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Abstract—This paper aims to integrate AI (Artificial Intel-
ligence) with medical science to develop a classification tool
to recognize Covid-19 infection and other lung ailments. Four
conditions evaluated were Covid-19 pneumonia, non-Covid-19
pneumonia, pneumonia and normal lungs. The proposed AI
system is divided into 2 stages. Stage 1 classifies chest X-Ray
volumes into pneumonia and non-pneumonia. Stage 2 gets input
from stage 1 if X-ray belongs to pneumonic class and further
classifies it into Covid-19 positive and Covid-19 negative.

Index Terms—Covid-19, coronavirus, Deep learning, chest X-
ray, radiology images

I. INTRODUCTION

Deep learning having risen as the core technology of Artifi-

cial Intelligence (AI) has been found to significantly diagnose

lung diseases with great accuracy [1, 2]. X-rays have been

helpful to diagnose and screen patients for Covid-19 in initial

stages [3].

In our work we aim to develop a classification framework to

classify chest X-ray images of patients through 2 stages. Stage

1 classifies the X-rays into normal (healthy) and pneumonic

patients and stage 2 further classifies the pneumonia affected

patients into Covid-19 positive and Covid-19 negative based

on Convolutional Neural Networks (CNN) [4]. Conditions

evaluated includes normal lungs (healthy), pneumonia affected

patients, Covid-19 positive and Covid-19 negative patients.

The infected region usually includes the lower lobes. Distinct

patterns like ground glass opacity, consolidation and thickened

interlobular and interlobular septa [5, 6] can be analysed with

deep learning methods. Furthermore, localisation of the lesions

will enhance the quality of management and any deviation

leading to complexities can be remotely observed. Common

pathological detour is pleural effusion [7] which requires

immediate pleural tapping thus limiting the dyspnea. Thus,

this paper aims to save time and bring about an upgrade in

our diagnostic capabilities.

II. METHODOLOGY

A. Image Aquisition
Total image dataset includes 1,878 X-ray images out of

which 570 pneumonic and 630 non-pneumonic X-ray images

were procured from open image database from 2018 and 369

Covid-19 positive images were procured from open image

database available at Società Italiana di Radiologia Medicae

Interventistica (SIRM) and radiopaedia.org which included X-

ray reports of patients aged 25-67 years old. Additionally, 309

Covid-19 negative X-ray images were also procured from the

open database of European Society of Radiology (ESR).

B. Data Preprocessing

Appropriate preprocessing of the training data was done

for eviction of heavily degraded images that would cost the

accuracy of the trained model. The data was augmented which

includes rotation (±10 percent), left and right shift (±10%),

height shift (±10%), zoom in (20%). The X-ray image was

normalized by 1/225. The training dataset obtained after data

augmentation resulted in a total number of 15,024 X-ray

images from a limited dataset.

III. PROPOSED ARCHITECTURE

The proposed 2D CNN architecture will be used to detect

Covid-19 positive patients from the X-ray volumes as shown

in Fig.1 and Fig.2. The overall architecture is divided into 3

parts namely entry flow, middle flow and exit flow. The entry

flow facilitates as the initial part of the architecture which

accepts the X-ray volumes, extracts the features and passes it

on to the middle flow of the architecture.

Entry flow is constructed from three 2D convolutional layers

with kernel size of 7x7, 1x1 and 3x3 respectively, 2D max

pooling layers with kernel size and stride each of 3x3 and 2

respectively, 2 batch normalization and 2 inception blocks.

The input layer accepts 224x224x3 sized X-ray volumes

and returns 56x56x256 features volume to the middle layer.

Middle flow consists of 2 connected blocks, dense blocks and

transition blocks where ‘k’ is the consecutive dense block

connected to each other and ‘t’ is consecutive transition block,
where each connected layer is a combination of k*dense block
+ t*transition block with their respective values as in Table.

1.

Middle flow is overall constructed from 4 connected layers.

Middle flow processes the output of entry flow of 56x56x256
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Fig. 1: The CovAI-Net Architecture - Entry Flow.

Fig. 2: The CovAI-Net Architecture - Middle Flow and Exit

Flow.

size and returns 7x7x1024 feature volumes to exit flow. The

third part of the architecture is the exit flow. Exit flow facili-

tates the classification of feature volumes. It is a combination

of 2D max pooling, 2D average pooling and fully connected

layers. The kernel size and stride of 2D max pooling layers

is 2x2x1 respectively. 2D average pooling layer has a kernel

size of 7x7 and stride 1.

Exit flow further classifies the feature volumes acquired by

middle flow into required classes that are pneumonia affected,

non-pneumonia affected/Covid-19 positive and Covid-19 neg-

ative.

Table. 1: Values of dense block and transition block in each

connected layer.

Connected Layers # Dense Block (k) Transition Block (t)

1 6 3

2 16 3

3 28 3

4 28 0

IV. IMPLEMENTATION

We propose a 2D CNN named CovAI-Net which classifies

potential Covid-19 patients using their chest X-ray image

as shown in Fig. 3. The proposed CovAI-Net architecture

predicts Covid-19 positive patients through 2 stages. The 1st

stage includes classifying the X-ray image into 2 classes -

pneumonia affected and normal cases.

Fig. 3: Schematic diagram of the CovAI-Net Architecture.

If the X-ray image gets classified as pneumonic case, then

the image will again go through the work flow discussed in

Fig. 4 and will be classified into further two classes : Covid-19

affected and non-Covid-19 cases.

Fig. 4: Workflow of CovAI system.

The proposed architecture developed on keras [8] frame-

work using Tensorflow backend is inspired by 3 state-of-the-

art architectures - Inception [8], DenseNet [10], Xception [11],

and are combined by selecting appropriate features from all,

smooth gradient flow and fast convolution respectively. The

model is implemented using 2D convolutions as it is easy to

train it with more training samples which results in higher

accuracy.

Hyperparamters used : optimizer = Adam [12], learning rate

= 0.001, dropout rate = 0.3, loss = binary cross-entropy,

kernel initializer = he uniform, batch size = 32, activations

= ReLU[13], softmax[13].
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V. EVALUATION AND RESULTS

A. Methodology

The following section summarizes training, validation and

testing analysis. The CovAI-Net architecture is trained seper-

ately for both stage 1 and stage 2 to classify the input

data into required classes. For stage 1 of classification, the

architecture was trained on dataset of pneumonic and non-

pneumonic X-rays. Further for stage 2, the architecture was

trained on dataset of Covid-19 positive and Covid-19 negative

X-rays to classify the pneumonic X-ray into Covid-19 positive

and Covid-19 negative. This 2 stage training ensured better

accuracy for predicting Covid-19 including pneumonia and

increasing accuracy on the limited dataset.

Fig. 5: Model Accuracy of Stage 1.

Fig. 6: Model Accuracy of Stage 2.

During the course of testing on X-ray volumes we achieved

a maximum accuracy of 96.5% for stage 1 classification and

98.31% for stage 2 classification which can be validated

from Fig. 5 and Fig. 6. Also the output of the CovAI-Net

architecture can be advocated by the confusion matrix for stage

1 in Table. 2 and for stage 2 in Table. 3 respectively.

The CovAI-Net was trained on augmented dataset of 15024

X-ray images where each X-ray image was augmented using

techniques mentioned in Section II.B. For training CovAI-Net

architecture techniques like multiprocessing, parallel program-

ming and distributed computing were used. The architecture

was trained on Nvidia Tesla K80 GPU.

Table. 2: Confusion matrix of stage 1

Predicted/Actual Non-Pneumonic Pneumonic

Non-Pneumonic 97 4

Pneumonic 3 96

Table. 3: Confusion matrix of stage 2

Predicted/Actual Covid-19 Positive Covid-19 Negative

Covid-19 Positive 89 0

Covid-19 Negative 3 86

B. Mathematical Analysis

To analyze the testing and confusion matrix of CovAI-

Net architecture we used measures like precision, sensitivity,

specificity, F1 score, PPV and NPV given as percentage in

the classification report Table. 4 and Table. 5. During the

entire testing procedure of test X-ray volume dataset we

used the trained Cov-AI network to predict the probability

of covid-19 positive, covid-19 negative pneumonic and non -

pneumonic(normal lungs). All the 4 classes pneumonic, non-

pneumonic, Covid-19 positive and Covid-19 negative were

analyzed using the aforementioned measures to validate the

proposed architecture.

Table. 4: Classification report I

Stages Classes Precision Sensitivity Specificity

1 Non-Pneumonic 96.04 % 97 % 96 %

Pneumonic 96.97 % 96 % 97 %

2 Covid-19 +ve 100 % 96.74 % 100 %

Covid-19 -ve 97.74 % 100 % 96.63 %

Table. 5: Classification report II

Stages Classes F1-Score PPV NPV

1 Non-Pneumonic 96.52 % 96.03 % 96.97 %

Pneumonic 96.48 % 96.96 % 96.04 %

2 Covid-19 +ve 98.34 % 100 % 96.63 %

Covid-19 -ve 98.34 % 96.62 % 100 %

The trained CovAI-Net model was tested on randomly

collected data of 86 X-ray volumes. Our proposed system

demonstrated a good real life prediction accuracy by predicting

84 true results and 2 false results. Some real life predictions

by the model are demonstrated in Fig. 7.

The changes in sensitivity (True positive rate) and specificity

(1-False positive rate ) at different threshold can be observed

from Fig. 8 and Fig. 9. We achieved an AUC score of 0.986

and 0.972 for stage 1 and 2 respectively.
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Fig. 7: Test outputs for covid-19 positive and covid-19 negative

cases

Fig. 8: ROC curve of Stage 1.

Fig. 9: ROC curve of Stage 2.

VI. DISCUSSION

The motivation of this work was to utilize artificial

intelligence to solve the problem of shortage of interpretation

of X-ray images in this fast spreading pandemic. This AI

system would not only act as a tool for clinicians and

radiologists but will also complement the rRT-PCR test and

alleviate its shortcomings [14]. There were many studies

which showed promising results for application of AI into

medical field [15, 16, 17] which acted as a catalyst for this

study.

The development of CovAI-Net was a challenging task

pertaining to availability of less radiological data of Covid-19

positive patients. This problem was addressed using the

data augmentation techniques. Due to increased workload,

radiologists were not available to label the lesions in X-ray

volumes thus X-ray volumes were only labeled on the level

of patients (i.e. Covid-19 positive and Covid-19 negative).

The problem was solved by regarding the Covid-19 detection

problem as a weakly supervised learning problems [18]

i.e. detecting the potential Covid-19 positive X-ray without

annotating the regions of Covid-19 lesions. The third

challenge faced was feature extraction from hazy and cloudy

X-ray volumes. This problem was resolved using Inception

block of the Inception architecture which consists of many

sized kernel which ensured better feature extraction from

X-ray volumes.The possible explanation of erroneous results

may have been because ground glass opacities (GGO) in

those images were faint without consolidation. The proposed

study thus provided a typical and successful solution for

developing medical artificial intelligence system for screening

and identification of Covid-19 disease. The work thus

provided a high precision, non-invasive diagnostic system

for screening and identification of Covid-19 disease using

artificial intelligence and medical sciences.

VII. FUTURE WORK

There are still limitations and future work of this study, the

major one being able to access and collect more data on other

type of lung pneumonia which would further help improve its

specificity. There may exist more suitable hyper-parameters

for the proposed architecture which can help to classify the

X-ray volumes with greater accuracy. More optimized version

of CovAI-Net may be possible as a future work. Although

there are many studies on prediction of Covid-19 using CT

volumes [19], we are considering it as a future work to train

CovAI-Net on CT volumes for prediction of lung diseases with

greater accuracy.
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