
LSTM perfomance analysis for predictive models
based on Covid-19 dataset

Isac Cruz-Mendoza1, Jonathan Quevedo-Pulido1, Luz Adanaque-Infante1,2
1 Universidad Nacional Mayor de San Marcos UNMSM, Lima, Perú
2 INICTEL-UNI, Universidad Nacional de Ingenierı́a UNI, Lima Perú

isac.cruz@unmsm.edu.pe,11190108@unmsm.edu.pe,ladanaque@inictel-uni.edu.pe

implement predict models [9], also for influenza, with a multi
channel neural network [10]. The main part of this work is the
training and validation of a LSTM on MATLAB and Colab in
order to obtain a prediction model with acceptable levels of
efficiency and error. The paper is organized as follows, in the
next section, training methodology of the LSTM is presented.
In section III, we present LSTM test analysis. Performance
comparisons are given in section IV. Finally, conclusions are
shown in section V.

II. TRAINING METHODOLOGY

A. Dataset of Covid-19 positive cases

Statistical data related to the SARS - CoV2 pandemic
is released daily. In this research, people infected dataset
was taken of ”the Republic Data”, obtaining official data
of infections from day one. The selected dataset is from
06/03/2020 until 27/05/2020, give us an average of 83 days.
Figure 1 shows the workflow followed.

Fig. 1. LSTM for Covid-19 disease prediction models

B. LSTM Neural Network

Recurrent neural networks (RNN) are very useful for pro-
cessing data sequences because of their loop structure, which
works as a memory. Also, RNN are known as dynamic
networks, in which the output depends on the current input,
the hidden states of the network and the previous inputs and
outputs. LSTM (Long Short-Term Memory) network belongs
to the category of Gated RNNs, which obtains accurate models
for time series. These networks implement a repetitive mod-
ules chain and four layers that interact with each other. LSTM
network add or removes information on the state of the cell,

Abstract—Within the large amount of data that can be pro-
cessed with Neural Networks (NN), COVID-19 is leaving us a lot 
of information that is susceptible to be treated and set trends 
regarding the development of the disease in the country. The 
present work shows the implementation and the optimization of 
a Long Short-Term Memory (LSTM) Neural Network in two 
different simulation environments, with a dataset related to the 
number of infected people by COVID-19 in Peru, in order to 
optimize the prediction level on the number of infected people 
on following days.

Index Terms—Optimization, Neural Networks, LSTM, Perfor-
mance, MATLAB, Colab.

I. INTRODUCTION

COVID-19 is produced by a newly identified s train of 
coronavirus SARS-CoV2, which belongs to the family coron-
aviridae, with RNA genome. Due to the imminent advance 
of the disease, the governments of many countries of the 
world have adopted policies of social isolation and massive 
diagnostic tests. Peruvian government implemented a platform 
that allows extraction of raw data which can be used on 
prediction models [1], in specific w ith n eural n etworks. Use 
of neural networks as learning tools through the computer 
is well known when a large amount of data is involved. 
Neural networks workflow s tarts w ith t raining p hase, which 
can be carried out in different environments such as MATLAB 
or Colab, and continues with validation and testing. These 
two last parts depend on both,the data and the aim of the 
network. Different types of systems can be validated through 
the training of a neural network, to offer solutions in terms 
on prediction models in a short time. Several authors works 
on the implementation of different approaches in training and 
validation phases, which works with recurrent networks for 
time series [2]

Regarding diseases prediction, several works were found 
on literature, using a Recurrent Neural Network (RNN) and 
LSTM for dysplidemia prediction [3]. Some works realized 
a complete study for a model prediction based on a Artificial 
Neural Network (ANN), others shows a LSTM network analy-
sis, both of them for cardiovascular diseases prediction models 
[4], [5]. For Parkinson disease, a perceptron based model has 
been used [6], and for glucose level on blood prediction, differ-
ent types of Neural Networks was implemented and compared 
[7], [8]. Dengue is a disease that spreads uncontrollably in 
Amazonian regions, some studies included a RNN analysis to

© IEEE 2020. This article is free to access and download, along with rights for full text and data mining, re-use and analysis 



because of switching gates built with sigmoid function and
a point multiplier, for this reason, LSTMs can remember or
forget values. Each LSTM module is made up of four gates,
an input gate, external-input gate, forget gate and output gate.
These gates executes internal operations within each module,
with an internal state which remembers the values linked to
cells in a hidden state, which represents the output of the
module [7].

C. Implementation of a LSTM on Colab

Google colaboratory or Colab, is a Phyton virtual tool
which designates a processor, such as GPU or TPU, in order
to execute functions created by the programmer. Machine
learning applications can be run on this platform, like Neural
Networks. Colab has different types of libraries, offering a
dynamic approach, in this application, we use Keras library
and three steps, preprocessing of input data, network structure
and training phase.

1) Data Pre-Processing: It is necessary to separate data for
training and test phases of the LSTM, in this work, two first
months (march and april) data was used for training, and last
month data (may) was used for testing phase, as shown in 2,
Due to the size of the dataset, we implemented a normalization
process, then the data with the highest value does not influence
the decision making of the network. Compare to the MATLAB
approach, where the data enters in a block, in Colab the scaled
data enters on the LSTM one by one.

Fig. 2. Training and Testing Phase on Colab

2) Network Description: For the LSTM implementation on
Colab we used a sequential approach, with one neuron at the
input, 30 neurons in the hidden layer and a dense layer at
the output of the network, this is a layer of artificial neurons
(NN) highly connected. The LSTM implementation includes
an NN with a linear activation function, F (X) = X which
only reflects the output value.

3) Training Phase: This phase was implemented with 150
epochs, with RMSprop optimizer and a default learning rate
of 0.001. The loss has been parameterized with the MSE
(mean squared error) function, so that the loss in each iteration
reaches the minimum value. The last epoch (250) has a loss
of 0.0288 of loss, this result is reflected in figure 3, we
observe that from the 80th epoch the errors do not vary in

Fig. 3. Training Error(Epoch=250)

great magnitude. After the 80th epoch, it can be noticed an
overfitting, therefore, performing the training with 80 epochs
is enough to achieve acceptable results in terms of predicted
values.

D. LSTM Implementation on MATLAB

MATLAB is a mathematical package created in the 70s
by Clever Moler, over the years it has been expanding its
functions through toolbox related to data processing, ma-
chine learning and neural networks. We used command-line
functions provided by MATLAB for the development of this
work. The methodology in this approach work as follows:
Preprocessing of the input data, network implementation and
training.

1) Pre-processing of input data: The data obtained from the
Covid 19 per day positive case dataset is in a linear format and
has 83 data in total. Due to the size of the dataset, data blocks
were formed. The equation 1 shows a sequence of 11 numbers
data that was ordered in a block of 7 numbers data forming the
equation 2. The last column was taken as the expected value
for the network and the rest as input data. This procedure was
applied to the 83 data in order to each entry to provide more
information on training phase.

T = [1; 5; 2; 2; 2; 5; 5; 16; 5; 28; 15] (1)

data =


1 5 2 2 2 5 5
5 2 2 2 5 5 16
2 2 2 5 5 16 5
2 2 5 5 16 5 28
2 5 5 16 5 28 15

 (2)

After the formation of data blocks, a standardization was
performed by subtracting the average and dividing each data
by the standard deviation, in order to achieve better training
and avoid divergence. Finally, 80 % of the data was separated
for training and the other 20% was used for network testing.

2) Network description: The network architecture used in
this work has four stages: an input sequence, an LSTM layer, a
fully connected network, and a single output regression layer.
Some tests were carried out to obtain good results regarding



the mean square error, as observed in table I. After these tests,
we chose 15 neurons for the network architecture on input
layer and 250 LSTM units in the LSTM layer.

TABLE I
RMSE COMPARISON

N° Input Length Units LSTM RMSE Learning Rate
1 8 250 1511.2 0.001
2 13 250 700.3885 0.001
3 13 225 718.266 0.001
4 13 275 906.1428 0.001
5 15 250 678.8516 0.001
6 15 400 1386.4 0.001
7 15 200 1144.3 0.001
8 15 200 2179.5 0.005
9 15 200 1688.2 0.0005
10 20 250 1266.2 0.001

3) Training network: Network training consists of entering
the input data blocks together with the expected outputs
into the network. Initially the network was trained with 250
iterations, an ADAM optimizer and a learning rate of 0.0005.
However, the optimal learning rate was 0.001. Figure 4 it
shows the variation of the RMSE throughout the training
during the 250 iterations. These can be reduced up to 150
as observed in figure 5, after 150 iterations we can see that
the error does not present significant variations. This indicates
that an early stop can be implemented in the network in order
to avoid a possible overfitting.

Fig. 4. Training RMSE variation

Fig. 5. Training Loss variation

III. TEST ANALYSIS ON LSTM

On the test phase, neural networks use several metrics in
order to compare results between different models and to
evaluate which of them has the best performance. To achieve
the best performance, we used RMSE and MSE metrics, which
were calculated by solving the equations 3 and 4, respectively.

MSE =
1

n

n∑
i=1

(yt − ŷt)
2 (3)

RMSE =

√√√√ 1

n

n∑
i=1

(yt − ŷt)2 (4)

Where n is the number of values predicted by the LSTM,
yt is the real value and ŷt is the predicted value of the neural
network.

A. Test on Collab

While in MATLAB the data is tested in blocks, in Colab the
test is one by one, otherwise we will have a greater error and
the prediction graph will not follow the trend of the real values.
For testing phase of the LSTM trained network, the data from
04/30/2020 of the dataset were used and normalized between
0 and 1, to avoid errors on the network trained on section II
of this work, this data was tested one by one. For that reason,
prediction results were normalized, so we applied a re scaling
to obtain the real values, as observed on figure 6, which shows
a continued trend over time. The real values are plotted on the
red line, and the prediction values are plotted on blue line.

Fig. 6. Trend diagram of validation data

Figure 7 shows the comparison of the predicted data with
the real data in a dispersion graph, the regression line is plotted
in blue, and the dispersion points are plotted in red, it can be
noticed that the trend is linear and increasing. The result of the
RMSE error is 813, due to the reduced length of the dataset.
Despite this, prediction level is still acceptable. The correlation
index gives a result of 0.5376.

B. Test on MATLAB

To evaluate the results obtained by the network in MAT-
LAB, test data was entered in 15-value block format. Test
phase gave us results such as the mean square error and the
correlation index of the data obtained from the predictions,
to study the relationship between the time variable and the
number of positive cases per day. For the calculation of the
correlation index, the equation 5, where Sxy represents the
co variance, and the standard deviation was represented by Sx

and Sy . Solving the equation 5 we obtained 0.6282 as a result.



Fig. 7. Dispersion Diagram of predicted values

The positive value indicates that the relationship between the
variables time and positive cases per day is direct. As for the
numerical value, it represents that there is dispersion in the
obtained data.

r =
Sxy

SxSy
(5)

The prediction obtained is shown in the upper part of the
figure 8, the actual values are shown in blue and the network
prediction in red. In the lower part of the 8, the difference
between the network output and the actual value is graphically
observed. The value obtained from the RMSE is shown in the
central part.

Fig. 8. Prediction with Test data

IV. PERFOMANCE COMPARISONS

Several comparable aspects were found between MATLAB
and Colab, like the number of units on training phase, in
MATLAB we used 250 units, meanwhile in Colab we used
only 30 units, this explains the increased use of resources by
MATLAB. Regarding iterations, in MATLAB more iterations

were necessary for the network to reach an acceptable error,
while in Colab the optimal values are reached in 80 iterations
in MATLAB 150 iterations are needed to reach them. The
RMSE error, described by equation 4 was considered as a
metric in our work. For the analysis in MATLAB, a result
of 678 was obtained, while for Colab, 813 was obtained,
which means a more reliable prediction in MATLAB analysis
as seen on figures 8 and 6. Regarding the correlation index,
in Colab we obtained 27 prediction data, with a correlation
index of 0.5376. While in MATLAB, 13 prediction data are
obtained with a correlation index of 0.6282. This means that
there is a lower level of dispersion of the data in MATLAB
compared to Colab. As a result, Colab requires a few number
of iterations but the RMSE error is higher than the RMSE
error in MATLAB.

V. CONCLUSIONS

Although the dataset used for this analysis is small, results
shows that the best training approach is obtained with Colab,
and the best testing approach is obtained with MATLAB. This
makes us think of a mixed solution in order to obtain an
accurate prediction model. The inclusion of a larger dataset,
re powering training stages, and implement it partially on
reconfigurable platforms like FPGAs can be a continuation
of this work.

REFERENCES

[1] Secretarı́a de Gobierno Digital Presidencia del Consejo de Ministros,
“www.datosabiertos.gob.pe,” 01 de Abril de 2020.

[2] Y. Gao, S. Q. Wang, J. H. Li, M. Q. Hu, H. Y. Xia, H. Hu, and L. J.
Wang, “A prediction method of localizability based on deep learning,”
IEEE Access, pp. 1–1, 2020.

[3] S. Cui, C. Li, Z. Chen, J. Wang, and J. Yuan, “Research on risk
prediction of dyslipidemia in steel workers based on recurrent neural
network and lstm neural network,” IEEE Access, vol. 8, pp. 34153–
34161, 2020.

[4] Y. Ma and S. Wang, “The application of artificial neural network in the
forecasting on incidence of a disease,” in 2010 3rd International Confer-
ence on Biomedical Engineering and Informatics, vol. 3, pp. 1269–1272,
2010.

[5] H. D. Park, Y. Han, and J. H. Choi, “Frequency-aware attention based
lstm networks for cardiovascular disease,” in 2018 International Con-
ference on Information and Communication Technology Convergence
(ICTC), pp. 1503–1505, 2018.

[6] Z. A. Bakar, N. M. Tahir, and I. M. Yassin, “Classification of parkinson’s
disease based on multilayer perceptrons neural network,” in 2010 6th
International Colloquium on Signal Processing its Applications, pp. 1–4,
2010.

[7] A. Aliberti, A. Bagatin, A. Acquaviva, E. Macii, and E. Patti, “Data
driven patient-specialized neural networks for blood glucose prediction,”
in 2020 IEEE International Conference on Multimedia Expo Workshops
(ICMEW), pp. 1–6, 2020.

[8] S. Ambekar and R. Phalnikar, “Disease risk prediction by using con-
volutional neural network,” in 2018 Fourth International Conference on
Computing Communication Control and Automation (ICCUBEA), pp. 1–
5, 2018.

[9] M. Chovatiya, A. Dhameliya, J. Deokar, J. Gonsalves, and A. Mathur,
“Prediction of dengue using recurrent neural network,” in 2019 3rd
International Conference on Trends in Electronics and Informatics
(ICOEI), pp. 926–929, 2019.

[10] B. Fu, Y. Yang, Y. Ma, J. Hao, S. Chen, S. Liu, T. Li, Z. Liao, and
X. Zhu, “Attention-based recurrent multi-channel neural network for
influenza epidemic prediction,” in 2018 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM), pp. 1245–1248, 2018.


