
X-Men: A Mutation-Based Approach for the
Formal Analysis of Security Ceremonies

Diego Sempreboni
Department of Informatics

King’s College London
London, UK

diego.sempreboni@kcl.ac.uk

Luca Viganò
Department of Informatics

King’s College London
London, UK

luca.vigano@kcl.ac.uk

Abstract—There is an increasing number of cyber-systems
(e.g., payment, transportation, voting, critical-infrastructure
systems) whose security depends intrinsically on human
users. A security ceremony expands a security protocol with
everything that is considered out-of-band to it, including, in
particular, the mistakes that human users might make when
participating actively in the security ceremony. In this paper,
we introduce a novel approach for the formal analysis of se-
curity ceremonies. Our approach defines mutation rules that
model possible behaviors of a human user, and automatically
generates mutations in the behavior of the other agents of
the ceremony to match the human-induced mutations. This
allows for the analysis of the original ceremony specification
and its possible mutations, which may include the way in
which the ceremony has actually been implemented. To
automate our approach, we have developed the tool X-Men,
which is a prototype that extends Tamarin, one of the most
common tools for the automatic unbounded verification of
security protocols. As a proof of concept, we have applied our
approach to two real-life case studies, uncovering a number
of concrete vulnerabilities.

Index Terms—Security ceremonies, socio-technical security,
formal methods, mutations

1. Introduction

Context and Motivation. Ellison [18] introduced the con-
cept of security ceremony as an extension of the concept of
security protocol, with human nodes alongside computer
nodes and with communication links that include UI,
human-to-human communication and transfers of physical
objects that carry data. In particular, Ellison remarked
that “what is out-of-band to a protocol is in-band to a
ceremony, and therefore subject to design and analysis
using variants of the same mature techniques used for the
design and analysis of protocols”.

However, in contrast to security protocol analysis, for
which a plethora of mature approaches and tools exist,
security ceremony analysis is a discipline that is still in
its childhood, with no widely recognized methodologies
or comprehensive toolsets. State-of-the-art approaches and
tools for security protocol analysis (e.g., [3], [10], [19],
[26], [28]) cannot be directly employed for security cere-
monies as they take a “black&white” view and formalize
protocols by

• considering one or more attackers that can carry
out whatever actions they are able to in order to
attack the protocol, but then

• modeling all other protocols actors (regardless of
whether they are computers or human users) as
honest processes that behave according to the pro-
tocol specification.

When considering security ceremonies, in which hu-
mans are first-class actors, it is not enough to take this
“black&white” view. It is not enough to model human
users as “honest processes” or as attackers, because they
are neither. Modeling a person’s behavior is not simple
and requires formalizing the human “shades of gray” that
such approaches are not able to express nor reason about.
It requires modeling the way humans interact with the
protocols, their behavior and the mistakes they may make,
independent of attacks and, in fact, independent of the
presence of an attacker.

Some preliminary approaches have been proposed for
security ceremony analysis (e.g., [6], [7], [9], [12], [14],
[23], [24], [31], [32]), but they have barely skimmed
the surface of taking into account human behavioral and
cognitive aspects in their relation with “machine” security.

Contributions. In this paper, we introduce a novel ap-
proach for the formal analysis of security ceremonies
that focuses on the vulnerabilities that result from the
mistakes that human users might make. More specifically,
we provide three main contributions.

1. Formalization. We define a formal approach that
allows security analysts to model possible mistakes by
human users as mutations with respect to the behavior
that the ceremony originally specified for such users. We
focus on three main human mutations of a ceremony,

• skipping one or more of the actions that the cer-
emony expects the human user to carry out (such
as sending or receiving a message),

• replacing a message with another one,
• adding an action,

and their combinations (but our approach is open to
extensions with other mutations).

Human ceremony mutations will likely have an effect
also on the other agents of the ceremony, honest or
malicious as they may be. There are two cases: (1) the
other agents are able to reply to a human mutation because

87

2020 IEEE European Symposium on Security and Privacy (EuroS&P)

© 2020, Diego Sempreboni. Under license to IEEE.
DOI 10.1109/EuroSP48549.2020.00014

the changes are not too relevant or because the ceremony
has somehow made provision for it (e.g., by an if-the-else
that captures both original and mutated human behavior),
or (2) the other agents are not able to reply to a human
mutation. To investigate whether this human mutation may
lead to an attack, we formalize algorithms for human
mutations and algorithms for matching mutations for the
other agents, which allow us to create a complete mutated
ceremony specification that can be executed and analyzed
for vulnerabilities. Our algorithms allow for the analysis
of the original ceremony specification and its possible mu-
tations, which may include the way in which the ceremony
has actually been implemented.1

2. Tool. We have developed a prototype tool called
X-Men (the name was chosen to suggest that we consider
human mutations), which, as shown in Figure 1, creates
mutated models that can then be input to Tamarin [26],
one of the most advanced tools for the automatic un-
bounded verification of security protocols. X-Men can
be used with human mutations only (without matching)
but this will often yield non-executable specifications as
the non-human roles simply won’t reply (thus thwart-
ing attacks caused by the human mutation). Matching
mutations adjust non-human roles so that they can be
executed together with a mutated human role. They are
implemented automatically by X-Men, which generates
the matching mutation from the protocol specification
based on the human mutation (it changes the non-human-
role specification to receive/send messages according to
the human mutation) and propagates mutations to create
an executable trace that can be analyzed in search for
attacks. These attacks might be real attacks on the cere-
mony’s (specification and) implementation, or be just the
result of the mutations and not be applicable on the actual
implementation. In the spirit of mutation testing [11], [15],
[17], [22], the attacks discovered by X-Men could be
used to generate and apply test cases for the ceremony
implementation, but we leave this extension of X-Men
for future work.

3. Proof-of-concept. We have applied our approach
to two real-life case studies, the Oyster ceremony and
the SAML-based Single Sign-on for Google Apps [4],
uncovering a number of concrete vulnerabilities, which
had so far been discovered only by empirical observation
of the actual ceremony execution or by directly formal-
izing alternative specifications of the ceremony by hand.
Instead, X-Men allowed us to generate them automatically.

Organization. In § 2, we introduce our motivating and
running example. In § 3, we describe the intuitions that
underlie our approach. In § 4, we describe how we for-
mally model security ceremonies and their mutations. In
§ 5, we describe X-Men and its proof-of-concept. In § 6,
we discuss related work. In §7, we draw conclusions and
discuss future work. Additional information is provided

1. It is often the case that the implementation of a protocol or cere-
mony deviates from the original specification. There are several possible
reasons for this. For instance, the implementation might have deviated
from the specification in order to accommodate initially unforeseen
behavior by the human users (and this might actually be one of the
reasons for the issues in our first case study, the Oyster ceremony) or
simply because the implementers did some mistakes (as in our second
case study, the SAML-based Single Sign-on for Google Apps [4]).

in the appendices. All our formal models and the code of
X-Men are available at [40].

2. An Example: The Oyster Card Ceremony

We will use the Oyster Card ceremony as a motivating
and running example. The Oyster Card (or just Oyster, for
short) is a plastic credit-card-sized, rechargeable, stored-
value, contactless smartcard used on public transport in
Greater London in the United Kingdom. The Oyster can
hold pay-as-you-go credit, travelcards and passes for un-
derground and overground trains, buses and trams. It is
promoted by Transport for London (TfL) and since its
introduction in June 2003, more than 86 million cards
have been used [38]. Similar systems are in use in a large
number of other countries in almost all continents, and,
interestingly, most of them suffer from problems similar
to the ones of the Oyster that we will discuss below.

As shown in Figure 2a, the Oyster is used by touching
it on an electronic reader when entering and leaving the
transport system in order to validate it or deduct funds.
Actually, this touch-in/touch-out is part of the ceremony
used on the London underground (nicknamed the Tube)
and trains, which is what we focus on in this paper,
whereas on London buses passengers touch in their Oyster
only when boarding (instead, in Sydney, Australia, passen-
gers are required also to touch out when they alight the
bus). Figure 2b shows an entrance/exit gate of the Tube.

Figure 3a gives a Message Sequence Chart (MSC) of
the main Oyster Ceremony for the Tube, which is carried
out by 3 roles: the human passenger H , the entrance gate
GateIn and the exit gate GateOut .

1) The human passenger H touches their Oyster on
the reader at the entrance gate, which amounts to
H sending the Oyster number oyster to GateIn .

2) The reader writes an identifier on the Oyster,
which amounts to GateIn replying with the mes-
sage oyster , gin , where gin is the identifier of
GateIn .

3) At the end of the journey, the passenger touches
the Oyster on the reader at the exit gate, which
amounts to H sending to GateOut the number
oyster , the current balance of the card and gin .

4) GateOut calculates the journey fare based on
the distance traveled from GateIn , subtracts the
amount from the card’s balance, and sends to H
the new balance along with the card number and
a finish flag.

Some remarks are in order. First of all, note that we
did not obtain this specification from TfL, with whom we
have not been in touch, but rather we modeled our own
experience of using the Oyster. This is fine as we do not
need our example to be real but rather realistic enough
to showcase the main features of our approach; still, the
vulnerabilities that we identify are actual problems that
the real Oyster system suffers from.

Second, even though the Oyster is based on the MiFare
chip, which in its first version (Mifare Classic family)
used the proprietary encryption algorithm Crypto-1, our
specification does not use any kind of encryption for the
messages. This does not represent a lack of accuracy as
we actually aim to model the ceremony in a way that is

88

Figure 1: The workflow of the X-Men tool: from models to mutated models that are input to Tamarin

(a) Touching the Oyster on an
Electronic Card Reader

(b) A Gate of the Tube

Figure 2: Using the Oyster Card in the Tube

independent of the low-level cryptographic details, thereby
also keeping in mind that our approach focuses on what
is under direct influence and control of the human, and
cryptography most likely is not. However, it would not
be difficult to include encryption and decryption in our
specifications, and in fact the language that we describe
below does contain cryptographic operators.2

Third, we focused only on the core message-passing
of the ceremony and did not include the information that
is displayed on the screens that are placed above the gate’s
reader, which show, e.g., the credit on the card when
entering and exiting and the fare of the trip when exiting.

Fourth, the ceremony in Figure 3a is actually one of
the possible ceremonies that could be considered for the
use of the Oyster and several variants could be modeled,
such as: a ceremony in which the reader at the exit
gate does not immediately synchronize with the system,
a ceremony in which the passenger does not have enough
credit for the entrance gate to open (if the Oyster’s balance
is too low, the gate would display a message to the
passenger asking them to top up the credit on the card),
or a ceremony in which the passenger changes from an
overground train to an underground train or vice versa,
and thereby touches the Oyster at an intermediate gate to
register the change of train. Again, we aim to be realistic
rather than real and, in fact, our approach generalizes to
these variants quite straightforwardly.

Finally, passengers are nowadays able to pay not only
with the Oyster but also with a contactless credit or debit
card (possibly associated with an Apple Pay or Google
Pay device). In that case, the ceremony is the same as the
one in Figure 3a but without the balance and replacing
oyster with the number of the contactless credit/debit
card (the physical one used to touch in/out or the one
associated with Apple or Google Pay). To avoid having

2. Note also that initial versions of the MiFare chip, and thus of the
Oyster, suffered from a number of attacks [13], [16], [21], but the current
version of the Oyster does not suffer from these problems anymore
since it is based on the new MiFare DESFire family that uses stronger
encryption algorithms.

to distinguish the two cases, let us introduce a generalized
ceremony for the Tube, which passengers can carry out
with either their Oyster or a contactless card, as shown in
Figure 3b. Here, we use a public unary function bal that
computes the current balance of an Oyster or simply sends
a message “accept” in case of a contactless card. This is
what H sends in the third message, and then GateOut
replies in the final message by sending bal(card)′, which
is the updated balance of the Oyster or another “accept”
message, respectively.

Before we continue with the discussion of how we
formally model security ceremonies in our approach, let
us return to Figure 2a, where the sticker beside the reader
reminds passengers to always touch in and out. In fact, the
London underground is quite full of posters like the ones
in Figure 4. The poster on the left of Figure 4 reminds
passengers that in order to pay the right fare, they need
to touch in at the start and touch out at the end of all
journeys; if they do not, then TfL will not know where the
passenger has traveled, so they cannot charge the right fare
for the journey. This is called an incomplete journey and
the passenger could be charged a maximum fare ranging
between £8.00 and £19.80 [37]. Passengers who do not
touch in at the start of a journey are also liable to pay a
penalty fare (or could even be prosecuted).

The poster on the right of Figure 4 warns passen-
gers that if they touch on a reader their purse or wallet
containing two or more cards (be they Oyster cards or
contactless payment cards), then they could experience
card clash [36]. This means that when the card reader
detects two cards, it could take payment from a card
that the passenger did not intend to pay with, or, more
dangerously, that the passenger could be charged two fares
for his journey or even two maximum fares for his journey
(this happens when a passenger mistakenly touches in with
one card and touches out with another card, resulting in
two incomplete journeys).

It is interesting to observe that, in both these cases,
security is “pushed” from the system to the human user.
But humans do mistakes and this might endanger their
security, which here means that they possibly have to pay
considerably more than they should. Our approach allows
us to show (in a formal and automated way) that indeed
if passengers forget to touch in or out, or touch with
two or more cards at the same time, then they will be
billed unfairly. Let us thus proceed by explaining how we
formally model and reason about security ceremonies.

89

H GateIn GateOut

oyster

oyster , gin

oyster , balance , gin

oyster , balance-fare,finish

(a) The Main Oyster Ceremony for the Tube

H GateIn GateOut

card

card , gin

card , bal (card), gin

card , bal (card)’,finish

(b) The Generalized Main Ceremony for the Tube

Figure 3: The Ceremonies for the Tube

Figure 4: Warnings issued to the Tube passengers

3. Our approach in a nutshell

The standard way to formally model and analyze a
security protocol/ceremony is to formalize how agents
(attempt to) execute the roles of the protocol/ceremony
to achieve one or more security goals in the presence of
an attacker. Roles are sequences of events (sending or
receiving messages, generating fresh values, etc.), which
are usually represented graphically by a structure gen-
erated by causal interaction such as strands [20] or the
vertical lines in MSCs and Alice&Bob notation [2], or less
graphically by a process in a process algebra such as in
the applied pi calculus [1]. In Tamarin (and thus in the X-
Men tool), a role is formalized by a so-called role script,
which is basically the projection to an individual role of
an extended Alice&Bob specification, and corresponds to
a strand or an applied pi calculus process.

We can represent this graphically by viewing the
roles/strands of a ceremony as separate lines of assembled
jigsaw puzzle pieces that can be connected with each other
as shown in the example in Figure 5. When complete, the
jigsaw puzzle produces a complete picture: the run of the
ceremony.

Now, we have all been there: you are trying to assem-
ble one of those really difficult jigsaw puzzles, you know,
one of those where the resulting image is so complex
that it is difficult to understand which pieces you should
actually interlock. You start from the borders, trying to
complete at least one line and proceed from there, but even
that is proving to be difficult as you do not understand
which pieces do really fit together. So, what do you do?
You try. You try to interlock pieces that appear to fit
together even though this will turn out to be wrong as

Figure 5: A simple ceremony between a User (left) and a
System (right) depicted as a jigsaw puzzle

they will not allow you to produce the desired image —
but you do not know that yet. Or maybe you simply do a
mistake and append a piece that does not belong there.

This is illustrated by Figure 6: the human user could
append a wrong piece pictured in red as in Figure 6c,
which raises the question of how the two remaining pieces
would fit (they are thus drawn with dotted lines), or the
human could not know how long the edge should be and
terminate it by attaching the piece pictured in red as in
Figure 6b; or the human could add one more piece to the
edge as in Figure 6d.

Returning to our running example, the human user
might not fully understand the ceremony role that he is
supposed to carry out and

• skip some intermediate actions, e.g., touching out
with an Oyster without having touched in with any
card, as illustrated in Figure 6b by the anticipated
termination of the role;

• replace an action with another, e.g., using a con-
tactless credit card to touch out instead of the
Oyster he used to touch in, as illustrated in Fig-
ure 6c by the different outgoing connector, which
represents a different message being sent;

• add some actions, e.g., touch in with two cards,
as illustrated in Figure 6d by the additional piece.

In our approach, we represent these human “mistakes” as
mutations with respect to the role as specified originally
— hence the name “X-Men” for our tool, which captures
the fact that we are considering mutations of the original
human behavior. Such a mutation does not just have a
local effect (for that event of the role) but will likely have
an effect on the subsequent events in the role, which we

90

(a) The role
User as it was
specified

(b) The role
User as carried
out by a human
who connects a
piece to
terminate the
role sooner than
specified

(c) The role
User as carried
out by a human
who connects a
different piece
than the one
specified

(d) The role
User as carried
out by a human
who connects a
piece to extend
the length of
the role

Figure 6: A human carrying out the role User... and
mutating it, by mistake or lack of understanding

Figure 7: The “add” mutation of the role User (as in
Figure 6d) and the matching mutation of the role System

illustrated by drawing the subsequent puzzle pieces with
dotted lines. This is because the knowledge of the human
agent will likely change depending on what has really
happened.

It is, however, not enough to simply allow the human
to carry out these unforeseen actions (add, skip or replace
some parts of the role). In order to reason about what
would happen if the human carried out these mutations,
we need to capture the fact that a mutation of the human
behavior will likely have an effect also on the other agents
of the ceremony. More specifically, consider again, for
simplicity, the ceremony between User and System in
Figure 5 and consider the scenario in which a human
playing the role User replaces an event of his role with
a different one, i.e., sends a message m′ instead of the
specified message m, as depicted in Figure 6c, which is
a mutation of Figure 6a. There are two cases.

In the first case, the System is able to reply to m′. This
means that the System can still receive (and “understand”)
and reply to m′ because the changes with respect to
m are not too relevant. For instance, this might happen
when the ceremony does not provide the System with

enough information to check the content of m′, e.g.,
when the User sends a contactless card number instead
of an Oyster card number but the System does not have
previous information that allows it to check whether it
received the correct card number, or when the message
has been encrypted with a symmetric key that the System
does not (yet) possess. In this case, we can carry on with
our analysis of the ceremony to check whether either the
original or the mutated User role lead to an attack.

In the second case, the System is not able to reply
to m′ as that mutation is not envisioned by the System’s
role as specified by the original ceremony. But what about
the ceremony’s implementation? Does the implementation
really conform to the specification? If it does, then the
implementation of the System role will not reply and
we are fine as the run with the mutation m′ will not
terminate. But what if the ceremony’s developers, after
they designed the specification and/or deployed the im-
plementation, realized that the User could indeed send a
different message (or skip some actions or add some) and
made provisions for this case? For instance, they could
have introduced in the implementation an “if-then-else”
that captures both m and m′, i.e.: “if you receive m then
reply with message n else if you receive an m′ �= m then
reply with message n′”.3 To reason about such a situation,
we can use the mutation as a test case that is relevant for
the ceremony’s implementation. We pair the mutation of
the User role with a matching mutation of the System role
to generate an executable trace of the ceremony. This is
in line with mutation testing [11], [15], [17], [22], which
is an approach to design software tests where mutants
are based on well-defined mutation operators that either
mimic typical programming errors (such as using the
wrong operator or variable name) or force the creation of
valuable tests (such as dividing each expression by zero).
In our approach, mutants are based on mutation operators
that mimic typical human mistakes (add, skip or replace,
as discussed above) and force the creation of mutations in
the other ceremony agents to match the human mutation.
For concreteness, for the ceremony between User and
System in Figure 5, our approach mutates the role of the
System as shown in Figure 7 to match the human User’s
replace mutation of Figure 6c. The mutation of the step of
the System to match the mutated step of the human User
possibly entails a mutation of the subsequent steps of the
System role, which we again illustrate with dotted lines.

3. Note that this does not mean that the User is fully aware of this. The
User might just be aware of (or have been instructed about) the “then
branch” of the System’s role, which captures the User’s normal behavior;
think of the Oyster User who follows the touch-in-touch-out ceremony
as expected. Hence, the User might, unknowingly and unwillingly, fall
into the “else branch” of the System’s role (e.g., by touching out with a
contactless card instead of the Oyster card that was used for touch in) and
thus be billed much more than expected. The problem with these “else
branches” is that they often were not present in the original specification
of the whole ceremony and were added to the implementation as an
afterthought, after having observed the “wrong” behavior of users, as
was likely the case for the Oyster ceremony. Warnings like the ones
in Figure 4 are meant to alert the users about the “else branch” of the
ceremony. We believe that rather than adding the “else branch”, it would
have been better to change (the specification and) the implementation of
the ceremony to forbid these mistakes (e.g., by programming the gates
to warn the users that they are touching with the wrong card or with
two cards), but we recognize that this might not always be possible,
especially if all the software and hardware components of the System
have already been deployed and installed.

91

If these matching mutations lead to an attack, then
we can check with the ceremony designers whether the
mutated specification makes sense and, in any case, use
the obtained attack trace to generate concrete tests cases
to be applied to the ceremony’s implementation. This
will allow us to check whether the attack entailed by the
mutations is a false positive or a real attack.

The scenarios for the other human mutations and their
matching mutations are similar. So, summarizing, our
approach takes as input the specification of a ceremony
and the goal(s) it should achieve, and then generates both
mutations of the human agent’s role (allowing him to add,
skip or replace actions) and the matching mutations of the
other roles of the ceremony. The resulting mutated cere-
mony specifications are then fed into Tamarin to search
for attacks. We leave the step of concretizing the attack
traces found into test cases as future work (although we
expect this to be not too difficult by proceeding along the
lines of [30], [39]).

4. Formal modeling of security ceremonies

We adopt, adapt and extend notions that are used in
most of the state-of-the-art approaches and tools for the
formal analysis of security protocols. For concreteness,
our tool X-Men extends the Tamarin prover [6], [7], [26]
to model and analyze security ceremonies with mutations
caused by human users, but our approach is general and
independent of Tamarin and could be applied similarly to
other tools such as [3], [10], [19], [39]. We first summa-
rize some basic notions (importing them from papers in
which Tamarin is presented and used) and then discuss the
formal specification of ceremonies, the execution model,
the modeling of human agents, and the security goals.

4.1. Messages, ceremony specification and execu-
tion model

The term algebra of messages is given by TΣ(V),
where Σ is a signature and V is a disjoint, countably
infinite set of variables. A term m is ground when it
contains no variables. Fsym ⊂ Σ denotes a finite set
of function symbols that contains function symbols for:
the pairing pair(m1,m2) of two messages m1 and m2,
also denoted by 〈m1,m2〉, where, for brevity, we write,
e.g., 〈m1,m2,m3〉 for 〈m1, 〈m2,m3〉〉; the first projection
π1(m) and second projection π2(m) of a pair m of terms;
the hash h(m) of a term m; the symmetric encryption
senc(m, k) and the symmetric decryption sdec(m, k) of
m with k; the asymmetric encryption aenc(m, k) and
the asymmetric decryption adec(m, k) of m with k; the
signature sign(m, k) and the corresponding verification
verify(sign(m, k1),m, k2). The function pk(k) represents
the public key corresponding to the private key k.

Messages are composed and decomposed using the
standard Dolev-Yao-style equational theory for these func-
tions. However, as we do for the Oyster ceremony, our
approach allows us also not to consider explicitly the
presence of a (Dolev-Yao) attacker and focus on capturing
the way human agents might interact insecurely with the
other ceremony agents. So, all our agents behave honestly
and follow the steps of the ceremony, but the human(s)

might make mistakes. In other cases, such as in the SSO
ceremony (see § 5.2), we add an explicit attacker who
intentionally tries to make the ceremony insecure.4 In all
these cases, our modeling of the human behavior (through
mutations to the specification of the human(s) and of the
agents the human(s) interact with) allows us to identify
attacks that a standard Dolev-Yao attacker would not
immediately be able to find.

Σ also contains a countably infinite set Cfresh of fresh
constants, modeling the generation of nonces, and a count-
ably infinite set Cpub of public constants, representing
agent names and other publicly known values. The sets
Fsym , Cfresh and Cpub are pairwise disjoint. We denote
sequences with square brackets.

We say that m1 is a submessage of m2, in symbols
m1 ∈ submsg(m2), iff m2 = m1; m2 = 〈m3,m4〉
for some m3,m4 and m1 ∈ submsg(m3) or m1 ∈
submsg(m4); m2 = h(m3) for some m3 and m1 ∈
submsg(m3); m2 = senc(m3, k) for some m3 and k and
m1 ∈ submsg(m3); m2 = aenc(m3, k) for some m3 and
k and m1 ∈ submsg(m3); or m2 = sign(m3, k) for some
m3 and k and m1 ∈ submsg(m3).

The format f = format(m) of a message m is its
top-level function symbol: if m has no top-level function
symbol, then f is the identity function; if m = 〈m1,m2〉
for some m1,m2, then f = pair ; if m = h(m1) for some
m1, then f = h; if m is ◦(m1, k) for some m1 and k,
with ◦ ∈ {senc, aenc, sign}, then f = ◦.

Formally, a role script is a sequence of events
e ∈ TΣ∪RoleActions(V), where RoleActions =
{Snd , Rcv , Start , Fresh} and each event e has exactly
one function symbol that is in RoleActions at the top-
level. We will introduce other Tamarin actions in our
specifications (and simply write “actions” when there is
no risk of confusion).

Send and receive events are of the form
Snd(A, l, P,m) and Rcv(A, l, P,m), where A is
the role executing the event, l ∈ {ins, auth, conf , sec}
indicates the type of channel over which a message is
sent (insecure, authentic, confidential, secure), P ∈ Cpub
is a role’s name, and m ∈ TΣ(V) is a message. In the
Snd(A, l, P,m) event, P is the intended recipient of the
message m, whereas in Rcv(A, l, P,m) event, P is the
apparent sender, as the attacker may have forged the
message, and m is the expected message pattern.

Fresh(A,m) indicates that the role A generates a fresh
message m (e.g., a nonce or a new key) and Start(A,K)
indicates the initial knowledge K of A. The start event is
the first event of a role script and occurs only once.

As shown in Figure 3b, the Generalized Main Cer-
emony for the Tube has 3 roles: the human H and
the entrance and exit gates GateIn and GateOut . We
remarked above that in this ceremony we do not consider
cryptography (but we easily could) and, in fact, we do
not consider an explicit attacker. We represent this by
specifying that all messages are sent over secure channels.

4. We control the Dolev-Yao attacker by using (or not) appropriate
channels. The messages used in the Oyster ceremony are not encrypted,
but there is no reason why they could not be. The SSO ceremony, in
contrast, includes explicit cryptographic operations.

92

Thus, the role scripts for the roles of this ceremony are:

RoleScriptH =
[Start(H , 〈〈‘GateIn’, ‘GateOut’, ‘card’ ‘balance’〉

〈GateIn,GateOut, card, bal(card)〉〉),
Snd(H , sec,GateIn, 〈‘card’, card〉),
Rcv(H , sec,GateIn, 〈〈‘card’, ‘gin’〉, 〈card, gin〉〉),
Snd(H , sec,GateOut, 〈〈‘card’, ‘balance’, ‘gin’〉,

〈card, bal(card), gin〉〉),
Rcv(H , sec,GateOut, 〈〈‘card’, ‘balance’, ‘finish’〉,

〈card, bal(card)′,finish〉〉)]
RoleScriptGateIn =

[Start(GateIn, 〈H , gin〉),
Rcv(GateIn, sec,H , 〈‘card’, card〉),
Snd(GateIn, sec,H , 〈〈‘card’, ‘gin’〉, 〈card, gin〉〉)]

RoleScriptGateOut =
[Start(GateOut, 〈H , gout〉),
Rcv(GateOut, sec,H , 〈〈‘card’, ‘balance’, ‘gin’〉,

〈card, bal(card), gin〉〉),
Snd(GateOut, sec,H , 〈〈‘card’, ‘balance’, ‘finish’〉,

〈card, bal(card)′,finish〉〉)]
We take advantage of constants in Tamarin to identify

values received and sent during a ceremony. In [7], con-
stants are used to define “tags” in order to represent the
interpretation of the values in the knowledge of a human
agent. We also make use of constants but we use them to
define a basic notion of types. In this paper, as shown in
the role scripts above and in the agent rules in Figure 8,
we only consider types of ground terms, such as the type
‘card ’ for card or ‘balance’ for bal(oyster).5 This allows
us to restrict what mutations can do, e.g., constants allow
us to express that a payment card in a message is replaced
with another card (instead of with a generic value that is
not of type “card”). Still, for readability,

from now we will often omit constants in role
scripts and rules, so that when you read m,
please mentally replace it with the constant-
message pair 〈t,m〉.

Our approach is based on Tamarin’s execution
model [26], which is defined by a multiset term-rewriting
system like in most other security protocol analysis tools.
A system state is a multiset of facts: linear facts model ex-
haustible resources and they can be added to and removed
from the system state, persistent facts model inexhaustible
resources and can only be added to the system state
(persistent fact symbols are prefixed with “!”). The initial
system state is the empty multiset. A trace tr is a finite
sequence of multisets of actions a and is generated by the
application of labeled state transition rules of the form

prem
a−→ conc. Such a rule is applicable when the current

state contains facts matching the premise prem , and the
rule’s application removes the matching linear facts from
the state, adds instantiations of the facts in the conclusion
conc to the state, and records the instantiations of actions
in a in the trace. The set of all traces of a set of rules R
is denoted by TR(R).

A protocol model consists of the agent rules, the
fresh rule, channel rules and attacker rules. The fresh rule
[]→ [Fr(x)] produces the fact Fr(x) where x ∈ Cfresh ; no
two applications of the fresh rule pick the same element
x ∈ Cfresh and this is the only rule that can produce terms
x ∈ Cfresh . Tamarin comes equipped with standard Dolev-
Yao attacker rules and with channel rules (introduced
in [6]) to model the sending and receiving of messages
over authentic/confidential/secure channels, and thus con-
trol the ability of the attacker (who, e.g., can not send,

5. This is enough for all ceremonies that we have encountered so far,
so we leave a more thorough investigation of types to future work.

read or replay messages on a secure channel, although he
might still be able to interrupt the communication).

Agent rules specify the agents’ state transitions and
communication. For instance, the rules for the human
agent in the Generalized Main Ceremony for the Tube
are shown in Figure 8 (those for the other agents, which
are similar, are in Appendix A). In general, for every
event e in the script of a role A, we get a transition

rule prem
a−→ conc as follows: the label of the rule

contains the event, i.e., e ∈ a; prem contains an agent
state fact AgSt(A, step, kn), and conc contains the sub-
sequent agent state fact AgSt(A, step, kn ′), where step
refers to the role step the agent is in and kn is the
agent’s knowledge at that step. If e ∈ a is: Snd(A, l, P,m)
then conc additionally contains an outgoing message fact
Outl(A,P,m); Rcv(A, l, P,m) then prem contains an
incoming message fact Inl(P,A,m); Fresh(A,m) then
prem contains Fr(m); Start(A,m) then it is translated
to a setup rule where conc contains the initial agent state
AgSt(A, 0,m).6

As usual, the knowledge of an agent increases mono-
tonically during the execution of the ceremony (as the
agent receives messages or generates fresh terms).

4.2. Goals

Goals express the security properties that a ceremony
is supposed to guarantee. However, many ceremonies,
such as the Oyster ceremony as we discussed in §2, “push”
security from the system to the human agents. This is
made evident by the three goals that we define and analyze
for the Oyster ceremony:

GO1 the human ends his journey touching in and out;
GO2 the human ends his journey using the same card

to touch in and out;
GO3 the human does not touch two cards in and out.

These goals refer to a single journey, i.e., a single cer-
emony session. We formalize this in our Tamarin models
by including explicit restrictions (through the OnlyOnce
restriction [35] in the Setup phase; see our specifications
in [40]) to force the human to carry out a single journey in
the ceremony; given this, we can then formalize the goals
as follows. Goal GO1 can be formalized by the lemma

lemma complete journey: all-traces
"All H oyster #j. Hfin(H,’card’,oyster)@j ==>
(Ex GateIn gin #i. CommitGid(GateIn,H,gin) @i & i<j)"

which uses Tamarin actions to express that if H
completes the ceremony with an Oyster card (action
Hfin(H , ‘card ’, oyster)) at time j, then there is a previous
time instant i such that a GateIn commits the gin to
H (action CommitGid(GateIn, H, gin)). The other goals
make use of other actions. For instance, a Snd(A, l, P,m)
event corresponds to the Tamarin action Send(A, 〈t,m〉),
which we abbreviate to Send(A,m) following our read-
ability assumption, whereas a Rcv(A, l, P,m) event cor-
responds to the action Receive(A,P,m) (note the absence
of the tag t).

Goal GO2 can be formalized by the lemma

6. The translation of the different channels into Tamarin is quite natu-
ral, e.g., by means of rules such as Outl(A,P,m) → Out(A,P,m) for
l ∈ {ins, auth} and In(P,A,m) → Inl(P,A,m) for l ∈ {ins, conf }.

93

[]
Start(H ,〈GateIn,GateOut,oyster,balance〉)−−−−−−−−−−−−−−−−−−−−−−−−−−→ [AgSt(H , 1, 〈GateIn,GateOut, oyster , balance〉)] (H0)

[AgSt(H , 1, 〈GateIn,GateOut, oyster , balance〉)] Snd(H ,sec,GateIn,〈‘card’,oyster〉)−−−−−−−−−−−−−−−−−−−−−→
[AgSt(H , 2, 〈GateIn,GateOut, oyster , balance〉),Outsec(H ,GateIn, 〈‘card’, oyster〉)] (H1)

[AgSt(H , 2, 〈GateIn,GateOut, oyster , balance〉), Insec(GateIn,H , 〈〈‘card’, ‘gin’〉, 〈oyster , gin〉〉)]
Rcv(H ,sec,GateIn,〈〈‘card’,‘gin’〉,〈oyster,gin〉〉)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ [AgSt(H , 3, 〈GateIn,GateOut, oyster , balance, gin〉)] (H2)

[AgSt(H , 3, 〈GateIn,GateOut, oyster , balance, gin〉)] Snd(H ,sec,GateOut,〈〈‘card’,‘balance’,‘gin’〉,〈oyster,bal(oyster),gin〉〉)−−−→
[AgSt(H , 4, 〈GateIn,GateOut, oyster , balance, gin〉),Outsec(H ,GateOut, 〈〈‘card’, ‘balance’, ‘gin’〉, 〈oyster , bal(oyster), gin〉〉)] (H3)

[AgSt(H , 4, 〈GateIn,GateOut, oyster , balance, gin〉), Insec(GateOut,H , 〈〈‘card’, ‘balance’, ‘finish’〉, 〈oyster , bal(oyster)′,finish〉〉)]
Rcv(H ,sec,GateOut,〈〈‘card’,‘balance’,‘finish’〉,〈oyster,bal(oyster)′,finish〉〉),Hfin(H ,‘card’,oyster)−−→ [] (H4)

Figure 8: The rules for the human agent in the Generalized Main Ceremony for the Tube

lemma same card: all-traces
"All H oyster #j. Hfin(H,’card’,oyster)@j
==> (Ex #t. Send(H,’card’,oyster)@t & t<j)

& not (Ex ccard #c. Send(H,’card’,ccard)@c
& not (ccard = oyster))"

which expresses that if H completes the ceremony with
an Oyster card (Hfin(H , ‘card’, oyster)) at time j, then
H did not touch in another card.

Goal GO3 can be formalized by the lemma

lemma Card_Clash_Out: all-traces
"All H GateIn GateOut oyster gin #j #t.
Receive(GateOut,H,oyster)@j
& Commit(GateOut,H,’finish’)@j
& Receive(GateIn,H,oyster)@t
& CommitGid(GateIn,H,gin)@t & t<j
& not (GateIn = GateOut)
==> not (Ex ccard #i #k. Receive(GateOut,H,ccard)@i
& Commit(GateOut,H,’finish’)@i
& Receive(GateIn,H,ccard)@k
& CommitGid(GateIn,H,gin)@k & k<i
& not oyster = ccard)"

which expresses that if GateOut receives oyster from
H (Receive(GateOut ,H , oyster)) and commits the end
of the journey (Commit(GateOut ,H , ‘finish’)) at time
j, and a GateIn , which is not instantiated by the same
agent as GateOut , receives oyster from H and commits
a gin (CommitGid(GateIn,H , gin)) to the same H at a
previous t, then there does not exist another card ccard
such that the GateOut and the GateIn execute the same
transitions receiving that ccard .

4.3. Modeling human mutations of the ceremony

The mutations that humans carry out when executing
a ceremony have repercussions also on other agents and
thus on the whole ceremony. We thus need to define not
only the human mutations, which modify a ceremony trace
by mutating the subtrace of the human agent, but also
the mutations on the subtrace(s) of the other agent(s) that
are likely (albeit not necessarily) required to “match” the
mutations of the human; for instance, to receive the new
or modified message sent by the human or to skip some
actions mirroring the skip of the human. The result will
be a fully mutated ceremony trace, which our tool feeds
into Tamarin, first to check if it is executable and then to
analyze it with respect to the corresponding goal(s).

Definition 1. A generic human mutation is a function
μH : tr → tr ′ that takes as input a trace tr and

gives as output a new trace tr ′ = �tr�μ
H

obtained by

mutating H’s subtrace as a consequence of the human
H “deviating” from the original role script by skipping
one or more actions, replacing a message with another
one, or adding a new action.
A matching mutation for a human mutation is a
mutation μm that mutates the subtraces of the other
ceremony agents to match and propagate the human
mutation.
The combination μH ◦ μm : tr → tr ′ of the two mu-
tations takes as input a trace tr and gives as output

a new trace tr ′ = �tr�μ
H◦μm

in which the human
mutation is matched and propagated.

In the following subsections, we will instantiate these
generic definitions to define the three human mutations
skip, replace and add both formally and algorithmically,
giving also the algorithmic definitions of the correspond-
ing matching mutations. Slightly abusing notation, we
will write [a0, . . . , ai, . . . , an]

H with 0 < i � n to
denote the subtrace of a human agent H in a ceremony
execution, and let � �μ apply not just to traces. In fact, we
consider mutations that apply generically to traces so that
they apply indirectly also to role scripts and to Tamarin
actions. For readability, and to make a clearer point, in the
following descriptions and algorithms, we will sometimes
depart from the tight corset of Tamarin’s notation and
consider transitions and their pre and postconditions. More
specifically, in the style of multiset rewriting as in [33],
we consider an abstract “merged” transition rule in which
prem contains the receipt of a message and conc the
sending of the reply:7

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,m1) −→
AgSt(H, i + 1, kni+1), Posti+1, Snd(H, l2, A2,m2) ,

where Prei is a set of precondition facts (e.g., fresh facts)
at state i, Post i+1 is a set of postcondition facts at state
i + 1, and kni+1 is obtained by extending kni with m1

and with whatever is generated fresh in Pre1. As usual,
kni+1 is such that A can send the message m2 (after
closing the knowledge under the standard rules for mes-
sage generation and analysis). It is not difficult to translate
this transition to the two corresponding transition rules
in Tamarin’s notation (with In, Out, the Tamarin actions

7. This is in the spirit of the step compression technique that is adopted
in several security protocol analysis tools, such as [3]. The idea is that
some actions can be safely lumped together. For instance, we can safely
assume that if a role is supposed to reply to a message it received, then
we can compress the receive and send actions into a single transition.

94

and the constants) and vice versa, and to carry out the
corresponding translations in the following descriptions
and algorithms.

For instance, the following denotes a trace of the
actions of a human agent H and possibly pairwise distinct
agents A1, A2, A3, A4, . . .

.

.

.Σ1

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,m1) −→
AgSt(H, i + 1, kni+1), Posti+1, Snd(H, l2, A2,m2)

.

.

.Σ2

AgSt(H, j, knj), Prej , Rcv(H, l3, A3,m3) −→
AgSt(H, j + 1, knj+1), Postj+1, Snd(H, l4, A4,m4)

.

.

.Σ3

(1)

where each Σi represents a possibly empty subtrace, and,
as we wish to focus on H’s actions, Σ2 embeds A2’s
receipt of m2 in and Σ3 embeds A4’s receipt of m4. When
A1 = A2 = . . . = A, the trace reduces to a trace of a
ping-pong ceremony between H and a system A.

4.3.1. The skip mutation.

Definition 2. A skip mutation μH
skip : tr → tr ′

is a human mutation of tr ’s human subtrace
[a0, . . . , ai, . . . , an]

H such that tr ′ includes the new
human subtrace [a0, . . . , ai−1, �ai+k�

μ, . . . , �an�μ],
where ai+k with k ≥ 1 is the action that H ex-
ecutes immediately after the execution of ai and
�ai+k�

μ, . . . , �an�μ are the mutations of these actions
obtained by H skipping the actions ai, . . . , ai+k−1 and
by matching and propagating this mutation.

For example, Figure 9 shows a human subtrace in
which H skips the Snd(H , sec,GateIn, card) action in
the Oyster ceremony (omitting constants as discussed),
which corresponds to not touching in. But this is not the
only possible skip: H could skip also the receipt of the
reply by GateIn and jump to his next send to GateOut ,
which would actually make sense as one could argue that
if GateIn does not receive a message from H then it will
not reply either; or H could skip both the receipt of a
message and the sending of the reply; and so on.

We have identified five different skip mutations, de-
pending on which send (S) and receive (R) actions
are skipped: μH

skip(S), μ
H
skip(SR), μ

H
skip(R), μ

H
skip(RS) and

μH
skip(RSR). More cases could be considered, but these five

cover the most interesting scenarios, which can combined
to skip bigger “chunks” of the ceremony execution.

We describe the five skip mutations by showing their
effect on the subtrace (1).

The skip mutation μH
skip(S). In this case, H , having

arrived at state i + 1, skips the sending of m2 and any
other action that he would carry out in Σ2 and continues
the trace with the transition j ≥ i+ 1, which we call the
landing transition (i.e., the transition where H lands after

the “jump” he has made):8

.

.

.Σ1

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,m1) −→
AgSt(H, i + 1, kni+1), Posti+1, Snd(H, l2, A2,m2)

.

.

.�Σ2�μ

AgSt(H, j, �knj�μ), Prej , Rcv(H, l3, A3, �m3�μ) −→
AgSt(H, j + 1, �knj+1�μ), Postj+1, Snd(H, l4, A4, �m4�μ)

.

.

.�Σ3�μ

where μ denotes the mutation composed of μH
skip(S) and

the matching and propagation entailed by μH
skip(S) (muta-

tions of constant-message pairs are explained later).
This allows us to illustrate the need for matching

and propagation on a concrete example. We namely need
to consider if and how the mutated trace can be com-
pleted, for instance when H receives from A3 an m3

that is different from the expected one as a consequence
of H’s skipping the sending of m2 to A2. This imme-
diately raises a number of questions. For instance, for
Rcv(H, l3, A3, �m3�

μ) to be possible, it must be the case
that �Σ2�

μ contains Snd(A3, l3, H, �m3�
μ), but there is

no guarantee that this holds:

• if A3 is able to send m3 even when H does not
send m2 to A2, then H can receive m3, but

• if A3 needs first A2 (which is possibly but not
necessarily equal to A3) to receive m2 to then be
able to send m3, then A3 does not send m3 in
the mutated trace or sends a mutation of m3 built
from its current knowledge.

Our tool implements these options as described in the
pseudo-code in Algorithm 1 and Algorithm 2.

The pseudo-code is hopefully quite explanatory, also
thanks to the comments in the algorithms (whose start is
denoted by �), but there are a couple of steps that deserve
clarification. First of all, what does it mean that A3 sends
a mutation of m3 built from its current knowledge? If we
apply the message generation and analysis rules freely,
this is an infinite set of possible messages. We could
consider that as there is no guarantee of termination in
our approach anyway, but instead we proceed in a more
controlled way that mimics human users making mistakes
when sending the messages or human programmers mak-
ing mistakes when implementing a specification:

we consider only mutations of a message m that
preserve the format of m.

So, for example, in line 6 of Algorithm 1 we define
�m3�

μ = {(format(m3))(m) | m ∈ submsg(m3)} of
m3, and then, for each of these mutations, we build all the
corresponding transitions j (similarly, we build controlled
mutations of m4 in lines 6 and 13). Note also that we
write kn l ∪ Pre l to mean the extension of kn l with all
messages generated freshly in Prel.

8. For simplicity but w.l.o.g., in the following we assume that the
(fresh and “other”) facts in Prej never refer to messages received during
the execution of a ceremony, but only to long-term keys, public keys and
the like; this entails that �Prej�

μ = Prej . This assumption allows us to
avoid considering mutations of Prej induced by the situation in which a
message is not received in �Σ2�μ. This is indeed the case in the Oyster
and SSO examples. Extending our approach to capturing such mutations
is cumbersome notationally but not difficult technically: we can define
the mutation of the preconditions (and of the postconditions, if needed)
in a way similar to the mutation of the knowledge when one or more
messages are not received.

95

Start(H , 〈GateIn,GateOut, card, bal〉),
Snd(H , sec,GateIn, card),
Rcv(H , sec,GateIn, 〈card, gin〉),
Snd(H , sec,GateOut, 〈card, bal(card), gin〉),
Rcv(H , sec,GateOut, 〈card, bal(card)′,finish〉)

μH
skip(S)−−−−−−→

Start(H , 〈GateIn,GateOut, card, bal〉),
Snd(H , sec,GateIn, card),
Rcv(H , sec,GateIn, 〈card, gin〉),
Snd(H , sec,GateOut, 〈card, bal(card), gin〉),
Rcv(H , sec,GateOut, 〈card, bal(card)′,finish〉)

μH
replace−−−−−→

Start(H , 〈GateIn,GateOut, card, bal〉),
Snd(H , sec,GateIn, card),
Rcv(H , sec,GateIn, 〈card, gin〉),
Snd(H , sec,GateOut, 〈card2, bal(card2), gin〉),
Rcv(H , sec,GateOut, 〈card2, bal(card2)′,finish〉)

μH
add ,μH

replace−−−−−−−−−→

Start(H , 〈GateIn,GateOut, card, bal〉),
Snd(H , sec,GateIn, card),
Rcv(H , sec,GateIn, 〈card, gin〉),

Snd(H , sec,GateOut, 〈card, bal(card), gin〉), Snd(H , sec,GateOut, 〈card2, bal(card2), gin〉),
Rcv(H , sec,GateOut, 〈card, bal(card)′,finish〉) Rcv(H , sec,GateOut, 〈card2, bal(card2)′,finish〉)

Figure 9: Examples of mutations in the case of the Oyster ceremony

The skip mutation μH
skip(SR). In this case, H skips

Snd(H, l2, A2,m2) in transition i and Rcv(H, l3, A3,m3)
in transition j:

.

.

.Σ1

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,m1) −→
AgSt(H, i + 1, kni+1), Posti+1, Snd(H, l2, A2,m2)

.

.

.�Σ2�μ

AgSt(H, j, �knj�μ), Prej , Rcv(H, l3, A3, �m3�μ) −→
AgSt(H, j + 1, �knj+1�μ), Postj+1, Snd(H, l4, A4, �m4�μ)

.

.

.�Σ3�μ

The pseudo-code for this and the other cases of the skip
mutation are given in Appendix B.

The skip mutation μH
skip(R). H skips Rcv(H, l1, A1,m1)

in transition i:
.
.
.Σ1

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,m1) −→
AgSt(H, i + 1, �kni+1�μ), Posti+1, Snd(H, l2, A2, �m2�μ)

.

.

.�Σ2�μ

AgSt(H, j, �knj�μ), Prej , Rcv(H, l3, A3, �m3�μ) −→
AgSt(H, j + 1, �knj+1�μ), Postj+1, Snd(H, l4, A4, �m4�μ)

.

.

.�Σ3�μ

The skip mutation μH
skip(RS). H skips both Rcv(H, l1,

A1,m1) and Snd(H, l2, A2,m2) in transition i:

.

.

.Σ1

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,m1) −→
AgSt(H, i + 1, �kni+1�μ), Posti+1, Snd(H, l2, A2, �m2�μ)

.

.

.�Σ2�μ

AgSt(H, j, �knj�μ), Prej , Rcv(H, l3, A3, �m3�μ) −→
AgSt(H, j + 1, �knj+1�μ), Postj+1, Snd(H, l4, A4, �m4�μ)

.

.

.�Σ3�μ

The skip mutation μH
skip(RSR). H skips both

Rcv(H, l1, A1,m1) and Snd(H, l2, A2,m2) in transition
i and Rcv(H, l3, A3,m3) in transition j:

.

.

.Σ1

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,m1) −→
AgSt(H, i + 1, �kni+1�μ), Posti+1, Snd(H, l2, A2, �m2�μ)

.

.

.�Σ2�μ

AgSt(H, j, �knj�μ), Prej , Rcv(H, l3, A3, �m3�μ) −→
AgSt(H, j + 1, �knj+1�μ), Postj+1, Snd(H, l4, A4, �m4�μ)

.

.

.�Σ3�μ

Algorithm 1 μH
skip(S): skip Snd(H , l2, A2,m2) in transi-

tion i, with landing transition j as in (1)

1: if �knj�μ = knj = kni+1 then
2: if �Σ2�μ still contains a transition with Snd(A3, l3,H ,m3) in its

conclusions then
3: transition j is the same as the original one in trace tr , i.e.
4: AgSt(H, j, knj), Prej , Rcv(H, l3, A3,m3) −→

AgSt(H, j + 1, knj+1), Postj+1, Snd(H, l4, A4,m4)
5: else � �Σ2�μ does not contain a transition with Snd(A3, l3,H ,m3)

in its conclusions
6: build all transitions j for all mutations �m3�μ =
{(format(m3))(m) | m ∈ submsg(m3)} of m3 and for each
of these, set �knj+1�μ = knj ∪ {�m3�μ} ∪ Prej and build all
�m4�μ = {(format(m4))(m) | m ∈ submsg(m4)} that can be
generated by �knj+1�μ, i.e.

7: AgSt(H, j, knj), Prej , Rcv(H, l3, A3, �m3�μ) −→
AgSt(H, j + 1, �knj+1�μ), Postj+1, Snd(H, l4, A4, �m4�μ)

8: else � this case is
when knj = kni+1 ∪X for some set X = {Mx

1 , ...,Mx
n} of messages

all different from m3 and received by H in Σ2

9: if �Σ2�μ still contains a transition with Snd(A3, l3,H ,m3) in its
conclusions then

10: H skipped all transitions of Σ2 in which he received Mx
1 , ...,Mx

n ,
11: �knj�μ = knj = kni+1,
12: �knj+1�μ = knj ∪ {m3} ∪ Prej ,
13: build all �m4�μ = {(format(m4))(m) | m ∈ submsg(m4)}

that can be generated by �knj+1�μ, i.e.
14: AgSt(H, j, �knj�μ), Prej , Rcv(H, l3, A3,m3) −→

AgSt(H, j + 1, �knj+1�μ), Postj+1, Snd(H, l4, A4, �m4�μ)
15: else � �Σ2�μ does not contain a transition with Snd(A3, l3,H ,m3)

in its conclusions
16: H skipped all transitions of Σ2 in which he received Mx

1 , ...,Mx
n

and cannot receive m3 in its original form but only in its mutated form �m3�μ

17: �knj�μ = knj = kni+1,
18: go to 6

4.3.2. The replace mutation. This mutation captures the
fact that a human user may send a message in place of
another one (the case in which H replaces an action of
a ceremony with another one is obtained by combining a
skip and an add mutation).

If we were to allow the human to replace a message
to send with any message that he can build out of his
current knowledge, then we would have to deal with an
infinite set of options (even if the human knows only
one thing, such as his name, the message generation and
analysis rules will allow him to generate an infinite set
of messages); we will have the same problem with the
add mutation that we consider next. In security protocol
analysis, the ability of the attacker to generate infinitely
many actors is a cause of non-termination of the analysis,
which is controlled by considering only the messages that
honest agents will actually respond to (and by introducing
symbolic techniques, such as the “lazy intruder” [27],

96

Algorithm 2 Matching mutation for μH
skip(S)

1: Consider the transition next(i) that immediately follows the mutated human
transition i

2: AgSt(A2, x, knx), Prex, Rcv(A2, l2,H ,m2) −→
AgSt(A2, x + 1, knx+1), Postx+1, Snd(A2, lp, As,mp) where As

is one of the other agents and lp and mp are some channel and message
as specified in Σ2.

3: remove Rcv(A2, l2,H ,m2) from next(i)
4: �knx�μ = knx−1

5: �knx+1�μ = knx ∪ Prex

6: build all �mp�μ = {(format(mp))(m) | m ∈ submsg(mp)} that can
be generated by �knx+1�μ i.e.

7: AgSt(A2, x, �knx�μ), Prex −→
AgSt(A2, x + 1, �knx+1�μ), Postx+1, Snd(A2, lp, As, �mp�μ)

8: Let h ::= next(i)
9: if ∃next(h) i.e.

10: AgSt(As, s, kns), Prey, Rcv(As, lp, As−1,mp) −→
AgSt(As, s + 1, kns+1), Posts+1, Snd(As, lp, As+1,mp+1)

then
11: �kns�μ = kns−1

12: mp = �mp�μ

13: �kns+1�μ = �kns�μ ∪ Pres ∪ �mp�μ

14: build all �mp+1�μ = {(format(mp+1))(m) | m ∈
submsg(mp+1)} that can be generated by �kns+1�μ i.e.

15: AgSt(As, s, �kns�μ), Pres, Rcv(As, lp, As−1, �mp�μ) −→
AgSt(As, s + 1, �kns+1�μ), Posts+1,
Snd(As, lp, As+1, �mp+1�μ)

16: go to 9 with h ::= next(h)

to manage the remaining infinite set of “answerable”
messages). We cannot do that as our approach generates
mutations in the behavior of the other agents to match
the human mutations, so the other agents will be able to
respond to any human message. Similar to [7], we thus
restrict our attention to the messages that are already in the
human’s current knowledge kn (rather than in the knowl-
edge’s closure under the generation and analysis rules).
More specifically, we consider P(kn) \ ∅, the powerset
of kn , i.e., the finite set of all subsets of kn including
kn but excluding the empty set as it does not make sense
to send an empty message. Moreover, to simplify further,
we restrict our attention to messages of the same type.
We leave the investigation of other controlled notions of
“sendable” messages to future work.

Definition 3. A replace mutation μH
replace : tr → tr ′

is a human mutation of tr ’s human subtrace
[a0, . . . , ai, . . . , an]

H such that tr ′ includes the new
human subtrace [a0, . . . , �ai�

μ, �ai+1�
μ, . . . , �an�μ],

where ai is a send action Snd(H, l, A,m) and �ai�
μ

is its mutation obtained by replacing the message m
either with a sub-message (but preserving the for-
mat) or with a message contained in the powerset
P(kni) \ ∅ of H’s current knowledge (but preserving
types as specified by the corresponding constants);
�ai+1�

μ, . . . , �an�μ are the mutations of the actions
ai+1, . . . , an obtained by matching and propagating
this mutation.

Again, we show the effect of the μH
replace mutation by

showing its effect on the subtrace (1):

.

.

.Σ1

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,m1) −→
AgSt(H, i + 1, kni+1), Posti+1, Snd(H, l2, A2, �m2�μ)

.

.

.�Σ2�μ

AgSt(H, i + 1, �kni+1�μ), Prei+1, Rcv(H, l3, A3, �m3�μ) −→
AgSt(H, i + 2, �kni+2�μ), Posti+2, Snd(H, l4, A4, �m4�μ)

.

.

.�Σ3�μ

where μ, which denotes the mutation composed of μH
replace

and the matching and propagation entailed by μH
replace ,

replaces m2 either with �m2�
μ = {(format(m2))(m) |

m ∈ submsg(m2)} or with a message m that has the
same constant as m2 and is obtained from H’s current
knowledge as shown in Algorithm 11, which is given in
Appendix C along with Algorithm 12 for the matching
mutation.9

For example, H could start the Oyster ceremony with
one card card1 and complete it with another card card2,
thus giving rise to two “incomplete journeys”, as shown
in Figure 9 and discussed in § 5.1. For another example,
see the SSO ceremony in § 5.2.

4.3.3. The add mutation. There are two different cases
for this mutation: the human could

• send at any time any message that is in the
powerset of the messages that are in his current
knowledge, or

• duplicate a send action.10

Definition 4. An add mutation is a mutation μH
add :

tr → tr × tr ′ such that the original trace
tr = [a0, . . . , ai−1, ai, ai+1, . . . , an] is run in
parallel with the new, mutated trace tr ′ =
[a0, . . . , ai−1, �ai�

μ, �ai+1�
μ, . . . , �an�μ], where ai is

a send action and �ai�
μ is its possible mutation

obtained either by duplicating ai or by adding an
action Snd(H, l, A,m) at state i for some l with
A,m ∈ P(kni) \ ∅, and �ai+1�

μ, . . . , �an�μ are the
mutations of the actions ai, . . . , ai+k−1 obtained by
matching and propagating this mutation.

Consider the beginning of the subtrace (1). μH
add mu-

tates this to either

.

.

.Σ1

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,M1) −→
AgSt(H, i + 1, kni+1), Posti+1, Snd(H, l2, A2,M2)

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,M1) −→
AgSt(H, i + 1, kni+1), Snd(H, l, A,M)

.

.

.�Σ2�μ

or

.

.

.Σ1

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,M1) −→
AgSt(H, i + 1, kni+1), Posti+1, Snd(H, l2, A2,M2)

AgSt(H, i, kni), Prei, Rcv(H, l1, A1,M1) −→
AgSt(H, i + 1, kni+1), Snd(H, l2, A2, �M2�μ)

.

.

.�Σ2�μ

The add mutation is best exemplified when combined
with the other mutations, e.g.,

• sending at any time any message that he knows
can be combined with a skip mutation (e.g., to
skip some steps of a ceremony and instead send

9. We give only one algorithm for μH
replace since, differently from the

cases of the skip mutations, the two subcases of μH
replace proceed in the

same way after the replacement of m2.

10. Note that we only consider mutations initiated by a human agent;
as a consequence, we do not consider the situation in which the human
agent initiates a mutation of the ceremony by adding a receive action
as that would require another agent (human or not) to have added the
corresponding send action first.

97

Mutation Attacker Case Study
Oyster SSO

skip S - 2 -
SR - 3 -
R - 2 -
RS - 1 -
RSR - 1 -

replace submessage � - 232
type - 2 -

add - 92
add&replace submessage � - 232

type - 2 -

Table 1: Mutated models generated by X-Men

an arbitrary message before continuing with the
rest of the ceremony),

• duplicating a send action can be combined with a
replace mutation (as we do in our case studies).

For example, H could start the Oyster ceremony
touching in with one card card1 and then, by mistake,
touch out with two cards; this can be represented by
adding a second touch-out send message where the first
card is replaced with the second, thus obtaining the two
traces shown in Figure 9.

Our tool implements this mutation as described in
the pseudo-code in Algorithm 13, which is given in
Appendix D along with Algorithm 14 for the matching
mutation.

5. X-Men: a tool for the generation of mu-
tated models based on human behaviors

In this section, we show how our formalization can
be used effectively for discovering attacks that are due to
the behavior of human agents in security ceremonies. As
proof-of-concept, we have applied our tool X-Men to two
case studies, the Oyster ceremony and the Single Sign-On
ceremony. As explained in more detail in the following,
X-Men generated a large number of mutated models for
these ceremonies, which we have analyzed using Tamarin.

X-Men is a prototype tool written in Java. As shown
in Figure 1, X-Men takes as input a model of the security
ceremony (a specification file in the .spthy format, where
.spthy stands for security protocol theory) and executes
a Python script that splits the model into channel rules,
agent rules and all other rules and the goals. The security
analyst employing X-Men then selects the desired muta-
tion (the three we have defined here or their combinations,
and any other mutation that will be defined in X-Men’s
library of behavioral patterns in the future) to mutate the
agent and the other rules, which are then merged with
the original channel rules and goals to produce the many
different mutated models that can be input to Tamarin.

X-Men generated a large number of mutated models
for our two case studies, as shown in Table 1. We then
used Tamarin to analyze individually these mutated mod-
els. Let us now summarize the results of the analysis (we
lack space to discuss them in detail).

5.1. Analysis of the Oyster ceremony

Table 2 shows some of the attacks found with the
models obtained using the mutations applied to the Oyster

ceremony (due to lack of space, we exclude the results per-
taining to the 92 models generated by the add mutation).
“Mutated model” lists the file identifier of the generated
file (as used at [40]) and the table also provides mutation
details as well as a brief explanation of the human agent’s
behavior for each model. In addition to the three goals
discussed in § 4.2, we have used Tamarin to check the
functional goal (a.k.a. executable goal) that the mutations
did not create models in which the legitimate execution
trace of the ceremony is not valid anymore. All the models
considered in the table passed this check.

We describe three interesting attacks that Tamarin has
been able to discover out of the many mutations generated.

Attack #1. The MSC of the attack (Figure 10a)
shows how the human agent H may execute the Oyster
ceremony without touching-in at the entrance (as shown
by the dotted arrows representing the human agent who is
not touching-in). H touches-out the oyster and GateOut
reads the information saved on the card, which does not
specify where H entered as GateIn was not able to write
its identifier gin on the card. The security goal GO1 is not
verified, entailing what TfL calls an incomplete journey as
mentioned in § 2, and the system charges a penalty fare
as it is not able to calculate the journey of the passenger.

This is a real scenario that occurs when the passenger
forgets to touch-in, e.g., when the station has no proper
gates but only card readers at the station entrance, when
the gates are already open (TfL sometimes opens the gates
to speed up entry/exit during rush hour or when there are
a large number of passengers), or when the reader is not
working properly and does not read/write the Oyster card.

Attack #2. H may use two different cards in a
single journey, touching-in with the first and touching-out
with the second, so that GO2 fails with two incomplete
journeys. This may appear to be an uncommon scenario,
but several tourists and even Londoners suffered from
this problem. For instance, the passenger might have two
Oyster cards in their pockets and confuse them, or the
passenger might use Apple/Google pay (cf. §2) but using
two different devices (say smartphone and smartwatch),
which will cause two incomplete journeys because the
Device Account Number is unique for each device and is
used by TfL as the identifier for a single journey.

Attack #3. The MSC in Figure 10b shows how H
may use two cards (e.g., Oyster and a contactless card),
simultaneously touching them both in/out when enter-
ing/exiting (as shown by the dotted arrows representing
a parallel second execution of the Oyster ceremony), so
that GO3 fails due to a card clash (cf. § 2). This occurs,
e.g., when a passenger touches with a wallet that holds
all the passenger’s cards that the system considers to be
valid payment cards.

The attacks on the Oyster ceremony were discovered
using the mutations generated by X-Men as shown in
Table 2. The analysis did not require the activation of
a Dolev-Yao attacker as the system, through the matching
mutations, replied and billed the passengers “wrongly”
due to their mistakes. While these attacks are, to some
extent, known to TfL (cf. their warnings in Figure 4)
and can be gathered empirically by observing the concrete
behavior of the Tube passengers, it is important to stress
that X-Men allows us to discover them automatically.
Other attacks might be discovered by considering other

98

H GateIn GateOut

oyster , balance

oyster , balance-fare ,finish

(a) Incomplete journey scenario

H GateIn GateOut

oyster

card

oyster , gin

card , gin

oyster , balance, gin

card , balance, gin

oyster , balance-fare ,finish

card , balance-fare ,finish

(b) Card clash scenario

Figure 10: Two attack scenarios for the Oyster ceremony

Mutation Mutation details Explanation
Goal

Mutated complete journey same card card clash functional
model (GO1) (GO2) (GO3)

skip S M0 Skip send in H1 H does not touch in � � × •
M1 Skip send in H2 H does not touch out × × × •

SR M0 Skip send in H1 and receive in H2 H does not touch in (here H ignores any
response from GateIn)

� × × •

M1 Skip send in H1 and receive in H3 H does not touch in (here H could receive
a response from GateIn but ignores any
response from GateOut)

� � × •

M2 Skip send in H2 and receive in H3 H does not touch out (here H ignores any
response from GateOut)

× × × •

R M0 Skip receive in H2 H does not receive confirmation of touch in � × × •
M1 Skip receive in H3 H does not receive confirmation of touch out × × × •

RS M0 Skip receive and send in H2 and
receive in H3

H does not receive confirmation of touch in
and does not touch out (here H could receive
a response from GateOut)

× × × •

RSR M0 Skip receive and send in H2 and
receive in H3

H does not receive confirmation of touch in
and does not touch out (here H ignores any
response from GateOut)

� × × •

replace M0 Replace oyster with ccard in whole
ceremony

H uses a contactless card instead of Oyster × × × •

M1 Replace oyster with ccard only in
H2 and after

H touches out using a different card × � × •

M2 Replace bal(oyster) with
bal(ccard)

H uses balance of ccard instead of Oyster × × × •

add&replace M0 Similar to “replace M0” keeping the
original ceremony

H uses a contactless card instead of Oyster × � � •

M1 Similar to “replace M1” keeping the
original ceremony

H touches out using a different card × � × •

M2 Similar to “replace M2” keeping the
original ceremony

H uses balance of ccard instead of Oyster × × × •

Table 2: Some of the attacks found on the models obtained using the mutations applied to the Oyster ceremony
(� indicates that an attack has been found, × indicates that no attack was found, • indicates that the functional goal
is verified)

goals or other mutations. Moreover, in the style of model-
based testing (see the end of §3), it is possible to use the
attack traces to generate concrete test cases to be executed
on the code of the ceremony (if that is available).

To provide an example of the analysis in the presence
of an attacker, we have considered the SSO ceremony.

5.2. Analysis of the SSO ceremony

The SAML-based Single Sign-on for Google Apps
suffered from a well-know man-in-the-middle attack [4].
The protocol relies on the use of an authentication as-
sertion AuthAssert(ID ,C , IdP ,SP) signed by the iden-
tity provider IdP , where ID is an identifier and SP
is the provider of a service that a client C wishes to
use. In a nutshell (see [4] for details), the attack was
due to the fact that the implementation had simplified
AuthAssert(ID ,C , IdP ,SP) into AuthAssert(C ,SP)
to speed up the digital signature. A malicious SP can use
this assertion to pose as C in another run of the protocol.

We have specified this SSO in X-Men, consider-
ing what would happen if SP is played by the at-

tacker and IdP is played by a human, who may mis-
takenly generate and sign a wrong authentication asser-
tion. Indeed, the replace (submessage) mutation generates
AuthAssert(C ,SP) among other mutations. We have
formalized the goal “IdP authenticates only the agent
who requires to be authenticated” as a standard injective-
agreement goal in Tamarin (see Appendix E) and indeed
we were able to find the attack. This shows that our
approach is able to find an attack that was not present
in the original specification of SAML-based Single Sign-
on but was introduced in Google’s implementation [4].
Our mutations, among other things, capture such possible
specification-implementation deviances.

6. Related work

In [28], Paulson introduced the Oops rule to model
mistakes done by agents when executing a security pro-
tocol, such as the loss (by any means) of a session key.
However, the notion of security ceremony and the explicit
investigation of the consequences of explicitly considering

99

human agents and their mistakes was introduced by Elli-
son in [18], one of the pioneers of socio-technical security.

One of the first formal approaches to investigate secu-
rity ceremonies is the concertina model introduced in [9],
which spans over a number of socio-technical layers,
focusing in particular on the socio-technical protocol be-
tween a user persona and a computer interface, but without
explicitly considering human mistakes nor accounting for
an explicit attacker. Similarly, the approaches in [12], [25]
provide a formal model to reason about how a Dolev-Yao-
style attacker can attack the communication between hu-
mans and computers, including storing of human knowl-
edge, but without explicitly considering human mistakes.

In contrast, Basin et al. [7] provide a formal model
for reasoning about some errors that humans involved
in security protocols may make. They specify rules for-
malizing different types of humans (untrained, infallible
or fallible humans), modeling a human who can send
and receive any messages, resulting in attacks because a
human discloses information, but also in attacks because
the human just enters the same information on the wrong
device or accepts a received message he should not. They
successfully applied their model to analyze some authen-
tication protocols. Although their approach is similar in
spirit to ours, there are some fundamental differences
along with some affinities. The two main differences are
the following ones. First, they only consider scenarios in
which the Dolev-Yao attacker actively attacks the protocol,
whereas our approach works also when the attacker is
not present thanks to the matching mutations. Second,
similar to what we do, they also consider an add rule
that allows humans to send “controlled” messages that
are in their current knowledge, but our mutations allow
us to capture a different, and to some extent wider, set of
human deviations from the original ceremony.

Similar to [7], Curzon et al. [14] propose a formal
human model that includes a specific attacker able to
exploit the errors against the human user. The errors
considered are those caused by the humans’ interpretation
of the system and by the design of the interfaces, but not
those entailed by human choices or mistakes as we do.
Moreover, they do not consider communication channels.

Johansen and Jøsang [23] define probabilistic pro-
cesses to model the actions of a human agent, separating
the model of the human and that of the user interface.
They introduce a “compilation” operation in order to
capture the interaction of the human agent and the user
interface. Their probabilistic model for the human agent
is an extension of the persona model [34]. Their approach
provides only a preliminary formalization without a secu-
rity analysis.

Beckert and Beuster [8] provide a formal semantics
for GOMS models augmented with formal models of the
application and the user’s assumptions about the applica-
tion, but they do not consider human mistakes in detail.

Pavlovic and Meadows [29] employ actor-networks
as a formal model of computation and communication in
networks of computers, humans and their devices, but they
too do not consider human mistakes in detail.

Radke and Boyd [31] introduce the notion of human-
followable security wherein a human user can understand
the process and logic behind authentication protocols.
They focus on showing how to transform existing authen-

tication protocols into protocols with human-followable
security.

While our approach is quite radically different from
the research in [8], [14], [23], [29], [31], we believe that
there might be interesting synergies between our muta-
tions and the way in which they model the assumptions
and perceptions of the human users, which we plan to
investigate in future work.

7. Conclusions

Our approach allows security analysts to consider
human “shades of gray” in the analysis of security cere-
monies. We have already mentioned a number of direc-
tions for future work. We also plan to: extend the current
mutations by weakening some of the constraints (e.g., on
the types and formats of the messages, say to consider
other controlled notions of “sendable” message or the
case in which the right message is composed in a wrong
format); consider other abilities of the attacker (e.g., as
in [5]); extend X-Men’s library of behavioral patterns
with other mutations; formalize combinations of mutations
and prove compositionality results; improve the efficiency
of our approach by reducing the number of generated
mutated models (e.g., by identifying isomorphic models)
and by automatically checking whether attacks are real
or not; link our formal analysis to mutation testing by
generating test cases out of the attack traces; and, finally,
consider other, even more complex, case studies.

Acknowledgment

We thank Giampaolo Bella, Rosario Giustolisi,
Gabriele Lenzini, Sebastian Mödersheim, Ralf Sasse and
the anonymous reviewers for their useful comments and
suggestions.

References

[1] M. Abadi and C. Fournet. Mobile Values, New Names, and Secure
Communication. SIGPLAN Not., (3):104–115, 2001.

[2] O. Almousa, S. Mödersheim, and L. Viganò. Alice and Bob:
Reconciling Formal Models and Implementation. In Programming
Languages with Applications to Biology and Security, LNCS 9465,
pages 66–85. Springer, 2015.

[3] A. Armando, W. Arsac, T. Avanesov, M. Barletta, A. Calvi, A. Cap-
pai, R. Carbone, Y. Chevalier, L. Compagna, J. Cuéllar, G. Erzse,
S. Frau, M. Minea, S. Mödersheim, D. von Oheimb, G. Pelle-
grino, S. Ponta, M. Rocchetto, M. Rusinowitch, M. Torabi Dashti,
M. Turuani, and L. Viganò. The AVANTSSAR platform for
the automated validation of trust and security of service-oriented
architectures. In TACAS, LNCS 7214, pages 267–282. Springer,
2012.

[4] A. Armando, R. Carbone, L. Compagna, J. Cuéllar, and M. L.
Tobarra. Formal Analysis of SAML 2.0 Web Browser Single Sign-
On: Breaking the SAML-based Single Sign-on for Google Apps.
In FMSE, pages 1–10. ACM Press, 2008.

[5] M. Backes, J. Dreier, S. Kremer, and R. Künnemann. A Novel
Approach for Reasoning about Liveness in Cryptographic Protocols
and Its Application to Fair Exchange. In EuroS&P 2017, pages
76–91. IEEE, 2017.

[6] D. A. Basin, S. Radomirovic, and M. Schläpfer. A Complete
Characterization of Secure Human-Server Communication. In
Computer Security Foundations Symposium (CSF), pages 199–213.
IEEE, 2015.

100

[7] D. A. Basin, S. Radomirovic, and L. Schmid. Modeling Human
Errors in Security Protocols. In Computer Security Foundations
Symposium (CSF), pages 325–340. IEEE, 2016.

[8] B. Beckert and G. Beuster. A method for formalizing, analyzing,
and verifying secure user interfaces. In International Conference
on Formal Engineering Methods, pages 55–73. Springer, 2006.

[9] G. Bella and L. Coles-Kemp. Layered analysis of security cer-
emonies. IFIP Advances in Information and Communication
Technology, pages 273–286, 2012.

[10] B. Blanchet. An efficient cryptographic protocol verifier based on
prolog rules. In CSFW. IEEE, 2001.

[11] M. Büchler, J. Oudinet, and A. Pretschner. Security Mutants for
Property-Based Testing. In Tests and Proofs, LNCS 6706, pages
69–77. Springer, 2011.

[12] M. C. Carlos, J. E. Martina, G. Price, and R. F. Custódio. A pro-
posed framework for analysing security ceremonies. In SECRYPT,
pages 440–445. Scitepress Digital Library, 2012.

[13] N. Courtois, K. Nohl, and S. O’Neil. Algebraic Attacks on the
Crypto-1 Stream Cipher in MiFare Classic and Oyster Cards. IACR
Cryptology ePrint Archive, page 166, 2008.

[14] P. Curzon, R. Rukšėnas, and A. Blandford. An approach to formal
verification of human–computer interaction. Formal Aspects of
Computing, 19(4):513–550.

[15] F. Dadeau, P.-C. Héam, R. Kheddam, G. Maatoug, and M. Rusi-
nowitch. Model-based mutation testing from security protocols in
hlpsl. Software Testing, Verification and Reliability, 25(5-7):684–
711, 2015.

[16] G. de Koning Gans, J.-H. Hoepman, and F. D. Garcia. A practical
attack on the MiFare Classic. In CARDIS, LNCS 5189, pages
267–282. Springer, 2008.

[17] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Program Mutation:
A New Approach to Program Testing. Infotech State of the Art
Report, Software Testing, 1979.

[18] C. M. Ellison. Ceremony Design and Analysis. IACR Cryptology
ePrint Archive, pages 1–17, 2007.

[19] S. Escobar, C. Meadows, and J. Meseguer. Maude-NPA: Crypto-
graphic protocol analysis modulo equational properties. In Foun-
dations of Security Analysis and Design V. FOSAD 2009, FOSAD
2007, FOSAD 2008, LNCS 5705, pages 1–50. Springer, 2009.

[20] T. Fábrega, F. Javier, J. C. Herzog, and J. D. Guttman. Strand
spaces: Proving security protocols correct. Journal of computer
security, (2-3):191–230, 1999.

[21] F. D. Garcia, G. de Koning Gans, R. Muijrers, P. Van Rossum,
R. Verdult, R. W. Schreur, and B. Jacobs. Dismantling MiFare
Classic. In ESORICS, LNCS 5283, pages 97–114. Springer, 2008.

[22] Y. Jia and M. Harman. An Analysis and Survey of the Development
of Mutation Testing. IEEE Transactions on Software Engineering,
37(5):649–678, 2011.

[23] C. Johansen and A. Jøsang. Probabilistic modelling of humans in
security ceremonies. In Data Privacy Management, Autonomous
Spontaneous Security, and Security Assurance (DPM, QASA, SE-
TOP), LNCS 8872, pages 277–292. Springer, 2014.

[24] J. E. Martina, E. dos Santos, M. C. Carlos, G. Price, and R. F.
Custódio. An adaptive threat model for security ceremonies.
International Journal of Information Security, (2):103–121, 2015.

[25] J. E. Martina, T. C. Salavaro de Souza, and R. F. Custódio.
Ceremonies Formal Analysis in PKI’s Context. In Computational
Science and Engineering (CSE), pages 392–398. IEEE, 2009.

[26] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin. The Tamarin
prover for the symbolic analysis of security protocols. In CAV
2013, LNCS 8044, pages 696–701. Springer, 2013.

[27] S. Mödersheim and L. Viganò. The Open-Source Fixed-Point
Model Checker for Symbolic Analysis of Security Protocols.
In Foundations of Security Analysis and Design V. FOSAD
2009, FOSAD 2007, FOSAD 2008, LNCS 5705, pages 166–194.
Springer, 2009.

[28] L. C. Paulson. The inductive approach to verifying cryptographic
protocols. Journal of computer security, (1-2):85–128, 1998.

[29] D. Pavlovic and C. Meadows. Actor-Network Procedures (Ex-
tended Abstract). In ICDCIT, LNCS 7154, pages 7–26. Springer,
2012.

[30] M. Peroli, F. De Meo, L. Viganò, and D. Guardini. MobSTer: A
Model-Based Security Testing Framework for Web Applications.
Software Testing, Verification & Reliability, 28(8), 2018.

[31] K. Radke and C. Boyd. Security Proofs for Protocols Involving
Humans. Comput. J., 60(4):527–540, 2017.

[32] K. Radke, C. Boyd, J. M. Gonzalez Nieto, and M. Brereton.
Ceremony Analysis: Strengths and Weaknesses. In SEC, IFIP
AICT 354, pages 104–115. Springer, 2011.

[33] B. Schmidt, S. Meier, C. Cremers, and D. A. Basin. Automated
Analysis of Diffie-Hellman Protocols and Advanced Security Prop-
erties. In Computer Security Foundations Symposium (CSF), pages
78–94. IEEE, 2012.

[34] R. Semanc̆ı́k. Basic properties of the persona model. Computing
and Informatics, 26(2):105–121, 2007.

[35] The Tamarin User Manual. https://tamarin-prover.github.io.

[36] TfL (Transport for London). Card Clash.

[37] TfL (Transport for London). Incomplete Journeys.

[38] TfL (Transport for London). TfL Transparency Strategy.

[39] L. Viganò. The SPaCIoS project: Secure Provision and Consump-
tion in the Internet of Services. In ICST, pages 497–498. IEEE,
2013.

[40] X-Men: A Mutation-Based Approach for the Formal Analysis of
Security Ceremonies. https://sempreboni.github.io/X-Men/.

Appendix

1. Agent rules

The rules for the GateIn and GateOut agents in the
Generalized Main Ceremony for the Tube are given in
Figure 11 and Figure 12, respectively.

2. The other four cases of the skip mutation
and the other matching mutations for the skip
mutation

Algorithm 3, Algorithm 4, Algorithm 5 and Algo-
rithm 6 show the other four cases of the skip mutation.

Algorithm 7, Algorithm 8, Algorithm 9 and Algo-
rithm 10 show the other matching mutations for the skip
mutation.

Algorithm 3 μH
skip(SR): skip Snd(H , l2, A2,m2) in i and

Rcv(H, l3, A3,m3) in j

1: if �knj�μ = knj = kni+1 then
2: �knj+1�μ = knj ∪ Prej ,
3: build all �m4�μ = {(format(m4))(m) | m ∈ submsg(m4)} that

can be generated by �knj+1�μ, i.e.
4: AgSt(H, j, �knj�μ), Prej , −→

AgSt(H, j + 1, �knj+1�μ), Postj+1, Snd(H, l4, A4, �m4�μ)
5: else � this case is

when knj = kni+1 ∪X for some set X = {Mx
1 , ...,Mx

n} of messages
all different from m3 and received by H in Σ2

6: H skipped all transitions of Σ2 in which he received Mx
1 , ...,Mx

n ,
7: �knj�μ = knj = kni+1,
8: go to 1

3. The replace and add mutations

Algorithm 11 shows the replace mutation and Algo-
rithm 12 shows the matching mutation.

101

[]
Start(GateIn,〈H ,gin〉)−−−−−−−−−−−−−−→ [AgSt(GateIn, 1, 〈H , gin〉)] (Gi0)

[AgSt(GateIn, 1, 〈H , gin〉), Insec(H ,GateIn, 〈‘card’, oyster〉)] Rcv(GateIn,sec,H ,〈‘card’,oyster〉)−−−−−−−−−−−−−−−−−−−−−→ [AgSt(GateIn, 2, 〈H , gin, oyster〉] (Gi1)

[AgSt(GateIn, 2, 〈H , gin, oyster〉]
Snd(GateIn,sec,H ,〈〈‘card’,‘gin’〉〈oyster,gin〉〉),CommitGid(GateIn,H ,gin)−−→ [Outsec(GateIn,H , 〈〈‘card’, ‘gin’〉, 〈oyster , gin〉〉)] (Gi2)

Figure 11: Agent rules for the GateIn in the Generalized Main Ceremony for the Tube

[]
Start(GateOut,〈H ,gout〉)−−−−−−−−−−−−−−−→ [AgSt(GateOut, 1, 〈H , gout〉)] (Go0)

[AgSt(GateOut, 1, 〈H , gout〉), Insec(H ,GateOut, 〈〈‘card’, ‘balance’, ‘gin’〉, 〈oyster , bal(oyster), gin〉〉)]
Rcv(GateOut,sec,H ,〈〈‘card’,‘balance’,‘gin’〉,〈oyster,bal(oyster),gin〉〉)−−−→ [AgSt(GateOut, 2, 〈H ,GateOut, oyster , bal(oyster), gin〉] (Go1)

[AgSt(GateOut, 2, 〈H ,GateOut, oyster , bal(oyster), gin〉]
Snd(GateOut,sec,H ,〈〈‘card’,‘balance’,‘finish’〉〈oyster,bal(oyster)′,‘finish’〉〉),Commit(GateOut,H ,‘finish’)−−−→

[Outsec(GateOut,H , 〈〈‘card’, ‘balance’, ‘finish’〉, 〈oyster , bal(oyster)′, ‘finish’〉〉)] (Go2)

Figure 12: Agent rules for the GateOut in the Generalized Main Ceremony for the Tube

Algorithm 4 μH
skip(R): skip Rcv(H , l1, A1,m1) in transi-

tion i
1: if �kni+1�μ = kni+1 = kni ∪ Prej then
2: transition i is the same as the original one in trace t, without the

Rcv(H , l1, A1,m1), i.e.
3: AgSt(H, i, kni), Prei −→

AgSt(H, i + 1, kni+1), Posti+1, Snd(H , l2, A2,m2)
4: else � this case is when kni+1 = kni ∪X ∪ Prei, that means that m1

has new knowledge
5: �kni+1�μ = kni ∪ Prei,
6: build all �m2�μ = {(format(m2))(m) | m ∈ submsg(m2)} that

can be generated by �kni+1�μ, i.e.
7: AgSt(H, i, kni), Prei −→

AgSt(A, i + 1, �kni+1�μ), Posti+1, Snd(H, l2, A2, �m2�μ)

4. The add mutations

Algorithm 13 shows the add mutation and Algo-
rithm 14 shows the matching mutation.

5. The specifications of the SSO ceremony

The goal of the Single Sign-On ceremony

The Identity Provider IdP authenticates only the
agent who requires to be authenticated.

can be formalized in Tamarin by a standard injective-
agreement lemma:

lemma injective_agree:
"All actor peer params #i.

Commit(actor, peer, params)@ i
==>
(Ex #j. Running(actor, peer, params)@ j & j < i
& not(Ex actor2 peer2 #i2.

Commit(actor2, peer2, params)@ i2
& not(#i = #i2)))

| (Ex #r. RevLtk(actor) @ r)
| (Ex #r. RevLtk(peer) @ r)"

Algorithm 5 μH
skip(RS): skip Rcv(H , l1, A1,m1) and

Snd(H , A2, l2,m2) in transition i, with landing transition
j

1: if �knj�μ = knj = kni then
2: if �Σ2�μ still contains a transition with Snd(A3, l3,H ,m3) in its RHS

then
3: transition j is the same as the original one in trace t, i.e.
4: AgSt(H, j, knj), Prej , Rcv(H, l3, A3,m3) −→

AgSt(H, j + 1, knj+1), Postj+1, Snd(H , l4, A4,m4)
5: else � �Σ2�μ does not contain a transition with Snd(A3, l3,H ,m3)

in its RHS
6: build all transitions j for all mutations �m3�μ =
{(format(m3))(m) | m ∈ submsg(m3)} of m3 and for each
of these, set �knj+1�μ = knj ∪ {�m3�μ} ∪ Prej and build all
�m4�μ = {(format(m4))(m) | m ∈ submsg(m4)} that can be
generated by �knj+1�μ, i.e.

7: �knj+1�μ = knj ∪ {�m3�μ} ∪ Prej ,
8: build all �m4�μ = {(format(m4))(m) | m ∈ submsg(m4)}

that can be generated by �knj+1�μ, i.e.
9: AgSt(H , j, knj), Prej , Rcv(H , l3, A3, �m3�μ) −→

AgSt(H , j + 1, �knj+1�μ), Postj+1, Snd(H , l4, A4, �m4�μ)

10: else � this case is when knj = kni ∪X for some set X of messages all
different from m3 and received by H in Σ2 with X = {Mx

1 , ...,Mx
n}

11: if �Σ2�μ still contains a transition with Snd(A3, l3,H ,m3) in its RHS
then

12: H skipped all transitions of Σ2 in which he received Mx
1 , ...,Mx

n ,
13: �knj�μ = knj = kni,
14: �knj+1�μ = knj ∪ {m3} ∪ Prej ,
15: build all �m4�μ = {(format(m4))(m) | m ∈ submsg(m4)}

that can be generated by �[knj+1�μ, i.e.
16: AgSt(H , j, �knj�μ), Prej , Rcv(H , l3, A3,m3) −→

AgSt(H, j + 1, �knj+1�μ), Postj+1, Snd(H, l4, A4, �m4�μ)
17: else � �Σ2�μ does not contain a transition with Snd(A3, l3,H ,m3)

in its RHS
18: H skipped all transitions of Σ2 in which he received Mx

1 , ...,Mx
n

and he cannot receive m3 in its original form but only in its mutation �m3�μ

19: �knj�μ = knj = kni,
20: go to 6

Algorithm 6 μH
skip(RSR): skip Rcv(H , l1, A1,m1) and

Snd(H , A2, l2,m2) in i and Rcv(H , l3, A3,m3) in j

1: if �knj�μ = knj = kni then
2: �knj+1�μ = knj ∪ Prej ,
3: build all �m4�μ = {(format(m4))(m) | m ∈ submsg(m4)} that

can be generated by �knj+1�μ, i.e.
4: AgSt(H, j, �knj�μ), Prej −→

AgSt(H, j + 1, �knj+1�μ), Postj+1, Snd(H, l4, A4, �m4�μ)
5: else � this case is when knj = kni ∪X for some set X of messages all

different from m3 and received by H in Σ2 with X = {mx
1 , ...,m

x
n}

6: H skipped all transitions of Σ2 in which he received mx
1 , ...,m

x
n,

7: �knj�μ = knj = kni,
8: go to 1

102

Algorithm 7 Matching mutation for μH
skip(R)

1: Consider the transition next(i) that immediately follows the mutated human
transition i

2: AgSt(A2, x, knx), Prex, Rcv(A2, l2,H ,m2) −→
AgSt(A2, x + 1, knx+1), Postx+1, Snd(A2, lp, As,mp) where As

is one of the other agents and lp and mp are some channel and message
as specified in Σ2.

3: if m2 in Snd(H , l2, A2,m2) in transition i is sent without modification
then

4: AgSt(A2, x, knx), Prex, Rcv(A2, l2,H ,m2) −→
AgSt(A2, x + 1, knx+1), Postx+1, Snd(A2, lp, As,mp)

5: Let h ::= next(i)
6: if ∃next(h) i.e.
7: AgSt(As, s, kns), Prey, Rcv(As, lp, As−1,mp) −→

AgSt(As, s + 1, kns+1), Posts+1, Snd(As, lp, As+1,mp+1)
then � no modification are necessary to the next transition

8: AgSt(As, s, kns), Prey, Rcv(As, lp, As−1,mp) −→
AgSt(As, s + 1, kns+1), Posts+1, Snd(As, lp, As+1,mp+1)

9: go to 6 with h ::= next(h)

10: else � this case is when �m2�μ is sent (modifications have been applied)
11: AgSt(A2, x, knx), Prex, Rcv(A2, l2,H , �m2�μ) −→

AgSt(A2, x + 1, �knx+1�μ), Postx+1, Snd(A2, lp, As, �mp�μ)
12: Let h ::= next(i)
13: if ∃next(h) i.e.
14: AgSt(As, s, kns), Prey, Rcv(As, lp, As−1,mp) −→

AgSt(As, s + 1, kns+1), Posts+1, Snd(As, lp, As+1,mp+1)
then

15: �kns�μ = kns−1

16: mp = �mp�μ

17: �kns+1�μ = �kns�μ ∪ Pres ∪ �mp�μ

18: build all �mp+1�μ = {(format(mp+1))(m) | m ∈
submsg(mp+1)} that can be generated by �kns+1�μ i.e.

19: AgSt(As, s, �kns�μ), Pres, Rcv(As, lp, As−1, �mp�μ) −→
AgSt(As, s + 1, �kns+1�μ), Posts+1,
Snd(As, lp, As+1, �mp+1�μ)

20: go to 13 with h ::= next(h)

Algorithm 8 Matching mutation for μH
skip(RS)

1: Consider the transition next(i) that immediately follows the mutated human
transition i

2: AgSt(A2, x, knx), Prex, Rcv(A2, l2,H ,m2) −→
AgSt(A2, x + 1, knx+1), Postx+1, Snd(A2, lp, As,mp) where As

is one of the other agents and lp and mp are some channel and message
as specified in Σ2.

3: remove Rcv(A2, l2,H ,m2) from next(i)
4: �knx�μ = knx−1

5: �knx+1�μ = knx ∪ Prex

6: build all �mp�μ = {(format(mp))(m) | m ∈ submsg(mp)} that can
be generated by �knx+1�μ i.e.

7: AgSt(A2, x, �knx�μ), Prex −→
AgSt(A2, x + 1, �knx+1�μ), Postx+1, Snd(A2, lp, As, �mp�μ)

8: Let h ::= next(i)
9: if ∃next(h) i.e.

10: AgSt(As, s, kns), Prey, Rcv(As, lp, As−1,mp) −→
AgSt(As, s + 1, kns+1), Posts+1, Snd(As, lp, As+1,mp+1)

then
11: �kns�μ = kns−1

12: mp = �mp�μ

13: �kns+1�μ = �kns�μ ∪ Pres ∪ �mp�μ

14: build all �mp+1�μ = {(format(mp+1))(m) | m ∈
submsg(mp+1)} that can be generated by �kns+1�μ i.e.

15: AgSt(As, s, �kns�μ), Pres, Rcv(As, lp, As−1, �mp�μ) −→
AgSt(As, s + 1, �kns+1�μ), Posts+1,
Snd(As, lp, As+1, �mp+1�μ)

16: go to 9 with h ::= next(h)

Algorithm 9 Matching mutation for μH
skip(SR)

1: Consider the transition next(i) that immediately follows the mutated human
transition i

2: AgSt(A2, x, knx), Prex, Rcv(A2, l2,H ,m2) −→
AgSt(A2, x + 1, knx+1), Postx+1, Snd(A2, lp, As,mp) where As

is one of the other agents and lp and mp are some channel and message
as specified in Σ2.

3: remove Rcv(A2, l2,H ,m2) from next(i)
4: �knx�μ = knx−1

5: �knx+1�μ = knx ∪ Prex

6: build all �mp�μ = {(format(mp))(m) | m ∈ submsg(mp)} that can
be generated by �knx+1�μ i.e.

7: AgSt(A2, x, �knx�μ), Prex −→
AgSt(A2, x + 1, �knx+1�μ), Postx+1, Snd(A2, lp, As, �mp�μ)

8: Let h ::= next(i)
9: if ∃next(h) i.e.

10: AgSt(As, s, kns), Prey, Rcv(As, lp, As−1,mp) −→
AgSt(As, s + 1, kns+1), Posts+1, Snd(As, lp, As+1,mp+1)

then
11: if s is different than j then
12: �kns�μ = kns−1

13: mp = �mp�μ

14: �kns+1�μ = �kns�μ ∪ Pres ∪ �mp�μ

15: build all �mp+1�μ = {(format(mp+1))(m) | m ∈
submsg(mp+1)} that can be generated by �kns+1�μ i.e.

16: AgSt(As, s, �kns�μ), Pres, Rcv(As, lp, As−1, �mp�μ) −→
AgSt(As, s + 1, �kns+1�μ), Posts+1,
Snd(As, lp, As+1, �mp+1�μ)

17: go to 9 with h ::= next(h)
18: else � s is equal to j, so this is the transition j in which we have to

remove the Rcv
19: remove Rcv(As, lp, As−1,mp) from transition j
20: AgSt(As, s, kns), Prey, −→

AgSt(As, s + 1, kns+1), Posts+1, Snd(As, lp, As+1,mp+1)
is in the form

21: AgSt(H, j, �knj�μ), Prej , −→
AgSt(H, j + 1, �knj+1�μ), Postj+1, Snd(H, l4, A4, �m4�μ)

22: Let h ::= next(j)
23: if ∃next(h) i.e.
24: AgSt(As, s, kns), Prey, Rcv(As, lp, As−1,mp) −→

AgSt(As, s + 1, kns+1), Posts+1,
Snd(As, lp, As+1,mp+1)

then
25: �kns�μ = kns−1

26: mp = �mp�μ

27: �kns+1�μ = �kns�μ ∪ Pres ∪ �mp�μ

28: build all �mp+1�μ = {(format(mp+1))(m) | m ∈
submsg(mp+1)} that can be generated by �kns+1�μ i.e.

29: AgSt(As, s, �kns�μ), Pres, Rcv(As, lp, As−1, �mp�μ) −→
AgSt(As, s + 1, �kns+1�μ), Posts+1,
Snd(As, lp, As+1, �mp+1�μ)

30: go to 23 with h ::= next(h)

103

Algorithm 10 Matching mutation for μH
skip(RSR)

1: Consider the transition next(i) that immediately follows the mutated human
transition i

2: AgSt(A2, x, knx), Prex, Rcv(A2, l2,H ,m2) −→
AgSt(A2, x + 1, knx+1), Postx+1, Snd(A2, lp, As,mp) where As

is one of the other agents and lp and mp are some channel and message
as specified in Σ2.

3: remove Rcv(A2, l2,H ,m2) from next(i)
4: �knx�μ = knx−1

5: �knx+1�μ = knx ∪ Prex

6: build all �mp�μ = {(format(mp))(m) | m ∈ submsg(mp)} that can
be generated by �knx+1�μ i.e.

7: AgSt(A2, x, �knx�μ), Prex −→
AgSt(A2, x + 1, �knx+1�μ), Postx+1, Snd(A2, lp, As, �mp�μ)

8: Let h ::= next(i)
9: if ∃next(h) i.e.

10: AgSt(As, s, kns), Prey, Rcv(As, lp, As−1,mp) −→
AgSt(As, s + 1, kns+1), Posts+1, Snd(As, lp, As+1,mp+1)

then
11: if s is different than j then
12: �kns�μ = kns−1

13: mp = �mp�μ

14: �kns+1�μ = �kns�μ ∪ Pres ∪ �mp�μ

15: build all �mp+1�μ = {(format(mp+1))(m) | m ∈
submsg(mp+1)} that can be generated by �kns+1�μ i.e.

16: AgSt(As, s, �kns�μ), Pres, Rcv(As, lp, As−1, �mp�μ) −→
AgSt(As, s + 1, �kns+1�μ), Posts+1,
Snd(As, lp, As+1, �mp+1�μ)

17: go to 9 with h ::= next(h)
18: else � s is equal to j, so this is the transition j in which we have to

remove the Rcv
19: remove Rcv(As, lp, As−1,mp) from transition j
20: AgSt(As, s, kns), Prey, −→
21: AgSt(As, s + 1, kns+1), Posts+1, Snd(As, lp, As+1,mp+1)

is in the form
22: AgSt(H, j, �knj�μ), Prej , −→

AgSt(H, j + 1, �knj+1�μ), Postj+1, Snd(H, l4, A4, �m4�μ)
23: Let h ::= next(j)
24: if ∃next(h) i.e.
25: AgSt(As, s, kns), Prey, Rcv(As, lp, As−1,mp) −→

AgSt(As, s + 1, kns+1), Posts+1,
Snd(As, lp, As+1,mp+1)

26: then
27: �kns�μ = kns−1

28: mp = �mp�μ

29: �kns+1�μ = �kns�μ ∪ Pres ∪ �mp�μ

30: build all �mp+1�μ = {(format(mp+1))(m) | m ∈
submsg(mp+1)} that can be generated by �kns+1�μ i.e.

31: AgSt(As, s, �kns�μ), Pres, Rcv(As, lp, As−1, �mp�μ) −→
AgSt(As, s + 1, �kns+1�μ), Posts+1,
Snd(As, lp, As+1, �mp+1�μ)

32: go to 24 with h ::= next(h)

Algorithm 11 replace mutation μH
replace

1: build all transitions i obtained by replacing m2 either with each �m2�μ =
{(format(m2))(m) | m ∈ submsg(m2)} or with each �m2�μ that is
in the powerset of H’s current knowledge kni+1 preserving types as specified
by the corresponding constants, i.e.

2: AgSt(H , i, kni), Prei,Rcv(H , l1, A1,m1) −→
AgSt(H , i + 1, kni+1), Posti+1, Snd(H , l2, A2, �m2�μ) � Σ2 does
not contain other transitions by H

3: if �Σ2�μ still contains a transition with Snd(A3, l3,H ,m3) in its conclu-
sions then � the new message �m2�μ has no influence on
m3

4: AgSt(H , i + 1, kni+1), Prei+1,Rcv(H , l3, A3,m3) −→
AgSt(H , i + 2, kni+2), Posti+2, Snd(H , l4, A4,m4)

5: else
6: if �Σ2�μ contains a transition with Snd(A3, l3,H , �m3�μ) in its

conclusions then � the new message �m2�μ has some influence on m3

7: �kni+2�μ = kni+1 ∪ �m3�μ ∪ Prei+1,
8: build all �m4�μ = {(format(m4))(m) | m ∈ submsg(m4)}

that can be generated by �kni+2�μ, as defined in 1 i.e.
9: AgSt(H , i + 1, kni+1), Prei+1,Rcv(H , l3, A3, �m3�μ) −→

AgSt(H , i + 2, �kni+2�μ), Posti+2, Snd(H , l4, A4, �m4�μ)
10: else � �Σ2�μ does not contain a transition

with Snd(A3, l3,H ,m3) or Snd(A3, l3,H , �m3�μ) in its conclusions
(the new message �m2�μ blocks the sending of m3)

11: �kni+2�μ = kni+1 ∪ Prei+1,
12: build all �m4�μ = {(format(m4))(m) | m ∈ submsg(m4)}

that can be generated by �kni+2�μ, as defined in 1 i.e.
13: AgSt(H , i + 1, kni+1), Prei+1 −→

AgSt(H , i + 2, �kni+2�μ), Posti+2, Snd(H , l4, A4, �m4�μ)

Algorithm 12 Matching mutation for μH
replace

1: Consider the transition next(i) that immediately follows the mutated human
transition i

2: AgSt(A2, x, knx), Prex, Rcv(A2, l2,H ,m2) −→
AgSt(A2, x + 1, knx+1), Postx+1, Snd(A2, lp, As,mp) where m2

could be either �m2�μ = {(format(m2))(m) | m ∈ submsg(m2)} or
�m2�μ that is in the powerset of H’s current knowledge kni+1 preserving
types as specified by the corresponding constants, As is one of the other agents
and lp and mp are some channel and message as specified in Σ2.

3: if �m2�μ = {(format(m2))(m) | m ∈ submsg(m2)} then
4: �knx+1�μ = knx ∪ Prex ∪ �m2�μ

5: �mp�μ = mp after removing all the messages that are not in �knx+1�μ.
6: else � �m2�μ is in the powerset of H’s current knowledge kni+1

preserving types as specified by the corresponding constants
7: �mp�μ = mp after changing all the messages preserving types as specified

by the corresponding constants.

8: Let h ::= next(i)
9: if ∃next(h) i.e.

10: AgSt(As, s, kns), Prey, Rcv(As, lp, As−1,mp) −→
AgSt(As, s + 1, kns+1), Posts+1, Snd(As, lp, As+1,mp+1)

then
11: �kns�μ = kns−1

12: mp = �mp�μ

13: �kns+1�μ = �kns�μ ∪ Pres ∪ �mp�μ

14: if �mp�μ = {(format(mp−1))(m) | m ∈ submsg(mp−1)} then
15: �mp+1�μ = mp+1 after removing all the messages that are not in

�kns+1�μ.
16: else � �mp�μ is generated using H’s current knowledge knp−1

17: �mp+1�μ = mp+1 after changing all the messages preserving types
as specified by the corresponding constants.

18: go to 9 with h ::= next(h)

Algorithm 13 add mutation μH
add

1: Add a transition at state i built by either
2: adding a Snd(H , l, A,m) for some l, A and m ∈ P(kni)\∅ preserving

types as specified by the corresponding constants, where Prei contains only
fresh facts (namely those fresh messages needed to built m; hence Prei could
be empty), keeping the premises fixed as the same as the state i, i.e.

3: AgSt(H, i, kni), Prei, Rcv(H , l1, A1,m1) −→
AgSt(H , i + 1, kni+1), Snd(H , l, A,m)

4: or duplicating an existing Snd(H , l, A,m2) action, keeping the premises
fixed as the same as the state i, i.e.

5: AgSt(H, i, kni), Prei, Rcv(H , l1, A1,m1) −→
AgSt(H , i + 1, kni+1), Snd(H , l, A,m2)

Algorithm 14 Matching mutation for μH
add

1: Consider the new mutated human transition i
2: AgSt(H, i, kni), Prei, Rcv(H , l1, A1,m1) −→

AgSt(H , i + 1, kni+1), Snd(H , l, As,m), where As is one of
the other agents and l and m are some channel and message as specified in
Algorithm 13.

3: Considering the receiver As, take its next(i) transition that immediately
follows the mutated human transition i.

4: Create a copy next(i) of the next(i) transition and in next(i) remove the
Snd() event (if any) and replace the values in the Rcv() event with l, m
and As

5: AgSt(As, s, kns), Pres, Rcv(As, l,H ,m) −→
AgSt(As, s + 1, kns+1)

6: For all transitions x after the transition next(i)
7: AgSt(A, x, knx) . . . −→ AgSt(H , x + 1, knx+1) . . .
8: increment the state increasing the role step the agent is in but keeping the rest

of the transitions intact.

104

