition 6. (SUF-CMA) We say that a universal authen-
tication scheme auth is secure against strong forgeries
under adaptive chosen-message attacks (SUF-CMA), if
for all PPT adversaries A, the advantage AdvSUF−CMA

auth,A =

Pr[ExpSUF-CMA
auth,A = 1] is negligible.

Note that the above definition covers both symmetric-
key primitive (e.g. MAC schemes) by letting sk = vk and
asymmetric-key primitive (e.g., digital signature schemes).
Thus the Auth oracle queried by the adversary can be
instantiated for specific authentication schemes.

3. OAuth 2.0 Protocols

The OAuth 2.0 framework consists of three entities:
the trusted server, the user (or resource owner) and the
client. It provides two primary functionalities: authoriza-
tion, which allows a user to grant a client access to her
resources stored at the server; and authentication1, which
makes a user log in at a client utilizing her identity
managed by a server.

Before a client can interact with a trusted server, the
client needs to be registered at the trusted server. The
details of the registration process are out of the scope
of the OAuth protocols, and this process is usually a
manual task with the trusted server assigning credentials
to the client: a public OAuth client id and (optionally)
a client secret. Also, a client may register one or more
redirection endpoints URIs at a trusted server. As we will
see below, the trusted server redirects the user’s browser
to one of these redirection URIs specified by the client in
each run of the OAuth protocol.

Just as mentioned in Section 1, the OAuth 2.0 frame-
work supports four modes (grant types), and only autho-
rization code mode and implicit mode are used in practice.

OAuth 2.0 Authorization Code Mode. As illustrated in
Figure 2, the steps of authorization code mode are as
follows.

1) The user starts the OAuth flow by visiting a client
(e.g., clicking on a button to select a server2).

2)–3) The client requests authorization from the user
by redirecting the user’s browser to the authorization end-
point URI at the server, with the client’s redirection end-
point URIs redirect uri, the client’s identifier client id,
and a randomly generated state (a token to prevent CSRF
attacks) as parameters.

4) The response of the authorization request prompts
the user to provide his authentication credentials to au-
thenticate himself to the server.

1. Although the authentication use-case is unspecified in the OAuth
standard, it is widely used in practice.

2. To know which server the user wants to use for authorization, as
discussed in [8], the client utilizes explicit user intention tracking to
store the user intention in this step and use it later in step 8). Another
solution using different redirection URIs to distinguish different servers
would lead to naı̈ve RP session integrity attack [8] and thus would not
be considered here as in [8].

280

Figure 2: OAuth 2.0 authorization code mode

5) The user authenticates himself with any suitable
HTTP authentication scheme auth1 matching its security
requirements (e.g., by password authentication).

6)–7) If the authentication is valid by the verification
algorithm of auth1, the server generates a random autho-
rization code code and redirects3 the user’s browser to the
client’s redirection endpoint URIs redirect uri, with code
and state as parameters.

8) If the state is the same as above, the client re-
quests for access token from the server by providing
code, client id, redirect uri, and identity authentication
information by auth2 which is an authentication scheme
similar to auth1.

9) The server checks whether the code is issued for the
client identified by client id, the authentication informa-
tion is correct for client id, the redirect uri coincides with
the one in the step 2), and the code has not been redeemed
before. If all these checks are successful, the server issues
an access token access token as the response.

When OAuth is used for authorization:
10) The client sends the user resource request to the

server by the use of access token.
11) If the access token check is successful, the server

sends the protected resources to the client.
When OAuth is used for authentication:
12) The client sends the authentication request to the

server by the use of access token.
13) If the access token check is successful, the server

sends the user’s account ID user id with the client id to
the client.

14) The client then issues a session cookie to the user
or user’s browser. The cookie consists of a nonce, the
user’s identifier, and the domain of the server.

OAuth 2.0 Implicit Mode. The implicit mode is a simpli-
fied version of authorization code mode. Instead of pro-
viding an authorization code, the server directly delivers
an access token to the client via the user. Specifically,
steps 1)-5) are the same in both types, while steps 6)-9)
in authorization code mode (see Figure 2) are replaced
with steps 6) and 7) in implicit mode (see Figure 3). In
addition, as a special requirement in the implicit mode,
the client id in 11) should be checked by the client when
authenticating the user, to prevent re-use of access tokens
across clients as explained in [36]. The implicit mode is

3. During the redirection, a designated HTTP status code 30X is used.

Figure 3: OAuth 2.0 implicit mode

useful in cases where the cryptographic primitives are too
heavy to be implemented or executed by the client.

Remark 1. All the transcripts that contain confidential
information in OAuth 2.0 are transmitted through the
secure channel (e.g., TLS), which is abstracted into the
ACCE channel with server-only authentication in this
paper (the client authentication is optional in many ACCE
protocols such as TLS and SSH). Specifically, the state,
code and access token, the user authentication and client
authentication (to the server) as well as the final resources
and cookie in both protocols should be protected through
the secure channel, while there is no mandatory require-
ment for other message flows that do not contain any
confidential information.

4. Authenticated Secret Distribution Proto-
cols

In this section, we introduce the concept of three-party
authenticated secret distribution (3P-ASD) protocols to
model the authorization technology and define the security
model of 3P-ASD protocols.

A 3P-ASD protocol is generally carried out among
three parties: the trusted server S, the user (also, the
resource owner) U , and the client C. An honest execution
of a 3P-ASD protocol should result in a client C obtaining
a fresh secret sec from the server S with the permission
of an honest user U , where the secret sec is stored at
S associated with U for a pre-defined time period. In
particular, U first authenticates himself to S and at the
same time expresses his agreement on issuing the secret
sec to C, then S (optionally) authenticates C and finally
issues the corresponding sec to C securely. Note that
it should be impossible for any other client without the
permission of U to obtain the secret sec, even with the
permission of another user U ′ �= U . Therefore, achieving
secure entity authentication, the confidentiality, and the
integrity are the main security goals of 3P-ASD protocols.

4.1. Execution Environment

A protocol is carried out by a set of parties P ∈ P ,
and each party P is a (potential) participant in the system.
P is partitioned into three disjoint sets U , C and S ,
consisting of the users (or the user’s browser by which

281

the user can interact with the servers and clients), clients
and servers, respectively4. Note that, any suitable au-
thentication scheme matching its security requirements is
supported in 3P-ASD protocols, and thus the key setting is
not specified. That is, the long-term key associated with
each party are either based on asymmetric keys or pre-
shared secret keys (PSK), for example, if the password
based authentication is supported, a password should be
pre-shared between two parties during the deployment.

We use an administrative label πs
P (s ∈ [1, nπ]) to

refer to the s-th session of a 3P-ASD protocol instance Π
at the party P . In addition, Π is logically built out of n se-
quentially running sub-sessions between two parties (i.e.,
Π1,Π2,...,Πn) according to the protocol specifications, and
πs
P .Πj denotes the execution of πs

P in its sub-session Πj

for j ∈ [1, n]. Each sub-session begins when the current
sub-session ends. Note that the secret sec would not be
used in any sub-session according to the definition of 3P-
ASD protocols.

Associated to each session πs
P , there is a set of vari-

ables to reflect the local state of πs
P during run of the

protocol:

. role ∈ {U , C,S}: the session owner P ’s role in this
session.. peers: a list of the identities of the intended commu-
nication peers of πs

P , in particular, peersi indicates the
intended peer in the sub-session πs

P .Πi.. {sk, pk}: the (possibly empty) long-term secret/public
key of P .. PSKPP ′ : the (possibly empty) pre-shared secret key
shared between party P and its peer P ′, where P ′ ∈
πs
P .peers.. −→α = {α1, ..., αn}: a vector of accept states αi ∈
{accepted, rejected, running}, where αi represents the
acceptance state of the intermediate sub-session πs

P .Πi

and αn represents the acceptance state of the full pro-
tocol πs

P . The sub-session πs
P .Πi can run if and only if

πs
P .Πi−1 has been accepted.. insec = {insec1,...,insecmin

}∪{⊥}: the (possibly
empty) list of min (min ∈ N) intermediate se-
crets distributed in πs

P in chronological order, where
inseci∈{0, 1}∗. The leakage of intermediate secrets may
affect the security of final secrets.. sec = {sec1,...,secms

}∪{⊥}: the (possibly empty) list
of ms (ms ∈ N) final secrets distributed in πs

P in
chronological order, where seci ∈ {0, 1}∗.. mod = {mod1,...,modn}: the vector of the authentica-
tion modes, where modi ∈ {auth, unauth} indicates
the authentication mode of Πs

P .Πi, and auth indicates
πs
P .peeri is authenticated to P , otherwise unauthenti-

cated.. K = {K1,...,Kn}: the (possibly empty) vector of the
session keys, where Ki ∈ {0, 1}∗ ∪ {⊥} indicates the
session key established in the sub-session πs

P .Πi.. T = {T1,...,Tn}: the vector of transcripts, where Ti ∈
{0, 1}∗ indicates the transcripts of messages sent or
received during the running of sub-session πs

P .Πi.

In the above definition, the parameters n, min and
ms are instantiated according to specifications, while nπ

is used to bound the security of 3P-ASD in the proof.

4. In reality one party may play different roles. To distinguish different
roles, we assume parties are partitioned into disjoint sets in one instance.

To model the impact of the leakage of the intermediate
parameter on the security, we use sec to denote the final
secret (e.g., the access token in OAuth), and use insec to
denote the intermediate secrets generated during the issue
of sec in 3P-ASD protocols (e.g., the code in OAuth).

As sessions are unique, we write as a shorthand, e.g.,
πs
P .peers for the element peers contained in the variables

of πs
P , and analogously for other variables.

During the running of 3P-ASD protocol, the honest
server S keeps an entry (S, U , insec, sec) for each user
U .

4.2. Adversarial Interaction

We consider a probabilistic polynomial-time (PPT)
adversary A who has full control over the communications
between all parties, enabling interception, injection and
dropping of messages. The adversary A may interact with
the protocol via the following oracle queries.. NewSession (P, [V,W]): This query creates a new ses-

sion πs
P at the party P , optionally specifying its in-

tended communication peers (possibly empty) V and
W . It is also required that the roles of P , V and W are
different.
The variable −→α is updated as πs

P .α1 = running, and
the variables

{
role, pk, sk, peers, PSK, insec, sec, mod,

K, T
}

(for P , V and W) are initialized according to
the specific 3P-ASD protocol.
Besides, if πs

P plays the role of protocol initiator who
sends the first flow, πs

P also produces and returns its first
message m according to the specification of protocol Π.. Send (πs

P ,m): This query sends a message m to πs
P . If

πs
P .αn �= running, returns ⊥. Otherwise, πs

P runs the
protocol with the input m on behalf of P , and returns
the response m∗ and the updated acceptance state πs

P .α
according to the protocol specification. Note that for
web-based authorization protocols like OAuth 2.0, some
distinguished control messages have special behaviours:

- If P ∈ U and m = (′Redirectcode′, URI), then the
user P ’s browser would be redirected to the endpoint
URI URI5 at some client or server (possibly with
some parameters appended to the URI) according to
the HTTP redirect code Redirectcode = 30X [37].

- If P ∈ U and m = (′MalTransfer′, URI, para), the
user P ∈ U (i.e., P ’s browser) is sent to an URI URI
that linked to another party P ′, and then πs

P visits the
URI and transfers para6 to the current session of P ′.

- If P ∈ U and m = (′OriginLeak′, URI), the user
P ∈ U (i.e., P ’s browser) is sent to an URI URI
that linked to another party P ′, and then πs

P visits
the URI and sends a request including the HTTP
referrer header field7 to the current session of P ′.

5. It’s called the authorization endpoint URI at the server side and the
redirection endpoint URI at the client side as depicted in Figure 2.

6. In practice, the URI is often be used for parameter delivery when
using the GET HTTP request method, where para is just appended to
the tail end of the URI and the resulting string can also be considered
as a new URI. In addition, the parameter may also be transferred in the
POST bodies when using POST HTTP request method.

7. The referrer header, as a special message format and an optional
HTTP header field during message transmission, contains certain infor-
mation that indicates the last address of the user’s browser, and thus by
checking the referrer, the new webpage at P ′ can see where the request
originates.

282

For convenience, we use MalTransfer and OriginLeak
to denote the last two cases respectively.. KeyReveal (πs

P , i): This query returns πs
P .Ki (if it

exists), the session key in sub-session πs
P .Πi to the

adversary. If πs
P .αi �=accepted, πs

P .Ki = ⊥.. Corrupt (P, [V]): This query returns a certain long-term
secret key of party P according to the second input
entry. Specifically,

- Corrupt (P, V): the pre-shared key PSKP,V (if it
exists) is returned.

- Corrupt (P): the long-term secret key sk of P is
returned.

. InsecReveal (πs
P): This query provides the intermediate

secret insec (if exists) of some user U at some server
S obtained by the party P from πs

P .. SecReveal (πs
P): This query provides the final secret sec

(if exists) of some user U at some server S obtained
by the party P from πs

P . If P = U or P = S, all
sessions in which P participates are considered to be
issued SecReveal.
In our model, we are working in the post-specified

peers model introduced in [38], where the identities of a
session’s peer can be learned during the protocol running
rather than at the beginning of the protocol run.

In addition, the queries MalTransfer and OriginLeak
are indispensable for modeling the flexibility of the web
browser, which often becomes the source of web-based
attacks like CSRF against OAuth-like authorization proto-
cols. Specifically, by MalTransfer query the adversary can
maliciously force an honest browser to send some message
to another honest website, and by OriginLeak query, the
adversary can obtain some leaked information on the last
page of the user’s browser. In practice, due to the lack of
vigilance, the user may click the link built by the adver-
sary elaborately just as presented in the MalTransfer and
OriginLeak queries, which leads to practical attacks such
as the state leak attack against OAuth protocols (refer to
Section 5.3). Particularly, the policy of the user’s browser
behavior in regard to the referrer header determines how
much private information will be leaked in the OriginLeak
query. For example, to resist the state leak attack where the
one-time state may be leaked through the referrer header,
the recently introduced referrer policy [39] is adopted in
[8] to specify that referrer header cannot contain anything
except for the origin of the respective page.

4.3. Security Definition

Freshness. Firstly we need to exclude trivial attacks in
which the adversary can break the security of the session
by trivial means. For example, an adversary can obtain the
secret itself immediately by the query SecReveal, or reveal
the session key by the query KeyReveal and furthermore
obtain the secret. In order to exclude trivial attacks we
present the freshness predicate Fresh(πs

A.Πi) during the
running of the sub-session Πi. This predicate is evaluated
at the end of the sub-session πs

A.Πi and yields true if and
only if the following conditions hold:

1) πs
A.αi = accepted, i.e., πs

A has accepted at sub-session
Πi,

2) The adversary has not queried KeyReveal (πs
A, i),

InsecReveal (πs
A) or SecReveal (πs

A),

3) The adversary has not queried Corrupt (A,B), Corrupt
(A) or Corrupt (B), where πs

A.peersi = B,
4) The adversary has not queried KeyReveal (πt

B , i),
InsecReveal (πt

B) or SecReveal (πt
B), where πs

A.Πi has
a matching conversation to πt

B .Πi (if it exists).

Definition 7. (Freshness) A sub-session πs
A.Πi is fresh if

Fresh(πs
A.Πi) = true. Furthermore, a session πs

A is fresh
if for all i ∈ [1, n] we have Fresh(πs

A.Πi) = true.

In the above definition, matching conversation be-
tween two sessions implies the matching of session keys.
Note that no Corrupt query is allowed for a fresh session
πs
A, since the secret issuing is actually an identity authen-

tication process, thus the leakage of the long-term secret
key would lead to impersonation and in turn the leakage of
the secret to be issued in current and even future sessions.
Additionally, the leakage of the intermediate secrets is not
allowed either, however, if the intermediate secrets can
only be used once like the code in OAuth 2.0, we may
relax the requirement by allowing the InsecReveal query
only after πs

A accepted.

Security Definition. The security of a 3P-ASD protocol
is defined by requiring that (i) the protocol provides entity
authentication, ensuring honest parties cannot be forged
and messages indeed come from the party it claims to
be by requiring that any fresh session accepts only when
there exists a unique matching conversation in each sub-
session; (ii) the protocol provides confidentiality, ensuring
that any PPT adversary cannot obtain the secret from a
fresh session with non-negligible probability; and (iii) the
protocol provides integrity to resist CSRF attacks (refer to
the state leak attack against OAuth in Section 5.3) for web-
based protocols, ensuring that the client cannot obtain the
secret from one user (maybe the adversary) but wrongly
believes it from another honest user.

Each security notion is formally defined by a game
played between a PPT adversary A and a challenger C,
denoted by GEA

Π,A, GCon
Π,A and GInt

Π,A respectively, with the
same overall setup but different winning conditions. In
each game, C generates the long-term public/secret key
pair and pre-shared key for each participant. The adver-
sary A receives all parties’ public keys as input and is-
sues NewSession, Send, KeyReveal, Corrupt, InsecReveal,
SecReveal, MalTransfer and OriginLeak queries.

Definition 8. (Entity Authentication) In the security game
GEA

Π,A for entity authentication, suppose the PPT adversary
A interacts with a 3P-ASD protocol Π in the above
execution environment and at some point A stops with
no output.

We say that A wins the entity authentication game,
denoted by GEA

Π,A = 1, if there exists a session πs
A and its

sub-session πs
A.Πi such that

1) πs
A.αi = accepted and πs

A.peersi = B,
2) πs

A.modi = auth,
3) A did not issue Corrupt (A,B), Corrupt (A) or Corrupt

(B) before πs
A.Πi accepted,

4) A did not issue KeyReveal to oracle πt
B such that πt

B
accepted in sub-session Πi while having a matching

283

conversation to πs
A (if such an oracle exists) in Πi

8,
5) There does not exist an oracle πt

B such that πs
A has a

matching conversation to πt
B in Πi.

If an oracle πs
A accepts in the above sense, then we

say that πs
A accepts maliciously in sub-session Πi.

Π satisfies entity authentication, if for all PPT ad-
versaries A the advantage AdvEA

Π,A = Pr [GEA
Π,A = 1] is

negligible.

Definition 9. (Confidentiality) In the security game GCon
Π,A

for confidentiality, suppose the PPT adversary A interacts
with a 3P-ASD protocol Π in the above execution envi-
ronment and at some point A stops and outputs a secret
seci.

We say that A wins the confidentiality game, denoted
by GCon

Π,A = 1, if the following conditions hold:

1) There exists an entry (S,U, sec∗) stored by S, where
S ∈ S, U ∈ U , and seci ∈ sec∗,

2) The server oracle πt
S has issued sec∗ to the client oracle

πs
C in a specific instance initiated9 by the user oracle

πr
U for some r, s, t ∈ [1, nπ],

3) πt
S , πs

C and πr
U are all fresh.

Π satisfies confidentiality, if for all PPT adversaries
A the advantage AdvCon

Π,A = Pr [GCon
Π,A = 1] is negligible.

Remark 2. In our definition, the adversary A wins when
he outputs just one element in the sec∗ entry, thus confi-
dentiality ensures that each element of the sec∗ entry in
the fresh session should be confidential to the adversary.

Definition 10. (Integrity) In the security game GInt
Π,A for

integrity, suppose the PPT adversary A interacts with a
3P-ASD protocol Π in the above execution environment
and at some point A stops with no output.

We say that A wins the integrity game, denoted by
GInt

Π,A = 1, if there exists one user oracle πr
U has initiated

and completed one session with the client oracle πs
C and

server oracle πt
S for r, s, t ∈ [1, nπ] such that the following

conditions hold:

1) πr
U , πs

C and πt
S are all fresh,

2) Eventually C obtains a secret sec∗ from its oracle πs
C ,

3) There exists an entry (S,U ′, sec∗) stored by S, how-
ever U ′ �= U .

Π satisfies integrity, if for all PPT adversaries A the
advantage AdvInt

Π,A = Pr [GInt
Π,A = 1] is negligible.

Remark 3. Note that U ′ in the definition may be an ad-
versary, which captures the attack where the client obtains
a secret from the adversary however wrongly believes the
secret from the honest user U .

Definition 11. (3P-ASD Security) We say a 3P-ASD
protocol Π is secure if Π satisfies entity authentication,
confidentiality and integrity.

4.4. Instantiation of 3P-ASD in OAuth 2.0

According to the specification of OAuth, the core
module of the OAuth protocol, the process of access token

8. With this condition, a kind of trivial attack can be excluded, where
πt
B sends the last message and thus reaches accepted earlier than πs

A.
If A is allowed to query KeyReveal to oracle πt

B , he can re-encrypt
the last messages to πs

A, which leads to the acceptance of πs
A without

a matching conversation. More details can be referred to [16].

9. We say a party “initiates” the protocol if he starts the protocol by
sending the first message flow.

issue, can be regarded as an instantiation of the 3P-ASD
protocol. Specifically, in OAuth 2.0, insec = {state, code}
and sec = {code, access token}, where code is empty for
implicit mode of OAuth 2.0.

When we instantiate a 3P-ASD protocol in OAuth,
the essential parts included in insec and sec should be
identified carefully. Sometimes the only inclusion of the
final secret in sec is insufficient, since the leakage of some
other information may result in the security definition for
3P-ASD being too weak to conclude the entire security
of OAuth. For example, in OAuth 2.0, access token is
the final secret to be issued with a predetermined validity
period used by the client, while the intermediate secret
code is generated uniformly and can be used only once.
Intuitively, it is enough to require the confidentiality of
the access token to guarantee secure authorization and
authentication in OAuth. Unfortunately, the leakage of
code before its first use may break the authentication
goal of OAuth 2.0 even though the final access token
is confidential, which can be confirmed in the mix-up
attack against OAuth 2.0 (refer to Section 5.3). Therefore,
in the instantiation of OAuth 2.0, it is indispensable for
containing code in the sec entry.

Note that according to the definition of intermediate
secrets insec in Section 4, the leakage of parameters in
insec may affect the security of 3P-ASD protocols and
thus cannot be obtained trivially by the InsecReveal query.
For example, in OAuth 2.0, the leaked state would lead to
CSRF attacks breaking the integrity goal, and the leaked
code would lead to leakage of the final access token.

The above analysis indicates that each parameter gen-
erated in OAuth can affect the final security, and further-
more confirms that the abstraction of 3P-ASD primitive
from OAuth is not only for a modular proof, but for a
fine-grained and comprehensive understanding of OAuth
security.

5. Security Model of OAuth 2.0 Protocols

In this section, we define a general three-party security
model for OAuth protocols, and also identify several
known attacks against OAuth 2.0 with our security model.

5.1. Overview

As specified in Section 3, OAuth can be regarded
as an application layer protocol combining the “se-
cret issue” process and “secret usage” process en-
tirely. Therefore, the security of an OAuth proto-
col is defined by requiring that the protocol provides
authorization, authentication, integrity for authorization
and integrity for authentication.

Recall that the OAuth 2.0 standard [1] only explicitly
purpose itself for authorization rather than user authenti-
cation, and thus achieving secure authorization is the most
fundamental requirement for OAuth 2.0. On the other
hand, OAuth 2.0 authorization protocol flow have been
significantly re-purposed for user authentication by most
major identity providers like Google, Facebook, Microsoft
and Twitter. As a result, the subsequent document RFC
6819 [9] for threat model and security considerations of
OAuth 2.0 have discussed the threats against the so-called
“OAuth login” scenarios where OAuth 2.0 is used for

284

user authentication, and a series of work on the analy-
sis of OAuth 2.0 such as [3] [7] [8] also consider the
authentication property to capture practical application
scenarios. Therefore, in this paper OAuth 2.0 should be
analyzed for not only the original design (i.e., secure au-
thorization) but also the practical application (i.e., secure
authentication). In addition, we define the integrity for
authorization/authentication properties to model the CSRF
attacks against the client and server as specified in [1] [9].

The execution environment is very similar to that for
3P-ASD protocols in Section 4.1 and would be omitted to
avoid needless repetition, except for a few differences as
follows:

1) The intermediate secret variable associated with the
session πs

P is redefined as insec′ = insec ∪ sec, where
insec and sec are parameters of the 3P-ASD part of
OAuth (and can be specified for OAuth 2.0 as in
Section 4.4).

2) The final secret variable associated with the session
πs
P is redefined as sec′ = {m, cookie}, where cookie

denotes the cookie information, consisting of a nonce,
the domain of the server S and the identifier Uid of
user U , and m denotes the resource of U stored at
S. Note that m is empty for the authentication func-
tionality, whereas cookie is empty for the authorization
functionality.

3) The server S keeps an entry (S,U , m) for each user
U .

4) The honest client C keeps an entry (C, S, U , cookie)
for the user U and the server S.

In addition, the definition of Freshness in Definition 7
remains unchanged, and the final and intermediate secrets
are instantiated with the above insec′ and sec′ for OAuth
instances.

5.2. Security Definition

The security of an OAuth protocol is defined to satisfy
the security requirements for OAuth in practice as in [8].
Specifically, (i) the protocol provides authorization secu-
rity, ensuring that the adversary A cannot obtain the re-
source stored in the server S by the user U from one fresh
OAuth session; (ii) the protocol provides authentication
security, ensuring that the adversary A cannot obtain
the valid cookie from one fresh OAuth session to log
in a client C; (iii) the protocol provides the integrity
for authorization security, ensuring that that a client can
obtain a user′s resource only when the user has initiated an
OAuth instance with him, and moreover the client cannot
obtain the resource of other users from the instance, and
(iv) the protocol provides integrity for authentication
security, ensuring that a client can accept the user′s au-
thentication only when the user has initiated an OAuth
instance with him, and moreover the client cannot accept
the authentication of other users from that instance.

The security properties for OAuth protocols are for-
mally defined by a game played between a PPT adversary
A and a challenger C, denoted by GAuthor

OAuth,A, GAuthen
OAuth,A

10,

GIntAuthor
OAuth,A and GIntAuthen

OAuth,A , respectively. In each game, the
challenger C generates the long-term public/secret key

10. Authen refers to the single sign-on functionality in OAuth.

pair and pre-shared key for each participant. The adver-
sary A receives all parties’ public keys as input and is-
sues NewSession, Send, KeyReveal, Corrupt, InsecReveal,
SecReveal, MalTransfer and OriginLeak queries as defined
in Section 4.2.

Definition 12. (Authorization) In the security game
GAuthor

OAuth,A for authorization, suppose the PPT adversary A
interacts with an OAuth protocol in the above execution
environment and at some point A stops and outputs the
resource m∗.

We say that A wins the authorization game, denoted
by GAuthor

OAuth,A = 1, if the following conditions hold:

1) There exists an entry (S,U,m∗) stored by S for some
S ∈ S and U ∈ U ,

2) The server oracle πt
S has issued m∗ to the client oracle

πs
C in a specific instance initiated by the user oracle

πr
U for some r, s, t ∈ [1, nπ],

3) πt
S , πs

C and πr
U are all fresh.

An OAuth protocol provides authorization secu-
rity goal, if for all PPT adversaries A the advantage
AdvAuthor

OAuth,A = Pr [GAuthor
OAuth,A = 1] is negligible.

Definition 13. (Authentication) In the security game
GAuthen

OAuth,A for authentication, suppose the PPT adversary A
interacts with an OAuth protocol in the above execution
environment and at some point A stops and outputs the
cookie cookie∗.

We say that A wins the authentication game, denoted
by GAuthen

OAuth,A = 1, if the following conditions hold:

1) There exists an entry (C, S, U , cookie∗) stored by C
for some C ∈ C, S ∈ S and U ∈ U ,

2) The client oracle πs
C has issued the cookie∗ to the user

oracle πr
U using the server oracle πt

S
11, where U ∈ U ,

C ∈ C, S ∈ S and r, s, t ∈ [1, nπ],
3) πt

S , πs
C and πr

U are all fresh.

An OAuth protocol provides authentication secu-
rity goal, if for all PPT adversaries A the advantage
AdvAuthen

OAuth,A = Pr [GAuthen
OAuth,A = 1] is negligible.

Definition 14. (Integrity for authorization) In the secu-
rity game GIntAuthor

OAuth,A , suppose that the PPT adversary A
interacts with an OAuth protocol in the above execution
environment and at some point A stops with no output.

We say that A wins the integrity for authorization
game, denoted by GIntAuthor

OAuth,A = 1, if at least one of the
following two conditions holds:

1) When A terminates, there exists a client oracle πs
C

obtaining m∗ for C ∈ C and s ∈ [1, nπ] such that

. There exists an entry (S,U,m∗) stored by S for
some S ∈ S and U ∈ U ,. U has never initiated an OAuth instance with the
client oracle πs

C and a server oracle πt
S for some

t ∈ [1, nπ],. A has not issued Corrupt query for U , C or S,. πs
C is fresh.

2) When A terminates, the user oracle πr
U has initiated

and completed an OAuth instance with the client oracle
πs
C and server oracle πt

S for some r, s, t ∈ [1, nπ] such
that

. πr
U , πs

C and πt
S are all fresh,

11. The description “using the server” denotes that the user utilizes
its identity managed by the server.

285

. C obtains m∗ from its oracle πs
C ,. There exists some entry (S,U ′,m∗) stored by S for

some U ′ ∈ U , however U ′ �= U .

An OAuth protocol provides integrity for
authorization goal, if for all PPT adversaries A the
advantage AdvIntAuthor

OAuth,A = Pr[GIntAuthor
OAuth,A = 1] is negligible.

Definition 15. (Integrity for authentication) In the secu-
rity game GIntAuthen

OAuth,A , suppose that the PPT adversary A
interacts with an OAuth protocol in the above execution
environment and at some point A stops with no output.

We say that A wins the integrity for authentication
game, denoted by GIntAuthen

Π,A = 1, if at least one of the
following two conditions holds:

1) When A terminates, there exists a client oracle πs
C

(C ∈ C and s ∈ [1, nπ]) which accepts a user’s login
authentication with identity Uid using the server S such
that

. Uid uniquely identifies the user U at the server S,. U has never initiated an OAuth instance with the
client oracle πs

C and a server oracle πt
S for some

t ∈ [1, nπ],. A has not issued Corrupt query for U , C or S,. πs
C is fresh.

2) When A terminates, the user oracle πr
U has initiated

and completed an OAuth instance with the client oracle
πs
C and server oracle πt

S for some r, s, t ∈ [1, nπ] such
that

. πr
U , πs

C and πt
S are all fresh,. πs

C accepts the user’s login authentication with U ′id,. U ′id uniquely identifies the user U ′ at the server S,
however U ′ �= U .

An OAuth protocol provides integrity for
authentication security goal, if for all PPT adversaries
A the advantage AdvIntAuthen

OAuth,A = Pr [GIntAuthen
OAuth,A = 1] is

negligible.

Definition 16. (OAuth Security) We say an OAuth proto-
col is secure if it satisfies authorization, authentication,
integrity for authorization and integrity for
authentication.

Remark 4. In order to prevent a trivial attack, in the
condition 1) of Definition 14 (resp. Definition 15), πs

C
is required to be fresh. Specifically, if an adversary can
issue a KeyReveal query to πs

C , with U ’s resource m
(resp. U ’s identifier Uid) possibly obtained from his own
instance with U , he can encrypt m (resp. Uid) to πs

C ,
which trivially breaks the integrity for authorization (resp.
authentication).

Remark 5. Note that U ′ in the Definition 14 and 15 may
be an adversary, which captures the attacks where the
client obtains the resource from the adversary however
wrongly believes the resource from the honest user U ,
or the client accepts the authentication of U under the
adversary’s name.

Remark 6. Note that the condition 1) of Definition 14 and
Definition 15 is not included in the definition of integrity
for 3P-ASD protocols (Definition 10), since it has been
captured by the entity authentication property in Defini-
tion 8 as mentioned above, namely if the client can obtain
U ’s secret at S without U ’s permission, then the entity
authentication goal will be broken by impersonating U
to S.

Remark 7. It is worth mentioning that rather than being
tailored to OAuth 2.0, our model hardly involves any
protocol specifications except for the 3P-ASD instantia-
tion, and thus can generally apply to a family of OAuth-
like protocols such as OpenID Connect, OAuth 1.0 and
other protocols for access delegation, with a specified
instantiation of 3P-ASD respectively like in Section 4.4.

5.3. Capturing Known Attacks in Our Model

In this subsection, we recall some known attacks
against OAuth 2.0 and explain with our model why OAuth
2.0 protocols without countermeasures are vulnerable.

307 redirect attack. The 307 redirect attack against the
authorization code mode and the implicit mode of OAuth
2.0 was proposed by Fett et al. in 2016 [8] if the server
(used for login) chooses the 307 HTTP status code in
step 6) of Figure 2. Specifically, when a user U wants
to log in at a client C managed by the adversary, then
he is redirected to the server S in steps 3)-5) to enter
his credentials in a HTTP POST request. S receives and
checks these credentials, and redirects U ’s browser to C’s
redirection endpoint. Since the 307 HTTP status code is
used for this redirection, U ’s browser would send a POST
request to C with all data (certainly including the user’s
credentials) from the previous request. As a result, the
adversary running C can impersonate U .

Formally, this attack is captured by our model as fol-
lows. The adversary A can query Corrupt oracle to control
a client C and obtain U ’s credentials, and finally A can
not only impersonate U and obtain U ’s resource but also
use U ’s resource at S to log in at the honest clients without
U ’s participation. Therefore, both the authorization secu-
rity and the authentication security of OAuth are broken.
To resist this attack, Fett et al. [8] suggests to use 303
HTTP status code instead of 307 HTTP status code, since
in the HTTP standard [37] only 303 redirect is defined
unambiguously to drop the body of the previous HTTP
POST request (i.e., the user’s credentials in this attack).

IdP mix-up attack. The IdP mix-up attack against OAuth
2.0 (the authorization code mode and the implicit mode)
was proposed by Fett et al. in 2016 [8]. In this paper,
IdP means the server. Let us take the authorization code
mode as an example to recall the mix-up attack. First, the
adversary A intercepts the first message 1) from U to C
and replaces S in the message 1) with S′ managed by
himself. Second, A intercepts the response message 2) of
C (containing a redirect to S′) and modifies a redirect
to S. Third, by the normal running 3)-7) of protocol, C
obtains the code issued by S, however he wrongly believes
that the code was issued by the malicious S′, and thus
leaks the code to S′ (i.e., the adversary) in 8). Finally,
using the code, A can obtain the access token and in
turn the protected resource stored at S (resp. obtain the
cookie from C by starting a new login process at C with
that code, and furthermore impersonate U to log in at
C with the cookie though in this case the access token
is unknown). Note that this attack can be valid only in
the case that the server S does not need to provide the
authentication to C, and the communication channel in 1)
and 2) is public.

Formally, this attack is captured by our model as
follows. The adversary A can query Send oracle to replace

286

the original messages 1) and 2), and finally receive the
protected resource m stored at S and the cookie including
(Uid, S) from C, where Uid is the unique identifier of U
at S. Explicitly, the sessions among S, C and U are fresh,
and thus the authorization security and the authentication
security of OAuth are broken respectively. Fett et al. [8]
suggests that the identity of the server should be included
in the redirect URI in some form that cannot be influenced
by the adversary to resist this attack, correspondingly, each
server should add such a parameter (e.g., in 6) and 7) of
Figure 2 and Figure 3), which has been adopted by RFC
draft [40].

State leak attack. The state leak attack against the au-
thorization code mode of OAuth 2.0 was also proposed in
[8], where an adversary A can force a user to be logged
in under the A’s name at the client C, or force C to use
the resource of A instead of the user. Specifically, if a
user U wants to log in at a client C, U needs to finish the
authentication to S, and then U is redirected to C (the
step 7) of Figure 2). However, the response to this request
(the step 14) of Figure 2) can be a page containing a link
to the A’s website (via the OriginLeak query). When U
clicks the link, U ’s browser sends a request to A. The
Referrer header in this request contains the full URI of
the user’s previous page (i.e., including state and code).
Then, A can use the leaked state to perform a CSRF attack
against the victim U . For example, as a user, A visits C by
S and then obtains the code′ issued by S to C, then he can
redirect U ’s browser via the MalTransfer query to C again
with the leaked state as well as the code′. Accordingly,
the user U will log in at C as A, and moreover C will
obtain the resources from A but C wrongly believes them
from U .

Formally, this attack is captured by our model as
follows. At first, U wishes to log in at C with the aid
of S, and the user oracle πr

U initiates an instance with
client oracle πs

C and server oracle πt
S . However, due to

the leaked state, πs
C accepts with Uid∗, which uniquely

identifies the user U∗ at S (U∗ �= U). In this instance
the sessions among U , C and S are all fresh, and thus
the integrity for authentication is broken. Similarly, the
integrity for authorization is also broken.

Intuitively, the countermeasures against the state leak
attack are limiting the state to a single use and avoiding
leakage of the state by network [39] (e.g., the Referrer
header can be blocked entirely), and thus the OriginLeak
query is not useful for the adversary.

For other attacks. Besides the latest attacks as described
above, our model can also capture other known attacks
against OAuth 2.0 in the protocol-level, which is also
the common advantage of the game-based model in the
computational approach. However, if the adversary owns
stronger abilities, e.g., the adversary may access some
private secrets of the victim due to lack of protection,
or if the attacks are based on the flaws in the sense of the
specific implementation rather than the protocol itself, the
model would not be applicable any more.

6. Security Analysis of OAuth Protocols

In this section we will perform a computationally
sound security analysis of the revised OAuth protocols by

Figure 4: The proof framework of OAuth 2.0

abstracting the main part as a 3P-ASD protocol, achieving
not only a modular analysis but more important a deep
understanding of the security and design of OAuth 2.0.

For simplicity, in the following parts of this paper, nπ,
nc, nu, and ns denote the maximum number of sessions,
clients, users and servers, respectively. In addition, we use
CHAN to denote channel establishment protocols which
are actually ACCE protocols for secure message transmis-
sion.

6.1. Security Analysis of OAuth 2.0

In this subsection, we prove both the authorization
mode and the implicit mode of OAuth 2.0 with the above
countermeasures satisfy the security goals defined in Sec-
tion 4.2.

First, we abstract the construction framework of
OAuth shown in Figure 4, and prove that the composed
OAuth 2.0 protocol is secure if the following conditions
hold: 1) the protocol π1 in OAuth 2.0 is a secure 3P-
ASD protocol with insec = {state, code} and sec = {code,
access token}, where code is empty for the implicit mode;
and 2) the channel establishment protocol is a secure
ACCE protocol.

Theorem 1. If the protocol π1 is 3P-ASD secure, and
the channel establishment protocol CHAN in π2 and π3 is
ACCE secure, then OAuth 2.0 is a secure OAuth protocol
for authorization, authentication, integrity for authoriza-
tion and integrity for authentication. Formally, for any PPT
adversary A, we have

AdvAuthorOAuth,A≤AdvACCE−ea
CHAN,A + AdvConπ1,A +

ncnπ.AdvACCE−priv
CHAN,A ,

AdvAuthenOAuth,A ≤ AdvEAπ1,A + AdvACCE−ea
CHAN,A + AdvConπ1,A +

nunπ.AdvACCE−priv
CHAN,A ,

AdvIntAuthorOAuth,A ≤ AdvEAπ1,A + AdvIntπ1,A + AdvACCE−ea
CHAN,A +

2ncnπ.AdvACCE−int
CHAN,A ,

AdvIntAuthenOAuth,A ≤ AdvEAπ1,A + AdvIntπ1,A + AdvACCE−ea
CHAN,A +

2ncnπ.AdvACCE−int
CHAN,A .

Proof. The proof of this theorem is given in Appendix A.

Then we prove the security of OAuth 2.0 authorization
code mode (Theorem 2). Firstly we prove the π1 part in
OAuth 2.0 authorization code is a secure 3P-ASD protocol
(Lemma 1).

Lemma 1. The protocol π1 in OAuth 2.0 authorization
code mode is a secure 3P-ASD protocol. Formally, for
any PPT adversary A, we have

AdvEAπ1,A ≤ 5AdvACCE−ea
CHAN,A + nu · AdvSUF−CMA

auth1,A + nc ·
AdvSUF−CMA

auth2,A ,

AdvConπ1,A ≤ AdvEAπ1,A + nunπ·(AdvACCE−int
CHAN,A +

4AdvACCE−priv
CHAN,A),

287

AdvIntπ1,A ≤ AdvEAπ1,A + nunπ · AdvACCE−int
CHAN,A .

Proof. The proof of this lemma is given in Appendix B.

Theorem 2. If the channel establishment protocol CHAN
is ACCE secure, and authentication schemes auth1 and
auth2 are SUF-CMA secure, then OAuth 2.0 authorization
code mode is a secure OAuth protocol for authorization,
authentication, integrity for authorization and integrity for
authentication.

Proof. Since π1 part in OAuth 2.0 authorization code mode
is 3P-ASD secure (Lemma 1), according to Theorem 1,
OAuth 2.0 authorization code mode is a secure OAuth
protocol. �

Then we prove the security of OAuth 2.0 implicit
mode (Theorem 3). Firstly we prove the π1 part in OAuth
2.0 implicit code is a secure 3P-ASD protocol (Lemma
2).

Lemma 2. The protocol π1 in OAuth 2.0 implicit mode
is a secure 3P-ASD protocol. Formally, for any PPT
adversary A, we have

AdvEAπ1,A ≤ 3AdvACCE−ea
CHAN,A + nu · AdvSUF−CMA

auth1,A ,

AdvConπ1,A ≤ AdvEAπ1,A + nunπ· (AdvACCE−int
CHAN,A +

2AdvACCE−priv
CHAN,A),

AdvIntπ1,A ≤ AdvEAπ1,A + nunπ · AdvACCE−int
CHAN,A .

Proof. The proof of this lemma is given in Appendix C.

Theorem 3. If the channel establishment protocol CHAN
is ACCE secure, and the authentication scheme auth1 is
SUF-CMA secure, then OAuth 2.0 implicit mode is a
secure OAuth protocol for authorization, authentication,
integrity for authorization and integrity for authentication.

Proof. Since π1 part in OAuth 2.0 implicit mode is 3P-
ASD secure (Lemma 2), according to Theorem 1, OAuth
2.0 implicit mode is a secure OAuth protocol. �

7. Conclusion

In this paper, we carried out the first computationally
sound security analysis of OAuth 2.0. Specifically, we
developed a sufficiently rich three-party security model
for OAuth protocols, covering all kinds of authorization
flows, providing reasonably strong security guarantees and
moreover capturing various web features. We proved the
security of two main modes of OAuth 2.0 via modular
approach, which further confirmed the sound design of
OAuth protocols. We also identified several known attacks
against both original OAuth 2.0 in our security model. In
addition, we introduced a new primitive, the three-party
authenticated secret distribution protocol, which serves as
a basis for OAuth protocols and would be of independent
value.

Future work includes studying the generic composabil-
ity of the 3P-ASD primitive with arbitrary tasks that use
the issued secrets. We also hope our modular approach can
shed light on practical issues in and facilitate the design
of relatively complex security protocols.

Acknowledgement

This work is supported by the National Natural Science
Foundation of China under Grants 61572485, 61802021,
61802270 and 61802376.

References

[1] D. Hardt, “The OAuth 2.0 authorization framework,” 2012,
https://tools.ietf.org/html/rfc6749.

[2] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mor-
timore, “Openid connect core 1.0 incorporating errata set 1,” The
OpenID Foundation, specification, 2014.

[3] E. Y. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and P. Tague,
“OAuth demystified for mobile application developers,” in ACM
CCS. ACM, 2014, pp. 892–903.

[4] W. Li and C. J. Mitchell, “Security issues in oauth 2.0 sso imple-
mentations,” in ISC’14. Springer, 2014, pp. 529–541.

[5] E. Shernan, H. Carter, D. Tian, P. Traynor, and K. Butler, “More
guidelines than rules: Csrf vulnerabilities from noncompliant oauth
2.0 implementations,” in DIMVA. Springer, 2015, pp. 239–260.

[6] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for
cross-site request forgery,” in ACM CCS. ACM, 2008, pp. 75–88.

[7] C. Bansal, K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis,
“Discovering concrete attacks on website authorization by formal
analysis,” J. Comput. Secur., vol. 22, no. 4, pp. 601–657, 2014.

[8] D. Fett, R. Küsters, and G. Schmitz, “A comprehensive formal
security analysis of oauth 2.0,” in ACM CCS. ACM, 2016, pp.
1204–1215.

[9] M. McGloin and P. Hunt, “Oauth 2.0 threat model and security
considerations,” 2013, https://tools.ietf.org/html/rfc6819.

[10] S. Pai, Y. Sharma, S. Kumar, R. M. Pai, and S. Singh, “Formal
verification of oauth 2.0 using alloy framework,” in CSNT. IEEE,
2011, pp. 655–659.

[11] A. Kumar, “Using automated model analysis for reasoning about
security of web protocols,” in ACSAC. ACM, 2012, pp. 289–298.

[12] K. S. Jayasri, K. P. Jevitha, and B. Jayaraman, “Verification of
oauth 2.0 using uppaal,” in Social Transformation – Digital Way,
CSI 2018. Springer, 2018, pp. 58–67.

[13] D. Dolev and A. Yao, “On the security of public key protocols,”
IEEE Trans. Inform. Theory, vol. 29, no. 2, pp. 198–208, 1983.

[14] C. Brzuska, H. Jacobsen, and D. Stebila, “Safely exporting keys
from secure channels,” in EUROCRYPT. Springer, 2016, pp. 670–
698.

[15] X. Li, J. Xu, Z. Zhang, D. Feng, and H. Hu, “Multiple handshakes
security of TLS 1.3 candidates,” in S&P. IEEE, 2016, pp. 486–
505.

[16] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk, “On the security of
TLS-DHE in the standard model,” in CRYPTO. Springer, 2012,
pp. 273–293.

[17] C. Brzuska, N. P. Smart, B. Warinschi, and G. J. Watson, “An
analysis of the EMV channel establishment protocol,” in ACM
CCS. ACM, 2013, pp. 373–386.

[18] M. Fischlin and F. Günther, “Multi-Stage Key Exchange and the
Case of Google’s QUIC Protocol,” in ACM CCS. ACM, 2014,
pp. 1193–1204.

[19] R. Lychev, S. Jero, A. Boldyreva, and C. Nita-Rotaru, “How secure
and quick is QUIC? Provable security and performance analyses,”
in S&P. IEEE, 2015, pp. 214–231.

[20] C. Brzuska and H. Jacobsen, “A modular security analysis of EAP
and IEEE 802.11,” in PKC. Springer, 2017, pp. 335–365.

[21] T. Dierks, “The Transport Layer Security (TLS) protocol version
1.2,” 2008, https://tools.ietf.org/html/rfc5246.

[22] C. Brzuska, M. Fischlin, B. Warinschi, and S. C. Williams, “Com-
posability of Bellare-Rogaway key exchange protocols,” in ACM
CCS. ACM, 2011, pp. 51–62.

[23] M. Bellare and P. Rogaway, “Entity authentication and key distri-
bution,” in CRYPTO. Springer, 1993, pp. 232–249.

[24] E. Hammer-Lahav, “The OAuth 1.0 protocol,” 2010,
https://tools.ietf.org/html/rfc5849.

[25] B. Dowling, M. Fischlin, F. Günther, and D. Stebila, “A crypto-
graphic analysis of the TLS 1.3 handshake protocol candidates,”
in ACM CCS. ACM, 2015, pp. 1197–1210.

288

[26] D. Fett, R. Küsters, and G. Schmitz, “An expressive model for the
web infrastructure: Definition and application to the browserid sso
system,” in S&P. IEEE, 2014, pp. 673–688.

[27] ——, “The web sso standard openid connect: In-depth formal secu-
rity analysis and security guidelines,” in IEEE Computer Security
Foundations Symposium (CSF). IEEE, 2017, pp. 189–202.

[28] D. Fett, P. Hosseyni, and R. Küsters, “An extensive formal security
analysis of the openid financial-grade api,” in 2019 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 2019, pp. 453–471.

[29] J. Schwenk and D. Stebila, “A reduction-based proof for au-
thentication and session key security in 3-party kerberos,” 2019,
http://eprint.iacr.org/2019/777.

[30] J. Herzog, “A computational interpretation of dolev-yao adver-
saries,” Theoretical Computer Science, vol. 340, no. 1, pp. 57–81,
2005.

[31] B. Blanchet, “Security protocol verification: Symbolic and com-
putational models,” in International Conference on Principles of
Security and Trust(POST). Springer, 2012, pp. 3–29.

[32] S. Chari, C. S. Jutla, and A. Roy, “Universally composable security
analysis of oauth v2.0.” 2011, http://eprint.iacr.org/2011/526.

[33] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in FOCS. IEEE, 2001, pp. 136–145.

[34] M. Bellare and P. Rogaway, “Provably secure session key distri-
bution: the three party case,” in STOC. ACM, 1995, pp. 57–66.

[35] K. Bhargavan, I. Boureanu, A. Delignat-Lavaud, P.-A. Fouque, and
C. Onete, “A formal treatment of accountable proxying over tls,”
in 2018 IEEE Symposium on Security and Privacy (SP). IEEE,
2018, pp. 799–816.

[36] R. Wang, Y. Zhou, S. Chen, S. Qadeer, D. Evans, and Y. Gurevich,
“Explicating sdks: Uncovering assumptions underlying secure au-
thentication and authorization,” in USENIX Security. USENIX,
2013, pp. 399–414.

[37] R. Fielding and J. Reschke, “Hypertext transfer protocol (http/1.1):
Semantics and content,” Tech. Rep., 2014.

[38] R. Canetti and H. Krawczyk, “Security analysis of ike’s signature-
based key-exchange protocol,” in CRYPTO. Springer, 2002, pp.
143–161.

[39] J. Eisinger and E. Stark, “Referrer policy–editors draft, 28 march
2016. w3c.” https://w3c.github.io/webappsec-referrer-policy/.

[40] M. Jones, J. Bradley, and N. Sakimura, “Oauth 2.0 mix-up
mitigation–draft-ietf-oauth-mix-up-mitigation-01. ietf. jul. 2016,”
https:tools.ietf.org/html/draft-ietf-oauth-mix-up-mitigation-01.

Appendix A.
Security Proof of Theorem 1

In this proof, the common game-hopping techniques
are used to bound the adversary’s advantage. We ac-
complish the proof by bounding AdvAuthorOAuth,A, AdvAuthenOAuth,A,

AdvIntAuthorOAuth,A and AdvIntAuthenOAuth,A in Game A, B, C and D,
respectively.

Game A: Authorization security of OAuth 2.0
Game A.0. This is the real authorization game. Hence:

AdvAuthorOAuth,A = AdvGA.0

OAuth,A.
Game A.1. The challenger in this game proceeds as
before, but it aborts if there exists any client oracle πs

C
accepts maliciously in π2. Note that π2 is established
by the ACCE protocol CHAN, and we can construct an
adversary B in the ACCE security experiment of CHAN
to simulate Game A.0 for A. Particularly, B simulates π1

for A itself, forwards all messages to its ACCE oracle of
CHAN and uses the responses to simulate π2 for A, and
then uses A’s advantage to break the ACCE–auth security
of CHAN in π2. We observe that B can provide a perfect

simulation for A by its own ACCE oracle. If the client
oracle πs

C accepts maliciously in π2 (also in CHAN), B
will win in its own experiment. Hence,

AdvGA.0

OAuth,A ≤ AdvGA.1

OAuth,A + AdvACCE−ea
CHAN,A .

Game A.2. In this game, the challenger aborts if A
successfully outputs the resource m∗ satisfying Definition
12, where the server oracle πt

S has issued m∗ to the client
oracle πs

C in the OAuth instance initiated by the user
oracle πr

U , and we use Pr[Success] to denote the success
probability. Hence,

AdvGA.2

OAuth,A = 0.
We use Q to denote the event A has broken the

confidentiality security of π1 as depicted in Figure 4, and
Q to denote the complementary event. Then we have
Pr[Success]= Pr[Success/Q]·Pr[Q] + Pr[Success/Q]·Pr[Q].

Then there exists an algorithm can distinguish these
two games (i.e., Game A.1 and Game A.2) if the chal-
lenger aborts in this game, and the probability of abort
event is bounded by Pr[Success].

In fact, note that due to the security of π1, the adver-
sary A cannot obtain and output the correct secrets from
π1 for the later user in π2, namely Pr[Q] is bounded by
AdvConπ1,A and thus Pr[Success/Q]· Pr[Q] ≤ AdvConπ1,A.

As a result, we argue that A can only succeed when
Q occurs, which implies only πs

C can obtain the correct
{code, access token} and generate the ciphertext in π2.
We will prove that if A successfully outputs m∗, we can
construct an adversary B to break the channel privacy of
CHAN in π2.

First, B guesses indices <C, s> for C ∈ C and s ∈
[1, nπ], where m∗ is issued to πs

C . If such indices do not
exist, B aborts. According to Game A.1, there must exist
one unique server oracle πt

S to which πs
C has a matching

conversation in π2. Then B simulates Game A.1 as the
challenger for A. In particular, it simulate the π1 part of
OAuth by creating messages itself since A cannot employ
π1 to win, while in π2 it responds to the queries to πt

S and
πs
C using its own ACCE experiment. Specifically, B makes

the query Encrypt(πt
S ,m0,m1) to its ACCE experiment,

where m0 and m1 are two random resource values, and
the returned ciphertext would be used as the messages 11)
in Figure 2. If m∗ = m0 then B outputs b′ = 0; else if
m∗ = m1 then B outputs b′ = 1; otherwise B randomly
outputs a bit b′. Apparently, if A can output the correct
m∗, B can win in its ACCE-priv experiment of CHAN. A
similar simulation process can be referred to the proof of
Lemma 1 in [20]. Hence:

Pr[Success/Q]·Pr[Q] ≤ ncnπ.Adv
ACCE−priv
CHAN,A .

We observe that B can provide a perfect simulation for
A by its own ACCE oracle, and thus A cannot distinguish
these two games as soon as the abort does not occur. Thus
we have

AdvGA.1

OAuth,A ≤ AdvGA.2

OAuth,A + Pr[Success]

≤ AdvConπ1,A + ncnπ.Adv
ACCE−priv
CHAN,A .

Combing the above probabilities yields the stated bound.
�
Game B: Authentication security of OAuth 2.0
Game B.0. This is the real authentication game. Hence:

AdvAuthenOAuth,A = AdvGB.0

OAuth,A.
Game B.1. The challenger in this game proceeds as
before, but it will abort if there exists an oracle that
accepts maliciously in π1 in the sense of Definition 8,

289

which means the entity authentication property of π1 is
broken. Thus we have

AdvGB.0

OAuth,A ≤ AdvGB.1

OAuth,A + AdvEAπ1,A.
Recall that entity authentication ensures messages in-

deed come from the party as it claims to be (c.f. Definition
8), and thus the honest party cannot be forged. Then entity
authentication security of π1 guarantees that the adversary
cannot forge the honest U to make C obtain the secret of
U without the permission of U and in turn obtain the
correct cookie∗ from C.
Game B.2. The challenger in this game proceeds as
before, but it aborts if there exists any user oracle accepts
maliciously in π3, and we can construct another algorithm
to break the entity authentication security of CHAN in π3

as discussed in the above Game A.1. Thus we have
AdvGB.1

OAuth,A ≤ AdvGB.2

OAuth,A + AdvACCE−ea
CHAN,A .

Game B.3. In this game, we add an abort rule. The
challenger will abort if the adversary A successfully out-
puts the cookie information cookie∗ satisfying Definition
13, where the client oracle πs

C has issued cookie∗ to
the user oracle πr

U using the server oracle πt
S in the

OAuth instance. We use Pr[Success] to denote the success
probability. Thus we have

AdvGB.3

OAuth,A = 0.
Similarly, we use Q to denote the event A has broken

the confidentiality security of π1 as depicted in Figure 4
and Q to denote the complementary event. Then we have

Pr[Success] = Pr[Success/Q]·Pr[Q] + Pr[Success/Q]·Pr[Q].
Then there exists an algorithm can distinguish these

two games if the challenger aborts in this game, and the
probability of abort event is bounded by Pr[Success].

In fact, due to the security of π1, the adversary A
cannot obtain and output the correct secrets from π1 for
the later use in π3, namely Pr[Q] is bounded by AdvConπ1,A
and thus Pr[Success/Q]· Pr[Q] ≤ AdvConπ1,A.

As a result, A can only succeed when Q occurs,
which implies only πs

C can obtain the correct {code,
access token} and generate the ciphertext in π2. We will
prove that if A successfully outputs cookie∗, we can
construct an adversary B to break the channel privacy
of CHAN in π3. The reduction process is similar to that
of the above Game A.2, namely B provides a perfect
simulation for A by its own ACCE oracle, except that B
firstly guesses indices <U, r> for U ∈ U and r ∈ [1, nπ]
which has a matching conversation to one unique client
oracle πs

C for C ∈ C and s ∈ [1, nπ]. Hence,

Pr[Success/Q]·Pr[Q] ≤ nunπ.Adv
ACCE−priv
CHAN,A .

And now we can conclude that
AdvGB.2

OAuth,A ≤ AdvGB.3

OAuth,A + Pr[Success]

≤ AdvConπ1,A + nunπ ·AdvACCE−priv
CHAN,A .

Combing the above probabilities yields the stated bound.
�
Game C: Integrity for authorization of OAuth 2.0
Game C.0. This is the real integrity for authorization
game:

AdvIntAuthorOAuth,A = AdvGC.0

OAuth,A.
Game C.1. The challenger in this game proceeds as
before, but it will abort if there exists an oracle accepting
maliciously in π1 in the sense of Definition 8, which
means the entity authentication property of π1 is broken.
Thus we have

AdvGC.0

OAuth,A ≤ AdvGC.1

OAuth,A + AdvEAπ1,A.

Similar to the above Game B.1, entity authentication
security of π1 guarantees that the adversary cannot forge
the honest uses and thus the client C cannot obtain the
secret of U without the permission of U .

Game C.2. In this game, the challenger will abort if a
user U has initiated one OAuth instance with C and S,
however, C obtains the secret of another user U ′ in π1

in the sense of Definition 10, which means the integrity
property of π1 is broken. Thus we have,

AdvGC.1

OAuth,A ≤ AdvGC.2

OAuth,A + AdvIntπ1,A.

Game C.3. In this game, the challenger will abort if there
exists any client oracle accepts maliciously in π2, and
we can construct another algorithm to break the entity
authentication security of CHAN in π2 as discussed in
the above Game A.1. Thus we have

AdvGC.2

OAuth,A ≤ AdvGC.3

OAuth,A + AdvACCE−ea
CHAN,A .

Game C.4. In this game, the challenger will abort if
the adversary breaks the integrity security by satisfying
condition 1) (resp. condition 2)) of Definition 14. Thus
we have

AdvGC.4

OAuth,A = 0.

Note that now the only remaining ways to succeed
for A is to impersonate πs

C and forge a valid ciphertext
for access token of U (resp. another user U ′) in 10) or
to impersonate πt

S and forge a valid ciphertext for the
protected resource of U (resp. another user U ′) in 11) of
Figure 2.

Now we can construct an adversary B in the ACCE–int
security experiment of CHAN, which simulates the π1 for
A itself while simulates π2 by querying its Encrypt and
Decrypt oracle as in the above Game A.2, and then use
A’s advantage to break the ACCE–int security of CHAN
in π2. First, B guesses indices <C, s> for C ∈ C and
s ∈ [1, nπ] such that A can win the game using the oracle
πs
C , and aborts if such indices do not exist. According to

Game C.3, there must be one unique server oracle πt
S to

which the client oracle πs
C has a matching conversation.

If A outputs a valid ciphertext c, B will forge a valid
ciphertext c and win in its own experiment.

We observe that B can provide a perfect simulation for
A by its own ACCE oracle, and thus A cannot distinguish
these two games as soon as the abort does not occur. Thus
we have

AdvGC.3

OAuth,A ≤ AdvGC.4

OAuth,A + 2ncnπ.AdvACCE−int
CHAN,A

Combing the above probabilities yields the stated bound.
�
Game D: Integrity for authentication of OAuth 2.0.

The proof is similar to Game C. In brief, the adversary
can win the integrity for authorization game by one of
three ways, i.e., breaking the entity authentication goal
of π1, breaking the integrity goal of π1, or breaking the
ACCE-int goal of CHAN between S and C in π3. The first
four games, Game D.0, Game D.1, Game D.2, and Game
D.3 are similar to the above Game C.0, Game C.1, Game
C.2 and Game C.3, respectively. To avoid unnecessary
repetition, we omit the details and just specify the last
game Game D.4 as follows.

Game D.4. In this game, the challenger will abort if
the adversary breaks the integrity security by satisfying
condition 1) (resp. condition 2)) of Definition 15. Thus
we have

AdvGD.4

OAuth,A = 0.

290

Note that now the only remaining ways to succeed for
A is to impersonate πs

C and forge a valid ciphertext for
access token of U (resp. another user U ′) in 12) or to
impersonate πt

S and forge a valid ciphertext for user id
of U (resp. another user U ′) in 13) of Figure 2.

Now we can construct an adversary B in the ACCE–int
security experiment of CHAN, which simulates the π1 for
A itself while simulates π3 by querying its Encrypt and
Decrypt oracle as in the above Game A.2, and then use
A’s advantage to break the ACCE–int security of CHAN
in π3. Particularly, first, B guesses indices <C, s> for
C ∈ C and s ∈ [1, nπ] such that A can win the game
using the oracle πs

C , and aborts if such indices do not exist.
According to Game D.1, there must be one unique server
oracle πt

S to which the client oracle πs
C has a matching

conversation. If A outputs a valid ciphertext c, B will
forge a valid ciphertext c and win in its own experiment.

We observe that B can provide a perfect simulation for
A by its own ACCE oracle, and thus A cannot distinguish
these two games as soon as the abort does not occur. Thus
we have

AdvGD.3

OAuth,A ≤ AdvGD.4

OAuth,A + 2ncnπ.AdvACCE−int
CHAN,A .

Combing the above probabilities yields the stated bound.
�
Theorem 1 now follows immediately from Games A-D.�

Appendix B.
Security Proof of Lemma 1

We accomplish the proof by bounding AdvEAπ1,A,

AdvConπ1,A and AdvIntπ1,A in Game A, Game B, and Game
C, respectively.

Game A: Entity authentication of π1

Game A.0. This is the real entity authentication game:
AdvEAπ1,A = AdvGA.0

π1,A.
Game A.1. In this game, the challenger aborts if there
exists any user oracle accepting with intended server
partner but without a matching conversation at the server
oracle, and we can construct another algorithm to break
the entity authentication security of CHAN between them
(referred to steps 3)-6) in Figure 2) as discussed in Game
A.1 of Theorem 1. Hence

AdvGA.0

π1,A ≤ AdvGA.1

π1,A + AdvACCE−ea
CHAN,A .

Game A.2. In this game, the challenger aborts if there
exists any user oracle πr

U accepting with intended client
partner C but without a matching conversation at the client
oracle.

Similar to Game A.1, the probability of the abort event
can be bounded by the ACCE-auth security of CHAN
(referred to the step 1), 2) and 7) in Figure 2). Hence:

AdvGA.1

π1,A ≤ AdvGA.2

π1,A + AdvACCE−ea
CHAN,A .

Game A.3. In this game, the challenger aborts if there
exists any client oracle πs

C accepting with intended server
partner S but without a matching conversation at the
server oracle.

Similar to Game A.1, the probability of the abort event
can be bounded by the ACCE-auth security of CHAN
(referred to the step 8) and 9) in Figure 2). Hence:

AdvGA.2

π1,A ≤ AdvGA.3

π1,A + AdvACCE−ea
CHAN,A .

Game A.4. In this game, the challenger will abort if there
exists any server oracle πt

S accepting with intended user

partner U but without a matching conversation at the user
oracle. It is split into two sub-games as follows.

Game A.4.1. In this sub-case, the challenger aborts
if πt

S accepts U ’s authentication (referred to the step 5)
of Figure 2), however, the authentication information has
not been generated by any honest sessions of U . We can
bound the probability of the aborting event denoted by
Pr[abort1], utilizing the advantage of another adversary
B against the SUF-CMA security of the authentication
scheme auth1. First, B guesses a user U whose authen-
tication information is forged by A. If such a user does
not exist, B aborts. Then B simulates Game A.3 as the
challenger, except that B queries its own Auth oracle for
generating the authentication information for U . Finally,
B outputs what A outputs and will win if A wins. Hence

Pr[abort1] ≤ nu · AdvSUF−CMA
auth1,A .

Game A.4.2. If the challenger does not abort in the
Game A.4.1, there must be an honest user U as the
partner of πt

S , and moreover, the same session key is
shared between πr

U and πt
S . In this sub-case, we can

bound the probability of the aborting event denoted by
Pr[abort2], i.e., the probability of πt

S accepting without
matching conversations, by the ACCE-auth security of
CHAN (referred to the step 3)–6) in Figure 2) as discussed
in the above Game A.1 of Theorem 1. Hence:

Pr[abort2] ≤ AdvACCE−ea
CHAN,A .

Collecting bounds from the above two sub-games yields:

AdvGA.3

π1,A ≤ AdvGA.4

π1,A + Pr[abort1] + Pr[abort2]

≤ AdvGA.4

π1,A + AdvACCE−ea
CHAN,A + nu · AdvSUF−CMA

auth1,A .
Game A.5. In this game, the challenger aborts if there
exists any server oracle πt

S accepting with intended client
partner C but without a matching conversation at the client
oracle. It is also split into two sub-games as the above
Game A.4.

Game A.5.1 In this sub-case, the challenger aborts
if πt

S accepts C’s authentication (referred to the step 8)
of Figure 2), however, the authentication information has
not been generated by any honest sessions of C. We can
bound the probability of the aborting event denoted by
Pr[abort1], utilizing the advantage of another adversary
B against the SUF-CMA security of the authentication
scheme auth2. The reduction process is the same as that
of the above Game A.4.1 and thus would be omitted here.
Hence:

Pr[abort1] ≤ nu · AdvSUF−CMA
auth2,A .

Game A.5.2. If the challenger does not abort in the
Game A.5.1, there must be an honest client C as the
partner of πt

S , and moreover, the same session key is
shared between πs

C and πt
S . In this sub-case, we can

bound the probability of the aborting event denoted by
Pr[abort2], i.e., the probability of πt

S accepting without
matching conversations, by the ACCE-auth security of
CHAN (referred to the step 8)–9) in Figure 2) as discussed
in the above Game A.1 of Theorem 1. Hence:

Pr[abort2] ≤ AdvACCE−ea
CHAN,A .

Collecting bounds of the above two sub-cases yields:

AdvGA.4

π1,A ≤ AdvGA.5

π1,A + Pr[abort1] + Pr[abort2]

≤ AdvGA.4

π1,A + AdvACCE−ea
CHAN,A + nu · AdvSUF−CMA

auth2,A .
If the challenger does not abort in Game A.5, we have

AdvGA.5

π1,A = 0.
Combing the above probabilities yields the stated bound.
�

291

Game B: Confidentiality of π1

We will bound the advantage that the adversary obtains
at least one of elements in the sec∗ entry from a fresh
session.
Game B.0. This is the real confidentiality game of π1,
hence

AdvConπ1,A = AdvGB.0

π1,A.
Game B.1. The challenger in this game proceeds as
before, but it aborts if there exists an oracle accepting
maliciously in π1 in the sense of Definition 8, which
means the entity authentication property of π1 is broken.
Thus we have

AdvGB.0

π1,A ≤ AdvGB.1

π1,A + AdvEAπ1,A.
Game B.2. The challenger guesses indices <U, r> for
U ∈ U and r ∈ [1, nπ] such that sec∗ is issued in an
instance initiated by πr

U , and aborts if such indices do not
exist. Hence:

AdvGB.1

π1,A ≤ nunπ · AdvGB.2

π1,A.
According to the Game B.1, there must exist a unique

client oracle πs
C and a unique server oracle πt

S to which
πr
U has a matching conversation in the respective sub-

session.
Game B.3. In this game, the challenger will abort if the
adversary outputs the correct sec∗ satisfying Definition 9.
According to the above games, the secret sec∗ is issued
by πt

S to πs
C under the permission of πr

U . Moreover, recall
that the entity authentication of π1 guarantees the honest
parties cannot be forged, and thus
(1) the adversary cannot impersonate U to S and then

obtain the code sent to πr
U in the step 6) of Figure 2.

(2) the adversary cannot impersonate C to U and then
obtain the code sent to πs

C in the step 7) of Figure 2.
First, we bound the adversary’s advantage to obtain

code from the ciphertext 6), 7) or 8) in Figure 2. by the
ACCE-priv security of CHAN in 6), 7) or 8). Particularly,
if the adversary A outputs the correct code then we
can construct another algorithm to break the ACCE-priv
security of CHAN in 6), 7) or 8), where the reduction
process is similar to that of the Game A.2 in Theorem 1
and would be omitted here.

Second, we bound the adversary’s advantage to receive
code from πs

C in 8) by the ACCE-int security of CHAN
protocol between πr

U and πs
C (recall that the mix-up attack

occurs in this case). Specifically, since only πr
U receives

the code in step 6), then it must be πr
U that establishes

the CHAN channel with πs
C for 1), 2) and 7) in Figure 2.

Thus if the server S’s identity information protected in 7)
is tampered by A with an identity controlled by itself, then
A forges a valid ciphertext and thus the ACCE-int security
of CHAN between πr

U and πs
C is broken. The reduction

details are similar to that of Game C.4 of Theorem 1 and
omitted here.

Finally, we bound the adversary’s advantage to obtain
the correct access token. Without code, the adversary
cannot receive the correct access token from 9) unless he
can decrypt the ciphertext in 9), by which we can construct
another algorithm to break the ACCE-priv security of
CHAN between πs

C and πt
S as proved in Game A.2 of

Theorem 1 and the proof details are omitted here. Hence:

AdvGB.2

π1,A ≤ AdvGB.3

π1,A + AdvACCE−int
CHAN,A + 4AdvACCE−priv

CHAN,A .
Up to now, all the ways for the adversary to obtain sec∗

have been considered. If the challenger does not abort,
then

AdvGB.3

π1,A = 0.
Combing the above probabilities yields the stated bound.
�
Game C: Integrity of π1

We will bound the advantage that the adversary breaks
the integrity security.
Game C.0. This is the real integrity game of π1, hence

AdvIntπ1,A = AdvGC.0

π1,A.
Game C.1. The challenger in this game proceeds as
before, but it aborts if there exists an oracle accepting
maliciously in π1 in the sense of Definition 8, which
means the entity authentication property of π1 is broken.
Thus we have

AdvGC.0

π1,A ≤ AdvGC.1

π1,A + AdvEAπ1,A.
Game C.2. The challenger guesses indices <U, r> for
U ∈ U and r ∈ [1, nπ] such that the client obtains the
secret of another user U ′ from the instance initiated by
πr
U , and aborts if such indices do not exist. Hence:

AdvGC.1

π1,A ≤ nunπ.AdvGC.2

π1,A.
According to the Game C.1, there must exist a unique

client oracle πs
C and a unique server oracle πt

S to which
πr
U has a matching conversation in the respective sub-

session.
Game C.3. In this game, the challenger aborts if πs

C
obtains the secret sec of another user U ′ from the instance
with πr

U and πt
S . Hence:

AdvGC.3

π1,A = 0.
Now we bound the probability of the abort event.

We first stress that the adversary cannot employ the
OriginLeak and MalTransfer queries to mount the state
leak attack. Specifically, as discussed in Section 5.3, the
countermeasure [39] is to block the referrer header entirely
or strip it down to the origin of the respective page. As
a result, the OriginLeak query cannot leak any private
information including the state, and the adversary cannot
use the MalTransfer to send a correct state to the client.
Moreover, the correct state can only be used once in the
message 7).

Also note that 6), 8) and 9) in Figure 2 cannot be
forged owing to the entity authentication security of π1,
then the only remaining way to win for A is to modify the
ciphertext 7) into a valid ciphertext of code′ for U ′. In this
case the ACCE-int security of CHAN protocol between πs

C
and πr

U is broken since A has forged a valid ciphertext,
the reduction details of which are similar to the Game
C.4 of Theorem 1 and thus omitted here. Thus we have

AdvGC.2

π1,A ≤ AdvGC.3

π1,A + AdvACCE−int
CHAN,A .

Combing the above probabilities yields the stated bound.
�
Lemma 1 now follows immediately from Games A-C. �

Appendix C.
Security Proof of Lemma 2

We accomplish the proof by bounding AdvMatch
π1,A ,

AdvConπ1,A and AdvIntπ1,A in Game A, Game B and Game
C, respectively.

Game A: Entity authentication of π1

The proof is quite same to that of Game A for Lemma
1, except that the Game A.3 and Game A.5 are removed
due to no interaction between C and S in the implicit

292

mode. That is, we use Game A.0 to denote the real
game, then we just need to consider the events that a
user oracle accepts the server maliciously in sub-session
between them (i.e., 3)-6) in Figure 3) in Game A.1, a
user oracle accepts the client maliciously in sub-session
between them (i.e.,1), 2) and 7) in Figure 3) in Game
A.2 and the server oracle accepts the user maliciously
in sub-session between them (i.e., 3)-6) in Figure 3) in
Game A.3, and the corresponding reduction process and
reduction bound are the same to that of Game A.0, Game
A.1, Game A.2 and Game A.4 of Lemma 2 respectively.
To avoid unnecessary repetitions, we omit the details here.

Game B: Confidentiality of π1

The proof is similar to that of Game B for Lemma
1, except that we only need to consider the leakage of
access token rather than both of access token and code.
Thus Game B.0.–Game B.2. are the same to that of Game
B for Lemma 1 and are omitted here, while the Game B.3.
is as follows:
Game B.3. In this game, the challenger will abort if the
adversary outputs the correct sec∗ satisfying the condition
of Definition 9. According to the above games, the secret
sec∗ is issued by πt

S to πs
C under the permission of πr

U .
Moreover, recall that the entity authentication guaran-
tees the honest parties cannot be forged, thus the entity
authentication security of π1 guarantees that

(1) the adversary cannot impersonate U to S and obtain
the access token sent to πr

U in the step 6) of Figure
3.

(2) the adversary cannot impersonate C to U and obtain
the access token sent to πs

C in the step 7) of Figure
3.

Then if the adversary A can outputs the correct ac-
cess token, then we can construct another adversary B that
simulates for A by its ACCE oracle to break the ACCE-
priv security of CHAN in the step 6) or 7) in Figure 3,
the reduction details of which are similar to that of Game
A.2 in Theorem 1 and omitted here. Hence:

AdvGB.2

π1,A ≤ AdvGB.3

π1,A + 2AdvACCE−priv
CHAN,A .

Up to now, all the ways for the adversary to obtain sec∗
have been considered. If the challenger does not abort,
then

AdvGB.3

π1,A = 0.
Combing the above probabilities yields the stated bound.
�
Game C: Integrity of π1

The proof of Game C is similar to that of Game C for
Lemma 1, except that code entry is empty. Thus Game
C.0.–Game C.2. are the same to that of Game C for
Lemma 1 and are omitted here, while the Game C.3.
is as follows:
Game C.3. In this game, the challenger aborts if πs

C
obtains the secret sec of another user U ′ from the instance
with πr

U and πt
S . Hence:

AdvGC.3

π1,A = 0.
Now we bound the probability of the abort event. We

first stress the adversary cannot employ the OriginLeak
and MalTransfer queries to mount the state leak attack,
due to the countermeasure [39] as discussed in Game C.3
of Lemma 1.

Also note that 6) in Figure 3 cannot be forged owing
to the entity authentication security of π1, then the only

remaining way to win for A is to modify the ciphertext
7) into a valid ciphertext of access token′ for U ′. In this
case, the ACCE-int security of CHAN protocol between
πs
C and πr

U since A has forged a valid ciphertext, the
reduction retails of which are similar to the Game C.4 of
Theorem 1 and thus omitted here. Thus we have

AdvGC.2

π1,A ≤ AdvGC.3

π1,A + AdvACCE−int
CHAN,A .

Combing the above probabilities yields the stated bound.
�
Lemma 2 now follows immediately from Games A-C. �

293

