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Abstract— In this article, we propose a method for designing
online totally self-checking (TSC) comparators for TSC
systems implementable on field-programmable gate arrays
(FPGAs). This method can be used to conduct exhaustive
online diagnostics of each lookup table (LUT), which involves
mapping the fundamental components of the comparator, with
a small number of test patterns by directly measuring output
of each LUT. Our method drastically reduces the number of
test patterns for exhaustive diagnosis on the order of the input
number n [O(n)] (n is the input number to the comparator)
while maintaining 100% coverage, even if we only know the
specifications of the LUT without knowing its detailed structure.
FPGAs will be easily applicable to systems that require high
dependability. To confirm the soft error rate (SER) in a static
random-access memory (SRAM)-based FPGA, we also conducted
an experiment involving a single-event upset (SEU) caused by
neutron radiation. For this experiment, we designed an FPGA
implementation of 1575 identical dual-modular-redundant TSC
comparators. The experiment was conducted for 10.4 h, and
34 errors were observed regarding such failures in comparator
function. The evaluated SER for the TSC comparator with the
proposed method was 0.055 FIT at sea level of New York City.

Index Terms— Comparator, field-programmable gate
array (FPGA), neutron radiation, single-event upset (SEU), soft
error rate (SER), totally self-checking (TSC).

I. INTRODUCTION

W ITH the progress in Industries 4.0, systems, which
need to be highly dependable, especially regarding

safety applications such as for automobiles, railway systems,
chemical plants, and avionics, have become sophisticated due
to the acceleration in the use of Internet-of-Things (IoT)
technology (involving connecting many sensors) and artificial
intelligence (AI) technology (provides highly efficient process-
ing of data gathered using the IoT technology). The processors
for such a system need to perform well; however, the pro-
duction of such processors is limited due to the particularity
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of applications in highly secure systems. Therefore, high-
mix-low-volume development is naturally required for these
processors in many cases.

Under such circumstances, using field-programmable gate
arrays (FPGAs) is attractive for the development of processors
for such systems for economic reasons. The ever-increasing
demand for higher performance and functionality embedded in
a single chip requires high-performance MOSFETs and more
room for implementing logical functions in a single LSI chip;
thus, such LSIs require advanced fabrication process tech-
nology. However, the development cost of these customized
chips is high. Using an FPGA reduces this fabrication cost and
provides high-performance capability for data processing and
state-of-the-art control methods. Therefore, design methods
that achieve high dependability by applying FPGAs to these
systems become more important.

To achieve high dependability, redundant codes [1], such as
parity, M-out-of-N code [2], and two rail-logic and arithmetic
codes [3]–[6], are widely used. Several types of self-checking
computer systems have been presented [1], [7]–[11] based
on using these redundant codes. To develop self-checking
LSIs, another possible method is duplicating functional
blocks and verifying the output of these blocks using a
self-checking data-compare mechanism through ad hoc
design. Therefore, intrachip redundancy is commonly
used for achieving dependability [12], [13]. Totally self-
checking (TSC) comparators with an online fault injection
method for intrachip redundancy were proposed [14], [15].
These TSC comparators can conduct self-diagnosis without
any modification in the functional blocks, i.e., applying
encoding such as error-correction code (ECC), to the
functional block. This reduces both development cost and the
design period for developing LSIs.

There are issues in applying such comparators to FPGAs.
Unlike hard-wired LSIs, FPGAs can implement any functional
block by using lookup tables (LUTs). The configuration of the
function on an FPGA has many degrees of freedom regarding
the connection of each LUT, even though the comparator is
small. Therefore, compared to application-specific integrated
circuits (ASICs), this high flexibility of FPGAs requires extra
test patterns for self-diagnostics when a self-checking com-
parator is applied to a TSC system. Typically, the number of
test patterns for diagnosis of the n-input circuit is 2n when we
treat the function of the circuit as a black-box implementation.
This issue is known as the explosion of the diagnosis test
patterns [16]. Thus, a design method for a TSC comparator
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implementable on FPGAs, that is, to reduce the number of test
patterns without reducing test coverage, is needed.

Another concern is that a static random-access memory
(SRAM)-based FPGA is vulnerable to soft errors caused by
a single-event upset (SEU) regarding radiation of cosmic
rays [17]. Particularly, neutrons are recognized as a major
cause of soft errors for microelectronics on ground. An FPGA
for Rad-Hard use [18] is available, but this type of FPGA
is for special use; thus, the availability on the market is
very limited. Our goal is to use the standard commercial
off-the-shelf (COTS) FPGAs for highly dependable systems.
To develop such a system, a method for mitigating this
problem systematically and quantitative confirmation of the
effect of SEU are necessary.

This article is organized as follows. In Section II,
we describe the related work that clarifies the issues of
applying a conventional method of FPGA implementation,
and then, we propose the design method for TSC compara-
tors implementable on FPGAs with an online fault injection
method. In Section III, we describe the device under the
test (DUT) design that we developed for measuring the soft
error rate (SER) per TSC comparator designed with the
proposed method. In Section IV, we describe the experimental
environment and results. Finally, we conclude this article in
Section V.

II. TSC COMPARATOR IMPLEMENTABLE ON FPGA

A. TSC and TSC Comparator (Related Work)

TSC is indispensable for highly reliable systems, especially
regarding safety applications [12], [13], [19]. TSC is defined
as follows [2].

Definition 1: A circuit is self-testing if, for every fault from
a prescribed set, the circuit produces a noncode output for at
least one code input.

Definition 2: A circuit is fault secure if, for every fault from
a prescribed set, the circuit never produces an incorrect code
output for code inputs.

Definition 3: A circuit is TSC if it is both self-testing and
fault secure.

There are two possible approaches to develop TSC LSIs
that comply with Definitions 1–3 [14]:

(a) implementing the whole circuit through ad hoc design
for TSC;

(b) duplicating functional blocks (b-1) and verifying the
output of these blocks (b-2) using a TSC data-compare
mechanism through ad hoc design (b-3).

Approach (a) has shortcomings in which all the circuits must
be newly designed and implemented in an ad hoc process
with extremely strict design restrictions. On the other hand,
approach (b) can enable the development of TSC logic, but
only if the data-compare mechanism has an ad hoc design for
fail-safe; in other words, a conventional design of functional
block can be easily used for a duplicated functional block.
Therefore, development cost and time can be greatly reduced.

The fault-detection coverage with approach (b) greatly
depends on the coverage of the TSC data-compare mechanism

Fig. 1. TSC LSI architecture for approach 2. Two identical function blocks,
verification of output from those function blocks, and diagnostics function in
comparator (TSC comparator) are included.

(b-3) in the comparator. Generally, 100% coverage for detect-
ing faults in each function block may not be guaranteed
because some functions are not in use or not relevant to
output. However, the faults that are relevant to output, which
are the most important for the system, are detected by
duplicating function blocks (b-1) and verifying the output of
both blocks in the comparator (b-2); thus, the fault-detection
coverage regarding function blocks A and B is 100% with
conventional logic-diagnosis methods. The remaining TSC
requirement for approach (b) is the TSC function for a
comparator (b-3). We call this comparator having this function
a TSC comparator.

An example of a TSC LSI architecture is shown
in Fig. 1 [14], [15], [19]. Two n-bit inputs (a0-an−1 and
b0-bn−1) from both dual-modular redundancy (DMR) func-
tional blocks A and B are compared in this TSC comparator.
This comparator uses an online fault injection method. The
TSC function is provided by adding a diagnostic circuit that
consists of a test-pattern generator and injector circuit that
typically consists of an exclusive OR (XOR) circuit. This
test-pattern injector circuit injects signals (pa0–pan−1 and
pb0–pbn−1) defined as diagnosis patterns, which are gener-
ated from the test-pattern generator, into these input signals,
which are compared in the comparator. The summarize circuit
summarizes the results of the outputs of compare function
(c0–cn−1) and outputs a signature signal. The overhead (gate
counts based on two-input NAND) of this circuit is Reset/Clock
(0.357n), pattern generator (D-FF, 15n), pattern injector
(XOR, 2.5n), compare function (XOR, 2.5n), and summarize
circuit (eight-input OR, 0.6875n); thus, the total overhead
is 21.0625n, which is 8.425 times larger than with a basic
comparator [19].

The TSC function in this comparator is as follows. The
test signal injected by the test-pattern injector circuit flips
the input signal to diagnose hardware-based faults in the
comparator within a diagnostic period. When functional blocks
A and B are healthy, the output of the comparator is typically
“low.” When the test signal is injected to one of the input
signals, the output of the comparator flips to “high” if the
comparator is healthy. Thus, the output of the comparator
signal alternates between “low” and “high” (heartbeat) when
the comparator is healthy. When the comparator is not healthy,
for example, the relevant circuit has a “stack-at-0” fault,
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and the comparator output will not flip to “high.” This TSC
comparator can diagnose its health. A test pattern is designed
to detect a comparison mismatch by injecting one test signal
into one input one time during the injection period. Therefore,
the comparator can output a heartbeat signal, which alterna-
tively switches from “low” to “high,” if both function blocks
and the comparator are healthy.

B. Proposed Design Method of TSC Comparators
Implementable on FPGAs

With conventional design methods [12]–[15], [19], (b-1)
and (b-2) are easily embeddable in an FPGA; however, (b-3)
is insufficient. Regarding (b-3), the issues with implementing
comparators in FPGAs are as follows.

1) Additional test patterns are required for detecting faults
in a specific failure mode that is based on the nature of
the programmable logic of an FPGA when a comparator
is mapped to LUTs.

2) The probability of short circuit for wiring in FPGAs
is higher than that in ASICs due to the SEU in con-
figuration memory (CRAM). There are cases in which
some faults are missed because the method discussed
in a previous study [12] is only considered “stack-at
faults.”

Fault models for mapping a circuit to an LUT in an FPGA
have been reported [20], [21]. Basically, the entity of a
k-input LUT is a 2k-bit SRAM cell. We can diagnosis a
k-input LUT by using the 2k test patterns as long as we observe
the LUT output [20], [21]. Short circuits of wiring between
two nets [22] are also nonnegligible due to the LUT-based
circuits having a large degree of freedom of implementation
due to the programmability of LUTs. Typically, the number of
test patterns for diagnosis of the n-input circuit is 2n when we
treat the function of the circuit as a black-box implementation.
Naive implementation of a TSC comparator to an FPGA
results in an explosion of test patterns [16].

To reduce the number of test patterns without reducing test
coverage, the proposed method is also used to observe the
outputs of each LUT that consists of a comparator function.
With this method, primitive components in a comparator, such
as XORs and logical ORs, are manually mapped into each LUT,
and the outputs of all these LUTs are monitored. This method
drastically reduces the combinations of test patterns. If we
assume four inputs for each LUT, the required test pattern for
an LUT is 24 = 16. For a comparator, the required number of
LUTs is as follows:

KLUT = round
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n

2
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4

)i
)
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(
2

3
n

)
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To define test patterns, we exhaustively considered fault
modes, such as a stack-at fault of the input node/output
node, LUT failure mode, and short-circuit effect in an internal
comparator. We determined total faults per an LUT (four
inputs) based on the following fault models:

1) flipping a bit in CRAM: 24 = 16;
2) stack-at fault at input: 2 × 4 = 8;
3) stack-at fault at output: 2 × 1 = 2;

Fig. 2. Example schematic of dual-modular-redundant TSC comparator
designed with the proposed method.

4) short circuit between two internal signals (each LUT has
one output defined as an internal signal): KLUT − 1.

The total number of possible failures is (25 + KLUT) ×
KLUT. However, we found that we can use the test patterns
for the first case to detect faults for the second-to-fourth cases
with a combination sequence of several test patterns in the first
case. Thus, the total number of test patterns for a comparator is

p = 24 × KLUT (2)

which is on the order of n [O(n)] (n is the input number to
the comparator). As a result, this method can reduce the total
number of test patterns from O(2n) (worst case) to O(n),
which is acceptable for real use cases of online diagnosis.
Our method does not necessarily require random sampling
simulations, such as Monte Carlo, to verify TSC comparator
functions because the total number of test patterns is O(n);
thus, we can verify all cases through exhaustive evaluation.

Fig. 2 shows an example of a TSC comparator designed
with the proposed method for DMR with 8-bit inputs and a
checker. Both 8-bit inputs, A0–A7 and B0–B7 are connected
to the test-pattern injector consisting of XOR circuits. One
comparator (upper comparator in Fig. 2) is diagnosed at the
positive clock edge, and the other (redundant lower comparator
in the figure) is diagnosed at the negative clock edge. Test
patterns TPA0–TPA7 and TPB0–TPB7 are connected to the
upper comparator, and test patterns TNA0–TNA7 and TNB0–
TNB7 are connected to the lower comparator. The inputs
for the comparators are allocated in each LUT, and the
output of each LUT is connected to a clock terminal of
the corresponding flip-flop (FF) in the checker. This circuit
analyzes the signature signals from the comparator, which we
call an output response analyzer (ORA). Outputs EP0–EP3 and
EN0–EN3 sequentially switch from “low” to “high” when the
test pattern is injected. Therefore, FFs in the checker propagate
a “high” signal in accordance with the input of these outputs.

Example of comparator-operation waveforms is shown
in Fig. 3, which is an example of fault injection operation.
Each input is injected with a fault signal within an appropriate
time based on a defined test pattern. Test patterns, TPA and
TPB, are injected at the positive edge of the clock signal.
Test patterns, TNA and TNB, are injected at the negative edge
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Fig. 3. Example waveforms of TSC comparator. It shows 16 out of 160 pat-
terns. For B0–B7, the corresponding test pattern is replaced with TPB# and
TNB#.

of the clock. EP0–3 and EN0–3 become “high” sequentially,
as shown in Fig. 3; thus, the FF in the checker propagates the
signal in accordance with the inputs of the TPA, TPB, TNA,
and TNB signals, and outputs ORA OUTPUT. The period of
the ORA OUTPUT is eight clock cycles. We measured this
period for a later experiment by using the CHK_CNT counter.
The notation OP0 is the output of the upper comparator, and
ON0 is the output of the redundant comparator.

In the case of short circuit between two internal signals
(EP#, EN#, OP#, and ON#), we can observe all internal
signals; thus, we can find these faults by measuring each
sequential signal pattern compared with the expected one.
In the case of short circuit of wiring between an internal signal
in the comparator and an external signal of the comparator,
misdetection may occur. For example, this misdetection occurs
when an external signal erroneously connected to an internal
signal synchronously outputs the same value as the expected
value of the internal signal. However, since the external signal
is independent of the TSC operation of the comparator, the
signal switches asynchronously and randomly to the internal
signal. The misdetection probability decreases exponentially
by performing several diagnoses that are conducted continu-
ously online, while function blocks A and B are in use. Thus,
all faults can be detected within a diagnostics period.

The proposed method can also detect faults that would be
latent when diagnosing LUTs with the conventional method.
For example, a TSC comparator designed with the proposed
method consists of XORs in the first stage and logical ORs in
the second stage, as shown in Fig. 2. We consider a case in
which an input of one of the XORs in the first stage has a fault
such as a short circuit between that of the other XORs (e.g.,
A0 and A2) and the second OR also has a fault that changed
its original OR function to a different one simultaneously
(e.g., although the OR function is correct to output OP0 = 1
when EP0 = 1, EP1 = 1, EP2 = 1, and EP3 = 0, the function

changes and outputs OP0 = 0 as an unintended function
when EP0 = 1, EP1 = 0, EP2 = 1, and EP3 = 0). In this
case, TPA0 = 1, TPA4 = 1, and the remaining TPA# = 0
and TPB# = 0 are expected to output EP0 = 1, EP1 = 0,
EP2 = 1, and EP3 = 0, but the outputs are EP0 = 1,
EP1 = 1, EP2 = 1, and EP3 = 0 due to the short circuit of
A0 and A2. The proposed method can detect this fault because
each output of an LUT, i.e., EP0–3, is directly observed. It is
difficult to detect this fault using the conventional design
method; thus, this fault is latent. On the other hand, by using
our method, since the intermediate node, such as the output
of XOR, is observable, we can detect this fault in the first
stage by measuring EP0–EP3 with simple LUT diagnostics.

The proposed method provides 100% coverage for internal
faults and short circuit of two wires within a comparator
because it tests each LUT by using the above 24 test patterns
and monitors each LUT’s output.

Regarding the generation of test patterns for diagnosis,
the required number of test patterns for the TSC comparator
is 24 × KLUT, as shown in (2). When n = 8, we obtain
KLUT = 5 and 24 = 16; as a result, the number of test patterns
is 80. We use a dual-modular-redundant TSC comparator,
as shown in Fig. 2; thus, the total number of test patterns is
160. To reduce hardware overhead, we determined 40 patterns
for basic injecting signals considering the symmetry of four
situations such as input (A/B) and evaluation clock edge
(positive/negative); thus, the total number of patterns is 160 for
four identical diagnoses of input A at the clock rise edge,
input A at the clock fall edge, input B at the clock rise edge,
and input B at the clock fall edge. This circuit can diagnose
the dual rate of the system clock; thus, the total diagnosing
time is 80 cycles. These test patterns are generated manually
for the purpose of easy explanation of the fault-detection
coverage for safety applications to a third-party certification
authority. We also manually mapped these basic circuits of the
comparator to LUTs for the same purpose. Test patterns are
stored in on-chip RAM and fed to the comparator during its
diagnosis.

Our method is applicable to the software-compare method
discussed in a previous study [12] when we map the archi-
tecture in that study to an FPGA. First, the test patterns
expand when the applied LUT-based design complies with
our method. Second, the output of each LUT is set to register
when a fault is detected. Finally, the CPU reads these registers
and compares them with the expected values. Due to the
observing outputs of each LUT, the number of test patterns
can be reduced.

The comparators designed with the proposed method are
ideally implemented in two separate chips. The comparator
function is implemented in an FPGA with the main functional
blocks, and the checker is embedded in another hard-wired
LSI chip, such as ASIC or discrete LSIs, to reduce the SEU
caused by cosmic rays. In this case, to embed a comparator
with the main functional blocks, the I/O between two chips is
reduced. However, operational speed is limited, so we choose
an implementation in accordance with performance require-
ments and the requirement of standards, such as functional
safety.
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Fig. 4. Block diagram of BCM for the experiment of neutron radiation.
ORA in Fig. 2 was implemented in the checker block. Checker block outputs
NG_bus, NG_diag, and NG_cycle. This BCM has two checkers with ORA
as redundancy.

III. DESIGN OF COMPARATOR-EVALUATION MODULE

FOR MEASURING SOFT ERROR

In this section, we describe a DUT for SER evaluation.
High-energy neutrons, protons, muons, and so on are primarily
generated by the spallation reaction of extremely high-energy
cosmic rays such as protons and a helium atom nucleus when
they enter the atmosphere [23]. Charged particles are halted in
a relatively short range; however, neutrons produce a cascade
of spallation reactions (air shower), which form terrestrial
neutrons at the ground level. Thus, these secondary cosmic-
ray neutrons are recognized as a major cause of soft error for
microelectronics on the ground. The terrestrial neutron flux at
sea level in New York City is 12.9 cm−2 h−1 (E > 10 MeV),
which is a reference point of the SER on the Earth [24]. Since
the neutron fluence is small on the ground, the probability of
measuring the SER is also small. One way to increase the
error rate is to conduct an accelerated life test (ALT) [25],
which is often used to irradiate a chip with higher intensity
particles that can cause errors. We applied this method to this
experiment.

To evaluate the SER of a TSC comparator designed with our
method and implemented on an SRAM-based FPGA against
neutron radiation, we designed a DUT with modules for
this comparator and an ORA implemented on an FPGA. For
effective analysis, control of the neutron-radiation fluence is
essential [17]. Although we conducted this experiment with
the ALT, if the irradiation fluence is much stronger, the fre-
quency of multiple event upsets increases, causing difficulty in
analysis. To obtain meaningful results from a machine time of
several hours, at least 100 events are necessary for measuring
the events for the DUT. We estimated that at least 1000
identical DMR comparators were required for the experiment.

Fig. 4 shows a block diagram of a basic comparator
module (BCM). We designed a DMR comparator and two
checkers with an ORA. Conceptually, the single checker is
designed in the hard-wired LSI external to the FPGA, as shown
in Fig. 2. However, in this experiment, we used an off-the-
shelf evaluation board with an FPGA; thus, checkers must be
embedded in the same FPGA. To easily identify the error type,
we adopted DMR for the checker.

In this checker, three signals, NG_bus, NG_diag, and
NG_cycle, are generated using the output of the compara-
tor. The NG_bus signal signifies that the input bus of the

comparator is healthy and is generated as

NG_bus = ((CHK_CNT[0] & OP0)|
(∼ CHK_CNT[0] & ON0)) (3)

where CHK_CNT[0] is the output of the least significant
bit (LSB) in the 4-bit counter. This logic checks the output
of the comparator, i.e., OP0 is low in the high state of the
clock and ON0 is low in the low state of the clock. Our
DMR comparator consists of two identical comparators. One
comparator diagnoses its circuit at the positive edge of the
clock signal, and the other diagnoses its circuit at the negative
edge of the clock signal, as described in Section II. Thus,
our DMR comparator carries out self-diagnosis for double the
clock frequency.

The NG_diag signal signifies the health of the comparator
and is generated as

NG_diag = (∼ NG_bus) &

((∼ CHK_CNT[0] & ∼ OP0)|
(CHK_CNT[0] & ∼ ON0)). (4)

This DMR comparator injects test signals during the diag-
nosing period. As a result, the output is expected to be high
if the comparator is healthy.

The NG_cycle signal signifies the health of the ORA output

NG_cycle = (ORAOUTPUT! = (∼ CHK_CNT[3])) (5)

where CHK_CNT[3] is the output of the most significant
bit (MSB) of the 4-bit counter. As mentioned earlier, since
this DMR comparator diagnoses at double the clock frequency
and the input signal to the ORA is 8 bits; an 8-bit counter
that operates at double the clock frequency is needed. For sig-
nal OUTPUT ORA, the “high” level propagates sequentially
through each FF in the ORA in accordance with dual-rate
toggling due to the EP0-3 and EN0-3 signals. As a result,
signal OUTPUT ORA alters at the rising edge of the clock
for every four clock cycles.

A schematic of the DUT that includes 75 comparator-
evaluation modules (CEMs) with seven triplet comparator
modules (TCMs) is shown in Fig. 5. This DUT had a total
of 1575 DMR TSC comparators and associated checkers that
include the ORA. Each TCM has three basic BCMs. The
TCM outputs three types of signals, NG_bus, NG_diag, and
NG_cycle, and redundancy signals, NG_bus_R, NG_diag_R,
and NG_cycle_R. All signals from each BCM are drawn to the
top hierarchy in parallel, the total number of signals is 3150 for
each signal type, and each signal consists of 18 bits. These
signals are OR each other in accordance with the same number
of TCMs. The selector circuit selects a CEM number (CEM
#) to identify the position where failure occurred. If multiple
errors occurred simultaneously, only data from the lowest
CEM # are stored in the register due to the limitation of the
design specifications.

Fig. 6 shows the top view of the circuit for this experiment.
All comparators in the DUT had the same inputs for easy
control. We focused on the SER of the comparators against
neutron radiation; thus, we designed the input signals as dc
inputs. These input signals were connected to a test-pattern
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Fig. 5. Schematic of DUT module that includes 75 CEMs with seven TCMs.
Each TCM has three BCMs.

Fig. 6. Top view of circuit evaluated in this experiment.

injection circuit, and this circuit flipped input signals when
the test patterns were injected. The measured data were stored
in a register. The test patterns stored in an on-chip RAM were
protected by ECC, and each test pattern was injected via the
injector circuit after reading from the RAM. When an ECC
error occurred, the error information was stored in the register.
Stored data in the register were sent to a PC after the error
occurred.

We used Xilinx’s Virtex 7 FPGA (XC7VX485T-2FFG1761,
VC707 Evaluation Kit) [26]. The hardware resources for
implementing our circuit in the FPGA are listed in Table I.
FPGA TOP includes DUT and Exc. DUT, and DUT includes
CEM and Exc. CEM. As shown in Fig. 6, Exc. DUT includes
RAM, registers, and other circuits. In this design, we imple-
mented 12 kb of control registers, 1.2 kb of test pattern
registers, and 32 kb of registers for logging data to both
Slice Reg and LUTRAM. We did not use BRAMs. The total
number of slices in XC7VX485T was 75 900, and our design
used 97% of all slice resources. As shown in Table I, wiring
resources used 4726 slices, which was 6.4% of all resources.
Note that this design is for SER evaluation of comparators,
so the overhead of wiring was large. However, the overhead
can be reduced because one or two comparators at most are
implemented on an FPGA for real use cases.

TABLE I

FPGA RESOURCES FOR THIS IMPLEMENTATION EVALUATION

TABLE II

SPECIFICATIONS OF RCNP OF OSAKA UNIVERSITY

Fig. 7. Neutron flux during the experiment.

IV. EXPERIMENT AND RESULTS

We conducted the abovementioned experiment at the
Research Center for Nuclear Physics (RCNP) of Osaka Uni-
versity. The specifications of the RCNP facility are summa-
rized in Table II [27]. The neutron flux is shown in Fig. 7.

The soft error mechanism is explained as follows. When a
nucleus in the device collides with a ballistic neutron, a nuclear
spallation reaction, in which the nucleus breaks into secondary
fragments, can take place with a certain probability. Similar to
alpha-ray soft error, when the storage node (diffusion layer) is
hit by a secondary ion, a certain amount of electrons/holes
produced along the ion track are collected at the nodes,
typically by the funneling mechanism [28] and/or the drift-
diffusion process. An SEU occurs when charge collected at
the node exceeds the critical charge over which the data
“1 (high)” in the node changes to “0 (low).”

With measurements using spallation neutrons, one can
derive an averaged neutron SEU cross section that can be
defined as follows [24]:

σSEU−dev = NSEU

�spec
. (6)
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Fig. 8. Experimental setup. (a) Target FPGA board with comparator modules.
Embedded chip was Xilinx Virtex 7 FPGA. (b) Neutron irradiation hole at
RCNP facility. (c) Block diagram of the experimental setup.

In (6), the averaged cross sections depend on the entire
spallation neutron spectrum, where NSEU denotes the total
errors detected, �spec is the fluence of neutrons over the
spectrum from E > 10 MeV in units of cm−2, and σSEU−dev
is the spallation SEU cross section in units of cm2/device.

A. Experimental Setup

The experimental setup is shown in Fig. 8. Fig. 8(a) shows
the target FPGA board with the DUT module, and Fig. 8(b)
shows the neutron radiation hole. Fig. 8(c) shows a block
diagram of the experiment setup. The FPGA was in front of
a neutron irradiation hole and connected with a host PC via
a serial connection, as shown in Fig. 6. The serial connection
was used to configure the FPGA and collect log data stored
in registers on the FPGA to the PC.

The evaluation procedure of the data-logging method used
in this experiment is shown in Fig. 9. First, a test pattern
was loaded from an external ROM to the on-chip RAM. After
the test pattern was loaded in the RAM, diagnosis of the
comparator began. The data of the comparison results were
logged continuously until an error occurred. When an error
occurred, data logging stopped and the stored data in the
register were sent to an external PC. After sending the data,
the DUT was reset and data logging resumed. All data logged
in the register were sent to the PC after an error occurred,
so we could analyze these data after the experiment.

B. Experimental Results

First, we considered the dependence of error types and com-
ponents regarding measured errors. All error types measured
during this experiment are listed in Table III. As mentioned

Fig. 9. Evaluation procedure of logging failure during the experiment.

TABLE III

ERROR TYPE CLASSIFICATION

in Section III, we designed three signals to detect errors,
NG_bus, NG_diag, and NG_cycle. There were a total of six
combinations of these errors because if NG_bus and NG_cycle
are detected simultaneously, NG_diag should also be detected,
that is, this type of error is under the same condition that
detects all three signals simultaneously. We observed no errors
regarding the case in which NG_bus and NG_cycle were
detected and NG_diag was not detected. When an error in
the external circuit that we were not interested in occurred,
the corresponding “invalid data” were set to the register.
A diagnosis circuit detected this irregularity, and then, data
logging stopped. Therefore, we can easily and automatically
distinguish the data of interest for the corresponding error
detection and other irregular invalid data.

Fig. 10 shows the error-occurrence frequency categorized
by components and error type. Components in which errors
occurred were categorized as checker (CHK), compara-
tor (CMP), input of comparator (INPUT), and others, and the
case of multiple errors occurring was also considered. We did
not obtain results, indicating that some logged data were the
invalid data mentioned earlier, except for the seven operational
errors that were due to circuit hang-up on the PCB board and
misoperation. We confirmed that every result consisted of valid
data and all errors associated with the circuit of interest were
detected.

The frequency of error detection in the DMR comparators
was 34 and that in the checkers was 112. The ratio of this
frequency in the comparators to that of checkers was 1:3.3.
Regarding the area for the DMR comparator and checkers
of a BCM in the FPGA, the DMR comparator required ten
slices in the FPGA layout, and the checkers required 34 slices
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Fig. 10. Error-occurrence frequency classified by each error type.

Fig. 11. Ratios of detected errors classified by components and reasons.
No errors were detected in CHK:E4, CHK:E6, MUL:E2, MUL:E3, INPUT:E1,
INPUT:E2, INPUT:E3, INPUT:E5, and INPUT:E6.

(typical value). Therefore, the ratio of the area of comparators
to that of the checkers was 1:3.4. Both ratios were similar;
thus, the error-occurrence frequency was proportional to the
area. This is the consequence of uniformity regarding the SER
in an FPGA.

Fig. 11 shows the ratio of detected errors classified by
components and reasons, which is a breakdown of the results
in Fig. 10. The most frequent reason was the reporting of a
single failure in the checker with ORAs. This is caused by
an inconsistency between DMR ORAs due to an accidental
flip of relevant CRAM bits or the storage node in FF along
the connection path. The excluded measurement data were the
operational error data in Fig. 10. Note that we detected the case
of CMP:E2 (3.53%), which would be latent with conventional
methods.

All events detected during this experiment are shown
in Fig. 12 and classified by cause in chronological order. The
measured CEM # associated with the measured error events
is shown in the chronological order in Fig. 13. These results
show that the measured error occurred uniformly in FPGA.

C. SER Evaluation

Next, we calculated the SER. We referred to the JEDEC
standard for this experiment [24]. The neutron fluence during

Fig. 12. Chronological order of each measured error type.

Fig. 13. Chronological order of CEM number for detecting faults.

Fig. 14. Error-occurrence frequency of each module.

the experiment was �spec = 5.27 × 109 n/cm2, which is
3.91×107 times greater than that at sea level in New York City,
and the FPGA was irradiated for 10.4 h. Hence, the amount of
neutrons radiated in the experiment was about the same as that
radiated in 4.06×108 h at sea level in New York. We obtained
an SER = (163/(5.27 × 109)) × (109 × 0.0036 × 3600) =
401 FIT/DUT at sea level in New York City for our DUT.
We omitted the excluded measurement data in Fig. 10 for this
calculation.

To evaluate the SER per DMR comparator, we assumed
that the SER is proportional to the area in use. The total
resources used to implement our DUT were 73 434 slices, and
a DMR comparator used ten slices. Thus, the SER per DMR
comparator was 0.055 (= 401 × 10/73434) [FIT/COMP] at
sea level in New York City.
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Fig. 15. Layout example for several CEMs.

D. Layout Dependence

Finally, we describe the dependence of error events for
physical layout. The error-occurrence frequency for each mod-
ule is shown in Fig. 14. On average, 2.16 errors were observed
in each CEM. The error frequency in CEM 17 was largest in
this experiment. For comparison, the layout patterns for CEMs
0, 1, 4, 17, 40, 43, 45, 58, and 74 are shown in Fig. 15.
The error-occurrence frequencies were 3, 2, 6, 9, 0, 0, 0,
5, and 2, respectively. The red areas in these layout patterns
are the associated slices used for comparators. Although the
real connection in the FPGA is unknown to users, a layout
pattern represents almost the same location in the FPGA as
the actual location. Among these layout patterns, the layout
pattern of CEM 17 was laid out uniformly in the FPGA chip;
however, those of CEMs 40, 43, and 45 were laid out in two
distinct areas. The layout patterns for CEMs 4, 17, and 58 were
longitudinal and near the edge of the chip. We designed
our DUT as a hierarchical structure in the register-transfer
level (RTL); however, we synthesized and mapped this DUT
into an FPGA in the top level of the hierarchy due to the
limitations of the electronic design automation (EDA) tool.
Therefore, all BCMs, TCMs, and CEMs had different layouts
in each hierarchy. This is the reason for the variation in
layout images.

The SEU mitigation reports from FPGA vendors do not
include any dependence between the SER and LUT position
in an FPGA, and we can assume the uniformity of the SER
in an FPGA. Even though this uniformity assumption is true,
more circuits, such as switch and repeater, are required in an
FPGA; thus, this might increase the SER.

Based on the experimental results, we conclude that it is
possible to design dependable systems by using FPGAs with
a TSC comparator designed with the proposed method and
applying an authorized design methodology defined in the
functional safety standard [29].

V. CONCLUSION

We proposed a design method for TSC comparators imple-
mentable on FPGAs with an online fault injection method
and evaluated the SER per comparator example through an
experiment of neutron radiation exposure. By observing the
output of each LUT directly, the proposed method was used to
conduct self-diagnosis with 100% coverage in a small number
of test patterns, which drastically reduced the number of test
patterns to O(n). Although we did not know the physical
layout of the designed circuits in an FPGA, we designed a TSC
system with the proposed TSC comparator designed with the
proposed method that was implementable on an FPGA with a
reasonable number of test patterns. Our method was extended
to software-based TSC implementable on FPGAs. To evaluate
the SER of such a TSC comparator in an FPGA, we used a
DUT consisting of 1575 DMR comparators and measured its
effectiveness against neutron radiation. The evaluated SER for
a comparator was 0.055 FIT (at sea level of New York City).
Thus, we confirmed the possibility of designing dependable
systems, especially regarding safety applications, such as for
automobiles, railway systems, chemical plants, and avionics,
using FPGAs with our method and applying an adequate
design methodology defined in the functional safety standard,
such as IEC 61508.
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