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Abstract— Mimicking the cognitive functions of the brain in
hardware is a primary challenge for several fields, including
device physics, neuromorphic engineering, and biological neu-
roscience. A key element in cognitive hardware systems is the
ability to learn via biorealistic plasticity rules, combined with
the area scaling capability to enable integration of high-density
neuron/synapse networks. To this purpose, resistive switching
memory (RRAM) devices have recently attracted a strong interest
as potential synaptic elements. Here, we present a novel hybrid
4-transistors/1-resistor synapse capable of spike-rate-dependent
plasticity. The frequency-dependent learning behavior of the
synapse is shown by experiments on HfO2 RRAM devices.
Unsupervised learning, update, and recognition of one or more
visual patterns in sequence is demonstrated at the level of neural
network, thus, supporting the feasibility of hybrid CMOS/RRAM
integrated circuits matching the learning capability in the human
brain.

Index Terms— Neuromorphic networks, online learning, pat-
tern learning, resistive switching memory (RRAM), spike-rate
dependent plasticity (SRDP).

I. INTRODUCTION

NEUROMORPHIC computing is attracting an increasing
interest for cognitive functions, such as pattern recogni-

tion [1] and natural language processing [2]. In a neuromor-
phic circuit, integrate-and-fire (I&F) neurons are connected
by synapses, and usually process information by an event-
driven spiking activity [3]. Spikes serve for both carrying the
information and inducing plasticity in the synapses, which
forms the basis for learning. Brain-inspired learning rules
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Fig. 1. (a) Sketch of a biological synapse connecting PRE- and POST-
synaptic neurons. (b) Schematic of corresponding PRE-synapse-POST circuit.
4T1R synapse is capable of LTP via M1/M2 branch, which is controlled by
PRE spikes at average frequency fPRE induced by external stimuli, and LTD
via M3/M4 branch, which is activated by PRE and POST noise spikes at
average frequencies f3 and f4, respectively.

are generally based on the timing of the spike arriving from
the presynaptic neuron, or PRE, and the spike delivered by
the postsynaptic neuron, or POST [Fig. 1(a)]. For instance,
in spike-timing-dependent plasticity (STDP), the change of
synaptic weight is dictated by the delay between the PRE and
POST spikes.

STDP has been demonstrated to occur in certain synapses
in the brain [4], [5], and is currently among the most
popular approaches for unsupervised training of neural net-
works [6]–[8].

Other learning rules have been considered to be responsible
for learning in biological neural networks. According to the

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

https://orcid.org/0000-0002-1853-1614


MILO et al.: 4T1R HYBRID SYNAPSE BASED ON RRAM CAPABLE OF SRDP 2807

Bienenstock–Cooper–Munro theory [9], synaptic plasticity is
governed by the PRE- and POST-spike frequencies, rather
than the timing of a pair of PRE and POST spikes. A high
frequency of PRE and POST spikes leads to potentiation, while
a low frequency leads to depression. This spike-rate-dependent
plasticity (SRDP) has been recognized as a biorealistic learn-
ing rule [10], and linked to triplet-based learning rules [11],
where potentiation relies on the temporal occurrence of
three spikes [12]. Integrated circuits capable of learning
by STDP or SRDP rules generally require complicated,
and large synaptic blocks hosting multiple transistors and
capacitors [13], [14]. To enable small-area synapse, hence,
high-density neural circuits, emerging memories such as
resistive switching memory (RRAM) and phase change mem-
ory (PCM) have recently attracted a strong interest [15]–[26].
The development of RRAM-based SRDP synapses is still a
major challenge for neuromorphic engineering [27]–[32].

This paper presents a RRAM-based SRDP synapse with
a 4-transistors/1-resistor (4T1R) structure. In the synapse,
the RRAM provides the synaptic weight for spike-based
communication, whereas potentiation/depression is achieved
via three-spike overlapping according to a modified triplet rule.

We implement this scheme into a 4T1R synapse prototype
and provide extensive experimental characteristics. Our data
demonstrate pattern learning by SRDP in hardware, by sepa-
rately showing depression of background synapses and poten-
tiation of pattern synapses. To corroborate our experimental
results, we simulate an 8 × 8, two-layer neural network
evidencing learning of a single visual pattern for variable
configuration of the initial weights and investigate the learning
efficiency of the network as a function of the noise frequency.
Finally, our simulations demonstrate online learning of two
visual patterns submitted in sequence evidencing real-time
adaptation of SRDP-based 4T1R synapses.

II. SYNAPSE STRUCTURE

Fig. 1(b) illustrates the circuit architecture of the SRDP
synapse in this paper. The synapse consists of a hybrid
CMOS/RRAM structure, combining four MOS transistors and
a bipolar-switching RRAM device [16], [33], and serving as
connection between a PRE and a POST [27]. In the synaptic
circuit, the transistors are arranged in two branches, namely,
transistors M1 and M2 which are responsible for synaptic
long-term potentiation (LTP), and transistors M3 and M4
for synaptic long-term depression (LTD). The RRAM device
is connected in series to the parallel of branches M1/M2
and M3/M4. The PRE spike is applied to the gate of M1
and, after a delay by a time �tD , to the gate of M2. The
gate of M3 is driven by a random noise PRE spiking. The
POST spike consists of an I&F circuit, which delivers a fire
spike to the top electrode (TE) of the RRAM device as the
internal potential resulting from integration exceeds a certain
threshold [21], [34]. The POST also generates a negative
noise spike that is alternatively submitted to the TE and, after
inversion, to the gate of M4. The POST multiplexer activates
the fire channel on at every POST fire, temporarily inhibiting
the noise channel to the TE. Noise spikes can be obtained

Fig. 2. Illustrative description of spike timing inducing (a) LTP for high
frequency PRE spiking activity, (b) no LTP for low-frequency PRE spiking
activity, and (c) stochastic LTD via PRE and POST noise spikes.

by tunable random number generator circuits, e.g., by ampli-
fication of thermal noise, e.g., 1/ f noise [35] or random
telegraph noise [36], or by random set processes in RRAM
devices [37], [38].

The hybrid CMOS/RRAM structure of our synapse has
some key advantages compared to the previous approaches in
which SRDP was demonstrated by specific RRAM materials,
such as Ag2S [28], Ag/AgInSbTe/Ag [29], Pt/FeOx /Pt [30],
Al/TiO2−x /AlOx /Al [31], and Ag/SiON [32]. In particular,
our synapse relies on memory-grade RRAM technology with
fast switching, long endurance, and long-term retention, which
might be used in a multipurpose system on chip for sev-
eral functions, including embedded nonvolatile memory for
code/data storage, generation of random keys for hardware
security functions, such as a physical unclonable function [39],
and neuromorphic synapse/neuron circuits for on-chip cogni-
tive computation.

III. SYNAPSE POTENTIATION AND DEPRESSION

A. Potentiation at High PRE-Spike Frequency

Synapse potentiation takes place at high frequency of PRE
spiking, as shown in Fig. 2(a). In fact, if the PRE frequency
is higher than �tD

−1 ( fPRE > �tD
−1), there is a strong

probability for the gate of M1 (activated by a spike at time t)
and the gate of M2 (activated by a previous spike delayed
by �tD) to be stimulated at the same time. The repeated and
simultaneous activation of M1 and M2, forming a NAND gate,
results in current spikes which are integrated in the I&F circuit
and finally cause fire. The fire spike is, then, delivered to the
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Fig. 3. Measured and calculated cumulative distributions of resistance R (a) before and (b) after learning. (c) Measured and calculated average R for
increasing fPRE. (d) Number of overlapping PRE spikes activating M1 and M2 as a function of fPRE.

TE of RRAM such that the overlapping spikes at M1, M2,
and TE induce a set process of the resistive device, hence an
LTP event. Note that the positive fire spike is also applied to
the gate of M4 after inversion, which deactivates the M3/M4
branch. In summary, a high PRE spiking frequency causes LTP
through the M1/M2 branch. This result supports the need for
a triplet of spikes (PRE–PRE–POST) to induce a frequency-
dependent potentiation of a synapse [11], [12].

B. Depression at Low PRE-Spike Frequency

As shown in Fig. 2(b), PRE spiking at low fre-
quency ( fPRE � �tD

−1) cannot activate the NAND-type
M1/M2 branch, and thus, LTP cannot take place. On the other
hand, random noise spikes from the PRE and the POST can
simultaneously activate M3 and M4, respectively, as shown
in Fig. 2(c). Since the negative POST noise is applied to the
TE, the simultaneous noise spiking of PRE and POST leads
to a stochastic reset process of the RRAM device, hence a
synaptic LTD event. As a result, the SRDP synapse undergoes
LTP or LTD depending on the competition between the spike-
controlled activation of the M1/M2 and the M3/M4 branches,
respectively [27].

Note that the 2-branch, 4T1R structure might be relatively
expensive from the viewpoint of area consumption, e.g.,
compared to 1T1R synapses [21] and 2T1R synapses [22]
for STDP. However, this is the minimum structure to serve
the function of online potentiation/depression from rate-coded
spiking information.

IV. SYNAPSE CHARACTERISTICS

The potentiation/depression dynamics of the 4T1R synapse
was studied by individually testing each branch by an inte-
grated 2T1R structure, consisting of two MOS transistors and
a HfO2 RRAM device in series [40]. The bipolar-switching
RRAM used in these experiments had a Ti TE and a TiN
bottom electrode. The active material was Si-doped HfO2
deposited with an amorphous phase. The Ti TE also plays
the role of creating an oxygen exchange layer, by inducing an
oxygen-vacancy-rich layer by oxygen gettering [40]. The TiN
layer served as inert bottom electrode to prevent breakdown
during the bipolar switching operation of the device. In addi-
tion, the size of MOS transistors used in the structure was
W/L = 3 μm/1.45 μm [41].

To demonstrate the synaptic potentiation induced by a high-
frequency PRE spiking, we characterized the LTP branch
applying a constant positive voltage of 2 V to the TE, while
the gate of M1 was stimulated by a train of random spikes with
amplitude 3.2 V, pulsewidth 1 ms, and average frequency fPRE.
The same train was delayed by a time �tD = 10 ms, then
applied to the gate of M2. The M2 pulse amplitude was also
reduced to 1.6 V to limit the overall current to a compliance
level IC = 50 μA during set process for a controlled LTP. The
RRAM device was prepared in a high resistance state (HRS)
of about 150 k� to check the LTP statistics during a 0.75-s-
long training process with a given value of fPRE. The training
experiment was repeated 1000 times on the same devices for
each value of fPRE. Fig. 3 shows the measured and calculated
distributions of R before (a) and after each training process
(b), for increasing fPRE. The initial distribution in Fig. 3(a)
corresponds to the initial HRS, as obtained by a reset pulse
of −1.6 V applied to the TE with gate voltage 3.2 V applied
to M1 and M2. The distributions in Fig. 3(b) after training,
show increasing fractions of low resistance state (LRS) for
increasing fPRE, with an average LRS resistance of 20 k�.
In particular, note that the probability of set transition is
high only for fPRE ≥ 100 Hz, corresponding to an average
time between two consecutive spikes of about �tD . Fig. 3(a)
and (b) also show calculated distributions obtained by our
stochastic simulator of RRAM synapse [21], derived from an
analytical model of the bipolar RRAM [42]. The distributions
were accurately predicted by calculating the probability for
spike overlap within the 0.75-s-long training sequence, and
assuming a R-dependent variability for LRS and HRS [21].
Fig. 3(c) summarizes the results by showing the measured and
calculated average R as a function of fPRE. The transition to
the LTP regime occurs abruptly for fPRE = �tD

−1.
Note that the SRDP synapse in Fig. 3 works as a binary

synapse, namely, the RRAM device in the 4T1R structure
is always found in either LRS or HRS. This is because of
the rather abrupt transitions of set and reset processes in the
adopted HfO2 RRAM [21]. However, the adoption of RRAM
devices with materials capable of gradual set/reset processes,
such as Pr1-xCaxMnO3 [43] or TaOx /TiOx bilayers [44], might
result in analog SRDP of the synapse, with advantages in terms
of gray-scale learning [16].

These results can be understood by the increasing probabil-
ity for spike overlapping at M1 and M2 for increasing fPRE,
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Fig. 4. Measured and calculated average R resulting from LTD branch
characterization for increasing PRE-noise frequency f3 at fixed POST-noise
frequency f4.

as shown in Fig. 3(d). Both experiments and calculations show
that the overlap probability increases with f 2

PRE, as expected
for the joint probability of two independent spikes in the
Poissonian train exciting the LTP branch at the same time [27].

To demonstrate LTD, we tested the same 2T1R synapse by
stimulating one transistor (M3) by a spike train of amplitude
3.2 V at variable frequency f3, while the other transistor (M4)
was stimulated by a spike train of amplitude 1.6 V and
average frequency f4 = 10 Hz. The same pulse sequence
of the gate of M4 was applied after inversion to the TE. This
training sequence was maintained for 6000 epochs, equivalent
to 6 s, and each experiment was repeated five times after
preparing the device in the LRS. Fig. 4 shows the measured
and calculated R as a function of f3, indicating a transition
to the LTD regime for f3 > f4, as the overlap probability
becomes sufficiently large to allow for at least one reset
transition [27].

Note that the particular choice of frequency operation for
potentiation and depression is dictated by the analogy with
biological systems, e.g., experiments on synaptic plasticity in
vitro [10]. Note, however, that by tuning �tD , fPRE, and noise
frequencies f3 and f4, it is possible to freely vary the operation
frequency, e.g., for accelerated training of neural networks.
The ultimate frequency for SRDP synapse is in the range of
1 GHz, because of limitations in the RRAM switching time
of a fraction of nanoseconds [45], [46].

V. EXPERIMENTAL DEMONSTRATION OF LEARNING

To prove the feasibility of unsupervised learning by SRDP
at the level of synaptic network, we considered the use of
the SRDP synapse within a feed-forward perceptron like
neural network, where the input information is coded into
the spiking frequency. Note, however, that the applicability of
SRDP synapses is not restricted to a particular neuromorphic
system or architecture. Indeed, SRDP synapses are generically
suitable for the training of any spiking neural network, e.g.,
feed-forward or recurrent networks, in the presence of rate-
coded spikes.

Fig. 5. Illustrative scheme of a two-layer perceptron neural network capable
of pattern learning according to SRDP rule where high and low PRE spiking
rates lead to pattern potentiation and background depression, respectively.

Fig. 5 depicts the considered two-layer perceptron, where
the PREs in the first layer generate spikes at high or low
frequency, depending on their position being within or outside
of a pattern, assumed to correspond to a reference image. The
PRE spikes are submitted to a single POST in the second layer
via SRDP synapses. Thanks to the SRDP behavior, synapses
in the pattern will experience LTP because of the high spiking
frequency, whereas synapses in the background (i.e., outside
of the pattern) will undergo LTD due to the low PRE spiking
frequency overwhelmed by random noise spiking. The SRDP
algorithm was applied to integrated 2T1R structures used
alternatively as LTD and LTP branches in the 4T1R synapse.
LTD and LTP operation schemes were applied for 1 s, each
on the same 2T1R structure. As a reference synaptic network,
we adopted an array of 8×8 SRDP synapses that were initially
prepared in a random state with resistance between LRS and
HRS levels.

Fig. 6(a) shows the visual pattern that was considered as
input for image learning demonstration. The training procedure
consists of two phases: in the first phase (LTD), random noise
images, such as the one in Fig. 6(b), were submitted for 1 s
to all synapses to achieve LTD.

Starting from the initial synaptic weight distribution
in Fig. 6(c), the first training phase resulted in LTD as demon-
strated by the HRS weights in Fig. 6(d). In the second phase,
the LTP mode was adopted by stimulating background and
pattern synapses with random spikes at low frequency ( fPRE =
5 Hz) and high frequency ( fPRE = 150 Hz), respectively, for
1 s. The final weight distribution in Fig. 6(e) demonstrates
learning of the pattern shown in Fig. 6(a), thanks to the spiking
frequency being higher than �tD

−1.
Fig. 7(a) shows the measured synaptic weights 1/R as a

function of time during the two phases of training. In the first
period, both pattern and background synapses approach low
weight due to noise-induced stochastic LTD.

In the second period, synaptic weights in the pattern
increase due to LTP process induced by SRDP, while
background synapses remain at a low conductance due to
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Fig. 6. Illustration of (a) input pattern and (b) example of random noise image submitted during the training process. Color plots of synaptic weights
(c) initially prepared in a random state between LRS and HRS, (d) after LTD phase, and (e) as a result of pattern presentation during the LTP phase of the
training process.

Fig. 7. (a) Time evolution of measured pattern (red) and background (cyan)
conductance showing synaptic LTD within 1 s due to PRE and POST noise
spiking and the selective potentiation of synapses in the pattern because of
high frequency PRE stimulation during the following 1-s-long LTP phase.
(b) Mean evolution of measured pattern and background synaptic weights as
a function of time supporting background depression and pattern potentiation.

low-frequency spiking. Fig. 7(b) shows the corresponding
average synaptic weights for the pattern and the background as
a function of time, clearly indicating the LTD and LTP phases.

VI. SIMULATION STUDY

A. Synapse Operation

To support the experimental study of 4T1R synapse, we car-
ried out extensive simulations at level of single device and
neural network. We first calculated a color map, reported
in Fig. 8, showing synaptic weight change R0/R as a function
of fPRE and the reciprocal of time delay �tD

−1 by settling
an initial intermediate resistance R0 = 100 k� and training
time of 1 s. Ideally, LTP transition should take place for any
fPRE ≥ �tD

−1, however, being the training time limited to 1 s,
no conductance change is observed as fPRE and �tD

−1 assume
low values because no spike overlap events occur. In addition,
the map evidences that LTD transition can also be observed
for fPRE < �tD

−1 provided that PRE and POST noise rates,
both set to (�tD

−1/10), are sufficiently high.

B. Single Pattern Learning

To further corroborate the SRDP learning by the 4T1R
synapse, we simulated the two-layer perceptron network
in Fig. 5. The same 8 ×8 pattern of Fig. 6(a) was adopted for
simplicity. Fig. 9(a) shows the sequence of spikes submitted at
each of the 64 channels, evidencing different spiking frequen-
cies at the pattern ( fPRE = 100 Hz) and background ( fPRE =
1 Hz). Fig. 9(b) shows the distributions of time intervals

Fig. 8. Calculated color map of synapse conductance change R0/R for
variable fPRE and �tD

−1 evidencing LTP (red), LTD (blue), and no weight
change (green).

between consecutive spikes for pattern and background, evi-
dencing an exponential decrease with frequency which is
typical of random Poissonian events. Fig. 9(c) shows the
distribution of interspike times for PRE and POST noise
spiking with rate of f3 = 50 Hz and f4 = 10 Hz, respectively.
Fig. 10 shows the calculated synaptic weights in a color plot
at times (a) 0 s, (b) 5 s, and (c) 10 s, and the detailed time
evolution of the calculated 1/R during the whole training
process. Initial weights are uniformly distributed between
LRS and HRS. Pattern synapses are potentiated within about
1 s from the start of training, while background synapses
approach low weight more slowly, as the noise spiking activity
has lower frequency compared to fPRE in the pattern. Note
that the pattern synapses may be temporarily disturbed from
their high weight due to stochastic noise. We have quantified
this disturb in a probability of 1% for pattern synapses to
have low weight during training, under the conditions of this
simulation. Also, we calculated the synaptic weights as a
function of time during training under the same conditions
as Fig. 10, except the initial distribution being prepared in
HRS (Fig. 11) or LRS (Fig. 12). In the first case, learning only
requires LTP of pattern synapses, whereas in the second case
complete learning requires LTD of the background synapses,
thus requires longer time.
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Fig. 9. (a) PRE spikes as a function of time showing high- and low-frequency stimulation for pattern and background input channels, respectively. Distributions
of time intervals between two consecutive spikes for (b) pattern/background channels and (c) PRE/POST noise channels.

Fig. 10. Color plots of weights at times (a) t = 0 s, (b) t = 5 s, and
(c) t = 10 s. (d) Time evolution of calculated synaptic weights initialized in a
random state between LRS and HRS levels. The evolution of conductance as
a function of time evidences fast potentiation of pattern synapses (red) and a
slower depression of background synapses (cyan). Black and blue lines: time
evolution of mean pattern and background synapses, respectively.

Fig. 11. Color plots of weights at times (a) t = 0 s, (b) t = 5 s, and
(c) t = 10 s. (d) Evolution of calculated synaptic weights as a function of
time starting from initial HRS weights. Synaptic evolution reveals a very fast
pattern learning since background is already fully depressed.

C. Impact of Noise on Learning Efficiency

Noise plays a leading role in SRDP by inducing LTD.
On the other hand, noise affects all synapses at the same
extent, thus may also disturb pattern learning. To study the
impact of noise on learning, we evaluated the efficiency of
perceptron network as a function of PRE noise frequency f3

Fig. 12. Color plots of weights at times (a) t = 0 s, (b) t = 5 s, and
(c) t = 10 s. (d) Time evolution of calculated synaptic weights, which are
initially prepared in LRS, evidencing a slower pattern learning in comparison
with the previous two cases because all background synapses need to be
depressed.

and POST noise frequency f4. The learning efficiency was
evaluated by calculating the learning probability Plearn, defined
as the probability of POST fire in response to the submission
of the pattern after the training stage, and error probability
Perror, defined as the probability of POST fire in response
to the submission of an input random noise [21], [47]. The
pattern in Fig. 6(a) was used for the training phase, which
lasted 5000 epochs, equivalent to 5 s. Fig. 13 shows (a) the
calculated Plearn and (b) Perror in a color plot as a function of
f3 and f4. Plearn becomes very close to 1 as either f3 or f4
decreases, thus making noise disturbance negligible. As f3
and f4 increase, Plearn decreases because noise spikes make
the learning process strongly unstable. On the other hand,
Perror shows the opposite behavior, as a low noise rate induces
no LTD; thus, any random noise may excite synapses in the
LRS and cause false fire. A high-noise frequency instead
causes strong LTD and suppression of false fires, although
true fires are also affected. We identified the noise rates for
the best tradeoff between efficient learning and low false fires,
which can be found along the curve with a constant geometric
average ( f3 f4)

1/2 = 40 Hz.

D. Online Learning of Sequential Patterns

One of the advantages of bidirectional SRDP, i.e., the
availability of both LTP and LTD, is online learning, where
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Fig. 13. Calculated color maps showing the effect of PRE and POST noise average frequencies f3 and f4 on (a) learning probability and (b) error probability
of “X” pattern via a perceptron neural network with RRAM-based synapses capable of SRDP. Optimal performance is achieved if f3 and f4 obey the tradeoff
relation described by indicated curve.

Fig. 14. (a) Raster plot of PRE spikes evidencing the change of input pattern at time 5 s. Color plots of weights at (b) t = 0 s, (c) t = 5 s, and (d) t = 10 s
during learning of a sequence of images with PRE and POST noise spiking rates equal to 50 and 20 Hz, respectively. (e) Time evolution of synaptic weights
showing a fast potentiation of “X” weights and a gradual depression of background synapses within 5 s. At 5 s, the “X” pattern is replaced with the “C”
pattern and all weights adapt to new submitted pattern according to SRDP learning rule.

Fig. 15. (a) Raster plot of PRE input spikes due to sequential patterns. Color plots of synaptic weights at (b) t = 0 s, (c) t = 5 s, and (d) t = 10 s during
an online learning process with PRE and POST low-frequency noise spiking at 10 and 5 Hz, respectively. (e) Time evolution of synaptic weights evidencing
final potentiation of synapses in both patterns since the first stored pattern “X” cannot be erased without sufficiently strong noise activity.

the synaptic network learns the currently submitted pattern
and is capable of erasing, or forgetting, any previously stored
pattern [16], [48]. To support the capability of online learning,

we simulated the presentation of two different patterns in
sequence to our perceptron network. Fig. 14(a) shows the
spiking sequence submitted by the PRE layer, including a first
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phase with pattern “X” for 5 s, followed by a second phase
where pattern “C” was submitted for 5 s. Fig. 14 also shows
the color maps of 8 × 8 synaptic weights at times (b) 0 s,
(c) 5 s, and (d) 10 s, evidencing accurate learning of the
submitted patterns. Fig. 14(e) shows the synaptic weights as
a function of time, indicating convergence to LRS or HRS of
pattern synapses or background synapses, respectively, in each
phase. In particular, as pattern “X” starts being excited at low
frequency at 5 s, the corresponding synapses are depressed
by PRE and POST random noise spiking activities at 50 and
20 Hz, respectively. Therefore, as the input pattern is changed,
our neural network is capable of forgetting the first pattern
to adapt to the second one by SRDP plastic 4T1R synapses,
by properly tuned noise spiking activity. However, if the
online learning process was carried out with too low PRE and
POST noise spike rates equal to 10 and 5 Hz, respectively,
the PRE input spike trains shown in Fig. 15(a) would lead
from initial random weights to the simultaneous potentiation
of synapses within both “X” and “C” patterns [Fig. 15(b)–(d)],
thus, preventing a selective online adaptation of synaptic
weights to the visual patterns submitted in sequence to the
first one.

VII. CONCLUSION

This paper presents a novel synapse architecture for SRDP,
that is considered as a fundamental learning rule in the human
brain. The hybrid synapse combines one RRAM device with
four MOS transistors arranged in two NAND-type branches,
serving the LTP and LTD functions in SRDP. Noise is used
to induce LTD of synapses connected to neurons spiking at
low frequency. The synapse is demonstrated by experiments
on integrated 2T1R structures, while extensive simulations
support stable learning of one or more patterns by SRDP and
the ability to properly tune the spiking frequency of noise
sources to enable high learning accuracy.

VIII. LIST OF DIFFERENCES

A preliminary design of a hybrid CMOS/RRAM with the
4T1R structure, capable of SRDP was reported in [27].

With respect to the previous report, in this paper, we present
a broader experimental analysis of potentiation/depression
characteristics of the synapse, providing a comprehensive
study of online pattern learning of neural networks equipped
with 4T1R synapses.

In particular, the experimental demonstration of pattern
learning in Figs. 6 and 7 is originally shown in this paper. The
simulation study of synapse potentiation as a function of PRE-
spike frequency and internal delay �tD in Fig. 8 is originally
reported in this paper. The simulation study of unsupervised
pattern learning in Figs. 10–12 is originally reported in this
paper. The simulation study of online learning for various
random noise spiking shown in Figs. 14 and 15 is originally
reported in this paper.
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