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Abstract—The wearables’ market is rapidly evolving, with
applications ranging from healthcare and activity monitoring to
emerging domains such as drones and haptic helmets. Wearable-
based contact tracing is gaining increased attention in the
COVID-19 era for more efficient disease prevention. Therefore,
it is of timely relevance to identify the leading existing wireless
contact-tracing solutions and their suitability for wearables.
Existing trade-offs of contact-tracing applications require a thor-
ough analysis of technical capabilities, such as accuracy, energy
consumption, availability, sources of errors when dealing with
wireless channels, privacy challenges, and deterrents towards a
large-scale adoption on the wearables market. Based on extensive
literature research, we conclude that decentralized architectures
generally offer a better place in a trade-off in terms of accuracy
and user eagerness to adopt them, taking into account privacy
considerations, compared to centralized approaches. Our paper
provides a brief technical overview of the existing solutions
deployed for contact tracing, defines main principles that affect
the overall efficacy of digital contact tracing, and presents a
discussion on the potential effect of wearables in tackling the
spread of a highly contagious virus.

Index Terms—Wearables; Contact tracing; COVID-19; Cen-
tralized/Decentralized architectures; Proximity detection; Pri-
vacy; Internet of Things; Constraints.

I. INTRODUCTION AND MOTIVATION

During an unprecedented context of the COVID-19 out-
break, consumer wearable devices, such as smart bracelets,
smartwatches, or smart rings, have started to play a vital role
in mitigating the spread of the contagious virus. Arguably,
smartphones frequently carried on by users also may be
interpreted as belonging to the category of wearables [1].
Many mobile health companies, hospital healthcare centers,
and remote diagnostics startups have proved a high ability to
respond promptly during a real epidemic. They have motivated
the researchers worldwide to find efficient technology-based
complementary solutions for disease prevention and control
during the past half-year [2]–[5]. It is essential to note that
none of the technological solutions are meant to replace the
mitigation measures recommended by epidemiologists and
exerts from the medical domain, yet technological advances
can complement the existing manual ones and assist in imple-
menting social distancing measures as described in [6].

One of the emerging and most promising technology-based
solutions promising to slow down the spread of COVID-19 is
the wireless and automated or semi-automated contact trac-
ing through wireless communication technology. Generally,

software-based applications with built-in sensors on mobile
devices/wearables can either track and identify the user’s
location within hotspot areas affected by the SARS-COV-2
virus (commonly known as coronavirus) or identify the user’s
past and present neighboring nodes during specific time-space
bounds. The main goal is to predict the probability of a user
being infected with the virus, based on the past information
collected from neighbors. Broadly speaking, contact tracing in
the pandemic context refers to the ability of a user identifica-
tion who has been exposed to the virus carried by a person
tested positive for it.

A wireless contact-tracing application aims to determine the
probability of being infected with COVID-19 in a fully auto-
mated or semi-automated manner and based on the wireless
signals [2]. Contact tracing in the wireless world is also known
as proximity tracing or user proximity detection or proximity
tracking [5]. In general, contact tracing (either manual, or
wireless-based, or mixed) is highly promising nowadays as
it enables an increase in the application rate for preventive
measures. Such as self-isolation or quarantine for infected
persons and persons with a high likelihood to cross their
paths with someone infected. Relevant and timely actions
additionally include avoiding close contacts, wearing masks,
and following proper hand hygiene for persons with a low-to-
moderate likelihood to contact the disease [2], [5], [7].

Traditionally, contact tracing involves manual efforts led by
governments and health service provider personnel. Neverthe-
less, with millions of COVID-19 positive cases worldwide,
relying solely on manual contact tracing stands close to im-
possible. The alternative solution is to supplement the manual
tracing with the use of automated or semi-automated contact-
tracing procedures based on wireless devices carried on by
users, such as wearable devices and smartphones [5], [7]–
[9]. While there are already several contact-tracing protocols
developed worldwide, as described later in Section IV, and
while many wireless proximity-detection solutions based on
wireless signals exist for many years, comparative surveys of
existing solutions are still missing from the current literature,
and the technical limitations coming from the wireless signal
propagation are still insufficiently mapped out.

The fundamental objectives of this paper are to offer an
explicit and compact outline of the leading wireless technology
support for a contact-tracing application, the technical limita-
tions and target technical criteria when aiming to design a
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contact-tracing application suitable for wearable devices, and
the perspective on the open challenges of wide-scale adoption
of such applications and protocols.

The rest of the paper is organized as follows. Section II
provides an overview of the main concepts and principles of
wireless automated contact-tracing applications.

Next, Section III elaborates on the trade-offs of devel-
oping such applications for wearables. Section IV provides
an overview of existing contact-tracing applications. The last
section concludes our paper and provides a brief outline of
other relevant challenges on contact-tracing applications.

II. PRINCIPLES OF A WIRELESS AUTOMATED
CONTACT-TRACING APPLICATION

The key idea of a wireless contact-tracing application is
illustrated in Fig. 1. Assuming that there are several mobile
users in a certain geographical area, denoted starting from
user A to user F , and each of them is equipped with
some wearable sensors and/or mobile devices. Commonly, the
users without any wireless sensors are ‘invisible’ to a basic
wireless receiver – these users could not be considered in the
infrastructure-based wireless contact tracing. Exceptions could
be users equipped with passive tags for ambient backscatter
communications or other sophisticated techniques described
in [10], [11]. However, the feasibility of such approaches in the
context of a contact tracing solution is yet to be investigated.
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Figure 1: Illustration of the basic principles of a wireless
COVID-19 contact-tracing application.

Generally, the user devices are equipped with short-range
wireless communication technology, e.g., Bluetooth Low En-
ergy (BLE) or IEEE 802.11 (a.k.a., WiFi) [12], [13]. Com-
monly, the user equipment transmits the beacons with times-
tamps along with the anonymized user IDs, thus, other users in
the range of the emitter can ‘hear’ and store these anonymized
IDs and timestamps of neighboring nodes on their device.

For example, when a tagged user A emits a wireless
signal, the receiving users in proximity could first estimate
the distance based on a number of available characteristics
as presented in [14]. In case the distance is lower than a
predefined threshold, e.g., the value is lower than 2 m, as the

safety threshold adopted by many research papers [2], [15],
[16], then the receiving user will store the anonymized ID from
user tagged user and the corresponding timestamps. Therefore,
a ledger of neighboring users could be created per node.

A. Technology chain and associated sources of errors in a
wireless contact-tracing application

The wireless contact tracing chain and multiple sources of
errors are summarized in Fig. 2. In an automated contact-
tracing app, the ultimate and highly relevant parameter for
the disease control is the probability of protecting Pp the
other users as a product of active application use, followed
by a certain action point, e.g., self-quarantine. The intuitive
meaning of Pp is that Pp*100% of healthy people who might
be in contact with person B, who is infectious after the contact
with person A, could potentially avoid the disease due to an
effective action point of person B (such as self-quarantine,
wearing a mask, preserving physical distance, etc.).
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Figure 2: Uncertainty models and various sources of errors in
the contact-tracing chain.

Undoubtedly, Pp depends on several other parameters,
which are described in Fig. 2: i) the joint probability of two
users found in vicinity of each other to use the same contact
tracing application, e.g., with independent users and individual
probability Pu per user, the joint probability becomes Pu*Pu,
ii) the false alarm Pfa and misdetection Pmd probability of
estimating that two users are within infectious distance from
each other, e.g., at less than 2 m for more than 15’ [2],
[15], [16]), iii) the probability Pc that the connectivity to
the cloud server works properly, e.g., device of user A has
access to long-range wireless connectivity to the server storing
information about the temporary IDs of COVID-19 positive
persons during their period of being infectious, and iv) the
illness probability Pi (i.e., the actual probability that user
B gets the disease if (s)he was within infectious distance
from a COVID-19 positive user A for a duration exceeding
a threshold).

For clarity, it is essential to notice that although Pfa stands
for a technical specification, this parameter is not mapped into
the eq. (1). Due to the fact that the false alarm ratio does
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not affect the overall effectiveness or prevention probability
of a digital contact-tracing app, as non-infectious users falsely
classified as infectious users do not spread the virus. It is to be
highlighted that Pfa levels play a significant role in the user’s
perceptions of the contact-tracing application’s usefulness.
High values of Pfa would mean that many non-infectious
users would be recommended to self isolate without any actual
need. Therefore, this scenario could affect the app installation
rate (i.e., less users would be willing to install an app with a
high Pfa estimates).

Remarkably, some non-technical effects, such as the immu-
nity system’s impact on the probability of getting the disease,
are not modeled in the above model. This study is devoted
to understanding the patterns and estimating the maximum
prevention probability, upper-bounded through technical con-
straints, via:

Pp,max = P 2
u ∗ (1− Pmd) ∗ P 2

c ∗ Pi, (1)

where Pu stands for the independent users and the unique
probability per user, Pmd is the probability of misdetection,
i.e., the probability to recognize a possibly infectious user
as a non-infectious user, which might happen due to an
incorrect distance and exposure-duration estimates by a digital
contact-tracing app. Pc refers to the probability that the cloud
connectivity is reliable, and Pi is the illness probability, i.e.,
the exact probability that user B gets infected by the disease
if (s)he was at an epidemiologically unsafe distance from a
COVID-19 positive user A for a period exceeding a threshold.
Particular considerations will allow us to present some sim-
plified examples based on simulated data in subsection IV-B.

Fig. 1 also shows several sources of errors that may
affect the computation of each of the probabilities in the
technical chain of the contact-tracing applications. The next
two sub-sections provide more enhanced specifications on
two significant technical constraints to be considered in the
process of designing a contact-tracing application, namely, the
inconstancy of the Received Signal Strength (RSS), as the
primary source for the distance estimation (subsection II-B),
and the timing errors (subsection II-C).

B. RSS Random Fluctuations

The wireless received signal always exhibits random fluctua-
tions due to reflections, refractions, scattering, and diffraction
on various obstacles in the signal path, e.g., furniture, cars,
tree leaves, and others, body absorptions, device orientation.
Moreover, particular movements in the environment, as people
and cars moving around, doors opening and closing, also
impact the wireless medium. Large-scale fading shadowing
models typically model such random fluctuations as described
in [17], [18], where random signal effects in decibels (dB)
or logarithmic scales are usually characterized by a random
Gaussian distribution of zero mean and certain standard de-
viation. Such random fluctuations are especially crucial for
RSS-based distance estimates, as a user at a far distance, i.e.,
outside the typically ‘infectious range’, can be easily mistaken

to be at a nearby distance, i.e., inside the typically ‘infectious
range’ of 2m [15].

For example, assuming a free-space-loss model (FSL), a
contact-tracing application based on BLE operating at 2.4 GHz
carrier frequency, and a shadowing standard deviation (SD)
of 5 dB. This value is a typical number according to mea-
surements reported in [17], [18] with ignoring additional
calibration and body absorptions errors. The probability of
mistaking a user at 3m from the user tested positive for
COVID-19 to be at only 2m is 6.2%, and the probability
to mistake a user at 4m distance to be at only 2m is 3.9%.
Therefore, there will be false positives and false negatives due
to the random signal fluctuations of the signal used in the
contact-tracing application, even in cases where the rest of the
contact-tracing chain (see Fig. 1) is functioning perfectly.

C. Timing errors

While the signal fluctuation errors addressed in the sub-
section II-B are mostly relevant for contact-tracing solutions
relying on RSS measurements, as the vast majority of current
contact-tracing applications are, the timing errors are relevant
to all contact-tracing wireless applications [19].

Timing errors influence both the estimation of the duration
of the exposure, as well as the distance estimates between users
for distances estimated from timing measurements. Clock
errors between the device clocks of users A and B are certainly
a part of the timing errors, especially when synchronization to
the cloud server is done seldom, e.g., once a day.

Timing errors are nevertheless less influential by misdetec-
tion, e.g., not finding out that user A was at less than 2m away
from user B and false alarm, e.g., mistakenly detecting that
user B was at less than 2m from user A, probabilities than
the random effects described in subsection II-B.

For RSS-based distance measurements, such as those based
on WiFi or BLE signals, the Doppler error will have close to
no impact on the distance estimates, and the 0.86s error per
day will have an insignificant impact on the estimates for the
duration of exposure. A centralized cloud server can efficiently
deal with Doppler error compensation between two unsyn-
chronized devices, however, such Doppler error compensation
may be more challenging in decentralized approaches, detailed
in the following subsection. This impact of timing errors on
timing-based distance estimates makes the choice of an RSS-
based distance estimation to be the preferred choice in modern
contact-tracing applications.

D. Centralized versus decentralized architectures

Two main concepts have been designed in conjunction
with wireless contact-tracing applications: i) a centralized (or
infrastructure-based) architecture, where the main information,
such as users temporary IDs and timestamps, is processed and
stored on a central server (thus, the server has all the informa-
tion about all devices using the app), and ii) a decentralized
or federated architecture, where users keep on their device
the relevant information, e.g., own temporary IDs, neighbors’
temporary IDs, and timestamps, and contact the server only
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to report a COVID-19 infection or to download the temporary
IDs of other users who reported an infection to the server.

Generally, the risk analysis, i.e., calculating the probability
Pi of a user to get the disease, is calculated at the server side
in centralized architectures. In contrast, Pi in a decentralized
architecture is calculated on the user device. Therefore the
server has access to a lower amount of user-related informa-
tion, e.g., no data about the user’s contacts and temporary IDs
of other users who intersected the path of an infectious user
need to be transmitted.

III. TRADE-OFFS IN THE DESIGN OF A CONTACT-TRACING
APPLICATION FOR WEARABLES

In addition to the accuracy, a wireless contact-tracing appli-
cation with a potential to be widely adopted by a free market
must comply with a fair trade-off between several design
constraints, namely, the following.

A. Privacy-preservation constraint

To the best of our knowledge, a privacy-preserving appli-
cation is more likely to be adopted by the users. In order to
preserve the users’ privacy, the application must obey the data
minimization principle (transfer only the minimum necessary
data between the network nodes), avoid tracking of the user
location at all costs, and put a reasonable time limit of the data
storage window, e.g., 14 days is considered as a reasonable
time limit in [7].

B. Trust constraint

The chances that the users will adopt a novel application
are higher if their friends are already using it [20]. Another
factor is the service provider being known and trustable along
with the application not conveying large false positives or false
negatives errors. Reversely, a user is more likely to remove
an application that fails to provide the expected results or in
cases where people from their social network are not utilizing
the application.

C. Reliable range constraint

This constraint refers to two subaspects. On the one hand,
only the users in close proximity, e.g., less than 2m over a
certain time duration, can typically infect others. Therefore, the
adopted wireless standard should provide accurate information
whether the user is close to another, e.g., below 2m, and not
just somewhere in the same building, e.g., within 80–100m
radius, which is the typical average coverage of a BLE or
WiFi-enabled indoor device. On the other hand, the available
wireless connectivity should have enough coverage to connect
to the nearby gateway or AP/BS and then to the cloud server,
e.g., by using LTE, LoRa, Narrow-band IoT (NB-IoT), Sigfox,
or Telensa [21]–[23] depending on the availability on the
device. The reliable coverage constraint requires both accu-
rate short-range and robust long-range connectivity solutions
installed on the same device.

D. Low/ultra-low energy consumption constraint:

Having a long-lasting battery on the mobile device used
for the contact-tracing app is of utmost importance for mass-
market adoption. Therefore, the selection of the wireless
technology that causes significant device battery draining
is not desirable. Most wearables rely on short-range BLE
for wearable-to-mobile or wearable-to-wearable connectivity.
Simultaneously, most of them connect to the edge gateway or
cloud servers via the high-power cellular or WiFi connectivity
solutions available on their gateways, e.g., mobile phones.
Standalone wearable solutions have started to use IoT long-
range low-power IoT connectivity solutions such as LoRa,
Sigfox, or NB-IoT [9], [22] in order to ensure long battery
life. Energy harvesting solutions, i.e., gathering energy from
the environment, such as motion, light, sound, and wireless
interference, are also under scrutiny and might offer viable
solutions for future wearables.

IV. CONTACT-TRACING SOLUTIONS OF TODAY

This section provides an overview of existing contact-
tracing solutions followed by the analysis of their utility.

A. Brief survey of current contact-tracing solutions

Since the beginning of 2020, many smartphone-based and
few wearable-based applications have been developed for con-
tact tracing for COVID-19 disease control worldwide. In this
paper, we observe some of the contact-tracing apps and proto-
cols for comparison, in terms of IoT connectivity solution, type
of measurement for distance estimation, i.e., proximity detec-
tion method, type of architecture, qualitative values for their
accuracy, energy efficiency, and privacy levels based on works
reported in various research papers, advantages, and technical
challenges. The choice of the apps and protocols was based
on their current popularity among users, level of interest in
social media and/or in technical repositories, and the variabil-
ity in the employed contact-tracing methods and underlying
technologies that a broad view of possible technical solutions
is provided. There are currently at least 69 governmental-
approved mobile applications in at least 29 countries, as of
September 2020. Most of them have proprietary features and
report some limitations and the lack of user adoption rates. The
vast majority of the governmental contact-tracing applications
rely on BLE technology and RSS measurements, similarly
with the majority of techniques discussed in this work.

The first one, the Decentralized Privacy-Preserving Proxim-
ity Tracing or DP-3T [7] is a BLE-based decentralized protocol
developed for contact tracing, currently deployed on the Swiss
market and under testing phase in few other EU countries such
as Finland and Estonia. The DP-3T protocol also served as
inspiration for the Google/Apple system, and it contends to
be one of the most privacy-preserving protocols existing for
contact-tracing applications today. Here, the distance estimate
between two persons is based on RSS and are, therefore,
susceptible to wireless signal fluctuations.
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The Easy Band [16] is a wearable-based proximity-detection
solution relying on BLE RSS distance measurements to de-
tect nearby located users. The data is processed on a cen-
tralized server accessible via infrastructure connectivity for
the decision-making process on people’s infectiousness state
around.

RSS-based solution with a centralized server storing en-
crypted user information and computing a score matching
calculation to detect users that have possibly been infected
by a close COVID-19 positive contact is EPIC ass described
in [8].

The Google/Apple Exposure Notification (GAEN) sys-
tem [24] also relies on BLE RSS-based distance measurements
between devices and a decentralized architecture similar to
DP-3T. No location information is stored about the users. The
main feature of this solution is that DP-3T is a fully open-
source protocol, while some parts in the Google/Apple system
will remain proprietary.

The authors in [15] implemented a completely different
approach by using the magnetic field intensity from magne-
tometers installed on smartphones instead of BLE RSS mea-
surements. A centralized server processes the magnetometer-
based metric in order to detect similar patterns of magnetic
field intensities between users. Users with highly correlated
patterns of this metric are assumed to be in close proximity
to each other.

Nevertheless, another distinct wireless connectivity ap-
proach is offered by Tsingoal company through their Lo-
calSense approach [25], which is time-based on UWB and
Round-Trip Time (RTT) measurements. The main advantage
stays in increased accuracy of the distance estimates between
users, as UWB RTT measurements are known to offer 0.1m ac-
curacy, ten times more accurate in comparison with Bluetooth
solutions. The main downsides are the need for additional
UWB infrastructure, as well as the privacy threats due to
centralized infrastructure properties.

Mokosmart [9] is a wearable wristband developed by a Chi-
nese company for COVID-19 contact tracing and integrating
BLE and LoRa technologies in a centralized architecture.

The solution described in [26] relies on multiple sensors
available on a smartphone and could offer better protection
against the wireless signal variability, and transform into
higher computational costs of blending heterogeneous mea-
surements from various sensors.

The Pan-European Privacy-Preserving protocol (PEPP-
PT) [27] is a centralized solution that uses the proximity
tracing concept between phones of the app users by measuring
BLE radio signals to assist in the restraining of contagious
viruses’ expanse. The researchers state that the software starts
to log the encrypted proximity history only when two devices
are situated in epidemiologically sufficient proximity for a
reasonable time. In this scenario, the devices store only each
other’s anonymous identifiers. Thus, no geographic location
or any additional personal information is collected. Moreover,
the older events are deleted after some period of time.

Arguing that there is no fully decentralized architecture
available today, the researchers in [28] proposed a ROBust and
privacy-presERving proximity Tracing (ROBERT) protocol,
which is built on federated server infrastructure. After the first
step, where a contact-tracing app is installed, the server assigns
a permanent ID to each user, and the central server possesses
records of corresponding temporary IDs, which change every
15 min. The developers of the ROBERT protocol claim that
no malicious entity could use the information to identify users.
Privacy is preserved by encryption, and the users need to
obtain trust in the server, storing the information.

TraceTogether [29] is another example of a contact-tracing
application that relies on BLE signals. As a possible limitation,
this application should always be running on the mobile phone
background, which might cause the battery drain of the device.
Anonymous identifiers are generated by encrypting the user ID
with a private key and are known exclusively by the Ministry
of Health.

Those mentioned above, existing COVID-19 contact-tracing
mobile applications, solutions, and protocols, can be character-
ized via diverse metrics, such as levels of proximity detection
accuracy, energy efficiency, and privacy. As a matter of fact,
there is a trade-off where a high accuracy level (in relation to
position estimates) that associates with privacy deficiency and
vice versa. Clearly, a pattern can be seen that decentralized
solutions fare better than centralized solutions in terms of
privacy. Therefore, such decentralized applications as DP-3T
and Google/ Apple protocol provide privacy-by-design, which
makes them more robust to malicious entities in the chain of
contact tracing.

Accuracy via RSS-based methods is still to be improved,
however, attention must be paid to the energy consumption on
the device side, as more accurate contract-tracing/proximity
detection solutions in existence also have lower energy effi-
ciency.

Additionally, we conclude that a combination of short-
range and large-range ultra-low-power technologies must be
deployed to overcome the technical challenges related to
wireless connectivity and energy consumption on wearables
more efficiently.

In the following sections, we introduce our analysis and the
findings on the parameters’ effect and the extent to which they
affect the utility of the contact-tracing applications.
B. Illustrative example of the contact-tracing app utility

Fig. 3 illustrates an example of fundamental challenges
in a multi-dimensional plane between the various sources of
uncertainty in using an automated wireless contact-tracing
application through a wearable device.

A target maximum prevention probability Pp,max = 0.5 is
taken as reference in Fig. 3 (for clarity purpose, curves with
Pp,max > 0.5 are not shown, as for such values there are no
parameters fulfilling the target constraints at Pi = 0.6), and
the isosurface 3D plots are employed to show the dependence
on three technical parameters, Pu, Pc, and Pmd described in
subsection II-A. In addition, four-level of infection rate prob-
abilities are illustrated via different colors in each curve. An
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Figure 3: A simplified example of the utility of a contact-
tracing application based via isosurfaces at a target prevention
probability Pp,max of 50%.

Figure 4: A simplified example of the utility of a contact-
tracing application based via isosurfaces at Pp,max of 30%.

isosurface is a surface showing all combinations (Pu, Pc, and
Pmd) providing the target constant value Pp,max. A smaller
surface illustrates the fact that the target prevention probability
can be achieved with stricter conditions on the (Pu, Pc, and
Pmd) probabilities, while a larger surface shows a better
prevention probability for a wider combination of probabilities
of connectivity errors, user adoptions, and misdetections due
to the wireless signal variability.

As seen in Fig. 3, a target prevention probability of 50%
better than in the absence of a mobile contact-tracing app can
be achieved if at least 71% of users adopt the application and
if the connectivity to the cloud is robust in at least 70% of
the cases. If the target prevention probability decreases to only
30% (see Fig. 4), this can also be achieved with a 50% user
adoption rate and 70% correct cloud connectivity, and up to
45% misdetection probabilities are also satisfactory.

It should be noticed that these numbers are just examples
of the multi-dimensional problem an expert has to solve
when designing an efficient contact-tracing application. The
statistics point out the fact that it is not enough to have more
than 90% user adoption of a contact-tracing application in
order to achieve high efficiency in digital contact tracing,
yet all multi-dimensional aspects of the problem should be
considered. By comparing the curves, one gets useful insights
about parameters, e.g., allowing one to fine-tune the trade-
offs between the parameters in multi-dimensional space, the
absolute values are to be taken with a grain of salt, as no
medical or epidemiological insights have been used in the
current assumptions. The simplified model illustrated in Fig. 3
serves as a basis for understanding the technical constraints on
wireless signals that are used for contact-tracing applications.

V. DISCUSSION AND CONCLUSIONS

A comparison of standalone and non-standalone solutions
on wearables and the main challenges of contact-tracing
approaches on the wearable market is presented in Table I.
A fully standalone solution has the advantage of better porta-
bility, easier use, and, very often, longer battery life than non-
standalone solutions. Thus, in our view, standalone solutions
could be more suitable for a wide adoption within a large and
diverse population than a non-standalone solution. While the
main technological limitations in non-standalone approaches
are also similar to standalone ones, wearable-based standalone
solutions introduce additional challenges dictated by the low
power consumption and low size constraints.

Table I: Challenges and potential solutions on wearable-based
contact tracing.

Type Challenge Solutions to be investigated

St
an

da
lo

ne
so

lu
tio

ns

Long-range low-power
connectivity to the

cloud servers

LoRa and NB-IoT are among the
most energy efficient long-range solu-
tions; Ambient backscattering device-
to-infrastructure communications and
other energy harvesting solutions.

Optimal tradeoff
between a small-size

device and a high
computational power

Compressive sensing; approximate
computing.

St
an

da
lo

ne
&

no
n-

st
an

da
lo

ne

Short-range low-power
connectivity

BLE is nowadays the top choice
for low-power short-to-medium range
connectivity due to its widespread use
on wearables.
Ultra-low-power short-range solutions
need also to be investigated further as
well as ambient backscattering device-
to-device communications and other
energy harvesting solutions.

Increased accuracy of
the distance estimates

for proximity detection

High-sensitivity approaches through
better path loss models, better calibra-
tion, adaptive filtering, e.g., taking user
speeds into account and environmental
sensing, e.g., simultaneous mapping
and distance estimation.

User privacy Blockchain and decentralized/feder-
ated architectures; Open-source code.
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As an outcome, we conclude that most advanced digital
contact-tracing applications can be effective in disease pre-
vention when suitably used with other prevention methods,
as a part of a systematic approach that corresponds to the
implementation of other precautions. The multi-dimensional
problem could be solved with scientists’ efforts to identify
and adopt a combination of the most robust solutions and,
therefore, to achieve better results in accurately tracing the
contacts, implementing prevention measures, and stabilize the
pandemic situation worldwide.

In this paper, we have provided several technical perspec-
tives on digital contact-tracing applications via mobile devices
and wearables for effective COVID-19 control. We have de-
rived an upper-bound on the effectiveness of a digital contact-
tracing app (called here maximum prevention probability),
which carries the message of how much a digital contact-
tracing app could help versus the situation when no digital
contact-tracing app is used. We have seen that several technical
parameters can influence such an app’s effectiveness, and
these technical parameters are determined by the wireless
technologies used in estimating the distances between users,
their connectivity to the cloud, and their exposure duration.
In addition to the technical considerations, many ethical and
privacy-related aspects must be taken into account during a
wide-scale adoption of digital contact-tracing apps, and these
remain a topic of future investigations. For instance, there are
ethical challenges in centralized systems, where a lot of user-
related information is stored in centralized cloud servers. In
addition, the effectiveness of a digital contact-tracing app also
depends on the infection risk of each person, which is an
epidemiological factor that requires further research outside
the technical domain.

A potential further research direction can be found in
advancing technical specifications of digital contact-tracing ap-
plications, e.g., the needed minimum periodicity of broadcast
signals used for localization and its relationship with the user
movement speed and device energy consumption. To improve
wireless mobile communications’ signal strength, one could
consider focusing on wearable antennas’ directivity, precisely
due to their limited size constraints.
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