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Abstract— This paper proposes a single instruction multiple
data (SIMD) processor, which is programmed with high-level
OpenCL language. The low-power processor is customized for
executing multiple-input-multiple-output (MIMO) detection algo-
rithms at a high performance while consuming very little power
making it suitable for software-defined radio (SDR) applications.
The novel combination of SIMD operations on a transport
programmed multicore datapath allows saving power on both
the execution front end and the back end, leading to very
good energy efficiency with a compiler programmable design.
We demonstrate the feasibility of the architecture with the
layered orthogonal lattice detector and minimum mean-square-
error MIMO algorithms, which can be used as a software-defined
radio implementation of the 3GPP local thermal equilibrium r11
standard. Compared to other state-of-the-art SDR architectures,
the proposed design adds features that improve programmer
productivity with an insignificant power and area impact.

Index Terms— Application-specific instruction set proces-
sor (ASIP), digital signal processor, multiple-input-multiple-
output (MIMO) detector, vector processor.

I. INTRODUCTION

MODERN wireless telecommunications terminals need
to adapt to different standards such as 3GPP long

term evolution (LTE) [1], wireless local area network [2],
Digital Video Broadcast-Terrestrial/Handheld [3], [4], fre-
quency bands, and operating conditions. Hence, the idea of
software-defined radio (SDR) is gaining popularity, i.e., radio
signals are processed on programmable platforms instead of
traditional fixed-function hardware pipelines. SDR processors
are challenging to design since multiple-input multiple-
output (MIMO) orthogonal frequency division multiplex-
ing (OFDM) links require tremendous processing power
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Fig. 1. Main operating blocks of an LTE receiver. This paper concentrates
on the MIMO detection part.

compared to earlier single-channel systems. Meanwhile, the
processor architecture must fit in the available power budget,
which is especially restrictive in passively cooled and battery-
powered mobile terminals.

In SDR systems, the computational performance is often
obtained with increased parallelism in the form of single
instruction multiple data (SIMD) computations. Unfortunately,
wide SIMD data paths for low-power devices are often
designed for maximizing the energy efficiency, which means
that they possess nonorthogonal instruction sets and are poor
targets for compilers. Such processors require careful manual
programming on a low abstraction level, which has resulted
in software engineering costs to eclipse the costs of hardware
design [5] in system-on-chip projects.

Fig. 1 shows the main operating block of an LTE receiver.
One of the most computationally intensive parts of modern
wireless communication systems is MIMO detection in the
MIMO-OFDM receiver. Of the various proposed detection
algorithms, the maximum likelihood (ML) detection provides
the best bit error rate (BER) performance, but is impractical
to implement as it is based on an exponential-complexity
exhaustive search of all the possible digitally modulated
symbols. In practice, ML detection is either approximated by
algorithms, which limit the symbol search space, or is com-
pletely replaced with linear detection, thus trading off equal-
izer performance to complexity. In general, various MIMO
detection algorithms form a tradeoff curve between BER and
computational complexity. The minimum mean-square-error
(MMSE) [6] equalizer is a representative of linear equalizers,
while layered orthogonal lattice detector (LORD) [7] is a sub-
optimal ML equalizer with deterministic complexity (latency)
and soft-output generation complexity, which is linear to the
number of transmission antennas.

In an SDR system, the error rate/computation complex-
ity tradeoff gives an interesting opportunity for runtime
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link adaptation. Close to a base station, where the signal-
to-noise ratio (SNR) is high, a simple detection algorithm is
sufficient to obtain the required data throughput. At the cell
service boundary with a lower user allocation and modulation
order, the link may be adapted to use a more complex
algorithm. Therefore, the terminal benefits from programmable
computing resources such that it can easily run a simple
detection at full data rate or a complex detection algorithm
at a reduced rate.

In this paper, we propose a novel SDR processor archi-
tecture that can be programmed using a high-level pro-
gramming language (OpenCL [8]) and supports wide-SIMD
half-precision floating-point arithmetics. The architecture pro-
vides world class power performance while reducing the
programming complexity via its use of a high-level parallel
programming language and avoiding the need for manual
result scaling as with fixed-point arithmetics.

The proposed processor utilizes a transport triggering pro-
gramming model [9], thus the cores can be classified as
transport triggered architecture (TTA) processors. The trans-
port triggering paradigm provides significant energy savings
especially on register file accesses. The processor achieves the
combination of high performance and programmability using
a high-level language (OpenCL C) by means of the following
novel architectural features as follows.

1) TTA datapath with wide SIMD operations, which allows
processing of several operations with a reduced num-
ber of instruction bits resulting in enhanced energy
efficiency.

2) Homogeneous multicore TTA design supporting task-
level parallelism, which enables improving the through-
put and hiding longer memory latencies.

3) Half-precision floating-point arithmetic for efficient
implementation of SDR algorithms, which provides
good numerical performance without needing the
manual signal scaling.

4) General operation set with only a few special operations
making the architecture an easier compiler target to
enable extended flexibility and applicability.

The proposed architecture is evaluated by means of
instruction-level simulations as well as application-specific
integrated circuit (ASIC) synthesis and layout. The flexibility
of the proposed processor architecture is shown by imple-
menting two different MIMO detection algorithms with link
adaptation in mind: MMSE and LORD.

The rest of this paper is organized as follows. Related
work is discussed in Section II. Section III introduces the
MIMO algorithms used as the primary applications guiding the
processor design, and details their OpenCL implementation.
Section IV describes the hardware architecture in the proposed
processor. Section V presents the evaluation of the architecture
and compares it to previous MIMO accelerators. Section VI
concludes this paper.

II. RELATED WORK

Traditionally, MIMO decoding is realized as a custom
fixed-function hardware unit. For example, an MMSE detec-
tor for 4 × 4 MIMO and 64-QAM on 90-nm ASIC

technology is reported in [10]. The implementation achieves
757 Mbps with total power consumption of 189 mW on a
chip area of 1.5 mm2. This translates to power efficiency
of 250 pJ/bit. Another hardware-based MIMO detector is
described in [11]. On 65-nm process, it achieves 1044 Mbps
with total power consumption of 59 mW, meaning energy
efficiency of 11 pJ/bit. Two different hardware implemen-
tations of least candidate search (LCS)-LORD detector are
presented in [12]. A high-performance fixed-function hardware
for MIMO detection is presented in [13]. However, these
designs do not support postmanufacture functionality updates,
which is an essential feature in the proposed solution.

A LORD detector on nVidia Geforce FX 1700 graphics
processing unit (GPU) is reported in [14]. MIMO detectors
have been reported on Nvidia Tesla C1060 GPU in [15] and
Nvidia Geforce 560 Ti GPU in [16]. These GPU chips have
high power consumption implying that they would not be
suitable for mobile handset implementations.

Many SDR processors use SIMD architecture to achieve
high throughput while reducing power consumption compared
to generic GPU-based solutions. However, the energy con-
sumption is still much higher than in fixed-function hardware-
based solutions. One of the first SIMD architectures for SDR is
signal-processing on-demand architecture (SODA) [17], which
has 32 lanes of 16 bits for the total SIMD datapath width
of 512 bits. The power consumption due to the vector register
file is a recurring concern in SIMD radio processors. To
reduce the number of required vector register file ports and to
save power on accesses to vector register file, SODA opts to
allow only one vector instruction per cycle. A long instruction
word (LIW) execution with multiple parallel operations would
require more register file ports, while the vector register file
was already the largest single power consumer.

An improved revision of SODA, Ardbeg [18], attempts
to improve vector arithmetic logic unit (ALU) utilization by
permitting LIW operation, but provides only three register file
read ports and two write ports, and limits the available instruc-
tion combinations accordingly. For example, it is possible to
schedule an add and a load instruction on the same cycle,
but not two simultaneous adds, which would require four read
ports. The VEGAS architecture [19] discards the register file
entirely and loads vector operands from scratchpad RAM, but
in the context of a softcore field-programmable gate array
(FPGA) implementation. The AnySP [20] architecture as well
as Waeijen et al. [21] introduce a forwarding network with
explicit bypassing in order to save power in vector register
file. This approach takes advantage of the fact that many
register values are only consumed once after being written
to the register file. For such values, it is possible to bypass
the value from the producing function unit to the consuming
unit through the forwarding network and eliminate a write to
the register file. Typically, ca. 50% of register file writes can
be eliminated in this way, saving substantial power.

There are other techniques for optimizing the RF power
consumption and complexity in very LIW (VLIW) style signal
processors proposed in the past: PAC [22] utilizes a ping-
pong register file, which consists of two clusters, each having
their own private RF, and a common dual-banked register
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file where one bank is always connected to one cluster.
This allows each RF bank to do with a small number of
ports. Zalamea et al. [23] propose a hierarchical RF structure.
This reduces traffic to the large central RF when most of
the accesses hit the smaller and more energy efficient inner
level RF.

In [24], a custom processor tailored for MIMO algorithms
is proposed, which shows good energy efficiency for a pro-
grammable solution. However, the processor has a limited
instruction set and is, therefore, programmed in assembly
language making algorithm implementation, optimization, and
debugging burdensome. Also, this processor does not perform
the channel preprocessing part of the MIMO detection.

The napCore is a floating-point SIMD signal processor for
SDR baseband processing [25]. The solution is area efficient
but it still uses highly customized data types, which means
that widely used high-level programming languages such as
C cannot be efficiently used to program it. Tomahawk [26]
is a multiprocessor SoC containing a baseband processing
module (BBPM), which has programmable signal processors
for MMSE MIMO equalization, symbol detection, and turbo
decoding.

A coarse-grained reconfigurable array (CGRA)-based
application-specific instruction set processor (ASIP) for
MIMO detection is proposed in [27]. CGRA allows high
performance and efficiency with programmable control, but
CGRAs are challenging to program as they require software
pipelineable loops for efficient utilization. Furthermore, their
proposed CGRA is not capable of executing generic programs
written in high-level languages efficiently as it computes on
highly nonstandard 2 × 18b and 2 × 23b fixed-point complex
numbers, which cannot be described by popular high-level
languages such as C or OpenCL C. The log-likelihood ratio
(LLR) calculation is handled by a fixed hardware block, not
by a programmable processor, which may make the ASIP
unsuitable for some other detection algorithms.

ADRES is a processor template for baseband process-
ing [28]. It consists of a VLIW processor and a coarse-
grained reconfigurable matrix. In [29], an MIMO detector
for ADRES-based processor is proposed, which has a 256b
SIMD datapath consisting of eight lanes, where each lane
has complex-valued arithmetic units. However, their multi-
tree selective spanning-based MIMO detection supports only
hard-bit decision output, not soft-bit output. Another related
ADRES-based processor for radio baseband processing is
presented in [30].

A custom multicore TTA processor for lattice reduction is
proposed in [31]. The system is based on a pipelined multicore,
where each core executes each stage of their multistage
algorithm. The system, however, does not perform the whole
MIMO signal detection, only the part of lattice reduction,
which can be used in MIMO detection implementations.

Most of the previously discussed programmable solu-
tions require extensive and laborious programming work
to reach high performance as the processor architectures
are not designed for high-level language compilers. Unlike
the previously discussed solutions, the proposed architecture
allows programming with higher level OpenCL programming

language, which is much easier for programmers, and it allows
the code to be ported from different platforms with minimal
modifications. The proposed architecture can run many other
workloads such as other parts of the SDR radio stack and
even applications from other application domains. In [32],
we reported a preliminary version of the design where it was
used for an image processing application. This showcased the
cross-domain programmability of the proposed approach. The
proposed architecture has in the order of 1000× better energy
efficiency than traditional GPU-based solutions. However,
the peak performance is much lower than on the advanced
GPUs. Similar to [17] and [18], the proposed architecture
can also operate with fewer register file ports than the peak
usage of the execution units would require, but it exploits
specific optimizations to alleviate its impact to the execution
performance; TTA’s software bypassing and operand sharing
allow using RFs with fewer ports [33], reducing the power
consumption even further. RF ports are especially costly in
wide SIMD RFs. The result is a design with fewer register
file write ports than in Ardberg [18], while still allowing
more instruction-level parallelism for issuing multiple different
(vector or scalar) operations in concurrently.

III. OPENCL IMPLEMENTATION OF

THE MIMO DETECTORS

The proposed processor architecture was produced as a
hardware–software codesign with two different MIMO detec-
tion algorithms as the primary benchmarks guiding the
process; MMSE [6] and LORD [7]. These algorithms were
implemented and optimized as OpenCL applications.

A. MMSE and LORD Algorithms
MMSE is a simple and fast high bitrate algorithm with

lower accuracy. It is typically used when the device is close
to the base station and the SNR is high. MMSE equalizer is a
widely employed linear equalizer in wireless communications.
The MMSE detector consists of two parts for each layer: the
equalization, which includes some heavy matrix computations
including matrix inversion of the channel matrix, and log-
likelihood soft output generation, which consists of multiplica-
tions, subtractions, and minimal value selections. The amount
of these operations in the equalization part scales roughly
by O(N3) to the amount of layers. The amount of these
operations in the soft output generation scales by O(N) to
the number of layers and by O(2N ) to the number of bits per
symbol.

LORD is a more complex and calculation intensive algo-
rithm than MMSE. It is an approximate method for joint Max-
Log-maximum a posteriori-based detection which directly
produces the soft-bit values and is typically used for lower
bitrate transmissions when the SNR is lower. The algorithm
contains two main steps: first QR decomposition of the channel
matrix is calculated and the signal is preprocessed by multi-
plying it by the conjugate transpose of the Q matrix from the
QR decomposition. Then the soft-output bits are generated
by searching the minimal values of differences between the
current layer and combined interference of other layers. This is
performed by series of complex multiplications, subtractions,
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and min operations. The amount of these calculations scale
by O(2(2N)) to the number of bits per symbol and they are
performed for every layer.

Both of the algorithms have to perform the detection of
the signals by comparing the signal to so-called constellation
points in the complex plane, and finding which the signal
corresponds to. QPSK modulation carries two bits per carrier,
thus it contains 2 × 2 of those constellation points. QAM-16
contains 4 bits/carrier, and contains 4 ×4 grid of constellation
points. QAM-64 contains 6 bits per/carrier for 8 × 8 grid of
constellation points, and QAM-256 contains 8 bits per carrier
for 16 × 16 grid of constellation points.

B. OpenCL Implementation
As the processor was produced with a processor hardware–

software codesign methodology, a portable software imple-
mentation was developed to be compiled to various design
points of the processor created during the codesign process.
For this design, LORD and MMSE were implemented using
the OpenCL C language, which allows using vector data types
to execute the same code on many SIMD lanes of the processor
and supports easy parallelization of workloads over multiple
cores.

Traditionally fixed-point arithmetic has been used for low-
power signal processing, which implies that a careful signal
level scaling is needed when implementing the algorithms.
This does not suit well on programming with high-level lan-
guages like OpenCL. Recent studies suggest that low-precision
floating-point arithmetic is a competitive approach in com-
munications applications in terms of energy efficiency [34].
Therefore, we exploited the half-precision floating-point arith-
metic [35], which is now included in the IEEE-754-2008
standard [36]. The half-precision floating-point representation
contains a 10b mantissa, 5b exponent, and a sign bit resulting
in a 16b data type. It is notable that this number represen-
tation provides the same dynamic range as a 33b fixed-point
representation. As two half floats can be stored in the space
of a single-precision float, the number of SIMD lanes can
be doubled with the same total bit width without any extra
cost. This allows doubling the throughput of the processor
core without increasing the datapath width, which saves the
power consumption.

In order to reach the required computing performance,
we defined that each subcarrier is executed in an SIMD vector
lane of its own and, therefore, the algorithm is executed
for 32 parallel subcarriers per core. We did not modify
the original MMSE and LORD algorithms to extract more
data-level parallelism from inside a single data stream, but
instead process 32 separate data streams in parallel. This
can be done, thanks to huge number of subcarriers in all
wireless communication modes. The group of 32 subcarriers
that execute in one core at a time form one single-work-item
OpenCL work group. Several such work groups can execute
concurrently on the multiple cores of the processor, thus
enables utilizing task parallelism from the software side. With
two layers, the number of subcarriers calculated concurrently
is 4096. With four layers on MMSE, the number of subcarriers
calculated concurrently is reduced to 1024 to save memory.

The constants containing the constellation point coordinates
are kept in vector registers and indexed from there with
specialized shuffle instructions. These instructions are not
MIMO detection specific and they are also useful in other
workloads. The special shuffle instructions are called with spe-
cial intrinsics that are exposed to the programmer as OpenCL
C extensions. Keeping the constellation constants in the vector
registers allows precomputing them while still omitting loads
from memory to use the values. In order to find the sweet spot,
we varied the SIMD width. This requires only relatively small
manual changes to the program; only the SIMD data types
were changed and the shuffle intrinsic calls were modified.
The softbit loops of the algorithms were heavily unrolled to
reduce the number of load and store operations needed in the
inner loops and to increase the instruction-level parallelism.

For the matrix inversion in 2 × 2 mode, the MMSE imple-
mentation uses Cramer’s rule [37] to minimize the number
of operations needed for the calculations. In 4 × 4 mode,
Cholesky decomposition is used, which is partially manually
unrolled to achieve better performance. The LORD code
uses QR decomposition for preprocessing. The algorithms
use reciprocal and reciprocal square root operations. Lower
accuracy approximations for these were obtained by using the
Newton–Raphson method [38] with an initial value. This pro-
vided good performance without the need to add large power-
hungry function units for vector division and square root.

IV. LORDCORE ARCHITECTURE

In order to support the OpenCL implementation discussed
in Section III-B, we defined the architecture of the SDR
processor core. The proposed processor core, referred to as
LordCore, is based on the power-efficient transport triggering
paradigm, which we describe briefly in the next.

A. Transport Triggered Architecture
In transport triggering paradigm [39], a program defines

only data transports between various resources of a processor
and the operation execution occurs as a side effect for a
data transport. In this sense, transport triggering reminds the
traditional dataflow model of execution. In a TTA processor,
the datapath buses are exposed to the programmer; the pro-
grammer schedules data transfer along the buses. Operands
to a function unit are moved via an interconnection network
to input ports of a function unit and one of the ports is
dedicated as a trigger. Whenever data are moved to the trigger
port, the operation is triggered, i.e., executed. Therefore,
the program defines only the data move on the interconnection
network, thus the TTA processor has only one instruction:
move. In Fig. 2, an example of a TTA processor is illustrated.
The processor contains an interconnection network with five
transport buses implying that at most five data transports can
be executed in parallel, i.e., each instruction contains five move
slots. The figure illustrates execution of an instruction with
three parallel moves, i.e., instruction has three move slots and
two of the buses are not used during the clock cycle

#4 → ALU1.i0.ADD; RF2.r3 → ALU1.i1

RF0.r1 → LSU0.i0.STW.



KULTALA et al.: LORDCORE: ENERGY-EFFICIENT OPENCL-PROGRAMMABLE SOFTWARE-DEFINED RADIO COPROCESSOR 1033

Fig. 2. TTA processor organization. Different colored arrows show
three different data transfers being performed in the processor datapath
simultaneously.

On the first transport bus, an immediate value is moved to
input port 0 of the function unit ALU1. The immediate value
is actually obtained from the immediate unit, which has only
one output port. The move to trigger port carries information
about the operation to be executed; opcode ADD is transported
to function unit along with the operand. This data transfer
is shown in blue color in Fig. 2. The second bus transports
an operand from register r3 through the output port 0 of the
register file RF2 to the input port 1 of the ALU1, which is
shown in green color in Fig. 2, and the third bus transports an
operand from r1 in the register file RF0 to the input port 0 of
the load–store unit (LSU) LSU0, which is shown in red color
in Fig. 2, The third move contains an opcode indicating that
the transported word is to be stored to memory. The actual
store address has been defined earlier by another move to
port 1 of the LSU0. The remaining two move slots are empty,
thus the corresponding two buses, thus they can be considered
executing a no-operation code.

Compared to traditional “operation programmed” VLIW
architectures, where the instruction set specifies operations and
data transfers occur as side effect of instruction execution,
the TTA programming model has the benefit that the register
file bypasses are explicitly programmed (“software bypass-
ing”) [40], and all the operands of operations do not have
to be read in the same clock cycle. Similarly, the computed
results do not have to be read to the destination register file
on the same cycle they are produced, and the result write
to a register can be totally omitted of the result is bypassed
directly to some another operation. Also, in case same value is
used multiple times by same function unit, the value does not
have to reread from the register file every time. This is called
operand sharing [41]. These optimizations allow the use of
smaller register files with fewer read and write ports [33] in
multiissue designs.

In TTA processors, the register files and function units are
fully decoupled from the rest of the architecture due to the
customizable interconnection network, it is easy to design new
processors by varying the processor resources. The transport
triggering paradigm works, especially well for wide SIMD
datapaths, thanks to SIMD instructions saving instruction bits
per operation and thus instruction fetch power, which is

typically the pitfall of TTA processors, while the reduced
datapaths in TTA-type processors save power on the execution
back end, where most of the power of SIMD processors are
spent.

The buses of a TTA processors may be guarded by predi-
cates, which means that each of the moves in a TTA instruction
may be conditional. In case the predicate evaluates to false,
the move is converted to a no-op when it is decoded. This
allows utilizing the if-conversion compiler optimization to
remove branches from the code, and, e.g., an optimization
where conditional branch delay slot instructions are filled
with moves from the branch target location. The drawback
is that it may increase the instruction width as there may
be additional predicate fields per instruction needed, and
extra control signals are needed to implement the predication.
However, these predicates are optional design choices in a
TTA-based coprocessor.

B. Processor Design and Code Generation Workflow
The processor codesign process was carried out with

TTA-based codesign environment (TCE) tools [42]. The
design flow is described in more detail in [43] and [42].
For providing the OpenCL support to the designed proces-
sor, we utilized our earlier work, Portable Computing Lan-
guage (pocl) [44], a general-purpose OpenCL implementation
exploiting the low-level virtual machine (LLVM) compiler
framework [45]. The OpenCL standard supports only 16-wide
vector data types, but we defined a new vendor extension to
support up to 32-wide vector for increased throughput. Adding
support for 32-lane wide vectors required only a few lines of
code in pocl as the LLVM compiler framework used by pocl
already supports a wide variety of different sizes of vectors.

The compiler consists of two main parts: 1) the pocl
OpenCL implementation that handles the kernel parallelization
and provides an OpenCL C kernel built-in library implementa-
tion and 2) the retargetable TTA compiler provided by the TCE
toolset which has a compiler that performs the final instruction
scheduling for each TTA variation. Both parts are based on
LLVM, and the data transfer between pocl and TCE compilers
is done in the LLVM bitcode format. This split is, however,
transparent to the programmer: the programmer just uses
OpenCL and pocl automatically calls the TCE compiler in the
background when the chosen device is a TCE coprocessor. Li
et al. [46] also reported a similar compilation flow, but instead
of a retargetable TTA target they had a VLIW processor.

As OpenCL is a heterogeneous programming standard,
it uses an intermediate higher level program exchange format
for portability. In this case, we used the textual OpenCL C.
The use of intermediate format is useful in reducing the binary
compatibility burden inherent of statically scheduled machines
such as VLIWs or TTAs: openCL programs are typically
compiled “online” at launch time by the host runtime and
cached per device.

For the design proposed here, the TCE toolset was
extended to support SIMD operations and instruction schedul-
ing algorithm from [47] was added. Fig. 3 shows the typ-
ical workflow of the TCE toolset for OpenCL programs.
Architecture definition file describes a TTA processor
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Fig. 3. TCE design flow for OpenCL input programs. The programmer writes both kernel and host code, and creates an ADF of the TTA architecture. The
host code is compiled and linked with the pocl library. When the host program is being run, it compiles the OpenCL kernel using the retargetable compiler
of TCE, and simulates the program with the TCE’s simulator. The results of the simulation can be used for iteratively optimizing the code and the architecture.

architecture in the level of programmer visible details as it con-
tains information about the functional units, register files, and
internal buses and their connections in each design. The TCE
compiler (tcecc) inputs this architecture description file (ADF)
as a parameter and adapts to the target on the fly. The processor
generator tool of TCE uses this information to automatically
generate the hardware description language that can be used
to implement the processor, either using predesigned function
unit/RF components or automated function unit generation.
The ADF can be easily edited by a graphical design tool
(ProDe) which allows inspecting a visual representation of the
architecture at hand.

The concrete design process for the proposed system went
roughly as follows. First clean OpenCL implementations with
32b float calculation precision of the algorithms were created.
Then, a simple and slow 32b float-supporting scalar TTA
architecture was generated with the TCE toolset. Then a 8 ×
32b float SIMD TTA architecture and vectorized version of the
code were created. This architecture was also used to analyze
bottlenecks of the system and optimize the implementation.
After some optimizations, a 16 × 16b half-precision SIMD
TTA architecture was created and the code was ported to
use half-float vectors instead of float vectors. Simulations
were used to verify the 16b version. The simulations also
showed promise of considerably better achievable performance
with even wider SIMD, so the SIMD width was extended
to 32 lanes and support for 32-lane vectors was enabled in
pocl. After the final SIMD configuration was in place, some
optimizations were made to both the architecture and the code,
before proceeding to the actual hardware design. A slightly
modified version of the algorithm described in [48] was used to
optimize the interconnect network of the processor and achieve
a 128b instruction word. Finally, the hardware implementation
of the architecture was produced and synthesized for both an
FPGA prototype and the targeted ASIC technology.

C. Organization of Single-Core LordCore
The LordCore architecture has vector and scalar datapaths

as shown in Fig. 4. The vector datapath is a 512b wide SIMD
datapath for high-performance computations. The SIMD

Fig. 4. Single-core LordCore architecture with system-level interfaces. The
TTA datapath is illustrated in higher detail in Figs. 5 and 6. The multicore
system architecture is shown in Fig. 7.

datapath can perform computations with 32 half-precision
floating-point values in parallel. The scalar part is a 32b integer
datapath for address and control calculations. The design is
multicore-ready including a hardware mutex unit for efficient
intercore synchronization. The details of the core are discussed
in the following.

1) Execution Units: The scalar datapath contains two scalar
ALUs with multiple basic operations and a simple address
generation adder, a multiplier, a floating-point conversion unit,
synchronization unit, and a timer unit. There are also I/O
units for debugging purposes and address and scalar data ports
to the LSUs. The SIMD datapath consists of a 32 × 16b
SIMD floating-point multiply accumulate unit, which can also
execute separate add or multiply operations, a 32 × 16b inte-
ger ALU, and vector floating-point comparator and conversion
units. There are also two execution units for transferring data
between the SIMD lanes and between the scalar and SIMD
datapaths. Both the vector comparison unit and the vector
ALUs contain min and max operations for half-float data types
because these operations are executed concurrently with both
vector floating-point operations and vector integer operations
in the algorithms. The half-precision floating-point units are
considerably smaller, faster, and more power efficient than the
traditional IEEE-754 single-precision floating-point units.
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TABLE I

INSTRUCTION LATENCIES AND THROUGHPUTS OF DIFFERENT
INSTRUCTION CLASSES. THROUGHPUT MEANS THE

MAXIMUM AMOUNT OF INSTRUCTIONS

EXECUTED PER CLOCK CYCLE

The vector datapath contains shuffle operations, which can
rearrange data from 8- or 16-wide vectors to 32-wide vectors.
This limited shuffle is used for table lookups from 8- or
16-element size constellation tables, which are loaded into
vector registers. There is also an operation to copy a single
vector lane into all the vector lanes of the result. This operation
could have also been done with a generic shuffle but copy
simplifies programming as no shuffle mask is needed. Table I
summarizes the datapath operation resources.

Special complex-valued arithmetic units were considered
but they were omitted as such operations would have allowed
transferring each complex-valued operand to the execution
unit only once and performing two multiplications with each
transferred part of complex-valued operand with only one reg-
ister read. It was found that the operand sharing optimization
of the processor already removed the second register access
in most of the cases, thus the benefit from complex-valued
arithmetic would have been minor and the fused multiply-
add (FMA) operations were very well suited for the complex-
valued computations. Special complex-valued arithmetic units
would also have required writing special intrinsics to use
them and they would not have been as flexible as the scalar
FMA units.

2) Register Files and Internal Buses: For scalar operands,
there is a general-purpose register file with 32×32 b registers
and three read and three write ports. There is also a boolean
register file with two 1b registers and a read and write port. The
boolean register file can be used as a predicate to all the data
transfers inside the core, allowing both conditional moves and
other predicated operations. However, as these predicates are
only 1b scalars, lane mask-based predication is not possible.
The scalar side contains three internal buses as illustrated in
Fig. 5. There is also a vector register file with 32 registers
of 512 bits with three read ports and one write port. The vector
side contains four internal buses as shown in Fig. 6.

3) Scalability: The processor core was designed to enable
throughput improvements via task-level parallelism. The mem-
ory architecture allows scaling to multiple cores and the SIMD
width of the processor can easily be scaled. We selected
32 lanes as the default SIMD width since such a relatively
wide SIMD allows more work to be done per instruction bit.

Wide SIMD also reduces the relative instruction fetch energy,
while still keeping the individual cores reasonable small for
physical implementation. A smaller single core with 8 or 16
SIMD lanes could be used for lower throughput systems such
as LTE-M, while multicore 64-lane versions could be used to
extend the throughput for future communication standards or
even other application domains.

D. System Architecture
The proposed processor core is integrated into a multicore

accelerator as shown in Fig. 7 for a four-core configuration.
As seen in the figures, the processor cores are connected
with an Advanced eXtensible Interface (AXI) interconnect.
OpenCL defines several logical memory spaces, including
global, local, and private memories. In the style of private local
memory processors such as IBM Cell, we included a tightly
coupled scratchpad memory with each core. The OpenCL local
and private memory spaces and the heap are mapped to this
scratchpad. The global memory is shared between the cores
in the system and it is also used to store input and output
data. This memory is sized at 448 KB, which is the amount
required to contain all the input and output buffers, global
data buffers and code for the implemented algorithms for
calculating 4096 subcarriers in parallel in LORD or 2 × 2
MMSE.

After the test workloads were optimized to use the
local scratchpad, there is practically no data access locality,
i.e., every data element in global memory is accessed once.
Consequently, there is no benefit for including a data cache,
thus the bus interface is connected directly to the LSU.
However, special design is required in the LSU as the bus
interface has a long and varying access latency compared to the
scratchpad. In order to achieve a reasonable data throughput,
an LSU has to handle multiple in-flight requests. This is done
by setting a fixed architectural latency and storing prematurely
arriving data in a ring buffer. If a store takes longer than the
architectural latency, the core stalls. When the ring buffer size
is equal to the architectural latency, it is possible to issue a
memory operation at every cycle, however, the ring buffer
then becomes comparable in size to the vector register file.
We found through experiments that a four-entry ring buffer
and 10-cycle latency are a good tradeoff between the hardware
complexity and performance.

LordCore fetches instructions from the global memory.
For improved access times, each core has a directly mapped
instruction cache with a capacity of 2048 instructions (32KB),
which is sufficient for the MIMO detection kernels. As a result,
there are no cache misses except for a warmup period during
the first time a given kernel is executed. There is no hardware-
based coherence in the instruction caches as they are read-only
from the core point of view. An external invalidate signal
is used for reprogramming. This instruction memory struc-
ture was selected to allow high performance for the MIMO
kernels while still allowing running workloads with greater
instruction memory requirements without wasting transistors
for fast and large instruction memories. Each processor core
has an attached hardware debugger which doubles as a control
interface. In the course of normal use, the debugger is used to
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Fig. 5. Scalar datapath of the LordCore processor.

Fig. 6. Vector datapath of the LordCore processor.

Fig. 7. Organization of a quad-core LordCore system.

invalidate caches, start and stop execution, and set instruction
and data memory windows. The memory windows specify
the locations of instruction and data memory as ranges in the
larger AXI address space, and function as simple memory pro-
tection. Moreover, the debugger can be used to set breakpoints,
perform stepping execution, and examine the architectural state
of the processor, including the values on each transport bus.
Finally, a hardware lock unit [49] is connected to each core
to synchronize primitives without expensive global memory
traffic. The unit is mainly used for synchronizing the work
distribution between cores: each core pulls OpenCL work
items from a work item queue guarded with a mutex, which
is implemented using the lock unit.

V. EVALUATION

In order to verify correct functionality, we carried out RTL
simulations of single-, dual-, and quad-core configurations

Fig. 8. Quad-core ASIC layout.

running the MMSE and LORD workloads, and compared out-
puts against a cycle accurate simulator. Moreover, the single-
and dual-core systems were prototyped on a Xilinx Zynq
XC7Z045 FPGA at 39-MHz clock frequency, with a reduced
global memory size to fit on the FPGA. For evaluation
purposes, the quad-core system was synthesized, placed, and
routed with Synopsys tools using a commercial 28-nm fully
depleted silicon-on-insulator process technology. Clock gating
and multithreshold voltage optimizations were enabled in the
synthesis. Operating conditions were set to 1.0-V supply
voltage and 25 ◦C temperature. In order to cope with I/O
pad limitations, a JTAG interface is used to fill the global
memory and access the debugger. The routed design achieves
a clock rate of 968 MHz and has a cell area of 2.47 mm2 at
an utilization of 71%. The final layout is shown in Fig. 8.

The power estimation was performed with Synopsys IC
Compiler based on switching activity extracted from RTL
simulations. Each kernel execution exhibits a warmup period
during which the instruction caches are filled; this period was
omitted from the extracted switching activity in order to obtain
power figures representative of prolonged execution. Table II
shows the estimated power and energy efficiency of the quad-
core system. In general, 22.0% of the power is consumed
by vector execution units, 8.3% by the vector register file,
2.1% by the scalar ALUs and scalar registers, 8.5% by the
interconnect network, 26% by the global memory, 16.9% by
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TABLE II

SIMULATED POWER CONSUMPTION OF LORD AND MMSE ALGORITHMS
ON THE LORDCORE AT 900-MHz CLOCK RATE

TABLE III

SIMULATED THROUGHPUT PERFORMANCE OF LORD AND MMSE
ALGORITHMS RUNNING ON THE PROCESSOR ON DIFFERENT

MODES AND DIFFERENT CORE COUNTS

AT 900-MHz CLOCK FREQUENCY

instruction caches, and 16.2% by the local scratchpad memory
while running the LORD algorithm.

The effect on the TTA-specific optimizations on the power
consumption was analyzed in preliminary work in [50]. The
TTA-specific optimizations provided on average 18% decrease
in power consumption in these workloads.

A. Execution Time

Both the algorithms were analyzed on the processor cores
at 900-MHz clock rate. The LORD algorithm was executed
with two layers: with two and four receive antennas and
with QPSK, 16-QAM, and 64-QAM modulations. The MMSE
algorithm was executed with both the 2 × 2 and 4 × 4 modes
and QPSK, 16-QAM, 64-QAM, and 256-QAM modulations.
Table III shows the results of these performance benchmarks.
The LTE category four requirements (2 × 2 MIMO, 64-QAM
modulation, 150 Mbit/s) can be achieved with a single core
when using the MMSE algorithm or with three cores when
using the LORD algorithm, which has better detection per-
formance. The quad-core cluster can exceed the performance
requirements of LTE r11 (4×4 MIMO, 64-QAM modulation,
600 Mbit/s) when using the MMSE algorithm. The analysis
shows that stalls due to cache miss or bus contention consists
an average of 2.2% of the runtime with four cores and 0.7%
with two cores.

1) Scaling Between Algorithm Options: In the LORD algo-
rithm, the number of operations in the equalization phase is
independent of the modulation, but the number of operations
in the softbit selection phase with two transmit antennas is
proportional to O(22b), where b is the number of bits in
either axis. The performance in the LORD increased when

moving from QPSK to 16-QAM modulation as the amount of
transferred bits doubled from 2 to 4 bits per carrier, as the
equalization phase consumed most of the execution time,
and the softbit selection phase, which scales superlinearily
consuming only a small fraction of the execution time.

With 64-QAM modulation, the softbit selection loops begin
to dominate the execution time due to their superlinear time
scaling, leading to a lower throughput performance than with
the 16-QAM modulation. There is also a further discontinuity
in performance at 64-QAM since the QPSK and 16-QAM
modulations can be optimized by fully unrolling of the softbit
selection loops while still storing all the temporary values in
registers.

In the MMSE algorithm, all the computations in the softbit
selection loops are carried out independently for every layer
thus the amount of computations is only proportional to
O((2b)∗n), where n is the rank of the detector, i.e., the number
of transmit antennas. This means that the softbit loop execution
time of MMSE runs much faster, especially on many transmit
antennas and complex modulations. Therefore, compared to
the LORD, MMSE spends a much larger portion of its
execution time in the equalization phase and the performance
increases with more complex modulations.

When using more receive antennas in the LORD algorithm,
the number of operations increases in the equalization phase
but it does not affect the number of operations performed
in the softbit selection phase. With 64-QAM modulation,
increasing receive antennas from 2 to 4 reduces performance
only by 11%. With QPSK modulation, where more time is
spent on the equalization phase, the performance drops by
31% with four antennas. When increasing both the number
of receive antennas and the rank of the detector, there is
a huge effect on performance with MMSE, as the most
computationally intensive part in the MMSE algorithm is the
matrix inversion in the equalization. The matrix inversion has
a cubic computational complexity with regards to the number
of antennas, while a fast algorithm can be used with two
antennas.

B. Bit-Error Rate Performance
The BER performance of the LORD and MMSE algorithms

was analyzed with simulations; a reference case with 32b
single-precision floating-point arithmetic is compared to the
proposed processor core exploiting 16b half-precision floating-
point arithmetic. The results are uncoded results before the
Forward Error Codec (FEC), with the independent identically
distributed Rayleigh fading channel model.

After MIMO detection, the softbits are fed to the FEC,
which, in case of 4G, is Turbo Decoder [51], one block at
a time. In case, the FEC cannot fix all the errors in the block,
it is retransmitted. In case of too many blocks have to be
retransmitted, the transmission mode is changed to a slower
and more reliable transmission mode, and if no blocks need
retransmission, the transmission mode is changed to a faster
and less reliable one. In our measurements, the optimal balance
between reliability and performance is when about 10% of all
the blocks need to be retransmitted, and to reach this BER
of about 0.01 is enough. However, lower BER can still give
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Fig. 9. BER performance of the LORD detector in (a) 2 × 2 and (b) 4 × 2 mode and MMSE detector in (c) 2 × 2 and (d) 4 × 4 mode. fp32 is the reference
code with 32b single-precision floating-point arithmetic. fp16 is the code with half-float arithmetic on the proposed processor.

slight advantages due to less retransmissions if faster and less
reliable transmission mode cannot be used.

The BER performance of the LORD algorithm on 2 × 2
and 4 × 2 modes is shown in Fig. 9(a) and (b), respectively.
In both modes, the performance on the proposed processor
with 16b half-precision floating-point arithmetic is typically
very close to the performance of 32b single-precision floating-
point arithmetic. However, with 64-QAM modulation, slightly
better signal quality is required to reach BER value of 0.001.

Fig. 9(c) shows the BER performance of the faster and
lower precision MMSE algorithm executed on the proposed
processor in 2 × 2 mode. To reach BERs of 0.1 and 0.01,
the required SNR is very close to the reference, but to reach
BER of 0.001, considerably better signal quality is required.
The BER performance of the MMSE algorithm executed on
the proposed processor on 4 × 4 mode is shown in Fig. 9(d).
To reach BERs of 0.1 and 0.01, the required SNR is very close
to the reference, but on 16-QAM and 64-QAM modulations,
the low precision of the 16b half-precision arithmetic starts
to have a considerable effect, and BER never reaches 0.001,
no matter how good the signal is.

C. Comparison
The SIC algorithm in [16] is assumed to have roughly the

same detection accuracy than the MMSE algorithm, while the
nML algorithm is assumed to have similar accuracy as the
LORD algorithm. Table IV shows the performance comparison
of MIMO detection algorithms, and the characteristics of the
platforms executing these algorithms are listed in Table V.
The energy consumption figures represent the highest average
consumption while running any of the MIMO algorithms,

except for the GPUs, which contain thermal design
power (TDP) numbers. The actual power consumption of these
GPUs while running the codes was not reported, and is likely
somewhat less than the TDP, but still in the same magnitude.

Total SIMD/SIMT lanes mean the total amount of data-level
parallelism, which the hardware can exploit. Compared to the
LORD algorithm running on Geforce FX 1700 GPU [14], even
a single LordCore achieves almost 5× performance with over
1000 times better energy efficiency. In the 2 × 2 16-QAM
mode, a dual LordCore is needed for the same performance as
the Multipath Trellis Traversal (MTT)-based MIMO detector
on Nvidia Tesla C1060 GPU [15], giving hundreds of times
better energy efficiency. In case of 2×2 64-QAM with LORD
algorithm, a single LordCore outperforms Tesla GPU [15],
providing thousands of times better energy efficiency.

A 2 × 2 MIMO detector in 16-QAM mode with one-way
algorithm on Nvidia Geforce 560 Ti GPU in [16] has the same
throughput as dual LordCore executing MMSE, but Lordcore
has hundreds of times better energy efficiency. In 2 × 2
64-QAM, a single LordCore executing MMSE reaches 3×
throughput compared to Geforce GPU with one-way algo-
rithm, provides thousands of times better energy efficiency.
On 2×2 16-QAM, a quad LordCore system executing LORD
has a better performance than the two-way algorithm in [16],
providing hundreds of times better energy efficiency.

On 2 × 2 64-QAM, a quad LordCore executing LORD
has about 3× performance and about 1000 times the energy
efficiency compared to the two-way algorithm on the GPU.
On 4 × 4 16-QAM, the one-way algorithm in [16] provides
about 300× lower energy efficiency than LordCore executing
MMSE. The nonprogrammable fully hardware-based MIMO
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TABLE IV

COMPARISON OF MIMO DETECTORS

TABLE V

HARDWARE CHARACTERISTICS OF THE MIMO DETECTORS USED IN THE COMPARISON IN TABLE IV

detectors [10], [11], [12] outperform slightly the LordCore
in energy efficiency, while the performance is almost equal
with a quad LordCore system. However, it should be noted
that these use older and less power-efficient manufactur-
ing process, and with a comparable manufacturing process,
the difference would be greater. The newest fixed function
hardware MIMO detector [13] outperforms Lordcore greatly

on both performance and power efficiency, even though it is
synthesized to much older 130-nm technology. All these fixed-
function MIMO detector hardware blocks can, however, run
only single MIMO detection algorithm.

Compared to the napCore [25], LordCore shows both
better programmability, performance per core, and energy
efficiency, but the proposed system is synthesized for smaller
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manufacturing technology, and with similar manufacturing
technology, napCore would consume less energy per bit.
However, it is also to be noted that the power numbers for
the napCore exclude the LLR calculations while those are
included in the power numbers for the proposed system.
Tomahawk [26] with the same manufacturing process shows
5× lower energy efficiency than LordCore. Both have a similar
area efficiency.

In 2 × 2 16-QAM mode, LordCore outperforms the
CGRA-based processor in [27] both in terms of throughput
and energy efficiency, though with similar manufacturing
technology, their energy efficiency would be in the same
class. However, in 4 × 4 16-QAM, the CGRA processor
reaches similar class performance and energy efficiency while
being manufactured with a larger manufacturing process
meaning that it would be faster and more energy efficient
on a similar manufacturing process. However, their CGRA
requires careful manual programming for obtaining the full
performance.

The ASIP cluster in [24] is a hierarchical design con-
sisting of multiple 512b clusters. Each cluster contains two
engines, which are based on multiple slices. In architectural
perspective, one cluster reminds a core in our design, but
the cluster is smaller in terms of transistor count than the
proposed cores. The ASIP cluster was synthesized on a
40-nm technology. A cluster consumes 12 mW at 800-MHz
clock rate, which means energy efficiency of 500 pJ/bit with
near-ML algorithm on 2 × 2 in 64-QAM mode. On 28-nm
technology, this would become about 350 pJ/bit. Our design
has efficiency of 906 pJ/bit, but this also includes the channel
preprocessing part which their system does not perform. In the
same mode, [24] with the SIC algorithm reaches 63 pJ/bit,
which would become about 44 pJ/Bit on comparable 28-nm
technology. However, this is without the signal preprocessing
part. On the same mode, our design provides 122 pJ/bit
with MMSE algorithm, including all necessary channel pre-
processing. In the 4 × 4 64-QAM mode, the ASIP cluster
achieves 96 pJ/bit, which would become about 67 pJ/bit
with comparable 28-nm technology. Our system achieves only
367 pJ/bit, but also contains the channel preprocessing part.
The energy efficiency of our design is lower but it should
be noted that while the power numbers for both the designs
contain also memories, there is a slight difference: in [24],
an external direct memory access controller is assumed to
transfer data to private memories while, in our design, the data
are assumed to be found from a global memory and transferred
to private memories under software control, i.e., the power
consumption due to this transfer is included in our numbers.
In general, the traffic to the global memory represents 27% of
the total power consumption in our design. Although taking
into account the fact that the power numbers in [24] exclude
data transfers to private memories, and in our design, such
transfers take 27% of the total power, and they also exclude
the channel preprocessing part of the detection, the difference
is not that great, when taking into account that our design
is much more flexible; it has only few dedicated function
units and it is programmed with high abstraction-level OpenCL
language, while the design in [24] is highly specialized with

limited instruction set and manually programmed with assem-
bly language.

VI. CONCLUSION

In this paper, a customized processor and implementations
for MIMO detector algorithms LORD and MMSE were pre-
sented. The proposed architecture provides three orders of
magnitude better performance/power ratio than commercial
GPU-based solutions, demonstrating the feasibility of the
approach. Compared to other highly specialized SDR solu-
tions, the proposed solution consumes slightly more power and
area, while the added programmer productivity via floating-
point arithmetic and OpenCL-programming are remarkable.
Fixed-function ASIC implementations are clearly always the
most energy-efficient means for implementing radio function-
alities, but the presented results show that the energy penalty
paid by programmability can be made very small.
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