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Graceful Degradation of Reconfigurable Scan Networks
Erik Larsson , Zehang Xiang, and Prathamesh Murali

Abstract— Modern integrated circuits (ICs) include thousands of
on-chip instruments to ensure that specifications are met and maintained.
Scalable and flexible access to these instruments is offered by reconfig-
urable scan networks (RSNs), e.g., IEEE Std. 1687. As RSNs themselves
can become faulty, there is a need to exclude and bypass faulty parts
so that remaining instruments can be used. To avoid keeping track and
updating description languages for each individual IC, we propose an
on-chip hardware block that makes adjustments according to the fault
status of a particular IC. We show how this block enables test for faulty
scan chains, localization of faulty scan chains, and repair by excluding
faulty scan chains. We made implementations and experiments to evaluate
the overhead in terms of transported data and area.

Index Terms— Diagnosis, IEEE Std. 1687, IEEE Std. P1687.1,
localization, repair, test.

I. INTRODUCTION

The semiconductor development toward smaller, faster, and more
transistors gives advantages, such as more functionality, better per-
formance, and lower power consumption. However, it is increasingly
challenging to avoid malfunctioning. Smaller and faster transistors
lead to tighter margins, which in combination with more transistors
increase the risk of malfunctioning. To avoid malfunctioning, modern
integrated circuits (ICs) are increasingly equipped with embedded
(on-chip) instruments for testing, tuning, trimming, configuration, and
so on [1]. These instruments, which can be in the range of thousands,
are accessed throughout the ICs’ life cycle: from prototype, debug,
test, and validation to in-field monitoring and test [2].

Access to instruments requires an on-chip infrastructure connecting
the instruments and an interface (port) to the IC’s boundary (pins).
Reconfigurable scan networks (RSNs), such as IEEE Std. 1687 net-
works, offer flexible and scalable access to instruments. The main
interface for IEEE Std. 1687 is the IEEE Std. 1149.1 test access port
(TAP). Fig. 1 shows a system with three instruments connected using
IEEE Std. 1687.

IEEE Std. 1687 includes two description languages: instrument
connectivity language (ICL) and procedural description language
(PDL) [3]. ICL describes how instruments are interconnected. Fig. 1
shows the schematic equivalent of the network’s ICL. PDL describes
how to operate on instruments. Fig. 1 shows PDL to concurrently
write data to instrument i1 and read data from instrument i3.1 Access
(test) patterns are created by an electronic design automation (EDA)
tool or an embedded controller with PDL and ICL as inputs. For the
PDL in Fig. 1, smart access patterns include instruments i1 and i3,
while instrument i2 is excluded from the active scan path as the PDL
specifies operations on instruments i1 and i3, but not on instrument i2.
Dynamic reconfiguration of the active scan path to include or exclude
instruments can be achieved by the use of segment insertion bits
(SIBs).
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1iGetReadData (iGet) reads information from an instrument.

Fig. 1. Today’s and future solution to access an IEEE Std. 1687 network.

As some ICs do not have an IEEE Std. 1149.1 TAP, the IEEE
Std. P1687.1 [4] explores how to use functional ports, such as serial
peripheral interface (SPI), interintegrated circuit (I2C), and universal
serial bus (USB) to access IEEE Std. 1687 networks. Different from
IEEE Std. 1149.1, where the TAP is described in detail, the working
group of IEEE Std. P1687.1 is working toward a standard without
detailing fixed hardware. A main question becomes: what include
in the hardware placed between an IEEE Std. 1687 network and a
functional port?

We have previously explored the impact on transporting data when
including key information from PDL and ICL in a hardware compo-
nent placed between a functional port, e.g., universal asynchronous
receiver-transmitter (UART), and IEEE Std. 1687 [5] (see Fig. 1).
The basic assumption was that there are no faults in the IEEE
Std. 1687 networks, which means that description languages (PDL
and ICL) correspond to the physical implementation (the IEEE Std.
1687 network). In this work, we explore cases when description
languages do not correspond to the physical implementation due to
faults in the IEEE Std. 1687 network. The motivation of the work is
as follows. PDL and ICL can be stored in a central database shared
among several ICs or stored embedded (compressed) locally near
each individual IC. In both cases, PDL and ICL need to be updated
according to the unique status of individual ICs. For example, assume
a central database with PDL and ICL serving many ICs. As long as
all ICs are free from faults, the same PDL and ICL can be used for
all ICs. However, as soon as one IC has faults, for example, a faulty
scan-register, description languages for this IC must be modified.
For example, assume that scan register 3 (Fig. 1) is faulty, and then,
the iApply group, for this particular IC, must be updated such that
iGet i3 is removed, which makes instrument i3 to be excluded from
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the active scan path. In the worst case, there is a need to keep
individual versions of ICL and PDL for each individual IC, which is
infeasible in practice.

The objective of this brief is to enable graceful degradation of
IEEE Std. 1687 networks where faulty parts are excluded without
the need of updating description languages (PDL and ICL). This
means that original PDL and ICL assuming no faults can be used
even in the case when their physical implementation, the IEEE Std.
1687 network, does not match any longer due to faults. We believe
that this important aspect has not been addressed prior to this work.
The objective is met by developing an on-chip hardware block
that makes automatic adjustments according to the fault status of a
particular IC. This hardware block makes it possible to test whether
scan chains are faulty, localize (pinpointing) faulty scan chains, and
repair networks by excluding faulty scan chains. We implemented
IEEE Std. 1687 networks with 50, 100, and 150 instruments and
proposed hardware block to evaluate the overhead in terms of data
to be transported and area. We compare a theoretical computation of
overhead for direct operation on the IEEE Std. 1687 network against
a software-based scheme and proposed hardware-based scheme.

This brief is organized as follows. The related work is in Section II
and an introduction to the hardware component and protocol to use a
functional port to interface IEEE Std. 1687 is in Section III. The
schemes for test, localization, and repair are in Sections IV–VI,
respectively. The experimental results with implementation on a field-
programmable gate array (FPGA) and evaluation of area and the
amount of data transported are in Section VII. This brief is concluded
in Section VIII.

II. RELATED WORK

While there are a number of works on analysis [6], design [7],
and fault management [8], [9] of IEEE Std. 1687, all these works
assume that the IEEE Std. 1687 network is without any faults. Several
works have addressed testing and localization (diagnostic) for regular
scan chains [10]–[12] and for IEEE Std. 1687 networks [13]. Kundu
[10] presented an early work on testing and diagnosing faults in
scan chains. The basic principle is to shift a test sequence through
the scan chain, like “001100…11,” without performing capture.
If there is a mismatch between the shift-out sequence and the shift-
in sequence, there are one or more faults in the scan chain. For
localization, the results from the automatic test pattern generation
(ATPG) test vectors are used to pinpoint the faulty scan flip-flops.
Cantoro et al. [13] developed a technique to test and diagnose RSNs.
To the best of our knowledge, there is no work addressing the repair
of RSNs.

III. BACKGROUND

We previously explored the impact of including different amount
of information in a hardware component placed between a functional
port and an IEEE Std. 1687 network [5]. The most efficient solution,
shown in Fig. 2, is based on a finite-state machine (FSM) com-
plemented with three parts: SIB control register (SCR), instrument
control register (ICR), and instrument length memory (ILM). The
SCR keeps desired values of SIBs, the SCR keeps desired operation
of an instrument, and ILM keeps the length of each instrument.
The hardware component is operated using two types of commands:
control and data. Control commands are used to set SCR and ICR
and data commands are used to transport data for instruments. Hence,
each iApply group is translated into one or more control commands
and one or more data commands.

To illustrate, the iApply group in Fig. 1 is retargeted into two
control commands and one data command, in total 7 bytes of
information. The first control command, bytes 1 and 2 in Fig. 2,
makes SIB 1 active and sets instrument i1 in write mode. The details

Fig. 2. Hardware and protocol to form shift-in sequence for PDL in Fig. 1.

Fig. 3. Shift-in sequence from Fig. 2.

are as follows. Bit b7 = 0 in the first byte indicates that the current
byte and the following byte form a control command. Bit b6 = 1 in
the first byte indicates that a write operation should be performed.
The following 14 bits, which hold the value 1, indicate that SIB 1
should be active so that instrument i1 is included in the active scan
path. The next two bytes, bytes 3 and 4 in Fig. 2, are also forming
a control command, indicated by bit b7 = 0 in byte 3. This control
command has b6 = 0, which informs that a read operation should
be performed. The following 14 bits, which hold the value 3 (0b11),
inform that SIB 3 should be active so that instrument i3 is included
in the active scan path. The following 3 bytes, bytes 5, 6, and 7
in Fig. 2, form a data command as b7 = 1 in byte 5. The remaining
15 bits in bytes 5 and 6 are used to specify the number of bytes
with data that follow. In this example, the 15 bits specify the value
1, meaning that one byte of data follows. The data in byte 7 are the
data that should be written to instrument i1.

Fig. 3 shows the generation of shift-in data. When a control
command arrives, the hardware component automatically resets SCR
and ICR, and then, these registers are set according to the control
commands, see above. When data commands arrive, the hardware
translator begins operating the IEEE Std. 1687 network. First,
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the active scan path is set by traversing SCR and shifting the content
to the IEEE Std. 1687 network. The bits shifted out are ignored
(discarded) by the hardware component as the bits do not contain
any useful information. Second, the shift sequence for the active scan
path is created. We describe the shift-in sequence. The FSM begins
checking the SCR at the highest value, in this example, 3 [SCR(3)],
and includes that bit in the shift-in sequence. As SCR(3) = 1
instrument i3 is included and ICR(3) is checked to learn that a
read operation should be performed, this means that data need to
be shifted in such that the content of instrument i3 is shifted out.
These additional (dummy) shift-in data are created by the FSM. The
number of bits to shift is given by ILM(3). Then, the FSM proceeds
with SCR(2). As SCR(2) = 0, indicating that instrument i2 is not in
the active scan path, the FSM adds a 0 to the shift-in sequence and
focuses on next bit in SCR, which is SCR(1). SCR(1) = 1, which
means that instrument i1 should be included in the active scan path,
and as ICR(1) = 1, a write operation should be performed. The FSM
gets the length of instrument i1 from ILM(1) and takes data from the
UART buffer and adds it to the shift-in sequence. Fig. 2 shows the
created shift-in sequence and how its information will set the SIBs
and the instruments. The hardware component can with the support
of SCR, ICR, and ILM, create dummy bits when needed, and discard
not needed data such that only useful information is transported out
from the IC. Applying the PDL in Fig. 1 results in that only the
information in instrument i3 is returned, as this is the only requested
information.

IV. TEST

The objective of the test procedure is to determine whether there
are any faults in any of the scan chains. The section is organized into
three parts: IEEE Std. 1687-, software-, and hardware-based tests. For
each part, we describe the effort needed to perform the test. The basic
principle of the three parts is built on a traditional scan-chain test
where a test sequence is shifted through the scan chain, but no capture
and update is used. For test evaluation, the shifted output sequence is
compared against the applied test sequence. Different from traditional
scan chains, RSN offers the possibility to configure the active scan
path. For RSNs designed as in Fig. 1, our test principle is to first
set the active scan path such that all instruments are included. For
the example in Fig. 1, this means that the active scan chain includes
instruments i1, i2, and i3.

A. IEEE Std. 1687-Based
The scheme is straightforward. First, the active scan path is set

to include all instruments, which means that three bits are shifted
in and, concurrently, three bits are shifted out, in total six bits of
data. In general, N bits are shifted in and N bits are shifted out
for a flat RSN with N SIBs. Second, a test sequence, 001100 . . . 11,
equal to the active scan path, which for the example in Fig. 1 is 27
(8 + 8 + 8 + 3) bits, is shifted in. During the shift-in of this pattern
of length 27 bits, 27 bits are shifted out. To “push through” the test
sequence such that the test response is observable, another 27 bits
are shifted in, and consequently, 27 bits of actual test response are
shifted out. The total number of bits becomes 27 × 4. In general,
for an RSN with N SIBs, one instrument per SIB, and the length of
instrument i that is given by l(i), the total number of bits is given
by

6 × N + 4 ×
N∑

i=1

l (i) . (1)

B. Software-Based
The software-based test scheme assumes a hardware component

and protocol [5], which we extended with a mechanism to not perform

capture and update when applying an iApply group if desired. The
idea of the test function is to include all instruments in the active
scan path, apply a test sequence, 001100 . . . 11, to all instruments,
and receive the output from the IEEE Std. 1687 network. For the
system in Fig. 1, the sequence would be as follows:

iWrite i1 0b00110011;
iWrite i2 0b00110011;
iWrite i3 0b00110011;
iApply (no capture and no update);
iGet i1
iGet i2
iGet i3;
iApply (no capture and no update);

C. Hardware-Based
In the hardware-based test scheme, the hardware component

includes the proposed block and a command to perform the test of
scan chains. The test command consists of 2 bytes, in a similar way as
the data and control commands (see Section III). When the hardware
receives a test command, the block automatically sets the active scan
path to include all instruments, generates and shifts in a test sequence,
and compares the output sequence with the expected test sequence.
The output (return value) is a single bit indicating whether there were
any faults or not (which becomes a byte, the smallest unit to transport
in UART).

V. LOCALIZATION

The objective of localization is to pinpoint faulty scan chains.
The principle is built on traditional scan-chain test and diagnosis
(localization). The IEEE Std. 1687 network is configured so that only
one scan chain is active at a time. For each individual segment of
the scan chain, a test sequence is shifted through the scan chain and
the output is compared against the input sequence. The section is
organized into three parts: IEEE Std. 1687-based, software-based,
and hardware-based, and for each, we describe the effort needed to
perform localization.

A. IEEE Std. 1687 Based
The localization procedure assumes that the IEEE Std. 1687 net-

work is in a reset state, which for the example in Fig. 1 means that the
active scan path includes only the three SIBs. First, the active scan
path is set to include the first instrument, which means that three bits
are shifted in and, concurrently, three bits are shifted out, in total
six bits of data. Second, a test sequence, 001100 . . . 11, is equal to
the active scan path, which includes instrument 1. For the example
in Fig. 1, 11 (8+3) bits are shifted in. During the shift-in, 11 bits are
shifted out. To “push through” the test sequence such that it becomes
observable, another 11 bits are shifted in, and consequently, 11 bits
are shifted out, the actual test response. In this example, the number
of bits shifted in and shifted out is 50 (3 + 3 + 11 + 11 + 11 + 11)
for one instrument. As there are three instruments in Fig. 1, the total
number of bits becomes 150 (3 × 50). In general, the number of bits
shifted in and shifted out during a localization procedure of a flat
RSN with N SIBs, one instrument per SIB, and l(i) the length of
instrument i that is given by

6 × N2 + 4 ×
N∑

i=1

l (i) . (2)

B. Software-Based Localization
The software-based localization scheme has several similarities

with the test function (see Section IV-B). We assume the hardware
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component and protocol [5] and have added a mechanism to not
perform capture and update of iApply if desired. Different from
testing (Section IV-B), localizations include one instrument at a time
in the active scan path, apply the test sequence, 001100 . . . 11, and
receive the output from the IEEE Std. 1687 network. For the system
in Fig. 1, the commands would be as follows:

iWrite i1 0b00110011;
iApply (no capture and no update);
iGet i1;
iApply (no capture and no update);
iWrite i2 0b00110011;
iApply (no capture and no update);
iGet i2;
iApply (no capture and no update);
iWrite i3 0b00110011;
iApply (no capture and no update);
iGet i3;
iApply (no capture and no update);

C. Hardware-Based Localization

The hardware-based localization resembles the hardware-based
test, with the difference that the proposed block, when initiated,
automatically traverses the instruments one at a time. When the
block receives a localization command, the block sets up the active
scan path to include instruments one at a time, shifts in a test
sequence, and compares the output sequence with the expected test
sequence. We created a dedicated command to make the block initiate
localization. The command is constructed in the same way as the
test command, 2 bytes of data to initiate and 1 return bit to indicate
whether any faults were detected (one byte as the smallest unit for
UART is one byte).

VI. REPAIR

Repair is to make it possible to make use of a partially faulty RSN
by excluding instruments with faulty scan chains. Given is knowledge
about which of the scan chains in the IEEE Std. 1687 network that is
faulty. We explore two alternative solutions to repair: software- and
hardware-based.

A. Software-Based Repair

In software-based repair, the PDL is modified according to the
faults in scan chains. For the system in Fig. 1, assume that it is known
that the scan chain related to instrument i3 is faulty. This information
is considered together with ICL and PDL in the retargeting such that
the PDL is changed from this

iWrite i1 0b1111111;
iGet i3;
iApply;

to this PDL where instrument i3 is excluded

iWrite i1 0b1111111;
iApply;

With the above modification of the PDL, the partially faulty RSN
can be used.

B. Hardware-Based Repair
For hardware-based repair, the original PDL is applied and the

hardware block automatically excludes faulty scan registers from the
active scan path. For example, if the scan chain related to instrument
i3 in Fig. 1 is faulty, the test and localization process has set the

Fig. 4. Repair by excluding instrument i3.

repair register to hold the value 110. This indicates that instrument
i3 will not be included in the scan path due to the 0, while the other
instruments, which are not faulty, indicated by 1 (see Fig. 4). When
the original PDL in Fig. 1 is applied, the SCR will contain 101 as
the PDL specifies that instruments i1 and i3 should be active (see
Fig. 4). Given the combination of the repair register and SCR,
the FSM performs a bitwise AND-operation between the two registers
to receive the SCR to be used 1 0 0 . We observe that the “used
SCR” does not include instrument i3, which is faulty, and hence,
the FSM in our component automatically excludes instrument i3,
while instrument i1 is included. The key advantage is that the original
PDL can be used and there is no need of additional retargeting due
to faults in the IEEE Std. 1687 network.

VII. EXPERIMENTAL RESULTS

The objective of the experiments is to evaluate overhead in terms
of data, that is, the number of bits, transported to and from the IC and
the area utilization of the proposed scheme for test and localization
of RSNs. For repair, there are no separate results as the hardware
solution automatically repairs the IEEE Std. 1687 network, and with
the software solution, the PDL is modified according to the defects
in the IEEE Std. 1687 network.

As an experimental platform, we used a Nexys 4 DDR with
an Artix-7 (XC7A100T-1CSG324C) FPGA. We implemented three
IEEE Std. 1687 designs with 50, 100, and 150 instruments, respec-
tively. The instruments are connected in a flat manner with one SIB
per instrument, as shown in Fig. 1. The length of each instrument
is 8 bits, and for communication with the outside, the IEEE Std.
1687 network is connected using UART. The overhead for the IEEE
Std. 1687 network scheme is computed with (1) and (2).

Table I shows the number of bits transported to and from the IC
for the test process. The hardware-based solution only needs 16 bits
to initiate the command and 1 bit is to report whether there were
any faults. As UART is used for communication, the least amount
of data to be produced is packaged in one byte. The total number of
bits becomes 24. As expected, the number of bits for the IEEE Std.
1687 and the software-based alternatives increase with the number of
instruments. Interesting to note is the high number of bits needed for
the software-based alternative, higher than that of IEEE Std. 1687.

Table II shows the number of bits transported to and from the IC for
the localization process. The hardware-based solution needs 16 bits to
initiate the process and 1 bit to report whether there were any faults.
As discussed above, UART needs at least one byte, which means that
the overhead becomes 24 bits in total. In the same way as for the test
process, the number of bits increases with the number of instruments
for the IEEE Std. 1687 and the software-based alternatives. Note that
the number of bits for the software-based localization is significantly
lower than that for the IEEE Std. 1687 alternative.

The results on data overhead for test and localization show that
when the IEEE Std. 1687 solution is used, it makes sense to first
do a test to check whether there are faults, and if faults are present,
a localization action takes place. However, in the case of a software-
based solution, the difference between test and localization is quite
low, which means that a localization function can be used without
using a test procedure before. For the hardware-based solution,
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TABLE I

NUMBER OF BITS TRANSPORTED TO PERFORM TEST

TABLE II

NUMBER OF BITS TRANSPORTED TO PERFORM LOCALIZATION

TABLE III

AREA FOR HARDWARE-BASED SOLUTION, IEEE STD. 1687 NETWORKS,
AND RATIO BETWEEN THE TWO

we have two separate functions: test and localization. While they
only require 24 bits each, it would be possible to implement them
as a single command performing test localization repair. A single
command of 16-bits would initiate the process. The output could
be a single bit to report whether the operation was performed
correctly or not. Additional output could include a number and
position of faults.

Table III shows the area for the hardware solution and the IEEE
Std. 1687 network at 50, 100, and 150 instruments. The area is
given as configurable logic blocks (CLBs), which constitutes the basic
FPGA cell. The ratio (%) is the area of the hardware solution over the
area of the IEEE Std. 1687 network times 100. Interesting to note is
that the ratio decreases as the number of instruments in the IEEE Std.
1687 network increases, which indicates that the relative impact of the
hardware solution decreases as the number of instruments increases.

VIII. CONCLUSION

We have shown that by including key information in an on-chip
hardware component, it is possible to get graceful degradation of
IEEE Std. 1687 networks. The main advantage is with respect to
maintaining description languages, PDL and ICL, through the lifetime
of ICs. As soon as an IEEE Std. 1687 network becomes faulty, PDL
and ICL no longer match the IEEE Std. 1687 hardware. Instead of
keeping copies of PDL and ICL for each individual IC, which is
impractical due to large volumes, we showed that a small hardware
block can perform the automatic test, localization, and repair, such
that the original PDL assuming a fault-free IEEE Std. 1687 network

is applied and the proposed block automatically, on-chip, adjusts the
PDL to the fault situation of each particular IC. We demonstrated
that such a component gives a significant reduction in the amount
of data (information) that needs to be sent to and from an IEEE
Std. 1687 network via a functional port as proposed by IEEE Std.
P1687.1. This is highly important as it shows that access with IEEE
Std. P1687.1 can be performed without significant impact on the
normal (functional) operation, which is crucial, for example, during
the periodic test in the automotive industry.

Future work may include handling of general IEEE Std. 1687 net-
works, advance combinations of instruments using IEEE Std. 1687 in
combination with IEEE Std. 1500 and IEEE Std. 1838, and addressing
other faults than scan-chain faults.
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