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Abstract— Binary descriptors have been shown to be faster
than nonbinary descriptors while producing comparable results
in image matching applications. In recent years, there have been
many attempts to design hardware accelerators for extraction of
binary descriptors to achieve higher processing rates. One of the
well-known methods is the binary robust invariant scalable key
point (BRISK) algorithm, which has shown outstanding results in
various applications. In this work, we propose a multiscale field-
programmable gate array (FPGA)-based hardware architecture
for the BRISK descriptor. In addition, a new image sampling
pattern for the BRISK algorithm is described which is shown to
be more efficient than the original sampling pattern for hardware
implementation. Our new sampling pattern decreases the size of
the patches containing the key point to one-quarter of the size
of that used in the original BRISK algorithm, which leads to
a reduction in FPGA resource utilization while maintaining the
accuracy of the image matching application. Our proposed design
is fully pipelined and achieves a frame rate of 78 fps on images
with full HD resolution.

Index Terms— Accelerator, BRISK, field-programmable gate
array (FPGA), hardware implementation, sampling pattern.

I. INTRODUCTION

KEYPOINT detection and description has many appli-
cations in computer vision. Key point detection is the

process of finding the location of key points (or interest
points), which are the points in the image such as corner
features that represent important information. Extracting fea-
tures from a patch (a small window of image which is being
processed by the descriptor) around the key point is called key
point description. Features are any information from the patch
that can be used for specifying each key point individually.
Extracted features should have high similarity for a key point
which is visible in two different images while having low
similarity with the features of other key points in the same
image and other images. Invariance to illumination, scale, and
rotation are important characteristics of feature descriptors.

There are many feature detection and description algorithms
proposed in the literature. These algorithms are commonly
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categorized into two groups. The first one is nonbinary
descriptors including SIFT [1], SURF [2], and HOG [3]. The
second category is binary descriptors including BRIEF [4],
FREAK [5], BRISK [6], and ORB [7]. Nonbinary descrip-
tors usually generate histograms of image features such as
gradients and use them for describing a patch of an image.
On the other hand, binary descriptors are commonly based
on the comparison of the intensity of different pairs of pixels
in a patch around a key point. Since nonbinary descriptors
process more information, they typically produce more accu-
rate results. However, the main advantage of binary feature
descriptors over nonbinary ones is faster computation while
maintaining comparable accuracy.

A. Hardware Implementation of Descriptors

Although binary descriptors have been shown to produce
a noticeable performance enhancement in terms of speed
compared to nonbinary descriptors, they remain computa-
tionally expensive. This has led many researchers to work
on hardware implementation of binary descriptors to achieve
higher speed. Implementing hardware accelerators can make
computer vision applications more practical due to the benefits
of processing multiple computations in parallel. Hardware
accelerators do not have the limitations of processors with con-
ventional architectures. In particular, field programmable gate
arrays (FPGAs) are popular platforms for implementing hard-
ware accelerators for their ease of implementation and reason-
able time-to-market in comparison with application-specific
integrated circuits. There are many attempts to implement
descriptor algorithms such as HOG, ORB, and FREAK on
FPGAs due to their low power consumption and parallel
computation capabilities. As an example, an analysis of
FPGA-based implementation of the HOG algorithm is pro-
vided in our previous work [8].

B. BRISK Algorithm

The BRISK algorithm combines the AGAST detector [9]
and a new descriptor [6]. Since the focus of our work is on
the description portion of the BRISK algorithm, we briefly
introduce the description process of BRISK in this section.

When a key point is detected in an image, a patch of pixels
around that key point is extracted. Then, specific locations of
pixels around the key points are used as samples of the patch
to generate the descriptors. The original BRISK algorithm uses
a sampling pattern as shown in Fig. 1 [6].
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Fig. 1. Original BRISK sample points [6] (© [2011] IEEE). The blue circle
in the center represents the key point. Other blue circles represent sample
points. The red dashed circles represent the relative variance of the Gaussian
filter which is applied around each sample point. The key point is positioned
on (0,0) and the numbers on the vertical and horizontal axes represent the
relative position from the origin, in pixels.

Fig. 2. Examples of (a) long pairs and (b) short pairs based on the BRISK
sample pattern [6] (© [2011] IEEE).

The sampled pixels around a key point in a patch form
groups as pairs and depending on the distance between each
sample in a pair, are labeled as a long distance pair or a
short distance pair [6]. If the distance is larger than a specific
threshold, that pair is labeled as a long pair. Otherwise, it is
labeled as a short pair. Fig. 2 shows examples of long pairs and
short pairs. In the original BRISK algorithm, 870 long pairs
and 512 short pairs are selected from the 60 samples including
the key point. After selecting the long pairs, they calculate
the orientation of the patch. The first step is to compute the
gradient of each long pair as follows:

g(Pi , Pj ) = Pi − Pj

‖Pi − Pj‖ × I (Pi , σi ) − I (Pj , σ j )

‖Pi − Pj‖ (1)

where Pi and Pj are the coordinates of sample points in each
pair and I (Pi , σi ) is the intensity of an image smoothed by
a Gaussian kernel with variance of σi in location Pi . After
computing the gradient for each pair, the summation of all the
gradients of long pairs is computed in horizontal and vertical
directions together as shown in the following:

G =
(

g(x)

g(y)

)
= 1

L

∑
Pi ,Pj ∈patch

g(Pi , Pj ). (2)

Finally, the patch orientation is determined by computing the
arctangent of G as shown in the following:

θ = arctan

(
g(y)

g(x)

)
(3)

where θ is the orientation of the patch. Each patch has its own
main orientation, which represents the main gradient direction
of that patch. If we rotate all the patches so that their main
orientation is in one direction, then the patches of the same
key point in two different images with different orientations
will transform into the same direction. Therefore, in the next
step, the algorithm rotates each patch by its orientation. Then,
BRISK compares the intensity value of each pixel from short
pair samples with the other pixel in the same pair. Instead
of comparing the raw intensity of the pixels, they smooth the
image using the pixels around it. Smoothing has a significant
effect on the accuracy of the algorithm. If the smoothed value
of the first pixel is greater than the second one, they set the
corresponding bit in the descriptor to 1 and otherwise they set
it to 0.

C. New Approaches to Enhance Acceleration

There has been little publication in the academic liter-
ature focusing on implementation of the BRISK algorithm
on FPGAs, particularly at multiple scales. In this work,
we propose and evaluate a design of a multiscale hardware
implementation of the BRISK algorithm to achieve scale
invariant performance.

We propose a novel design of a multiscale pipeline archi-
tecture, including innovations in various stages of the pipeline.
Scale invariant descriptors can match objects of various sizes
in images. There are two conventional methods for implement-
ing multiple scales of descriptors in hardware. The first method
is to extract descriptors from multiple frame sizes sequen-
tially, as done by Liu et al. [10] for the ORB descriptor. The
second method is to replicate the buffers and computational
components for the number of scales to process multiple scales
in parallel as used by Sun et al. [11]. The second method is
faster but requires more hardware resources in comparison
with the first method.

Our multiscale hardware implementation of the BRISK
algorithm requires less hardware resources than trivial replica-
tion of the circuits for single scale. In particular, we store and
process a quarter of the resized image in each scale without
loss of accuracy. The pipeline architecture in our design is
synchronized so that we can share one of the key computation
stages of the algorithm between multiple scales.

We also introduce an innovative hardware-aware sampling
pattern which is designed based on minimization of hard-
ware resources, which facilitates the implementation of the
BRISK algorithm for multiple scales. Using this sampling
pattern, we process one-quarter instead of the full image
data in each scale while maintaining comparable accuracy.
We demonstrate a fully pipeline architecture for this algorithm
which has extensive parallelism in each stage of the pipeline.
In addition, we use a variety of techniques such as resource
sharing, clock gating, and computational approximations to
make our design more efficient in terms of power and resource
utilization.
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TABLE I

COMPARISON OF EXAMPLES OF BINARY DESCRIPTORS

D. Organization of this Article

The remainder of this article is presented as follows.
In Section II, we compare well-known binary descriptors
and discuss recently published FPGA implementations of
these algorithms. In Section III, we introduce our new
hardware-aware sampling pattern for the BRISK algorithm.
In Section IV, we present a novel multiscale hardware imple-
mentation of the BRISK algorithm. In that section, we provide
our hardware design and solutions in detail for each part of
the BRISK algorithm. We provide a comprehensive analysis of
the benefits of our contributions in Section V and evaluate our
innovations in comparison with recently published, state-of-
the-art results. Finally, we conclude this article in Section VI.

II. RELATED WORK

In this section, we provide a comparison of
commonly-known binary descriptors. We continue this section
by reviewing recent advances in hardware implementation of
binary descriptors then focus on work which implements the
BRISK algorithm.

A. Comparison of Binary Descriptor Algorithms

Although binary descriptors operate similarly in that they
use comparison for generating their output, there are important
differences in the associated algorithms. Table I shows the
main differences in sampling and rotation computation among
four well-known binary feature descriptors. In this work,
we propose a new design for the BRISK descriptor since it
has many applications in various specialized computer vision
fields such as bone age assessment [12], SAR-based automatic
target recognition [13], content-based image retrieval [14],
and emotion recognition [15]. It requires fewer computations
than nonbinary descriptors such as SIFT and SURF while it
produces comparable results. The FREAK descriptor is very
similar to BRISK with the difference between them being
the sampling pattern and rotation invariant calculation. The
samples in FREAK are mostly focused on the center of the
patch while BRISK has a more uniformly distributed pattern
throughout the patch. Therefore, for various applications they
produce close but different results. BRISK achieves better
results than BRIEF since it is rotation and scale invariant.
Also, since the original BRISK generates 512-bit descriptors
while ORB generates 256-bit descriptors, it has been shown
to outperform the original ORB in specific applications [16].
However, BRISK is more computationally demanding since

it processes a larger number of pixels from the same patch
size. Mouats et al. [17] evaluated BRISK, FREAK, ORB, and
nonbinary descriptors in poor lighting conditions. In most
test cases, BRISK outperforms other binary descriptors in
accuracy.

Binary descriptors are faster than nonbinary descriptors
since they provide a binary vector based on the comparisons
of pixel values in the final feature vector, while nonbinary
descriptors normally have more complex computations such as
histogram generation and dense gradient computation. Speed
comparison of descriptors have been addressed in previous
work [20]–[22]. However, a descriptor such as BRISK will
still require a high number of computations. In the original
work, for each key point, the algorithm requires 870 long-
pair computations and 512 short-pair comparisons which are
processed sequentially on a conventional CPU.

In our work, we propose an FPGA-based design to compute
the descriptors faster in multiple scales by performing the
calculation of long pairs and short pairs in parallel. Multiscale
description results in a more accurate image matching system.

B. FPGA-Based Implementations of Binary Descriptors

There are many FPGA-based implementations of binary
descriptors. Sun et al. [11], [23], de Lima et al. [24],
Liu et al. [10], and Tran et al. [25] implement the ORB
algorithm on hardware. Fang et al. [26] implement ORB
algorithm on an FPGA for two scales of 640 × 480 and
533 × 400. They stop the streaming input whenever a
key point enters the line buffers so that the descriptor has
enough time to calculate the features. This design choice
leads to lower frame rate. They achieve a frame rate of
67 fps with maximum frequency of 203 MHz for 640 × 480
resolution. Kalms et al. [27] and Kapela et al. [28] proposed
hardware architectures for the FREAK descriptor on an FPGA
and Pham et al. [29] design an FPGA-based architecture
for rotation-aware BRIEF algorithm. Although the BRIEF
algorithm requires less calculation than BRISK, they
achieve 60 fps for 1920 × 1080 images. For comparison,
in our work, we achieve 78 fps on 1920 × 1080 images.

C. FPGA-Based Implementations of BRISK Descriptor

Despite the large number of computations for orientation
compensation, there has been little work focusing on hardware
implementation of the BRISK algorithm. Ulusel et al. [30]
implement the BRISK algorithm on an FPGA. They imple-
ment a single-scale version of the BRISK algorithm with an
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Fig. 3. Image matching pipeline.

800 × 480 image resolution. Their work does not contain
details of orientation compensation which is an important part
of the description. They also do not provide any results for
demonstrating accuracy. Azimi et al. [31] proposed a fully
pipelined and parallel hardware architecture for the detector
part of the BRISK algorithm which is a multiscale FAST [19]
algorithm. Since their focus is only on detection, they have
not implemented the descriptor part of BRISK.

A complete image matching system which includes scale
space generation, key point detection, key point description,
key point matching, and outlier elimination is shown in Fig. 3.
In this work, we focus on the descriptor and implement it with
a hardware accelerator. We also implement a FAST detector
as a part of the matching system. However, the descriptor
could be combined with any feature detector unit whether
implemented in software or hardware.

III. HARDWARE-AWARE SAMPLING PATTERN FOR BRISK

One of the key differences among binary descriptors is their
image sampling pattern. In this section, we propose a new,
novel sampling pattern which is more efficient in resource
utilization for hardware implementation than the sampling
pattern of the original BRISK algorithm. The main idea is to
constrain the sampling points to be only in even (or odd) rows
and columns. We achieve similar accuracy with patterns in
even coordinates, while reducing the processing requirements
to one-quarter of the original algorithm.

Fig. 4 presents examples selected from the sequence of
steps for generating the proposed sampling pattern. Similar to
BRISK, our proposed sampling pattern is based on a 33 × 33
patch. To obtain this pattern, we start with a grid of 17 × 17
pixel locations. First, all the pixels around the center of the grid
are selected as initial sampling points as shown in step 0 of
Fig. 4. Then, for a specific number of rotations n, we determine
the angle step θ based on the following:

θ = 360

n
. (4)

We rotate the grid for every θ = 10◦ (n = 36) and compute
the Euclidean distance of the center of each rotated pixel
with the nearest unrotated ones. If this distance is less than a
predefined threshold T , we mark it as an acceptable overlap.
For each degree, we calculate the acceptable overlaps between
samples. The samples that do not have acceptable overlaps are
removed as shown in the examples of Fig. 4. Last, we have
the intersection of all acceptable overlaps for all rotations.
The resulting samples are the pixels which have acceptable
overlaps with each other in all angle steps θ for the specified
threshold. If we reduce the threshold, the number of acceptable
overlaps becomes smaller, which is shown in Table II. Higher

Fig. 4. Examples selected from the sequence of steps for generating the
proposed sampling pattern (with T = 1, n = 36). The initial sampling points
are shown as step 0. Each step rotates the sampling points by θ = 10 and the
samples without acceptable overlap are removed. Not all steps are shown for
brevity.

TABLE II

EFFECT OF CHANGING THE DISTANCE THRESHOLD T ON THE NUMBER OF

SAMPLE POINTS WITH n = 36 (θ = 10)

TABLE III

EFFECT OF CHANGING THE NUMBER OF ROTATIONS ON THE

NUMBER OF SAMPLE POINTS WITH T = 1

Fig. 5. Examples of sampling patterns resulting from changing threshold
(T ) to produce different sampling patterns for the same number of rotations
n. For all three patterns n = 36 (θ = 10). (a) T = 0.98, (b) T = 1, and
(c) T = 1.02.

thresholds lead to a greater number of acceptable overlaps.
However, if we accept overlaps with higher distances it will
decrease the accuracy of matching since the matching algo-
rithm would assume those pixels have the same position in
rotated images. As shown in Table III, decreasing the angle
step θ leads to more precise rotation of the pixels. Therefore,
the acceptable overlaps are selected from the intersection of
more pixel rotations, and the number of pixels which are
available in all possible rotations decreases. As a consequence,
the number of acceptable overlaps decreases.

Finally, we multiply each coordinate by 2 so that the
samples would be extracted from only even rows and columns
of a 33 × 33 patch. Fig. 5 shows examples of sampling
patterns using different thresholds. Fig. 6 presents different
sampling patterns obtained from different angle steps.
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Fig. 6. Examples of sampling patterns resulting from changing the number
of rotations n to produce different sampling patterns for the same threshold
T . For all three patterns T = 1. (a) n = 24 (θ = 15), (b) n = 36 (θ = 10),
and (c) n = 48 (θ = 7.5).

Fig. 7. Overall architecture of our design. This design includes two parallel
pipeline paths for two scales. The controller logic is a combination of multiple
finite state machines. The dashed line is a single-bit result of the detector
which is concatenated with the pixel values.

We choose a threshold of 1 pixel and 36 angle steps for the
sampling pattern. This means that we have samples for each
10◦ of rotation and the sample points are the ones which have
the shortest distance to at least one sample point in another
rotation of the same sampling pattern. This design choice
gives us enough samples to describe a patch with adequate
accuracy but not so many samples such that FPGA routing is
unnecessarily complicated.

IV. HARDWARE IMPLEMENTATION OF THE

MULTISCALE BRISK ALGORITHM

In this section, we introduce the architecture of our design
for the BRISK algorithm implementation. The proposed design
is a fully pipelined architecture so that at each clock cycle,
a new pixel enters the pipeline without a need to pause. In this
design, our main focus is first, to achieve higher speed by
parallelizing the computations required in each step of the
algorithm and second, to reduce hardware resource usage by
using our novel sampling pattern. The proposed architecture
is shown in Fig. 7. The controller is a combination of finite
state machines (FSMs). We discuss the multiscale structure of
this architecture in more detail in Section IV-B. The streaming
input pixel enters the design one pixel at each clock cycle. The
pixels enter a line buffer which has a size of W × 11 (where
W is the width of the image). After an initial waiting phase,

the line buffer becomes full and the output of the line buffer
which is an 11 × 11 patch will have valid values. We use the
11 × 11 patch at the end of the line buffer as an input for the
FAST detector and the filter unit.

The FAST detector tests each 11 × 11 patch to determine
if the center pixel of the patch is a key point. This module
has two main parts, the lighter pixels key point test and the
darker pixels key point test. These two parts process the pixels
in parallel. First, we extract the values of the 16 pixels in a
7 × 7 patch around the center pixel shaping a Bresenham circle
as shown in Fig. 8. We define an upper limit and a lower
limit which specify a neighborhood around the center pixel
value. We calculate the upper limit by adding the value of the
center pixel to a predefined threshold, and at the same time,
we calculate the lower limit by subtracting the center pixel
from the same threshold. This threshold is used for reducing
the effect of noise on detection result. We choose the value
of 10 for this threshold based on our experiments. The upper
limit is used for the lighter pixels test and the lower limit is
used for the darker pixels test.

For the lighter pixels test, we compare all 16 pixels around
the center pixel with the upper limit simultaneously to see if
nine consecutive pixels are lighter than the center pixel. We use
logic gates to AND the “greater than” output of every nine
consecutive comparators. If any one of the AND operations
result is true, the center pixel is identified as a key point.
We logically OR the results of the AND operations. The result
of the OR gates is a 1-bit key point detection output.

Simultaneously, we compare the pixels around the center
pixel with the lower limit to check the criterion for darker
pixels. For darker pixels, we check the “less than” output of the
comparators. Finally, we OR the result of the darker and lighter
key point detection to form the output of the detector module.
Since we have 16 comparators and 16 9-bit AND gates, 8 of the
inputs of each two adjacent AND gates are common between
them. Note that in Fig. 8, signals gt_1 to gt_9 are connected
to the top AND gate and signals gt_8 to gt_16 are connected
to the bottom AND gate as an example. In this example, gt_8
and gt_9 are common inputs of these two gates.

The filter unit contains a constant weight window that
has higher values in the center and lower values toward the
borders. The highest value in the center is 1 and the lowest
value at the borders is 0.5 as shown in Fig. 9. Due to the
focus on the pixel in the center and keeping the effect of
the surrounding pixels, these weights lead to an acceptable
accuracy for our design. We multiply each pixel in the input
patch with the corresponding value of the filter patch. Since
the weights are constants, we use logical shift and adder logic.
We approximate each multiplication by logical shift and adder
logic with four terms as shown in the following:

Mi,approx =
4∑

j=1

Mi � ni ( j) =
4∑

j=1

Mi ×
(

1

2ni ( j)

)
. (5)

In (5), Mi is the multiplicand, Mi,approx is the approximated
multiplicand, and ni is an array of four values. The values for
each ni( j) is selected so that the difference between Mi and
Mi,approx is acceptable. As an example, for appoximating 0.9,
we can use ni = 1, 2, 3, 5 which results in Mi,approx = 0.90625.
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Fig. 8. Architecture of the FAST key point detector. The window on the left shows the location of the 16 pixels around the center pixel. The two key point
tests process the pixel values in parallel.

TABLE IV

APPROXIMATIONS OF MULTIPLICATIONS IN THE FILTER UNIT

Fig. 9. Weights of the filter unit that is shown in Fig. 7.

Table IV shows the values of each ni and the approximations
we use in this stage. Subsequently, we compute the sum-
mation of weighted pixels using a 7-level adder tree. Finally,
we divide the output by the summation of all weights in the
weight window in Fig. 9. Since this value is a constant, we use
right shift and adder logic instead of division to approximate
this value, which produces a negligible error.

The filter unit and the detector unit work in parallel.
We concatenate the detector result (which is one bit indicating
if the pixel is a key point or not) to the 8-bit value of the
pixel. The result, which is a 9-bit value, enters the second line
buffer which contains the smoothed values of the pixels in
the image. The length of the second line buffer is half of the
image width. By using even rows and columns, we do not lose

Fig. 10. Block diagram of a pipeline architecture for one scale.

any information since our sampling pattern is located on the
pixel locations that remain in this line buffer. The advantage of
this technique is that we can consider only one-quarter of the
pixels in the image from this step forward since the sampling
pattern does not require pixel values from adjacent locations.
The output of the second line buffer is a 17 × 17 patch which
can be accessed when this line buffer becomes full of valid
data. We send this patch to the first step of the BRISK pipeline
which is the long-pair subtraction unit.

A. BRISK Pipeline

The steps for BRISK pipeline include long-pair subtrac-
tion, multiplication, summation, orientation calculation, and
short-pair comparison. In the proposed design, these stages
are separated using registers to form a pipeline architecture.
Therefore, at each clock cycle, each stage processes the data
of a specific patch while the previous stage is processing the
adjacent patch on the left. Fig. 10 shows the block diagram
of the architecture of the pipeline for one scale in our design.
We use the detector bit (the 9th bit) of the output value of
the line buffer as an enable signal for the pipeline stages.
Therefore, if the pixel entering the pipeline architecture is
not a key point, the pipeline will not continue to work and
we save dynamic power. We discuss the advantages of this
method in Section V. In this design, we compute the gradients
in horizontal and vertical directions in a different order than
the original BRISK algorithm. Since in the hardware imple-
mentation the coordinates of the samples are known, we can
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factor the coordinate terms and precompute some parts of the
expressions in (1) and (2), and use them as coefficients as
in (6) and (7):

g(x) =
∑

Pi ,Pj ∈patch

1

L

(Pi(x) − Pj(x))

‖Pi − Pj‖2
(I (Pi , σi ) − I (Pj , σ j ))

=
870∑
k=1

c1(k)(I (Pk,1, σ ) − I (Pk,2, σ )) (6)

g(y) =
∑

Pi ,Pj ∈patch

1

L

(Pi(y) − Pj(y))

‖Pi − Pj‖2
(I (Pi , σi ) − I (Pj , σ j ))

=
870∑
k=1

c2(k)(I (Pk,1, σ ) − I (Pk,2, σ )) (7)

where

c1(k) = 1

L

Pk,1(x) − Pk,2(x)

|Pk,1 − Pk,2|2
c2(k) = 1

L

Pk,1(y) − Pk,2(y)

|Pk,1 − Pk,2|2 (8)

and L is the number of long pairs which is 870. Note that c1

and c2 are precomputed constants and we can use their values
for long-pair calculations.

The first step of long-pair calculation, which is shown in
Fig. 10, is to compute the difference between the intensity
of pixels in each long pair. In this step, we compute 870
subtractions in parallel in one clock cycle which results in
9-bit outputs to accommodate overflow. The second step
is multiplication by c1 and c2 coefficients. For this step,
we should multiply the 870 differences once by c1 and once
by c2. Therefore, we have two channels of multiplication with
the total number of 1740 multiplication operations which we
perform in parallel in one clock cycle. We use add and signed
arithmetic shifts instead of complex multiplier circuits since
c1 and c2 are constants. In this way, fewer hardware resources
are used for this step and the output is computed in a single
clock cycle.

The third step is the summation step as shown in (6). For
this step, we use two parallel 10-level adder trees. The input
of the first level for each adder tree is the results of the
multiplications of each channel. The two outputs of this step
are the values of g(x) and g(y). The block diagram of this
step is shown in Fig. 11. We use a pipeline register between
levels 5 and 6 since this step is one of the critical timing
paths of the design. The input values of the first level of adder
tree, which are the output of the multiplication step, are 18-bit
integers. The output of each level of the adder tree should have
one more bit than the input level to accommodate overflow
in addition. Increasing the number of bits in each level will
result in 28-bit output at the final stage. In this step, we take
advantage of the fact that in the next step, the result of the
adder tree for the vertical direction is divided by the result
of another adder tree for the horizontal direction. Therefore,
if both these values are divided by a constant, the final result
will not change.

In order to save hardware resources, we use a stepwise
approximation in the adder tree. At each level, we divide the
result of the addition by a specific power of 2. Division by

Fig. 11. Two parallel 10-level adder trees for two channels. Each level has
half of the number of adders in the previous level. The solid bar represents a
pipeline register which is used to make the critical path shorter.

TABLE V

ADDER TREE NUMBER OF ADDITIONS AND APPROXIMATIONS

power of 2 is equivalent to selecting bits and propagating them
to the next level. By using this method, the final result of
the next step (after division) is comparable to the result using
accurate addition using all bits. For the first level, we divide the
output by 8. For the second to fifth level, we divide the output
by 4. For the rest of the levels, we divide the output of each
level by 2. We choose these values empirically to minimize
hardware resource utilization while maintaining similar accu-
racy. Table V shows the number of bits before approximation
and after approximation in each level. The fourth step of the
long-pair calculation is orientation computation. In this step,
we compute the multiplication of g(x) and different values of
tan(θ) limits and compare them to g(y) as in the following:

g(x) tan(θi+1) > g(y) ≥ g(x) tan(θi). (9)

To make the descriptor rotation invariant, we should rotate the
samples based on the orientation from step four. Based on the
orientation value, we dynamically select the rotated samples
using multiplexers working in parallel after the pipeline reg-
isters. This method does not require reading any data from
memory and is faster than computing the rotated sample
locations. The block diagram of the fifth step, which is short-
pair computation, is shown in Fig. 12. After finding the correct
angle, instead of rotating the patch, we use the sample pairs for
that specific orientation. In this step, we have 1024 36-input
multiplexers and 512 8-bit comparators. The orientation is
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Fig. 12. Short pair computation step. In this stage, we have 72 buses
which connect the pixels in the sampling pattern to the multiplexers. Each
multiplexer selects one group of samples and passes it to the 512 comparators.
The descriptor comprises the outputs of the comparators.

used as a selector of the multiplexers. The output of the
multiplexers are the rotated samples and the output of each
two multiplexers corresponding to one short pair are connected
to a comparator. Finally, the output of the 512 comparators
are concatenated as a single 512-bit vector which is the final
descriptor of a key point.

B. Multiscale BRISK

We use two similar parallel pipelines to implement multi-
scale description. This architecture is shown in Fig. 7. The
only difference between the two pipelines is the streaming
input data. The input data of the second pipeline is extracted
from the second line buffer. An 11 × 11 patch from the second
line buffer enters the filter unit of the second pipeline. Then,
the filtered result enters the third line buffer which produces
a 17 × 17 patch as input to the second pipeline.

The first line buffer has the dimensions of W × 11 (recall
W is the image width). We choose this size since the purpose
of this line buffer is to provide parallel input for the filtering
unit, which contains a weight window of 11 × 11. The second
line buffer has the dimensions of W × 17. This line buffer
has two outputs. The first one is a 17 × 17 patch which is
the input of the first pipeline and the second output is an
11 × 11 patch which enters the second pipeline stage. The
third line buffer has the dimension of half of the second line
buffer width × 17. Since the original input enters the system
each clock cycle and we are scaling each line buffer to have
approximately half of the size of the previous one, valid data
in the second line buffer is available every two clock cycles.
Similarly, the valid data in the third line buffer is produced
once every four clock cycles.

Our design provides the output of two scales for the
modified BRISK algorithm. Additional scales can be added
to the design by adding more pipelines similar to the second
scale as shown in Fig. 7.

V. RESULTS AND DISCUSSION

In this section, first, we discuss the performance of our
new sampling pattern. Second, we present the advantages of

clock gating on our implementation and the benefits of sharing
FPGA resources for the multiplication stage. Then, we present
the FPGA resource usage of our implementation of the BRISK
algorithm in detail. After that, we demonstrate the accuracy
of our implementation.

A. Assessment of the New Sampling Pattern

It is important to note that we use even rows and columns
in our implementation but if odd rows and columns are used,
the concept and the result will be the same. Using only
the samples in even rows and even columns gives us an
opportunity to process an image of diminished size without
loss of information. Therefore, we can have a more efficient
design regarding the resource usage on the FPGA. In the
original BRISK, each patch has a minimum size of 33 × 33.
If we load the patch and the surrounding pixels from the
memory so that we can smooth the patch around the samples
in the borders, we should use a 33 × 33 patch. Therefore,
implementing the original BRISK for eight scales requires
W × 61.875 registers for line buffers according to (10).
However, by using the new sampling pattern, we can reduce
the number of required registers to about 27 times the width
of the image as in (11). As shown in (10) and (11), for each
scale, the width of the image is reduced to half size, and
therefore, the width of the line buffer in each scale is equal to
width of the image divided by the scale factor of that scale

RBRISK = 33 ×
(

W

1
+ W

2
+ W

4
+ W

8

)

= 61.875 × W (10)

RN = 17 ×
(

W

2
+ W

4
+ W

8
+ W

16

)
+ 11 × W

= 26.9375 × W. (11)

In (10) and (11), W is the width of the image, RBRISK is the
number of registers required for a 4-scale implementation of
the original BRISK pattern line buffers and RN is the number
of registers required for our design. We use 17 × 17 patches
for the scales and we have a buffer of W × 11 for prefiltering
the first patch. Equations (10) and (11) show that we have 56%
reduction in the number of registers in the design. Another
advantage of reducing the size of the patch is that we propagate
fewer number of signals through the pipeline. Table VI shows
the number of registers used in each pipeline stage. In total,
the number of registers decreases by 73% which is another
benefit of our proposed sampling pattern.

B. Effect of Clock Gating
The first two steps of an image matching system are key

point detection and key point description. For the first part,
we should apply the key point detection algorithm on all
pixels in the image to identify the key points. Unless a dense
description of all pixels is required, the description part is
applied to patches around a detected key point which is the
common procedure used in most applications. Our proposed
architecture can produce dense descriptors for all pixels in the
image. However, we can use the output of the detection stage
as a control signal to produce the description results, only for
the key points. In this way, the part of the circuit which is
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TABLE VI

NUMBER OF REQUIRED REGISTERS FOR PIPELINE IMPLEMENTATION OF
THE BRISK ALGORITHM IN ORIGINAL BRISK AND

OUR PROPOSED PATTERN

TABLE VII

POWER CONSUMPTION IMPROVEMENT USING CLOCK GATING

dedicated for description does not consume dynamic power
when there is no key point detected.

To implement this feature, we use a clock gating method.
We concatenate the detection bit to the 8-bit pixels in the sec-
ond and third line buffers. If the pixel is a key point, the 9th
bit is 1; otherwise it is 0. We use the detection bit as the
control signal for the pipeline registers on the FPGA. When
a key point pixel reaches the end of the line buffers, the 9th
bit, which indicates if the pixel is a key point or not, is used
as an enable signal for the clock routing to all registers at that
scale.

Since the computation of each pixel requires nine clock
cycles in the descriptor pipeline, the clock of the pipeline
registers stays active for nine consecutive clock cycles after
each key point. Table VII shows the effect of gating the clock
for the descriptor on power consumption versus using the same
clock for all units in the circuit. In this table, the pipeline
registers are controlled by the common clock of the circuit for
the ungated clock design. As shown in Table VII, the static
power is not affected much by this design decision. However,
the dynamic power has improved by 47%. Since the static
power is about the same in both cases, the total power has
improved by 32%.

C. Sharing the Multiplication Stage

In this work, we implement the BRISK descriptor for two
scales of an image. Since we are using only even rows and
columns of an image and the image pixels are read at each
clock cycle from the memory, the data in the pipeline of the
first scale are only valid every two clock cycles. For the second

Fig. 13. Shared multiplication logic between two scales. We use a multiplexer
before the shared logic to select the data from one of the pipelines and a
demultiplexer after the unit to propagate results to the next stages of the
pipeline.

Fig. 14. Timing of the valid data on the first and second scales. The bottom
waveform shows the allocation of the multiplication stage to each scale.

scale, the data are valid every four clock cycles. We synchro-
nize the two pipelines so that the data of the second pipeline
are produced in the unused cycles of the first pipeline. We take
advantage of this fact by sharing the hardware resources for
the multiplication stage since it is a hardware consuming part
of the pipeline. The idea is to use the same hardware resources
for both scales. We use a multiplexer before the multiplication
stage and according to the clock signal, we select the values
from one of the pipelines. Therefore, this unit can produce
valid results in three out of every four clock cycles without
any conflict between the two pipelines. This will lead to a 14%
less usage of lookup table (LUT) resources. Fig. 13 shows the
idea of sharing the multiplication stage between two scales.
Fig. 14 shows the timing of the valid data on each scale and
the allocation of the multiplication stage.

D. Implementation Results
We use the KCU105 FPGA board [32] which contains

a Kintex1 Ultrascale FPGA for all the experiments in this
work. The resource consumption and timing information of
the design are provided in this section. Table VIII shows
the amount of resource usage of the proposed system with
two scales on a 1920 × 1080 image resolution. We use the
notations HWBRISKinitial and HWBRISKfinal to indicate the
importance of adder tree bit-width approximation and sharing
the multiplication stage between two pipeline scales. Note that
the HWBRISKinitial column shows the FPGA resource usage
before sharing the multiplication stage and approximating
the adder tree. The HWBRISKfinal column shows the final
results of our implementation. As shown in Table VIII, our
implementation does not use any DSP core or block RAMs
of the FPGA and all the intermediate computing results are
stored in the registers. This design choice reserves FPGA
resources for other computation. Multiplications and divisions
are implemented on LUTs. In addition, the locations of long

1Registered trademark.
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TABLE VIII

TOTAL RESOURCE USAGE FOR TWO SCALES OF BRISK
DESCRIPTOR ON KCU105 FPGA BOARD

pairs and short rotated pairs are stored in LUTs. The LUT
usage is reduced by 14% after sharing the multiplication stage
and approximating the adder tree in the long-pair summation
stage. The tradeoff for using less LUTs is an increase in
flip-flop utilization. Since we use extra registers for storing
the data in multiplication stage, there is an increase of 13%
in flip-flop numbers. Table IX illustrates the FPGA resource
usage of each stage of the design. As shown in Table IX,
the long-pair summation stage consumes most of the LUT
resources of the FPGA. The reason is that the outputs of the
long-pair multiplication stage are two channels of 870 18-bit
values which enter the summation stage. These 18-bit values
are added together using 10-level adder trees. We can see
that by approximating the adder tree in long-pair summation,
the number of LUTs have decreased from 16 389 × 2 in
HWBRISKinitial to 14 271 × 2 in HWBRISKfinal. The ×2
notation emphasizes that we are using two channels of sum-
mation in each pipeline. Although the number of LUTs for
the long-pair multiplication stage in HWBRISKfinal (47 202)
is more than that for HWBRISKinitial (36 223) in Table IX, the
total LUT resources for this unit is decreased (from 2 × 36 223
to 47 202). The value presented in the column HWBRISKinitial

is for the multiplication stage in one pipeline. On the other
hand, the LUT resources shown in the HWBRISKfinal column
is the amount used for the shared unit for two pipelines,
which should be compared with the resource usage of two
pipelines (72 446). Therefore, we have reduced the LUT usage
by 35% for this stage. The maximum frequency of the design
is 168 MHz which leads to 78 fps for the full HD image
size that is 1920 × 1080 pixels. We report the implementa-
tion design metrics of recently published FPGA-based binary
descriptors in Table X. Since the algorithms have varying types
and number of computations, we cannot directly compare
them based on the reported numbers. As an example, the
implementation of ORB by Sun et al. [11] leads to a 256-bit
descriptor while BRISK produces a 512-bit descriptor. In addi-
tion, for orientation estimation they process pixels in a circular
patch around the key point (approximately 800 pixels). For
BRISK, we select different pairs from the same patch and
process about 1740 pixels. This is why resources for BRISK
implementation are higher than for ORB implementation.
In [33], only the scale space generation is implemented.
Huang et al. [34] implement the BRIEF algorithm which does
not use an orientation estimation stage.

In Table X, we compare the resource usage of our design
with that of [30] which is an FPGA-based design of the BRISK
algorithm. Ulusel et al. [30] analyze the implementations

of BRIEF and BRISK algorithms on an embedded CPU,
an FPGA, and a GPU. For the FPGA implementation, they
implement the pipeline for FAST detection and BRISK
description only for one scale. They also use 11 of the Block
RAMs on the FPGA. In our work, we report the resource
utilization for two scales, and we store the precomputed
patterns on the LUTs of the FPGA. We do not use any of
the Block RAM resources of the FPGA. As a result, the
LUT resources reported in [30] are fewer than in our work.
Ulusel et al. [30] do not describe the details of the orientation
estimation step. Since orientation estimation is a significant
component of our design and we have employed extensive
parallelism in the computations of this stage, we cannot fairly
compare our design with that of [30] in terms of resources.
Since the focus of this work is on comparison of hardware
design metrics such as power, runtime, resource utilization,
and energy, they have not reported the accuracy result of their
BRISK implementation.

We compare the speed metric of our design and other work
in Table XI. For the same image size, our design achieves
a higher frame rate and throughput and lower latency with
respect to the other BRISK implementation. We measure the
speed of the BRISK algorithm on the first image of the
Boat set in the Oxford Affine Covariant Regions dataset [35]
on a CPU implementation (Intel Core-i7, 1.3 GHz processor
with 6 GB of RAM) to compare with our FPGA implemen-
tation. For CPU implementation, we use a C code version
of the BRISK algorithm based on OpenCV libraries. For
1920 × 1080 pixel images, the CPU implementation can
achieve 3.5 fps while our FPGA implementation achieves
78 fps, respectively. It is important to note that a larger
number of key points can lead to increased processing time
in the CPU implementation while the timing of our design
is independent of the number of key points. This comparison
indicates that the speedup in our design (HWBRISKfinal) is
due to our implementation rather than the BRISK algorithm
itself. We also provided the results of [26] to compare with
our design. Our design achieves higher frame rate with lower
frequency which leads to lower dynamic power.

E. Accuracy Evaluation

In order to evaluate the correctness of our design, we tested
our implementation on the Oxford Affine Covariant Regions
dataset [35]. The Oxford dataset consists of a variety of image
sets which have different transformations of a scene. These
transformations include changes in scale, rotation, blur, light,
and JPEG compression. Recent work such as [11] and [29] has
used a subset of this dataset to evaluate implementation as this
dataset is representative of common image transformations.

To compare our design with the original BRISK algorithm,
we use a recall versus 1-precision curve. This curve demon-
strates a tradeoff between recall and precision and is com-
monly used in descriptor evaluation literature. High precision
relates to a low false-positive rate which shows the accuracy of
the algorithm, and high recall relates to a low false-negative
rate which shows the percentage of accepted matches over
found matches. A large area under the curve indicates both
high recall and high precision. Figs. 15 and 16 present the
recall over 1-precision curves for matchings between the
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TABLE IX

DETAIL OF RESOURCE USAGE IN VARIOUS STEPS OF THE BRISK DESCRIPTOR

TABLE X

SUMMARY OF DESIGN METRICS FOR RECENT FPGA IMPLEMENTATIONS OF BINARY DESCRIPTORS

TABLE XI

COMPARISON OF OUR DESIGN AND OTHER WORK IN SPEED METRIC

first (reference) and the other images of each set. In these
figures, we provide the matching results of the original BRISK
algorithm, our proposed hardware (HWBRISKfinal) with two
scales, HWBRISKfinal with three scales, and HWBRISKfinal

with three scales and three subscales. Each main scale is
multiplied by 2 and subscales are levels between two main
scales. To have a fair comparison, we use the FAST detector
for the original BRISK descriptor as well.

Fig. 15 shows the matching results of the Boat, Wall, and
Graffiti image sets which have zoom, rotation, and viewpoint
transformations. Fig. 16 illustrates the matching results on the

Leuven, Trees, and UBC image sets which contain light, blur,
and JPEG compression transformations, respectively. Fig. 17
shows the mean area under curve (AUC) of a variety of image
sets. Each value in Fig. 17 is the mean of the AUCs for the
five images shown in Figs. 15 and 16. A higher value of
AUC relates to a larger area under the recall versus 1-precision
curve, which shows better performance. For example, the AUC
value of HWBRISKfinal with two scales is 0.29 on the UBC
dataset which is superior to the AUC of the original BRISK
algorithm which is 0.25. HWBRISKfinal shows more recall in
the same precision in comparison with the original BRISK
in the Leuven, Trees, and UBC image sets. As an example
for the matching of image 1 to 2 of the Leuven dataset in
Fig. 16, HWBRISKfinal with two scales achieves a recall of
79% for 1-precision of 0.4 while the original BRISK attains
68% at the same precision. For the Boat and Wall image sets,
the matching results are comparable. The original BRISK has
better matching results in the Graffiti image set.

We use an exact fixed-point MATLAB2 simulation model
of our hardware design which generates identical output as
the descriptor for this test. In all cases, we use the FAST
algorithm as the detector since it is very similar to AGAST,

2Registered trademark.
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Fig. 15. Matching results using recall versus 1-precision curve for Boat, Wall, and Graffiti image sets of the Oxford Affine Covariant Regions dataset [35].

which is the detector used in the original BRISK algorithm.
The only difference between them is in the decision tree
which modifies the order of pixel testing to increase the speed
of the detector. The results show that our proposed design
is comparable in accuracy to the original BRISK algorithm.
In most of the sets including Leuven, Trees, UBC, and Wall,
our model achieves higher recall in the same 1-precision
value while in the Graffiti image set, the original BRISK
performs better. Table XII shows the direct comparison of
mean AUC on Oxford imagesets for various sampling patterns.
In this test, we use the same detector, filter method, and
scale levels, with the only difference being the sampling
pattern. HWBRISKfinal pattern achieves the highest AUC in
comparison with other patterns shown in Table XII, and is
comparable with the original BRISK. HWBRISKfinal achieves
higher AUCs as shown in Fig. 17 since the parameters of our
complete design are tailored for the proposed sampling pattern.

F. Discussion
In this section, we present a discussion on the characteristics

of the proposed design for implementation of the BRISK
algorithm on an FPGA. The main goal in this design is to
achieve higher speed. Therefore, we designed each part of
the algorithm to operate in parallel. For example, all the
subtractions in long-pair calculations are computed in parallel.

TABLE XII

DIRECT COMPARISON OF THE SAMPLING PATTERNS

This design decision leads to higher resource usage which
is shown in Table IX. There are two solutions to reduce
resource usage as a tradeoff for speed. First, we can use
shared hardware resources for each stage. As an example,
we can use fewer number of subtraction modules or multipliers
and perform the computations with more latency. Second,
we can approximate the data between stages and reduce the
bit-width of the data path. As shown in Table IX, long-pair
summation consumes FPGA resources more than other parts
of the system. The reason for this high resource consumption
is that we implement two 10-level adder trees for which the
inputs of the first level are each 18-bit. If resource consumption
is critical in a specific application, we can decrease the
bit-width of long-pair calculation units and approximate the
computations.



838 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 30, NO. 6, JUNE 2022

Fig. 16. Matching results using recall versus 1-precision curve for Leuven, Trees, and UBC image sets of the Oxford Affine Covariant Regions dataset [35].

Fig. 17. Comparison of the original BRISK algorithm and HWBRISKfinal in
different scales using mean AUC for images from the Oxford Affine Covariant
Regions dataset [35].

Precision–recall curves shown in Figs. 15 and 16 demon-
strate that HWBRISKfinal has higher accuracy than the original
BRISK algorithm under image variations such as light, blur,
and JPEG compression. It also has higher accuracy in most of
the images in the Boat dataset which has variations in scale
and rotation. However, the original BRISK performs better
on the Graffiti dataset possibly due to the complexity of the
Graffiti images and the more uniformly distributed pattern

of the original BRISK algorithm which handles orientation
estimation more precisely.

The proposed design can be used as a part of a larger
vision processing system. The input image can be read from
memory or received directly from a camera. Our design can be
added to various key point detectors for various applications.
The key point detector part can be implemented in hardware
or software and it does not affect the efficiency of the
descriptor part. In addition, we can store the descriptors in
on-chip memory, off-chip memory, or output them using a
streaming protocol depending on the application. Although
we focused on the BRISK algorithm, the idea of using
a hardware-aware sampling pattern that facilitates hardware
implementation could be adapted to other binary descriptors
as well.

VI. CONCLUSION

In this work, we introduced a multiscale FPGA-based
implementation of the BRISK descriptor. We presented a new
sampling pattern for the BRISK algorithm with a similar num-
ber of sampling points, which reduced the number of registers
for line buffers by more than 50% and the pipeline registers up
to 73%. The proposed design is fully pipelined and achieves a
maximum operating frequency of 168 MHz. For images with
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1920 × 1080 resolution, our proposed implementation has a
frame rate of 78 fps.

There are multiple potential enhancements that can be
addressed in the future of this research. First, we can imple-
ment a gated filter unit after the key point detection as the next
stage of the pipeline to reduce power consumption. Second,
we can replace the FAST detector with a more complex
detector. Since key point detection is an early stage of an
image matching system, choosing an appropriate detector can
improve the accuracy depending on the application. Finally,
since the image may be already loaded on on-chip memory
in many applications, designing a nonstreaming input archi-
tecture for the BRISK algorithm is a potential future path for
this research.
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