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In this scenario, the deployment of ICT technologies for
personal healthcare is becoming essential not only to give
people the possibility to self-monitor constantly their vital
parameters but also to connect them with physicians in every
moment. Using personal healthcare solutions, the physician
can give his advice by remote leveraging the vital parameters
self-measured by the patient and transmitted through a digital
platform. The potential for using telematic solutions during
disasters and public health emergencies has been highlighted
in [1].

Recent developments in the field of Telemedicine have
focused on Mobile health (mHealth) services as a new frontier
for self healthcare that shifts the monitoring process to a new
scenario where the patients use personal mobile devices to
monitor continuously their vital parameters directly at home,
through the use of smart-home technologies [2]–[4]. The use
of self-monitoring systems can provide assistance without
limiting or disturbing the patient‘s daily routine, giving greater
comfort and well-being. In the specific case of Corona virus
emergency, mHealth solutions can play a vital role in restrain-
ing the spread of the virus by favouring the early detection
of the disease, the synchronization in care delivery, and the
continuous patient-physician involvement.

Along with this new proactive paradigm for personal health-
care, in this paper we present a mHealth approach for self-
monitoring vital parameters with a focus on blood oxygen
saturation (SpO2) whose abnormal values may be a early
warning sign of potential infection by COVID-19. Indeed, it
has been observed1 that low values of SpO2 (< 90%) may
appear in patients much more before Covid pneumonia first
strikes. Usually patients do not feel short of breath, even
if their blood oxygen levels are falling. Hence monitoring
this vital parameter is of fundamental importance to avoid
aggravation of the disease.

To derive an estimate of SpO2, the proposed method
processes video frames of the patient’s face acquired by a
camera. Each frame is processed in real time to extract the
remote photoplethysmography signal [5] that measures the

1https://www.nytimes.com/2020/04/20/opinion/sunday/coronavirus-testing-
pneumonia.html

Abstract—Mobile health (mHealth) technologies play a fun-
damental role in epidemiological situations such as the ongo-
ing outbreak of COVID-19 because they allow citizen to self-
monitor their health status while staying at home and being 
constantly in remote connection with the physicians despite 
the quarantine. Special care should be given to self-monitoring 
vital parameters such as blood oxygen saturation (SpO2), whose 
abnormal values are a warning sign for potential infection by 
COVID-19. Measurement of SpO2 is commonly made through 
the pulse oximeter that requires skin contact and hence could 
be a potential way of spreading contagious infections. For this 
reason, contact-less solutions for self-monitoring of SpO2 would 
be beneficial. I n t his p aper w e p resent a  m Health a pproach to 
self-monitor SpO2 that does not require any contact device since 
it is based on video processing. Video frames of the patient’s 
face acquired by a camera are processed in real-time in order to 
extract the remote photoplethysmography signal useful to derive 
an estimation of SpO2. Preliminary experimental results show 
that the SpO2 values obtained by our contact-less solution are 
consistent with the measurements of a commercial pulse oximeter 
used as reference device.
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I. INTRODUCTION

During the pandemic of COVID-19 (Coronavirus Disease
2019) citizens are advised to remain in home quarantine and
not to leave their home unless it is necessary. In particular,
patients should avoid to go outside of their home, even in
case of suspicious symptoms. Nevertheless, patients may get
worried about small health changes interpreted as symptoms
of COVID-19 and may want to get in touch with their medical
expert. Abnormal values of vital parameters, such as tem-
perature, heart rate, breath rate and blood oxygen saturation
may be early signs of many diseases, including COVID-19.
Hence the possibility to self-monitor such parameters staying
at home is of fundamental importance to assess in time the
patient’s health status, triage the patient to appropriate care,
and determine potential diagnoses.

This work has been supported by the GNCS-INDAM Gruppo Nazionale 
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change of cardiovascular tissue coming from some regions of
the face. By processing the photoplethysmographic signal we
finally estimate values of blood oxygen saturation. Preliminary
experimental results show that the SpO2 values obtained by
our contact-less solution are comparable with measurements
obtained using a commercial pulse oximeter, achieving mea-
surement errors that are within acceptable margins according
to the literature.

The paper is organized as follows. In section II we summa-
rize related works. Section III describes the methodology for
SpO2 contact-less measurement. Section IV presents prelimi-
nary results. Conclusions are drawn in section V.

II. RELATED WORKS

Blood saturation indicates the intensity of oxygen in blood
and represents the ratio between the oxygenated hemoglobin
and the total amount of hemoglobin, i.e. oxygenated and
deoxygenated. The medical device commonly used to mea-
sure SpO2 is the pulse oximeter (fig. 1), that exploits the
different wavelengths of the light absorbed by the oxygenated
hemoglobin and the deoxygenated hemoglobin. Specifically,
the pulse oximeter exploits photoplethysmography to evaluate
the changes in blood volume in the micro-circulation of the
human tissues [6]. When a finger is inserted between the light
source and the collector, the light passes through the epidermis
and meets the blood vessels. Hemoglobin absorbs light and,
according to Beer’s law [7], the amount of light absorbed is
proportional to the concentration of hemoglobin in the blood
vessel. One limitation in the use of the pulse oximeter is
that it requires direct contact to the skin and its correct use,
especially in case of elderly people, may require the presence
of a familiar to assist the patient or even the presence of a
healthcare professional who knows how to place the device
correctly on the patient’s finger. In pandemic situations, where
social distancing is mandatory, this could give rise to possible
outbreaks of contagion, especially in presence of infected but
asymptomatic people who come in contact though the use of
the pulse oximeter. In this scenario, contact-less solutions for
self-measurement of SpO2 would be highly preferable.

In the last years many devices and software systems that
allow contact-less monitoring of the vital parameters (includ-
ing SpO2) have been proposed [8]–[11]. These contact-less
solutions are effective but difficult to employ in domestic daily
life scenarios. More comfortable and easy of use solutions to
support the daily management of diseases are steadily growing

Fig. 1. A pulse oximeter.

[12]–[14], but they require expensive or cumbersome devices,
thus preventing their large-scale adoption for personal health-
care. Conversely, there is a need for low-cost and contact-less
monitoring solutions that are easy to use, accurate, and can be
easily applied at home as well as in other environments.

Among easy-to-use solutions, some attempts based on pho-
topletismography using smarthphone apps have been proposed.
For example [15] propose a solution based on a mobile phone
to detect the color change signal of a fingertip placed in
contact with its optical sensor. In [16] a prototype smartphone
application (smartphone oximeter) is proposed to measure
heart rate and oxygen saturation. In [17] SpO2 measurements
are obtained using the built-in sensor and light source of a
Samsung Galaxy S8 smartphone. However, the use of such
contact solutions is not safe in a pandemic situation, since
touching the smartphone may be a source of infection if the
device has not been properly sanitized. Contact-less solutions
are preferable during the spread of contagious infections like
COVID-19 to avoid the risk of contagion.

Besides, according to the study in [18] smartphone apps
that use non-contact photoplethysmography to measure vital
parameters appear to have worse accuracy than those that
use contact photoplethysmography. By analyzing the limited
number of existing smartphone apps for oxygen saturation
measurement, the authors suggest that smartphone apps are
not very suitable tools for measuring oxygen saturation.

Other contact-less solutions using different sensors have
been proposed for oxygen saturation measurement. For ex-
ample in [19] a contact-less sensor to detect vital parameters
is proposed as a useful solution in epidemiological situations
like the ongoing COVID-19 outbreak. The sensor, called
Impulse Radio Ultra-Wideband (IR UWB) enables measuring
the change in the magnitude of signal due to displacement
caused by human lungs, heart during respiration and heart
beating. Hence the respiration rate and heart rate can be
measured. However the blood oxygen saturation can not be
measured using this technology.

The current state-of-art literature shows that the most suit-
able sensor for remote measurement of SpO2 is the video
camera that satisfies both easy-of-use and contact-less re-
quirements. There are many recent works using a camera
combined with remote photopletismography (PPG) to evaluate
vital parameters [20]–[22]. PPG techniques have been widely
used in healthcare for monitoring purposes. In [23] for mon-
itoring dialysis patients, in [24] for arrhythmia detection, in
[25] for neonatal monitoring, just to mention few. Moreover,
very recent works are going to improve photoplethysmography
techniques [26] by modifying existing RGB cameras to make
them suited for near infrared remote photoplethysmography
(NIR-PPG). In [27] SpO2 is measured by processing videos
acquired by a camera. The videos are analyzed through the
Eulerian video magnification (EVM) method to amplify the
skin colour changes due to the cardiac cycle. However SpO2
values are not evaluated in real-time, but on the basis of
pre-recorded video. This makes this solution less usable for
self-monitoring at home or for instant screening in hospitals.



Moreover, pre-recorded videos introduce privacy issues that
should be taken into account when adopting such a solution.
Rather, a real-time processing of videos is preferable.

Based on the above analysis, we observe that the most
suitable sensor for remote measurement of SpO2 is the video
camera that satisfies both easy-of-use and contact-less require-
ments. In this paper, we propose the use of a camera for
non-contact and real-time measurement of the blood oxygen
saturation based on face video processing and remote photo-
pletismography. The resulting solution has the following key
features:

• it does not require any specific or expensive medical
device;

• it can run on any mobile device equipped with a camera
(smartphone, laptop, tablet);

• it does not require storing of videos thus avoiding privacy
issues or need for encryption;

• it can be easily used by the patient with no need of
touching the device;

• it is extremely fast, providing a reliable SpO2 measure-
ment in a couple of seconds.

III. CONTACT-LESS MEASUREMENT OF SPO2
Our approach for contact-less measurement of blood oxygen

saturation is based on a combination of Signal processing and
Computer Vision techniques. A short video frame sequence
capturing the face of the user is processed to extract the
remote photoplethysmography signal [5] that measures the
change of cardiovascular tissue in some regions of the face.
The underlying principle is that the impulse of cardio-vascular
wave that flows through the body periodically, causes stretch
in the vessel walls, with consequent fluctuations in blood
volume. These fluctuations modulate the absorbency of light
passing through a given volume of tissue, so it is possible to
evaluate the variation of light during a normal cardiac cycle.
According to [28], an estimation of SpO2 can be obtained
by considering the cardiovascular pulse wave signal at two
different wavelengths, namely the red and blue bands, being
the blue band representative of the infrared wavelength used
in the traditional pulse oximeter. Following this approach, we
developed a method to measure SpO2 by processing frames in
a short video. The method is composed of four main phases
(fig. 2) that are detailed in the following.

A. Face detection

In the first step, real-time face video are acquired through
the video camera and 24-bit RGB color representation is
used. Three different channels, each of 8 bits/channel with
a resolution of 480 × 200 pixel are extracted. A preliminary
acquisition cycle of 26 seconds is performed to remove the
initial camera distortion, and then successive frames are ac-
quired every 2 seconds. The OpenCV2 Python library is used
for frame acquisition and processing. The pre-trained frontal
face detector available with the Python library Dlib3 is used

2OpenCV: https://pypi.org/project/opencv-python/
3Dlib: http://dlib.net/

Fig. 2. Methodological pipeline.

to detect the face in the image frame. Given the detected face,
we apply a Facial Landmark Detection4 to obtain a set of 68
facial landmarks [29], [30].

B. ROI identification

The face landmarks obtained from the previous phase, are
processed to localize regions of interest (ROIs). We consider
three ROIs, one rectangular area (20×30 pixels) centered on
each cheek and one rectangle (90× 30 pixels) centered in the
forehead. Indeed, the cheeks and the forehead are the most
suitable areas to detect the photopletismographic signal [5].
Moreover the use of different ROIs enhances the effectiveness
and the usability of the system. Indeed if one of the regions is
totally or partially occluded, as for example hairs/hat on the
forehead or beard and glasses on cheeks, the pletismographic
signal can be still inferred from the remaining visible regions
or from sections of regions that are not interested by the
occlusion. Furthermore, ROIs have been located in the face
so as to involve as much skin as possible. Figure 3 shows the
location of the ROIs in the face frame. It can be observed that
despite the presence of glasses occludeing a small portion of
the cheeks ROIs, there is still a large part of skin that is used
for the analysis.

Rather than combining the three extracted ROIs, we select
the most informative one to derive SpO2 values, after several
pre-processing steps, as described in the following paragraphs.

C. ROI tracking

After initial localization, all the ROIs are tracked in sub-
sequent frames so as to reduce undesired effects due to head
movements and allow the user to be more natural and less
static in front of the camera. To track all the ROIs in a
robust way, an additional rectangular area sized 75×80 pixels
(fig. 3) is considered in the centre of the face so as to join
together the three ROIs (forehead and cheeks). Then a set of
tracking points is extracted from the central ROI using the

4Facial Landmark Detection: http://dlib.net/imaging.html#shape predictor



Fig. 3. Location of ROIs and tracking points.

method in [31]. These points are then tracked through the
Kanade-Lucas-Tomasi (KLT) tracking method [32] using the
APIs5 implemented in OpenCV library. This method creates
a transformation matrix that describes the movement of the
face between subsequent frames. Using such a matrix, the
coordinates of the tracking points as well as the corner points
of all the ROIs in a frame are transformed into new coordinates
in the subsequent frame according to the movements of the
face.

D. SpO2 estimation

The next step is the analysis of the RGB signals coming
from the ROIs marked in each video frame of a short sequence
(here 2sec of video are considered) in order to estimate the
oxygen saturation in blood. Each ROI is separated into the
three RGB channels (fig. 4) and then each channel is averaged
over all pixels of the ROI:

VR =

∑n
1

∑m
1 Ri

nm
VG =

∑n
1

∑m
1 Gi

nm
VB =

∑n
1

∑m
1 Bi

nm

where n×m is the dimension of the ROI. For each ROI, the
average signals (VR, VG, VB) are collected on the N frames
of the sequence, hence we obtain a final signal matrix VRGB

with 3×N dimensions.
Signals in VRGB pick up a mixture of the reflected plethys-

mographic signal along with other sources of fluctuations in
light due to artifacts such as motion and changes in ambient
lighting conditions. To avoid noise due to the motion and
fluctuations in image lightness, the VRGB signals are improved
through a preprocessing phase. Firstly, to reduce the high-
frequency noise in signals, a Finite Impulse Response (FIR)
filter with window method6 is used [33]. Then, to enhance
the robustness to motion and illumination variations, the
chrominance-based method [34] is applied. In addition, since
during the real-time acquisition of video frames it may happen
that the signal is not uniformly captured, a linear interpolation
is applied to the acquired signal in order to guarantee a

5KLT tracking method: https://docs.opencv.org/2.4/modules/video/doc/
motion analysis and object tracking.html

6FIR filter: available through the Python library Scipy https://docs.scipy.
org/doc/scipy-0.14.0/reference/generated/scipy.signal.firwin.html

Fig. 4. Separation of ROIs into RGB channels.

uniform sampling of the signal. Finally, we use Power spectral
density (PSD) through Welch’s method [35] to select the most
informative ROI. Indeed, the ROI with the maximum value of
PSD is considered for the SpO2 evaluation.

After the preprocessing phase, the signal of the selected
ROI is processed in order to compute an estimate of the
SpO2 value. As suggested in [28] SpO2 can be estimated
by considering the cardiovascular pulse wave signals at two
different wavelengths (660nm and 940nm), by comparing the
red and blue bands. Precisely, SpO2 is estimated according to
the formula:

SPO2 = A−B
ACRED/DCRED

ACBLUE/DCBLUE
(1)

where the ACRED and ACBLUE are computed as the standard
deviations of the red and blue signals in VRGB , while DCRED

and DCBLUE are computed as the mean of red and blue
values. We fix the coefficients A = 125 and B = 26 according
to the empirical evaluation made in [28].

The above described process enables estimation of blood
oxygen saturation in real-time, taking only a couple of seconds
to obtain the SpO2 value.

IV. EXPERIMENTS

In order to verify the effectiveness of the proposed method,
a set of measurement comparisons has been carried out, by
using pulse oximeter values as baseline. The adopted Fingertip
Pulse Oximeter has a SpO2 range of 70-99% with accuracy
±2% (for values below 70% the accuracy is undefined).

A total of 21 subjects, differing by age, gender, lifestyle,
were involved in the study. In this preliminary work all the
subjects were healthy, since due to the limitations imposed
during the COVID-19 emergency, collecting measurements of
sick people has not been possible. For a fair comparison, blood
oxygen saturation of each subject was measured by using the
pulse oximeter and our contact-less solution running on a
laptop equipped with a camera. Microsoft LifeCam HD7 has
been used. This is quite small camera (3.44” length, 1.57”
width) and it is provided with autofocus and with a HD

7https://www.microsoft.com/it-it/p/lifecam-studio/91dt6wmfdlb3?
activetab=pivot\%3aoverviewtab



1080p sensor that guarantees high sharpness and quality of the
acquired images. An empirical study, with different cameras,
has shown that autofocus and at least 30 fps are the minimum
requirements for accurate results.

The experiments were conducted indoors and with a normal
amount of sunlight as the only source of natural illumination.
However, it is worth noting that, the influence of the light on
the measurements has been minimized by using the chromi-
nance method.

Each subject was asked to frame his face in front of the
camera staying at a distance of approximately 50cm, resting in
state of spontaneous breathing. The system has been designed
to be user friendly. Icons and short messages have been used
to communicate with the users. If the distance between the
camera and the user is too short/long, a message will be
eventually shown to communicate that the user needs to move
closer or further to the camera. User position is continuously
checked to assure the correct acquisition. However, since only
two seconds are necessary to acquire the SpO2 values, once
the user reaches a good position the system is ready to collect
new measurements.

The tracking system allows more precise measurements by
compensating possible head movements as rotation. Indeed in
case of movements, thanks to the KLT method, the user face,
together with the selected ROIs will still be tracked.

For each subject, ten successive measurements were taken
(every 2sec) with both the devices. Figure 5 plots the average
value of SpO2 computed on the 10 measurements obtained
by our contact-less method and the pulse oximeter for each
subject. Figure 6 shows the absolute error (AE) between these
pairs of measurements. It is clear that on the average the pro-
posed solution is able to estimate the SpO2 value with a good
approximation of the baseline given by the pulse oximeter.
Indeed for 8 measurements we observe AE = 0.0, for 6
mesurement AE ≤ 1.0 and for the remaining 7 measurements
AE ≤ 2.0. We emphasize that the highest value of AE is still
an acceptable, indeed SpO2 is valid if the mean bias is within
±2% [16].

Moreover, the Bland-Altman (B&A) analysis was con-
ducted to assess and visualize Level of Agreement (LoA)
between the proposed method and the pulse oximeter. Figure
7 shows the B&A graph that plots the differences in the SpO2
measurements between the pulse oximeter and the proposed
solution and defines the intervals of agreements according to
the B&A analysis. The solid line represents the mean bias.
The two dotted lines represent the lower and upper limits
of agreement (LoA). Typically B&A recommends that 95%
of the differences are expected to be within these LoA for a
reliable measurement. From fig. 7 we can observe that there is
agreement between the two measurements since all the points
except one are within the LoA.

Leveraging these preliminary results, we can conclude that
SpO2 measurements obtained by the proposed contact-less
solution approximate quite well measurements given by the
pulse oximeter, with the added value of avoiding contact-based
usage that could be a means of infection transmission.

Fig. 5. Pulse oximeter and contact-less device measurements.

Fig. 6. Absolute errors.

V. CONCLUSION

In this paper a mHealth solution for self-measurement of
blood oxygen saturation has been presented. The key feature
of our solution is the use of a contact-less sensor (a video
camera) that acquires video frames of the face from which the
plethysmographic signal is extracted and finally an estimate
of the saturation is derived. The proposed solution allows a
continuous personal control of the blood oxygen saturation
at the patient’s home, avoiding the use of medical measuring
devices (e.g. saturometers, pulse oximeters), but simply using
a mobile device equipped with a camera. Microsoft LifeCam
has been used for data acquisition, further experiments will be
conducted to test how different features of the camera could
affect the accuracy of the estimate of SpO2.

Preliminary experimental results on a small sample of users
are encouraging, since they show that the SpO2 measurements
obtained by our solution are comparable to those obtained by
a commercial pulse oximeter. Of course, to better asses the
reliability of our approach a larger number of tests should
be carried out, by involving not only healthy people but also
sick people, with special focus on patients with symptoms
suggestive of COVID-19 infection. Moreover the influence
of different factors such as healthy life style, smoke, disease
family history, etc., on SpO2 measurements, will be investi-
gated. These further experiments require special permission
from healthcare organizations that we were not able to obtain
due to this emergency period.

The proposed solution can be easily extended to find ap-



plication in several healthcare scenarios. Firstly, if enriched
with a videoconference tool, our solution may also allow
a real-time remote interaction between the patient and the
physician who can give his advice by remote leveraging
the vital parameters self-measured by the patient. This is
especially useful for patients that are not allowed to leave
their home due to quarantine such as the one imposed by
the current COVID-19 outbreak. In this view, our solution
is suitable to intervene in continuity with the organizational
model for emergency management, providing a valid tool to
support the telephone triage of citizens and to facilitate what
the latest Italian ministerial guidelines call ”Special Units of
Continuity of Care (USCA)”.

Another possible extension that we foresee is to add the
measurement of other vital parameters (e.g. temperature, heart
rate,...) and use the enriched monitoring solution for COVID-
19 screening of visitors including doctors, nurses, medical
and non-medical staffs at entrances of hospitals or other
places characterized by large inflows. In this case the solution
could be well integrated in a social robot (equipped with a
camera and a tablet) that measures vital parameters while
welcoming visitors at the entrance. An example of this type
of application has been recently experimented at the Fortis
Hospital (Bangalore, India) as a bid to protect the healthcare
workers from COVID-19 contagion8.

Finally, it should be noted that the proposed solution can
improve care non only for CoVid patients at home, but also for
chronic patients, especially those affected by cardiovascular
diseases. In this case more ergonomic devices could also be
employed. An example is given in [36] where a variant of
our method, including also heart rate measurement, runs on
a laptop integrated in a mirror equipped with a camera. The
resulting device is an object of daily use that enables a natural
self-monitoring of vital parameters through the simple gesture
of looking at oneself in a mirror. This is especially comfortable
for elderly people who may have difficulty to auto-monitor
their vital parameters through the use of common mobile
devices.
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