
372 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 2, FEBRUARY 2021

An SRAM-Based Multibit In-Memory
Matrix-Vector Multiplier With a Precision That

Scales Linearly in Area, Time, and Power
Riduan Khaddam-Aljameh , Graduate Student Member, IEEE, Pier-Andrea Francese , Senior Member, IEEE,

Luca Benini , Fellow, IEEE, and Evangelos Eleftheriou , Life Fellow, IEEE

Abstract— A novel interleaved switched-capacitor and SRAM-
based multibit matrix-vector multiply-accumulate engine for in-
memory computing is presented. Its operation principle is based
on first converting an SRAM-stored n-bit weight into a propor-
tional voltage using a pipeline D/A converter built from n + 1
equally sized stages. A switched-capacitor stage then multiplies
these voltages with an m-bit digital input activation. Finally,
the output voltages that correspond to the different multiplication
results are accumulated along one column by means of charge-
sharing. With our proposed architecture, the required circuit
area, computation time, and power consumption scale linearly
versus the bit resolution of both the inputs and the weights.
Analytical formulas are presented for the energy consumption in
both capacitors and switches. Moreover, the impact of fabrication
mismatch on analog computation accuracy is examined. The
full system architecture is described, and the feasibility is
demonstrated, via a full macroimplementation study in 14 nm,
detailing area and energy consumption, as well as the overall
latency. Finally, a specific design of a 128×2048 6-bit weight and
6-bit input signed matrix-vector multiplication accelerator system
in 14 nm is presented, which runs at 2.43 TOP/s at an efficiency of
16.94 TOP/s/W, while using the nominal supply voltage of 0.8 V.
If the operands’ precision is considered in the metric, then the
efficiency becomes 609.7 TOP/s/W.

Index Terms— Analog computation, hardware accelerator, in-
memory computation, multibit weights, SRAM.

I. INTRODUCTION

PERFORMING computations on the conventional von
Neumann computing systems results in a significant

amount of data being moved back and forth between the

Manuscript received April 20, 2020; revised August 25, 2020 and
October 19, 2020; accepted November 9, 2020. Date of publication
December 9, 2020; date of current version January 28, 2021. The work
of Riduan Khaddam-Aljameh was supported by the European Research
Council (ERC) through the European Union’s Horizon 2020 Research
and Innovation Programme under Grant 682675. (Corresponding author:
Riduan Khaddam-Aljameh.)

Riduan Khaddam-Aljameh is with the IBM Zurich Research Laboratory,
8803 Rüschlikon, Switzerland, and also with the Integrated Systems Labora-
tory, ETH Zurich, 8092 Zürich, Switzerland (e-mail: rid@zurich.ibm.com).

Pier-Andrea Francese and Evangelos Eleftheriou are with the IBM
Zurich Research Laboratory, 8803 Rüschlikon, Switzerland (e-mail:
pfr@zurich.ibm.com; ele@zurich.ibm.com).

Luca Benini is with the Integrated Systems Laboratory, ETH Zurich,
8092 Zürich, Switzerland, and also with the Department of Electrical, Elec-
tronic and Information Engineering, University of Bologna, 40136 Bologna,
Italy.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TVLSI.2020.3037871.

Digital Object Identifier 10.1109/TVLSI.2020.3037871

physically separated memory and processing units. This costs
time and energy and constitutes an inherent performance
bottleneck. Overcoming the restrictions of the classical von-
Neumann-based architectures, which enforce a dogmatic sep-
aration of the processing unit and the memory subsystem,
requires reevaluating the well-established charge-based mem-
ory technologies, such as SRAM, DRAM, and Flash [1]–[3],
as well as the emerging resistance-based nonvolatile memory
technologies [4], [5].

It is becoming increasingly clear that, for application areas,
such as artificial intelligence (AI), we need to transition
to computing architectures in which logic and memory are
colocated [6]. In-memory computing (IMC) is a novel non-
von Neumann computing paradigm where certain computa-
tional tasks are performed in the memory itself by exploiting
the physical attributes and state dynamics of the charge-
or resistance-based memory devices [6]. Several computational
tasks, such as logical operations, arithmetic operations, and
even certain machine learning tasks, can be implemented in
such an IMC-based system. As a result, the execution time,
energy consumption, and silicon area of an IMC-based archi-
tecture are reduced compared to von-Neumann architectures,
yielding a compact and highly efficient system [7].

Generally, IMC-approaches perform computations with
relatively low numerical precision. Hence, IMC does not
aim to replace digital floating-point arithmetic units and,
instead, targets applications, such as deep neural network
inference, which are resilient to low precision. To reach
the numerical accuracy typically required for data analytics
and scientific computing, the limitations arising from device
variability and nonideal device characteristics need to be
addressed. Thus, the concept of mixed-precision in-memory
computing, which combines a conventional high-precision
von Neumann machine with IMC, was introduced in [8].
Its application to deep neural network training was proposed
in [7] and [9].

In IMC, the physics of the nanoscale memory devices
and the organization of such devices in crossbar arrays
are exploited to perform certain computational tasks within
the memory unit. For instance, crossbar arrays of phase
change memory (PCM) and resistive random access memory
(ReRAM) devices can be used to store a matrix and per-
form analog matrix-vector multiplications at constant O(1)
time complexity without intermediate movements of data.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-8320-8311
https://orcid.org/0000-0003-2944-9058
https://orcid.org/0000-0001-8068-3806
https://orcid.org/0000-0002-3826-5931

KHADDAM-ALJAMEH et al.: SRAM-BASED MULTIBIT IN-MEMORY MATRIX-VECTOR MULTIPLIER 373

Specifically, modulation of the read voltage amplitude or dura-
tion that is applied to a PCM cell leads to a proportional
change in the current that flows through it. This property can
be used to perform an analog-domain multiplication with the
value stored in the PCM cell in the form of a conductance.
If many cells are activated on the same line, their respective
currents are summed up in accordance with Kirchhoff’s law.
Thus, by combining the multilevel storage capability of PCM
with Ohm’s and Kirchhoff’s laws, an analog IMC multiply-
accumulate (MAC) engine can be constructed [10].

Besides the classical analog-domain processing issues, such
as thermal- and A/D converter (ADC) noise, memristor-
based computation is, furthermore, subject to drift and 1/ f
noise [11], which are issues that can only be addressed through
material and device innovations [12]. In addition, the large-
scale current summations require wide and highly conductive
bit-lines, which leads to a reduced area efficiency [13].

Static random access memory (SRAM) can in a similar way
to PCM and ReRAM be enhanced with IMC capabilities. A
native approach consists of using the ON-resistance RDS,ON of
the pull-down transistors to convert the digital bits stored in
the SRAM cells into a proportional current value [14]–[16].
However, serious practical limitations of RDS,ON-based IMC in
SRAM arise from cell-to-cell variations, as well as from the
risk of unintended overwriting of stored bits. To address these
issues, charge-based analog computation has been explored as
an alternative to those that are current-based, due to the much
better matching of back-end-of-the-line (BEOL) capacitors.
This feature is also expected to improve with CMOS scaling.

For example, the 8T SRAM cell in [17] is enhanced by
a transmission-gate (TG) and a single capacitor giving rise
to a 10T + C unit cell structure. Thus, by introducing the
highly matched metal capacitors, the IMC design eliminates
mismatch-ridden minimum-size transistors. However, the ele-
ments of the input vector and synaptic matrix of this XNOR-
based IMC engine are limited to binary values only.

A solution for supporting at least multibit inputs is presented
in [18]. Nevertheless, the weights are still kept in binary
format. Moreover, since a partially pulsewidth-modulation
(PWM)-based D/A converter (DAC) is used, the relationship
between the number of input bits and the computation cycle
time becomes inherently exponential, significantly impacting
the latency. An example of a near-memory computing archi-
tecture that supports multibit inputs and synaptic weights is
described in [19]. However, bandwidth limitations also arise
here due to the restriction to row-by-row processing and
the PWM-based digital-to-analog (D/A) conversion procedure
for mapping the matrix values to voltages. Finally, another
multibit near-memory computing architecture, based on a pas-
sive switched-capacitor approach, is described in [20]. Here,
the exponential area requirements for the flying capacitors
used in the implementation of the input DAC prevent an
efficient extension of this approach to large-scale in-memory
computing (IMC) arrays.

As can be seen from the aforementioned recent work,
severe limitations in performance, precision, scalability, and
circuit complexity have arisen in all CMOS-based IMC
implementations, as soon as support for more than binary

quantization for both the input signals and the synaptic weights
was required. This article proposes a novel SRAM-based
architecture supporting in-memory MAC-operations, where
both input signals and matrix elements can assume multibit
values while still exhibiting a linear dependence between cycle
time, silicon area, power consumption, and the number of bits
of inputs and weights.

The remainder of this article is organized as follows. In
Section II, the in-memory computation circuit used for the
analog MAC operation is presented, and an analytical model
describing the functionality is given. Moreover, the energy
consumption of an analog multiply operation is analyzed in
detail, and the effect of mismatch is examined. The full mem-
ory architecture is described in Section III. An examination
of the computational memory system’s area and the energy
consumption is presented in Section IV based on an implemen-
tation study. In addition, the performance is compared with the
state of the art. Finally, Section VI concludes this article.

II. MULTIBIT IN-MEMORY COMPUTE UNIT

In essence, the energy and bandwidth gains achieved
through IMC stem from moving digital arithmetic and logic
operations into the analog domain. As implied by the term “in-
memory,” all computational primitives are executed within the
memory subsystem, as opposed to near-memory computing
architectures that keep the processing units separated at close
proximity.

Matrix-vector multiplication and transpose-matrix-vector
multiplication are among the most important computational
primitives for machine learning and deep learning applications.
Thus, the goal of this article is the acceleration of MAC
operations, which can be written in the form of

�xᵀ × A =
⎛⎜⎝ x1

...
xN

⎞⎟⎠
ᵀ

×
⎛⎜⎝w1,1 · · · w1,M

...
. . .

...
wN,1 · · · wN,M

⎞⎟⎠ =
⎛⎜⎝ y1

...
yM

⎞⎟⎠
ᵀ

= �yᵀ

where ᵀ denotes the transpose vector or matrix operator. Each
element ym of the vector �y can be written as a sum of N
products

ym =
N∑

n=1

wn,m · xn, m = 1, . . . , M. (1)

Fig. 1 contrasts the conventional von-Neumann architec-
ture, where the memory and the processing units are sepa-
rated, to the in-memory computing architecture. In the latter,
the matrix elements that are stored in SRAM cells remain
stationary, whereas processing occurs in the so-called in-
memory compute units (IMCUs), which are collocated with
the SRAM. Specifically, the stationary matrix elements wn,m

(called weights) are stored in the SRAM array, and the inputs
xn are fed from outside to the IMCU. Both inputs and weights
are assumed to be signed quantities. For a given fixed-point
arithmetic precision, the elements wn,m are stored in binary
form wordwise, and in column-major format, into the SRAM
array, as shown in Fig. 1(b). Thus, the SRAM cells, which
store the binary representation of weight, are collocated with
one IMCU in a crossbar configuration.

374 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 2, FEBRUARY 2021

Fig. 1. (a) Conventional von-Neumann architecture with distinct memory and processing units. To perform MAC operations, the matrix elements, which are
stored in the memory unit, need to be transferred to the physically separated digital compute unit. This costs time and energy, creating an inherent performance
bottleneck. (b) In IMC systems, memory and processing units are collocated. Thus, the matrix elements that are stored in SRAM cells remain stationary,
whereas processing occurs in the so-called IMCUs, which are collocated with the SRAM, in a crossbar configuration.

Using signed magnitude representation (SMR), the follow-
ing correspondence between a weight value wn,m and the
stored bits bn,m

k is established

wn,m =
(

nw∑
k=1

bn,m
k · 2k−nw−1

)
·
{

+1, if bn,m
sign = 0

−1, otherwise.
(2)

In the following sections, for simplicity, the column index
m will be dropped from wn,m . Hence, without any loss
of generality, the MAC-operation will be illustrated for a
single column only. Similarly, the corresponding weight bits
will be denoted by bn

k and the input bits by i n
p. Moreover,

the magnitude of a weight wn will be represented by nw
bits and the magnitude of the input xn by nx bits. The
binary variables bn

sign and i n
sign denote the respective sign

bits. Finally, 8T SRAM cells will be used to store the
weight bits.

The two main blocks of the IMCU, namely, the DAC for
transforming the binary weight into a voltage value and the
analog multiplier, will be detailed in the subsequent sections.
The combination of both circuits will be referred to as an
interleaved switched-capacitor-based multiplier.

A. Matrix Value D/A Conversion

The initial step in the analog computation procedure consists
of performing a D/A conversion, which turns the stored weight
bits bn

k into a proportional voltage Vw,n . This can be achieved
by connecting the digitally stored weight bits from the SRAM
cells to the inputs of a DAC. Fig. 2(a) demonstrates an
implementation built from equally sized unit capacitors Ck ,
interconnected through switches. The total amount of required
unit capacitors in the pipeline DAC scales linearly with the

number of stored bits nw in the weight magnitude

nunitcap,w = nw + 1. (3)

The circuit is built around the quasi-passive charge-sharing
DAC design presented in [21] and [22] to which two key
elements have been added to realize the proposed IMCU. First,
a dynamic precharge voltage selection has been integrated to
support SMR. Second, a single additional switched-capacitor
stage unit is connected in cascade to perform the multiplication
of the D/A converted digital weight with the input data.

To conduct the D/A conversion, a set of three nonover-
lapping digital pulse signals φ0, φ1, and φ2 is used. Each
SRAM cell, containing one bit bn

k of the weight, controls
one stage in the pipeline DAC. Based on this weight bit bn

k ,
the corresponding capacitor Ck is initially precharged to either
a voltage Vpre or to the common-mode VCM. Next, the top
plates of capacitor Ck and its predecessor Ck−1 are shorted,
effectively averaging their voltages

VC,k = 0.5 · (bn
k · Vpre + VC,k−1

)
. (4)

The first capacitor C0 is always precharged to VCM such
that the significance of the various bits is respected during the
subsequent voltage-sharing operations. This procedure can be
continued until all magnitude bits of the weight are processed,
finally yielding the weight-proportional voltage Vw,n on the
last capacitor Cnw after ncyc,w cycles

VCnw
[ncyc,w] = Vw,n = Vpre ·

nw∑
k=1

bn
k · 2k−nw−1. (5)

The voltage Vpre is selected based on the desired sign of Vw,n

so that both positive and negative weights can be represented
in the analog domain. In total, a number of ncyc,w cycles is

KHADDAM-ALJAMEH et al.: SRAM-BASED MULTIBIT IN-MEMORY MATRIX-VECTOR MULTIPLIER 375

Fig. 2. Schematic of the interleaved switched-capacitor-based multibit in-memory compute unit (IMCU) that allows the execution of matrix-vector
multiplications. The pipelined D/A converter in (a) generates a voltage, which is proportional to the stored weight bits {bN,1

1 , bN,1
2 , . . . , bN,1

nw
}, representing

the unsigned weight |wN,1|. Note that the sign of the precharge voltage in is selected based on the sign of both input and weight. (b) Analog multiplier

performs a multibit multiplication as a series of binary multiplication steps, by controlling the switches in . Based on each input bit, either zero or a weight
proportional amount of charge is added to the output capacitor Cout,N. (c) Analog accumulator performs the summation of all multiplication results of the
IMCUs along the first column by means of charge-sharing. All capacitors employed throughout the process are of equal size.

required until the voltage Vw,n is generated, whereby ncyc,w
depends linearly on the number of bits in the weight

ncyc,w = nw + 1. (6)

Once the first valid Vw,n voltage is obtained on the last
capacitor, pipelining allows consecutive replication of Vw,n

every three clock cycles. This is required to perform the
analog multiplication, described in the next section, at high
bandwidth.

B. Analog Multiplication

As a next step, the analog multiplication of the voltage,
which is proportional to the weight, with the input must be
performed. It is assumed, similar to the weight wn , that the
input xn is represented as an nx-bit fixed-point number in
SMR. Thus, the sign of the multiplication result sn

result can
be immediately obtained through an XOR operation between
the respective signs of weight (bn

sign) and input (i n
sign)

sn
result =

{
+1, if

(
bn

sign ⊕ i n
sign = 0

)
−1, otherwise.

(7)

Consequently, the precharge voltage Vpre can be selected based
on sn

result. The corresponding circuit implementation is shown
in Fig. 3, which illustrates an example of a transistor-level
implementation of an SRAM-based 3-bit signed IMCU. In
the case of an unsigned multiplication, the precharge volt-
age selection step and the related circuitry can be omitted.
Furthermore, if the distributive law is used, a multibit fixed-
point multiplication of an input xn by a weight wn can be
reformulated as a sum of nx binary products

sn
result · |wn · xn| = sn

result · |wn| ·
nx∑

p=1

(
i n

p · 2−p). (8)

Therefore, the multiplication can be carried out successively in
nx multiply and add steps while going through the input bits
one by one. In hardware, this can be optimally implemented
by modifying the control signals on the switches of the MSB
capacitor Cnw, which, at the ncyc,w-th cycle, is charged to Vw,n

φMSB,add = i n
p AND φ(nw) mod 3 (9)

φMSB,rst = i n
p AND φ(nw) mod 3. (10)

The key advantage of the proposed implementation is that,
in an IMC system, these two signals need only be generated
once for the full row and not on a per matrix element. Depend-
ing on the input bit i n

p, in every three cycles, the capacitor
Cnw either produces the weight proportional voltage Vw,n if
i n

p = 1 or otherwise zero

VC,nw[ncyc,w + 3(p − 1)] = i n
p · Vw,n, p = 1, . . . , nx. (11)

This binary multiplication result is then accumulated via
charge-sharing on a dedicated capacitor Cout,n . Starting from
an initial voltage V 0

C,out,n = VCM on Cout,n , each step of
charge-sharing halves the voltage on Cout,n and, depending
on the current input bit, adds 0.5 · Vw,n to it

V p
C,out,n = 0.5 · (i n

p · Vw,n + V p−1
C,out,n

)
. (12)

The input bits need to be traversed from LSB to MSB to
ensure that the added charge corresponds to the respective bit’s
significance. Conversely, traversing in the opposite direction,
i.e., from MSB to LSB, would require doubling a charge and
adding it to that of lower significance, which is nontrivial in
terms of a circuit design implementation.

The accumulation of the binary multiplication can start as
soon as the first pipelined D/A conversion is flushed. To this
end, the signal dvalid indicates, after ncyc,w cycles, that the
correct voltage Vw,n is available, after which the accumulation

376 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 2, FEBRUARY 2021

Fig. 3. Transistor-level implementation of a 3-bit signed in-memory compute unit (IMCU) in combination with SRAM cells. All the transmission-gates (TGs)
are comprised of a pMOS and nMOS pair so that the charge-sharing procedures are rapidly executed for the full voltage range. In the shown configuration,
both 6T and 8T SRAM cells would be supported since the IMCU is not multiplexed to be shared with several memory cells. The XOR logic element is
implemented here using nine transistors.

Fig. 4. Timing diagram for the control signals and capacitor voltages of an IMCU multiplying 3-bit signed weight w = −3 = 1|112 with 4-bit signed input
x = −5 = 1|1012. Charge-sharing cycles are highlighted in blue and binary multiplications of the MSB capacitor voltage with 1 or 0 are in yellow and red,
respectively. Completion of the MAC procedure is signaled by φacc, highlighted in green. The ADC sample signal is not shown here. Cycles during which
energy is drawn from the precharge voltage supplies are indicated by the underlined capacitor voltage values.

is initiated

dvalid =
{

1, if (t > ncyc,w)

0, otherwise
(13)

φout,add = dvalid AND φ(nw+1) mod 3. (14)

To summarize, an additional input bit is processed every three
clock cycles, until all nx bits of the input magnitude have been
multiplied and accumulated. The required number of cycles is
obtained with the following formula:

ncyc,i = 3 · (nx − 1) + 1. (15)

KHADDAM-ALJAMEH et al.: SRAM-BASED MULTIBIT IN-MEMORY MATRIX-VECTOR MULTIPLIER 377

Note that the first input bit is processed one cycle after the
pipeline DAC settles the first time. Ultimately, the following
correspondence between a final output voltage VC,out,final,n and
the multiplicands wn and xn is established

VC,out,final,n = sn
result · xn

2nx
· wn

2nw
· Vpre + VCM. (16)

C. Analog Accumulation

At this stage, all multiplications between the rows of the
weight matrix and the input data vector have been executed.
The last operation needed to complete the matrix-vector mul-
tiplication is to sum up the results along each column. In
the analog domain, this is achieved by shorting all output
capacitors along one column to the node Vcol using dedicated
switches controlled by the φacc signal. Since only one capacitor
size is used throughout the entire array, the respective voltages
VC,out,final,n are averaged

Vcol = 1

N
·

N∑
n=1

VC,out,final,n . (17)

Fig. 2(c) shows how the analog accumulator performs the
summation of all the multiplication results of the IMCUs along
the first column of the crossbar array.

The number of cycles ncyc,acc required to finalize the
accumulation is given by the RC time constant of the charge-
sharing procedure. Given the high number of switches that are
used and the relatively small unit capacitance size, a settling
time of ncyc,acc = 1 will be assumed. All the resulting column
voltages are proportional to the entries in the result vector
�y and can finally be digitized using integrated ADCs. By
including the number of cycles ncyc,adc that the ADC needs
to sample Vcol, the following equation for the total number
of cycles needed for the in-memory MAC operation can be
defined

ncyc = ncyc,w + ncyc,i + ncyc,acc + ncyc,adc + ncyc,rst

= nw + 3 · nx + 2 (18)

where, in one cycle, ncyc,rst = 1 is used to reset the full system.
Moreover, the assumption is made that the ADC sampling time
for an 8-bit output resolution is below the digital circuits’ cycle
time [23] so that ncyc,adc = 1. Note that (18) gives evidence for
the linear relation between latency and the number of weight
and input bits.

D. Numerical Example

In the following, a simple numerical example will be given
to demonstrate the functionality of the MAC circuitry. To
this end, the weights will be quantized as 3-bit signed fixed-
point numbers (nw = 2), and 4-bit signed quantization will
be used for the inputs (nx = 3). A possible transistor-
level implementation with appropriate control signals is given
in Fig. 3. Waveforms and capacitor voltage evolution through-
out the analog multiplication process are given in Fig. 4. For
the reasons of simplicity, the common-mode voltage will be
defined as 0 V , and the precharge voltages will be set to

±1 V . A weight value of w = −3 and an input of x = −5
will be used

w = −3 = 1|112 = (−1) · [b1, b2] × [2, 1]ᵀ
x = −5 = 1|1012 = (−1) · [i1, i2, i3] × [4, 2, 1]ᵀ.

Using (7), the sign sresult = +1 of the multiplication result
is determined immediately. As the result will be positive,
the pipeline D/A will only use the positive precharge voltage
+Vpre. The pipeline D/A starts synthesizing the weight voltage
Vw from the magnitude bits b1 and b2. Accordingly, the first
capacitor (LSB) VC1 settles on a voltage 1/2 V and the second
one on VC2 = 1/2 · (1 V + 1/2 V) = 3/4 V = Vw.
In accordance with the first input bit that is processed (i3 = 1),
this voltage is accumulated on the output capacitor in cycle 4,
thus yielding

VC,out [4] = 1/2 · 3/4 V = 3/8 V.

Since the second input bit is zero, the MSB capacitor VC2 is
discharged in cycle 6, after which the common-mode voltage
VCM is merged with VC,out in cycle 7

VC,out [7] = 1/2 · (0 V + 3/4 V) = 3/16 V.

Finally, Vw,n is merged a second time with VC,out in cycle 10,
thus processing the last input bit i1 = 1

VC,out [10] = 1/2 · (3/4 V + 3/16 V) = 15/32 V.

This value can also be obtained via (16) and corresponds to
the final result of the multiplication operation. Had the sign
been negative, the negative precharge voltage −Vpre would
have been used, and VC,out [10] would have been −15/32 V.

E. Energy Consumption

In order to quantify the energy consumed by the charge-
based analog multiplier, one full operational cycle will be
analyzed. Since only one single IMCU will be examined,
the row index n will be omitted in the next sections for
simplicity. The basic circuit operation of each 10T + C cell
can be summarized in three steps: an initial unit-capacitor
precharge or discharge cycle depending on weight (bk) and
input bits (i p) and then two charge-sharing procedures: first,
with the previous capacitor, and then, with the consecutive
capacitor. Note that charge-sharing itself is quasi-passive and
consumes no energy except when switching the connected
TG. Only when the capacitors are precharged from the ±Vpre
supplies, electrical energy is consumed. In addition to data-
dependent energy consumption occurring during precharge
events, there is a data-independent part caused by the switch-
ing events of the TGs. Both contributions to the circuit’s
energy consumption will be examined in the following para-
graphs, and the corresponding analytical formulas will be
presented.

1) Precharge Events During Initialization: Assuming all
unit capacitors Ck in the circuit are initially reset to the
common-mode voltage VCM, the energy drawn during the
initial precharge cycles differs from energy drawn once the
D/A circuit operates in steady state. The following formula

378 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 2, FEBRUARY 2021

Fig. 5. Diagram indicating all events throughout an IMCU’s full operational cycle that potentially results in charge transfer from the supplies to the unit
capacitors. VC,0 to VC,out denote the voltages on each of the unit capacitors. Note the circuit’s mode of operation, consisting of a precharge event followed
by two charge-sharing procedures with the previous and subsequent unit capacitor. The different precharge cycles are categorized from 1© to 4©, depending
on whether they occur during initialization or steady state and also depending on the capacitor number.

characterizes the capacitive energy consumed during any
precharge event:

EC,k = 1

2
· Cunit · bk · (Vpre − VC,L)2 (19)

where Cunit denotes the unit capacitor size, VC,L represents
the capacitor’s last voltage before the precharge event occurs,
and bk indicates the fact that only precharging to nonzero-bit
values consumes energy. By using the pipelined DAC output
voltage equation from (5), VC,L can be determined as

VC,L(k1, k2) = Vpre ·
k2∑

a=k1

ba · 2a−1−k2 . (20)

This voltage corresponds to the pipeline DAC output at the bit
number k2, where the bits of higher significance from k2 + 1
to nw have not yet been processed. To capture the case of
an uninitialized pipeline D/A, the parameter k1 is introduced.
This missing initialization can be observed in Fig. 5, where the
initial voltages in cycle 1 on all capacitors except C1 do not
contain any LSB information. Since all capacitors are initially
reset to the common-mode voltage VCM, these unprocessed
bits are assumed to be zero for all voltages that are developed
on the subsequent capacitors of the pipeline DAC via charge-
sharing. The total number of these initialization pipeline runs
nr,init depends on the number of weight bits nw used in the
IMCU

nr,init =
⌈nw

3

⌉
. (21)

In each of these runs, a number of LSBs is missing, depending
on the position of the start bit. For the runs starting in cycle
1 at capacitor 1, no bits are omitted, and for the run starting
at capacitor 4, bits 1–3 are missing. Furthermore, due to the
special signals of the analog multiplier [see (9) and (10)],

the MSB capacitor is not precharged when the first input bit
is zero (i1 = 0). Finally, the capacitor voltage prior to a
precharge event can be given in dependence of VC,L for a
run number r and unit capacitor number kx

VC,L,i(r, kx) = VC,L(3r + 1, min{kx + 1, nw − i1}). (22)

The total amount of energy dissipated in the initial phase can
now be obtained as the sum of all consumed capacitive energy

E(1) = Cunit

2

nr,init∑
r=1

nw∑
kx=3r−2

bkx(Vpre − VC,L,i(r, kx))
2. (23)

2) Steady-State Pipeline D/A Precharge Events: Once in
steady state, each run in the pipeline D/A will consume the
same amount of energy, except for the input-dependent power
dissipation in the MSB and the MSB-1 capacitor. The input bit
count nx determines the number of the pipeline runs necessary
to perform the analog multiplication. Note that the first bit is
processed at the end of the initial phase in Fig. 5. Since
the circuit operates in pipeline mode, an additional number
of incomplete runs is initiated depending on the number of
weight bits nw. The number of steady-state pipeline runs nr,st,
thus, becomes

nr,st = (nx − 1) +
⌊

nw + 1

3

⌋
. (24)

By using (6) and (15), the duration of each steady-state run,
including the incomplete ones, can be determined

nd,st(r) = min{nw − 2, ncyc,w + ncyc,i − 3 · r}. (25)

Finally, the total energy dissipated in the pipeline D/A during
steady state can be written as

E(2) = Cunit

2

nr,st∑
r=1

nd,st (r)∑
kx=1

bkx(Vpre − VC,L(1, kx + 1))2. (26)

KHADDAM-ALJAMEH et al.: SRAM-BASED MULTIBIT IN-MEMORY MATRIX-VECTOR MULTIPLIER 379

Fig. 6. Energy consumed by the multibit IMCU during one complete analog
multiplication operation. The weight and input magnitudes |w| and |x| are both
quantized to 5 bits. For |w| = 0, the least amount of energy ETG is consumed
since only the TGs operate and no energy is drawn from the ±Vpre supplies.
The maximum amount of energy EIMCU,max is consumed for |w| = 21 and
|x| = 0. A Cunit of 2 fF and a capacitive load CTG = 1 fF were selected for
the inputs of one TG in 14 nm.

3) MSB-1 Capacitor Precharge Events: Although, in steady
state, the MSB-1 capacitor does not draw a constant amount
of charge from the supply, its energy consumption depends
on the input bit i p that is currently processed in the analog
multiplier. If this input bit i p is equal to one, then MSB and
MSB-1 capacitor are shorted, which does not occur if i p = 0.
The various conditions are captured in the following formula:

VC,L,MSB−1(i p) = Vpre ·
(

bnw · i p

2
+

nw−1∑
k=1

bk · 2k−1

2nw−1+i p

)
. (27)

Given that, in steady state, the MSB capacitor is precharged
exactly nx times, once for each input bit, the energy consump-
tion can be computed as follows:

E(3) = Cunit

2

nx∑
x=1

bnw−1 · (Vpre − VC,L,MSB−1(ix))
2. (28)

4) MSB Capacitor Precharge Events: Similar to the
MSB-1 capacitor, the energy consumption on the MSB capac-
itor also exhibits an input data dependence. In steady state,
the MSB capacitor is shorted to the output capacitor Cout to
accumulate the results of the single-bit multiplication. During
a subsequent precharge event, not only the current input bit
i p but also all input bits that have been multiplied and added
so far must be considered when calculating the voltage on the
capacitor prior to precharging. To this end, the instantaneous
output capacitor voltage is defined as a function of the number
of input bits that have been processed

VC,out,L(p) = Vpre ·
p∑

a=1

ia · 2a−1−p ·
nw∑

k=1

bk · 2k−1−nw . (29)

The total energy consumption in the MSB capacitor is the sum
over all precharge events occurring throughout the multiplica-

tion and accumulation of each input bit

E(4) = Cunit

2
· bnw−1 ·

nx∑
p=1

(Vpre − VC,out,L(p))2. (30)

5) Switching of TGs: All TGs used in the presented analog
multiplication circuit are assumed to be built exactly the
same, from equally sized pMOS and nMOS transistors. While
turning on the TG, the charging procedure of the nMOS
transistor gate consumes energy, and while turning it off,
the same is true for the pMOS transistor gate. From circuit
simulation with the extracted TG netlist, the energy consumed
during one turning on and off transient ETG,transient can be
obtained

ETG,transient = 640 aJ. (31)

If the total number of turning on and off events nTG,events is
determined, then the total amount of energy consumed can
also be obtained. From observation of the circuit in Fig. 3,
an expression for the number nTG,φ0 of TGs connected to the
signal φ0 can be derived

nTG,φ0 = 2 + 2 ·
⌊

1

3
· (nw − 1)

⌋
. (32)

The corresponding number of turn-on events nTG,ev,φ0 follows
from Fig. 4

nTG,ev,φ0 =
⌊

1

3
· (ncyc + 2)

⌋
. (33)

This procedure can be applied to all TGs in the circuitry so
that all switching events are captured

nTG,ev,φ0 =
⌊

ncyc + 2

3

⌋
·
(

2 + 2 ·
⌊

nw − 1

3

⌋)
(34)

nTG,ev,φ1 =
⌊

ncyc + 1

3

⌋
· 2 ·

⌊
nw + 1

3

⌋
(35)

...

The sum over the number of TGs multiplied by their respec-
tive number of switching events is finally multiplied by
ETG,transient, thus yielding ETG,total, which is the total amount
of energy consumed for switching the TGs in one analog
multiplication unit. If added to the capacitive energy figures,
the total amount of energy consumed during one IMCU
multiplication procedure can be obtained

EIMCU,total = E(1) + E(2) + E(3) + E(4) + ETG,total. (36)

6) Discussion: The significance of each contribution in
the overall energy balance can be seen in Fig. 6 for an
implementation using a quantization of 5 bits for both the
weight and the input magnitude (nw = nx = 5). It is clear
that the energy ETG spent for switching the TGs dominates the
overall consumption. The peak, denoted by EIMCU,max, occurs
at |w| = {1, 0, 1, 0, 1}2 when each charge-sharing procedure
leads to the maximum �V possible, and thus, the highest
energy is consumed during precharging. Conversely, the min-
imum amount of energy ETG is consumed for w = 0 when
only the TGs are switched and no precharging occurs.

380 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 2, FEBRUARY 2021

Fig. 7. Dependence of weight (nw) and input (nx) magnitude quantization
on the energy, time, and average power consumed for one complete analog
multiplication operation of a multibit IMCU. The sign bit is not included since
it does not significantly impact the overall energy consumption. The red and
blue stars indicate the design point selected for the implementation study.

Fig. 7 shows the impact of weight and input quantization
on the peak energy, average power, and time per multiply
operation. Since each additional weight bit implies another
set of capacitors and switches, as well as one additional
clock cycle, both latency and power consumption increase
linearly. Thus, energy consumption, which is obtained as
their product, shows a square dependence. Nonetheless, with
respect to the input bits nx, the scaling versus energy remains
completely linear since the circuit only needs to operate for
three additional cycles because of pipelining, without any
additional hardware required within the IMCU.

F. Noise and Mismatch Impact

To ensure the highest possible accuracy of an analog IMC
operation, all sources of nonlinearity and noise need to be
known before an adequate circuit can be designed. Since
the presented IMC circuit utilizes charge-sharing procedures
between capacitors for the analog computation, the impact of
TG ON-resistance RTG,on mismatch remains negligible. This
is because the circuit’s cycle time is defined to always ensure
complete voltage settling on a unit capacitor given a target
nacc,mac-bit precision (from [21])

RTG,on · Cunit · nacc,mac · ln 2 < Tcycle. (37)

The thermal kbT/C noise impact is reduced by determining a
minimum size for Cunit such that, once all capacitors along one
column are shorted, the remaining noise amplitude is below
the LSB of the employed ADC. Basically, a tradeoff between
analog computation precision and latency, as well as energy
efficiency, has to be made.

The main source of nonlinearity in this system is the mis-
match between the Cunit capacitors due to manufacturing tol-
erances. As a consequence, charge-sharing procedures will not
result in perfect averaging of the respective capacitor voltages.
Given equally designed unit capacitors C0, C1, . . . , Cnw , Cout,

the relative errors �Ck = Ck/Cunit can be modeled as indepen-
dent random variables, normally distributed with N (0, σ 2).
These errors impact the D/A conversion process of the two
multiplicands, weight w and input x , differently. Consequently,
the weight is converted into the nonideal voltage Ṽw by the
pipeline DAC. In addition, the subsequent analog multiplier
performs a nonideal scaling operation by a factor α̃x, which
is proportional to an input value xn . Specifically,

Ṽw = Vpre ·
nw∑

k=1

bk · Ck

Ck + Ck−1
·

nw−1∏
l=k

Cl

Cl+1 + Cl
(38)

α̃x = Cnw

Cnw + Cout
·

nx∑
p=1

i p ·
(

Cout

Cnw + Cout

)nx−p

. (39)

Using (38) and (39), the nonideal multiplication result Ṽout is
obtained as

Ṽout(w, x) = Ṽw · α̃x. (40)

Note that the pipeline DAC output is impacted by the mis-
match of all capacitors except Cout, whereas the analog
multiplier is impacted only by the relative mismatch between
Cnw and Cout. Since the IMCU can be described as a dual
input DAC, the common metrics of integral nonlinearity (INL)
and differential nonlinearity (DNL) can be used to obtain a
quantitative measure of the analog multiplication accuracy. A
change in the stored digital values of either weight or input
alters the analog output voltage Ṽout. The impact of these
variations can be measured by the weight- and input-related
DNL metrics, i.e., DNLw and DNLx . Specifically,

DNLw(w, x) = Ṽout(w + 1, x) − Ṽout(w, x)

VLSB · x
− 1 (41)

DNLx(w, x) = Ṽout(w, x + 1) − Ṽout(w, x)

VLSB · w
− 1. (42)

Given a technology’s capacitor fabrication tolerance σ and
a maximum allowed DNL value for both weight and input
DNLmax = max {maxw |DNLw,x |, maxw,x |DNLx |}, a target
yield YDNL can be defined to determine the usable design
space via Monte Carlo simulations, as shown in Fig. 8. From
the confined areas shown in the plot, it becomes evident that
an accurate BEOL fabrication process is required for high-
precision analog computing. Advanced patterning techniques
in deep submicron nodes allow to keep the mismatch below
0.05%, even for small Cunit sizes [24]. Furthermore, matching
will gradually improve in upcoming technologies since the
metal fabrication precision is increasing as the transistors are
shrinking in accordance with Moore’s law [25], [26].

Additional improvements of the analog computing precision
could be achieved by adding calibration circuitry but only at
a significant cost of area and complexity. Considering that
both these factors are critical in determining the IMCU’s
competitiveness, calibration overhead will be avoided in the
presented implementation, and only the precision provided
“for free” by the underlying technology node will be used.
Assuming a σ between 0.1% and 0.02%, the design point
with five weight bits and five input bits will be chosen for
implementation. Since only the magnitude is accounted for in

KHADDAM-ALJAMEH et al.: SRAM-BASED MULTIBIT IN-MEMORY MATRIX-VECTOR MULTIPLIER 381

Fig. 8. IMCU design space obtained from 2000 Monte Carlo simulations
considering mismatch between the unit capacitors Cunit . A target yield of
YDNL ≥ 99% for a maximum DNL smaller than 0.5 was assumed. Only
the magnitude bits are considered. The sign bit is not included for either
weight or input as it only determines the polarity of the precharge voltage
and does not impact the DNL. The red star indicates the selected design point.

Fig. 9. Output characteristics of an IMCU using 5-bit unsigned weights
and inputs. It is based on simulations using ideal switch models and nonideal
unit capacitors Cunit with a relative matching variation of σ = 0.1 %. The
respective DNL curves for the weight DNLw (red) and input DNLx (black)
are shown in the top left plot. Both the DNL and INL remain bounded within
±1 LSB out of 10 bits.

the plot, this can be extended to a 6-bit signed weight and a
6-bit signed input. This is because the sign changes only the
polarity of the precharge voltage Vpre and, thus, doubles the
output range unimpaired by the capacitor mismatch. Instead,
the precharge voltages ±Vpre, which are assumed to be pro-
vided from externally, are required to be highly accurate with
regards to symmetry around the common-mode VCM to avoid
inconsistent scaling of positive and negative multiplication
results. In Fig. 9, the transfer characteristic of the analog
multiplier is shown. Despite the presence of mismatch, the
10-bit multiplication result tracks the ideal output curve to
a great extent.

In order to assess the performance of a full column of 128
IMCUs in the presence of other nonidealities, such as device

Fig. 10. MAC output characteristics of a transistor-level spectre simulation
that involves a full column of 128 IMCUs implemented in 14 nm. Each
IMCU multiplies a 6-bit signed input with a 6-bit signed weight. The effects
of thermal noise, transistor, and capacitor mismatches were considered. The
x-axis, representing the ideal fixed-point result, is normalized to [−1, 1], and
the y-axis, showing the analog MAC operation result, is normalized to the
8-bit ADC output range.

mismatch and thermal noise, a transistor-level simulation is
performed on a 14-nm implementation. The results are pre-
sented in Fig. 10 alongside the ideal outputs of a fixed-point
digital implementation. It can be seen that the error waveform
of the analog MAC output, plotted in the lower-right insert
of Fig. 10, exhibits the typical S-shape characteristic, which
arises from the vgs-dependent TG ON-resistances, superim-
posed on the thermal noise error waveform. Furthermore, since
this error is bounded between ±0.2 of an 8-bit LSB, it can be
deduced that, when digitizing using an ADC with a minimum
ENOB of 8, the obtained result will be very close to the
truncated output of a full-precision fixed-point operation.

Deep neural network inference tasks, which are the desig-
nated applications for the presented IMC system, can tolerate
this small reduction of precision of the MAC operation with
usually no loss or in certain cases with insignificant loss
in classification accuracy. The effects of ADC quantization,
to which any reduced-precision implementation is subjected,
are studied in detail in [27].

III. SYSTEM ARCHITECTURE

The goal of this work is to enhance standard SRAMs with
IMC capabilities while maintaining as much as possible the
original memory architecture. Conventional wordwise read and
write procedures for instance are still needed to carry out
fundamental memory I/O routines. In the system architecture,
as depicted in Fig. 11, these basic elements are maintained
with the same functionality. Their design and the mode of
operation are described in [1]. The three building blocks that
differentiate the novel SRAM architecture from the original
will be described in the following sections.

A. IMC Subblocks

Support for performing multibit in-memory MAC opera-
tions is achieved by integrating the IMCU described in Fig. 3

382 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 2, FEBRUARY 2021

Fig. 11. System architecture of an 8T SRAM array with integrated in-memory compute units (IMCUs) to support matrix-vector multiplications. The classical
SRAM architecture is complemented with (a) finite state machine to control the in-memory multiplication process, (b) IMC subblocks that support highly
parallel local read operations to feed data to the IMCUs, and (c) array of ADCs for rapid digitization of the analog multiplication results. Standard read and
write operations are carried out via the conventional global read–write circuitry.

into the SRAM array. If the bandwidth requirements for the
IMC operation can be relaxed, then significant amounts of
silicon area can be saved by time-multiplexing each analog
multiplication circuitry between a set of nshared words orga-
nized in a memory subarray. As a result, the execution of an in-
memory MAC operation on the complete array will require an
additional number of cycles, which is proportional to nshared.
Furthermore, this entails a change in the storage element.
Instead of directly using the internal nodes of the 6T cell,
the data now need to be read locally, preferably simultaneously
in all IMCUs. To this end, the 8T SRAM cell is employed
since it allows local read procedures in the memory subarrays
via local bit-lines, as well as global read/write operations via
the legacy periphery [28].

For performing the local read, additional sense-amplifiers
(SAs) will be required, which can be much smaller in size than
the peripheral amplifiers due to the lower number of cells that
they cover. Finally, the outputs of the SAs are connected to the
inputs of the multibit IMCU, as shown in Fig. 11(b). By taking
into account the number of cycles nread,local required for the
local read operation, the total latency for a full matrix-vector
multiplication becomes

ncyc,total = nshared · (nread,local + ncyc) (43)

where ncyc was defined in (18). Consequently, the local read
procedures also enter the energy balance as an array-size-
dependent term Eread,local.

B. IMC FSM

The in-memory MAC operation requires the IMCU circuitry
and a well-defined sequence of pulses, similar to those shown
in the example of Fig. 4. One way of generating these signals
would be to adopt a timing block similar to those in classical
SRAM architectures. In this article, a simpler solution using
clock-gated shift registers is proposed, which is more flexible
in the implementation and gives a more conservative and
comprehensible estimation for energy consumption.

After receiving a positive edge signal, the FSM enables
the clock signal of a large block of shift registers, as shown
in Fig. 11(a), for a well-defined number of cycles. Some
signals are common for the entire array, for instance, the three
pulse signals: φ0, φ1, and φ2. Others, such as the signal
pair of φMSB,add and φMSB,rst, are generated per each column
depending on the input vector bits. In addition to the signals
shown in Fig. 4, all signals required for performing the local
read operation must also be provided by the FSM. Finally, all
signals need to be buffered sufficiently in order to drive the
respective inputs across the array.

C. ADC Design

After the analog MAC operation is completed, the final
result, which corresponds to a voltage stored as charge across
a column of output capacitors, needs digitization at sufficient
precision. This necessitates the use of voltage input A/D
converters. Given a large number of input signals, the ADCs,
as shown in Fig. 11(c), should be designed to be as small,
as fast, and as energy-efficient as possible. With this in mind,
the SAR ADC design shown in [23] is used as a starting point.

KHADDAM-ALJAMEH et al.: SRAM-BASED MULTIBIT IN-MEMORY MATRIX-VECTOR MULTIPLIER 383

TABLE I

SYSTEM PARAMETERS AND COMPONENT SIZES

TABLE II

PERFORMANCE METRICS FOR IMC OPERATION

Since the input consists of charge on a large capacitor,
voltage buffers and complicated sampling circuits can be
avoided, and the input can instead be transferred by means
of charge-sharing to the capacitive DAC (CDAC) of the SAR
ADC. The conversion procedure itself can be executed using
a self-timed state machine to achieve high-speed conversion
cycles of below 1 ns in 14 nm [29]. Moreover, the cost of
each conversion is bounded at 3.3 pJ. By pitch-matching the
ADC circuit to the width of one IMC subblock, the conversion
latency impact on the overall bandwidth can be kept minimal.

IV. SYSTEM IMPLEMENTATION STUDY AND ANALYSIS

To demonstrate the benefit of the IMC-based architecture,
a full system implementation study is performed, detailing the
various components’ area and power consumption. The 6-bit
signed weights and 6-bit signed inputs are again assumed. The
full memory has 128 × 2048 weights, arranged in 128 × 64
IMC subblocks each of 32 weights.

If standard design rules are employed rather than spe-
cialized SRAM push-rules, then the 8T SRAM cell size

becomes 0.312 µm × 0.768 µm. Accordingly, the local SA
circuit is designed with a matching height, using an area of
0.504 µm × 0.768 µm. Furthermore, this height is maintained
in the various IMCU blocks so that, given the subcomponents’
size reported in Table I, the total area of one IMCU can
be determined to be 0.756 µm × 5.376 µm. Note that the
unit capacitors are designed in the metals located above
the transistors to keep the footprint as small as possible,
similar to the approach taken in [17]. Finally, the size of one
IMC subblock, consisting of IMCU, SAs, and SRAM array,
is determined as 11.24 µm × 5.376 µm.

If the peripheral circuits, decoders, read/write circuitry, IMC
FSMs, and ADCs are added, the area becomes 769.980 µm ×
792.398 µm for the full system. Regarding area efficiency,
56.4% is used by the SRAM cells, and the IMC-related
overhead amounts to about 35.4%. Figures for the energy
spent in each operation are listed in Table II. Initially, before
the actual IMC operation begins, the first column of SRAM
words has to be locally read to make the corresponding values
available to the attached IMCUs. Note that this operation can
be completed rapidly in 2 ns because the local SAs cover a
relatively small SRAM subarray with an accordingly small
local bitline capacitance, and the obtained results are used
locally and not transferred to the periphery. If executed in
all 8192 subarrays, total energy of 196.61 pJ is consumed,
according to simulations.

In the following step, after the local read, the IMCUs gener-
ate the voltages, which correspond to the MAC result and are
eventually digitized by the ADCs. This process of alternating
local-read and IMC operation is repeated 32 times, taking
216 ns, until the full matrix has been processed. Including
the FSM and ADC energy, a total amount of 30.96 nJ is
spent. These figures can be used to determine the full system
throughput as 2.43 TOP/s at an efficiency of 16.94 TOP/s/W.

In relation to the throughput and energy efficiency figures,
i.e., TOP/s and TOP/s/W, it has to be noted that the bit
precision is not taken into account, thus putting the lowest
precision implementations at an advantage. To adequately
reflect the additional computational complexity tackled by
multibit accelerators, the respective quantization of weight nw
and input nx can be factored in, similar to the approach taken
in [19], yielding precision scaled TOP/s and TOP/s/W.

This is shown in Table III, where recent implementations of
analog in-memory MAC-operation accelerators using SRAM
combined with capacitors [17], [18], [30], [31] are compared
with the presented work.

For example, a scheme that could scale in terms of weight
and input bits is demonstrated in [30]. In this article, a specific
implementation for 4-bit inputs is presented. These multibit
inputs are realized by expanding the 4-bit input value into a
number of pulses, which, based on the different weight bit
values along the rows, causes the capacitive read-bit-lines to
discharge by a proportional amount. However, this input-to-
time conversion creates an inherent exponential dependence
of the latency on the number of input bits, leading to a
limiting factor for finer input quantization. On the other
hand, the multibit weights are realized in a single time step
by employing a number of compensation and computation

384 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 2, FEBRUARY 2021

TABLE III

COMPARISON TABLE OF SRAM- AND CAPACITOR-BASED ANALOG IN-MEMORY MAC-OPERATION ACCELERATORS

capacitors. Since the total capacitance has an exponential
dependence on the number of weight bits (∼2nw), the chip
area scales exponentially with the number of bits as well.
Finally, note that the overall area overhead introduced for
enabling the IMC capabilities remains manageable since,
similar to [19], the standard SRAM-macrointernals remained
unmodified, and exclusively, pitch-matched components are
added to the periphery. In summary, the system described
in [30] delivers high energy and area efficiency for the selected
4-bit input and weight quantization with the relatively low
throughput being the only downside. This architecture might
match well with the common requirements for IoT and edge
applications. However, scaling the inputs and the weights
beyond 4-bit incurs significant area and latency penalties.
The same observations apply to the design described in [18],
which demonstrates simultaneous vector processing, though
for binary weights only. This architecture supports input
precision scalability, albeit at an exponential cost in terms
of latency. Furthermore, the high energy-efficiency number
shown in [18] becomes less than that presented in this article,
once the operands’ precision is factored in.

Both the accelerator systems presented in [17] and [31]
demonstrate high parallelism with completely binary imple-
mentations for inputs and weights. Note that, in binary cases,
a multiply operation can be reduced to a single XNOR opera-

tion [32]. As a consequence of this simplification, no scal-
ability in terms of precision can be achieved. In addition
to restricting the operands’ precision to binary only, [17]
also applies binary batch-normalization on the analog MAC-
operation result instead of digitizing using an ADC, thus
contributing to the immensely high efficiency reported there.

In addition to the pure analog IMC approaches listed
in Table III, a very interesting combination of a binary IMC
approach with digital techniques to increase precision was
presented in [33]. Specifically, through the use of digital
shift and add circuitry, binary-only analog accelerators as, for
example, in [31] and [17], can gain linear scalability in terms
of weight and input quantizations. However, this incurs a cost
in terms of latency and energy due to the multiple ADC cycles,
as well as an increase in the area due to the peripheral digital
adder circuits.

V. CONCLUSION

The cost, in terms of time and energy, associated with data
movement has driven the concept of in-memory computing
for neural network applications. According to this approach,
the dominating matrix-vector operations are performed in-
place, i.e., in the memory itself by exploiting certain phys-
ical properties of memory technologies. However, the main

KHADDAM-ALJAMEH et al.: SRAM-BASED MULTIBIT IN-MEMORY MATRIX-VECTOR MULTIPLIER 385

challenge of in-memory computing is the accuracy of the
analog MAC operations.

In this article, we introduced a linearly scalable multibit in-
memory computing system for accelerating MAC operations
in standard SRAM. A novel interleaved switched-capacitor-
based IMCU was proposed for conducting the analog com-
putation, and its potential with regards to speed and energy
efficiency was demonstrated. Although various SRAM-based
matrix-vector multiplication engines have been proposed in the
literature, our approach is the first to achieve computational
precision that scales linearly in time, power, and area. More-
over, we have shown, via transistor-level spectre simulations,
that, by using multibit representations for the input signals
and the weights, there is no significant penalty in the accuracy
of the SRAM-based analog MAC operations compared with
a corresponding all-digital implementation with the same
precision.

From a system design perspective, applications requiring a
rather high quantization or precision (4–8 bits) will benefit
substantially from the linear scalability of the presented IMC
circuit and architecture, which can offer high throughput at
an acceptable cost of area and energy. Finally, besides SRAM
as the underlying memory technology, other volatile or non-
volatile memory technologies using simple SA-based read,
such as DRAM, MRAM, or binary PCM, could also poten-
tially be used in conjunction with our IMCU concept to
provide multibit MAC computing capabilities.

ACKNOWLEDGMENT

The authors would like to thank A. Sebastian, M. Le-Gallo,
and P. A. M. Bezerra for the constructive discussions.

REFERENCES

[1] A. Pavlov and M. Sachdev, CMOS SRAM Circuit Design and Paramet-
ric Test in Nano-Scaled Technologies Frontiers in Electronic Testing,
vol. 40, V. D. Agrawal, Ed. Dordrecht, The Netherlands: Springer, 2008.

[2] B. Keeth and R. J. Baker, DRAM Circuit Design: A Tutorial, 1st ed.
Hoboken, NJ, USA: Wiley, 2000.

[3] H. Hidaka, Embedded Flash Memory for Embedded Systems: Technol-
ogy, Design for Sub-systems, and Innovations (Integrated Circuits and
Systems). Basel, Switzerland: Springer, 2017.

[4] R. Waser and M. Aono, “Nanoionics-based resistive switching memo-
ries,” Nature Mater., vol. 6, no. 11, pp. 833–840, Nov. 2007.

[5] M. Le Gallo and A. Sebastian, “An overview of phase-change memory
device physics,” J. Phys. D, Appl. Phys., vol. 53, no. 21, Mar. 2020,
Art. no. 213002.

[6] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory devices and applications for in-memory computing,” Nature
Nanotechnol., vol. 15, no. 7, pp. 529–544, Mar. 2020.

[7] S. R. Nandakumar et al., “Mixed-precision deep learning based on
computational memory,” Frontiers Neurosci., vol. 14, p. 406, 2020.

[8] M. Le Gallo et al., “Mixed-precision in-memory computing,” Nature
Electron., vol. 1, no. 4, pp. 246–253, Apr. 2018.

[9] E. Eleftheriou et al., “Deep learning acceleration based on in-memory
computing,” IBM J. Res. Develop., vol. 63, no. 6, pp. 7:1–7:16,
Nov. 2019.

[10] A. Sebastian, M. Le Gallo, G. W. Burr, S. Kim, M. BrightSky,
and E. Eleftheriou, “Tutorial: Brain-inspired computing using phase-
change memory devices,” J. Appl. Phys., vol. 124, no. 11, Sep. 2018,
Art. no. 111101.

[11] G. F. Close et al., “Device, circuit and system-level analysis of noise
in multi-bit phase-change memory,” in IEDM Tech. Dig., Dec. 2010,
pp. 29.5.1–29.5.4.

[12] I. Giannopoulos et al., “8-bit precision in-memory multiplication with
projected phase-change memory,” in IEDM Tech. Dig., Dec. 2018,
pp. 27.7.1–27.7.4.

[13] A. Chen, “A comprehensive crossbar array model with solutions for line
resistance and nonlinear device characteristics,” IEEE Trans. Electron
Devices, vol. 60, no. 4, pp. 1318–1326, Apr. 2013.

[14] J. Zhang, Z. Wang, and N. Verma, “In-memory computation of a
machine-learning classifier in a standard 6T SRAM array,” IEEE J.
Solid-State Circuits, vol. 52, no. 4, pp. 915–924, Apr. 2017.

[15] A. Jaiswal, I. Chakraborty, A. Agrawal, and K. Roy, “8T SRAM cell as
a multibit dot-product engine for beyond von Neumann computing,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 11,
pp. 2556–2567, Nov. 2019.

[16] X. Si et al., “A twin-8T SRAM computation-in-memory unit-macro for
multibit CNN-based AI edge processors,” IEEE J. Solid-State Circuits,
vol. 55, no. 1, pp. 189–202, Jan. 2020.

[17] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A 64-tile 2.4-mb
in-memory-computing CNN accelerator employing charge-domain com-
pute,” IEEE J. Solid-State Circuits, vol. 54, no. 6, pp. 1789–1799,
Jun. 2019.

[18] A. Biswas and A. P. Chandrakasan, “CONV-SRAM: An energy-efficient
SRAM with in-memory dot-product computation for low-power convo-
lutional neural networks,” IEEE J. Solid-State Circuits, vol. 54, no. 1,
pp. 217–230, Jan. 2019.

[19] S. K. Gonugondla, M. Kang, and N. R. Shanbhag, “A variation-tolerant
in-memory machine learning classifier via on-chip training,” IEEE J.
Solid-State Circuits, vol. 53, no. 11, pp. 3163–3173, Nov. 2018.

[20] E. H. Lee and S. S. Wong, “Analysis and design of a passive switched-
capacitor matrix multiplier for approximate computing,” IEEE J. Solid-
State Circuits, vol. 52, no. 1, pp. 261–271, Jan. 2017.

[21] F.-J. Wang, G. C. Temes, and S. Law, “A quasi-passive CMOS
pipeline D/A converter,” IEEE J. Solid-State Circuits, vol. 24, no. 6,
pp. 1752–1755, Dec. 1989.

[22] P. F. Ferguson, X. Haurie, and G. C. Temes, “A highly linear low-power
10 bit DAC for GSM,” in Proc. IEEE Custom Integr. Circuits Conf.,
May 2000, pp. 261–264.

[23] L. Kull et al., “A 24-to-72gs/s 8b time-interleaved SAR ADC with
2.0-to-3.3pj/conversion and 30db SNDR at Nyquist in 14nm CMOS
FinFET,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2018, pp. 358–360.

[24] D. Bustamante, D. Janke, E. Swindlehurst, and S.-H. W. Chiang, “High-
precision, mixed-signal mismatch measurement of metal–oxide–metal
capacitors,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 11,
pp. 1272–1276, Nov. 2017.

[25] W. C. Jeong et al., “True 7 nm platform technology featuring smallest
FinFET and smallest SRAM cell by EUV, special constructs and 3rd
generation single diffusion break,” in Proc. IEEE Symp. VLSI Technol.,
Jun. 2018, pp. 59–60.

[26] V. Tripathi and B. Murmann, “Mismatch characterization of small metal
fringe capacitors,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61,
no. 8, pp. 2236–2242, Aug. 2014.

[27] A. S. Rekhi et al., “Analog/mixed-signal hardware error modeling for
deep learning inference,” in Proc. 56th Annu. Design Automat. Conf.
(DAC). Las Vegas, NV, USA: ACM Press, 2019, pp. 1–6.

[28] L. Chang et al., “Stable SRAM cell design for the 32 nm node and
beyond,” in Dig. Tech. Papers. Symp. VLSI Technol., 2005, pp. 128–129.

[29] L. Kull et al., “A 10 b 1.5 GS/s pipelined-SAR ADC with background
second-stage common-mode regulation and offset calibration in 14 nm
CMOS FinFET,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, Feb. 2017, pp. 474–475.

[30] Q. Dong et al., “A 351TOPS/W and 372.4GOPS compute-in-memory
SRAM macro in 7 nm FinFET CMOS for machine-learning applica-
tions,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
Feb. 2020, pp. 242–244.

[31] Z. Jiang, S. Yin, J.-S. Seo, and M. Seok, “C3SRAM: An in-memory-
computing SRAM macro based on robust capacitive coupling computing
mechanism,” IEEE J. Solid-State Circuits, vol. 55, no. 7, pp. 1888–1897,
Jul. 2020.

[32] X. Si et al., “A dual-split 6T SRAM-based computing-in-memory unit-
macro with fully parallel product-sum operation for binarized DNN edge
processors,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 11,
pp. 4172–4185, Nov. 2019.

[33] H. Jia, H. Valavi, Y. Tang, J. Zhang, and N. Verma, “A programmable
heterogeneous microprocessor based on bit-scalable in-memory com-
puting,” IEEE J. Solid-State Circuits, vol. 55, no. 9, pp. 2609–2621,
Sep. 2020.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

