
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 10, OCTOBER 2018 1939

A Fast, Single-Instruction–Multiple-Data,
Scalable Priority Queue

Imad Benacer , Student Member, IEEE, François-Raymond Boyer, and Yvon Savaria, Fellow, IEEE

Abstract— In this paper, we address a key challenge in
designing flow-based traffic managers (TMs) for next-generation
networks. One key functionality of a TM is to schedule the
departure of packets on egress ports. This scheduling ensures
that packets are sent in a way that meets the allowed bandwidth
quotas for each flow. A TM handles policing, shaping, scheduling,
and queuing. The latter is a core function in traffic management
and is a bottleneck in the context of high-speed network devices.
Aiming at high throughput and low latency, we propose a single-
instruction–multiple-data (SIMD) hardware priority queue (PQ)
to sort out packets in real time, supporting independently the
three basic operations of enqueuing, dequeuing, and replacing
in a single clock cycle. A proof of validity of the proposed
hardware PQ data structure is presented. The implemented PQ
architecture is coded in C++. Vivado high-level synthesis is used
to generate synthesizable register transfer logic from the C++
model. This implementation on a ZC706 field-programmable gate
array (FPGA) shows the scalability of the proposed solution for
various queue depths with almost constant performance. It offers
a 10× throughput improvement when compared to prior works,
and it supports links operating at 100 Gb/s.

Index Terms— Field-programmable gate array (FPGA), flow-
based networking, high-level synthesis, priority queue (PQ),
traffic manager (TM).

I. INTRODUCTION

W ITH the increasing number of Internet and mobile
service subscribers, demand for high-speed data rates

and advanced applications such as video sharing and streaming
is growing fast. There is an ongoing process to define the
next-generation communication infrastructure (5G) to cope
with this demand. Yet, it is obvious that very low-latency
packet switching and routing will be a major challenge to
support life critical systems and real-time applications in the
5G context [1].

In network processing units (NPUs), packets are nor-
mally processed at wire speed through different modules.

Manuscript received September 8, 2017; revised January 2, 2018 and
March 30, 2018; accepted May 2, 2018. Date of publication June 7, 2018;
date of current version September 25, 2018. This work was supported in part
by the Natural Sciences and Engineering Research Council of Canada, in part
by Prompt Québec, and in part by Ericsson Research Canada. (Corresponding
author: Imad Benacer.)

I. Benacer and F.-R. Boyer are with the Department of Computer and Soft-
ware Engineering, École Polytechnique de Montréal, Montréal, QC H3T 1J4,
Canada (e-mail: imad.benacer@polymtl.ca; francois-raymond.boyer@
polymtl.ca).

Y. Savaria is with the Department of Electrical Engineering, École
Polytechnique de Montréal, Montréal, QC H3T 1J4, Canada (e-mail:
yvon.savaria@polymtl.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2018.2838044

For example, a traffic manager (TM) provides queuing and
scheduling functionalities [2], [3]; this is quite demanding
because packet scheduling priorities are implicit and depend
on several factors (protocols, traffic, congestion, etc.). One
of the feasible solutions is to tag related packets with flow
numbers [2] as soon as they enter the network. This helps
allocating bandwidth and simplifies scheduling by alleviating
the processing of individual packets in terms of flows or simply
groups of packets.

With the current thrust toward software-defined network-
ing [4], it becomes natural to associate each group of packets
to a flow. For example, in cellular networks, bandwidth is
assigned to subscribers, so each packet is already part of a flow
with some bandwidth assigned to it. Thus, this flow tagging
could become part of the context of the next-generation
networking equipment.

Real-time applications, such as video streaming, require
quality-of-service (QoS) guarantees such as average through-
put, end-to-end delay, and jitter. To provide QoS guarantees,
network resource prioritization matching requirements must
be achieved by assigning priorities to packets according to the
corresponding incoming flow information, which can represent
specific types of applications, services, etc. To implement this
priority-based scheduling, priority queues (PQs) implemented
in hardware have been used to maintain real-time sorting
of queue elements at link speeds. Hence, a fast hardware
priority queue is crucial in high-speed networking devices
(more details are given in Section II).

The PQs have been used for applications such as task
scheduling [5], real-time sorting [6], and event simula-
tion [7], [8]. A PQ is an abstract data structure that allows
insertion of new items and extraction in priority order.
In the literature, different types of PQs have been proposed.
Reported solutions span between the following: calendar
queues [8], binary trees [9], shift registers [9]–[11], sys-
tolic arrays [9], [12], register-based arrays [13], and binary
heaps [13]–[17]. Existing solutions can be partitioned in two
classes: PQs with fixed time operations or processing time that
do not depend on the queue depth (number of nodes) and those
with variable processing time.

This paper presents the following contributions.
1) A fast register-based single-instruction–multiple-

data (SIMD) PQ architecture, supporting the three basic
operations of enqueuing, dequeuing, and replacing. Our
novel approach has modified the sorting operation in
a way to restore required invariants in a single clock

1063-8210 © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but
republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9608-2474

1940 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 10, OCTOBER 2018

cycle for the entire queue. Also, we provide a detailed
proof of the correctness of the PQ with respect to
various desired properties. It will be shown that after
placement and routing, the required clock period is
almost constant regardless of the queue depth.

2) A configurable field-programmable gate array (FPGA)-
based PQ implementation using high-level synthesis
(HLS), entirely coded in C++ to facilitate implemen-
tation (by raising the level of abstraction) and provide
more flexibility with faster design space exploration than
other works seen in the literature, which use low-level
coding in Verilog, VHDL, etc. [2], [3], [9], [12], [16].

3) A queuing management system capable of providing at
least 103 Gb/s for 64-B sized packets (see Section VI).
Also, a fixed, stable throughput, independent of the
queue depth, is achieved as compared to other
architectures [3], [9], [13]–[16].

The remainder of this paper is organized as follows.
In Section II, we present a literature review of some existing
traffic management and PQ implementations. In Section III,
we describe the architecture of a generic TM with its under-
lying modules. In Section IV, we present our hardware
PQ with the proof of its validity, and a tradeoff analysis
in terms of space versus time complexities. In Section V,
we present the HLS methodology, and the various explored
directives/constraints to target desired resource usage and
performance. In Section VI, hardware implementations of the
proposed design with comparisons to existing works in the
literature are discussed, and Section VII draws conclusions.

II. RELATED WORK

In this section, we present different traffic management
works and solutions seen in the literature, and then, we detail
well-known priority queuing models and their expected
performances.

A. Traffic Management Solutions

Traffic management implementation evolved from net-
work processor units [31]–[33] to dedicate stand-alone solu-
tions [34], [35], namely, as coprocessors. Current solutions
use dedicated traffic management integrated within NPUs to
speed-up traffic processing, with external memories for packet
buffering and queuing purposes.

The available traffic management solutions in the literature
are essentially commercial products [31]–[35], which are
usually closed. Few works about traffic management were
published by academia. Zhang et al. [3] proposed a complete
TM architecture implemented in an FPGA platform. Zhang
focused on the programmability and scalability of the architec-
ture in relation to today’s networking requirements. However,
the queue manager (QM) slows down the entire system with at
least 9 cycles per action to enqueue/dequeue a packet, while
running at 133 MHz. This TM achieved around 8 Gb/s for
minimum size packets of 64 B. Khan et al. [36] proposed
a traffic management solution implemented with dedicated
circuits, supporting 5 Gb/s with full-duplex capabilities. Khan
showed all the design steps up to the physical realization

TABLE I

TRAFFIC MANAGEMENT SOLUTIONS

of a TM circuit. As Khan opted for an application-specified
integrated circuit (ASIC), the reported solution remains rigid
and has limited applicability for supporting future networking
needs, such as increasing traffic demand and link speeds.

Table I summarizes the TM solutions offered by commercial
vendors and published by academia, along with the platform
for which they were developed, and their maximum achievable
throughput.

B. Priority Queues

Previous reported PQs can be classified as software-
or hardware-based. Each class is further described in
Sections II-B1 and II-B2.

1) Software Solutions: No software PQ implementation in
the literature can handle large PQs, with latency and through-
put compatible with the requirements of today’s high-speed
networking systems. Existing software implementations are
mostly based on heaps [13], [16], [18], with their inherent
O(log(n)) complexity per operation, or alternatively O(s),
where n is the number of keys or packets in the queue nodes,
and s is the size of the keys (priority).

Research turned to the design of efficient high rate, and
large PQs obtained by the use of specialized hardware, such as
ASICs and FPGAs. These PQs are reviewed in Section II-B2.

2) Hardware Priority Queues: Moon et al. [9] evaluated
four scalable PQ architectures based on: (first-in first-outs)
FIFOs, binary trees, shift registers, and systolic arrays. This
author showed that the shift register architecture suffers from
a heavy bus loading problem as each new element has to
be broadcasted to all blocks. This increases the hardware
complexity and decreases the operating speed of the queue.
The systolic array overcomes the problem of bus loading at
the cost of higher resource usage than the shift register, needed
for comparator logic and storage requirements. Similar to our
design, the systolic PQ does not fully sort in a single clock
cycle, but still manages to enqueue and dequeue in a correct
order and in constant time. On the other hand, the binary tree
suffers from scaling problems including increased dequeue
time and bus loading. The bus loading problem is due to the
required distribution of new entries to each storage element in
the storage block.

BENACER et al.: A FAST, SINGLE-INSTRUCTION–MULTIPLE-DATA, SCALABLE PRIORITY QUEUE 1941

TABLE II

EXPECTED THEORETICAL PERFORMANCE FOR DIFFERENT PQS

The FIFO PQ architecture described by Moon et al. [9]
uses one FIFO buffer per priority level. All such buffers are
linked to a priority encoder to select the highest priority buffer.
Compared to other designs, this architecture suffers from
scaling the number of priority levels instead of the number of
elements, requiring more FIFOs and a larger priority encoder.

Brown [8] proposed the calendar queue, similar to the
bucket sorting algorithm, operating on an array of lists that
contains future events. It is designed to operate with O(1)
average performance, but poorly performs with changing pri-
ority distribution. Also, extensive hardware support is required
for larger priority values.

Sivaraman et al. [38] proposed the PIFO queue. A PIFO is
a PQ that allows elements to be enqueued into an arbitrary
position according to the elements ranks (the scheduling
order or time), while dequeued elements are always from the
head. The sorting algorithm, called flow scheduler, enables
O(1) performance. However, extensive hardware support is
required due to the full ordering of the queue elements,
compared to the partial sort in Moon’s work and in our design.
PIFO manages to enqueue, dequeue, and replace in the correct
order and in constant time.

Ioannou and Katevenis [16] proposed a pipelined heap
manager architecture that exploits a classical heap data struc-
ture (binary tree), while Bhagwan and Lin [17] proposed a
pipelined heap (p-heap) architecture (which is similar to a
binary heap). These two implementations of pipelined PQs
offer scalability and achieve high throughput, but at the cost of
increased hardware complexity and performance degradation
for larger priority values and queue depths.

Table II summarizes the expected theoretical results of some
PQs already reported in the literature, with their expected and
worst case behavior for enqueue and dequeue operations. More
details are given in [9] and [19].

III. TRAFFIC MANAGER ARCHITECTURE

In this section, we present a generic TM architecture and
its operations. Then, we describe the modules from which it
is composed.

Fig. 1. Generic architecture around the TM on a line card. This paper focuses
on the queue manager block.

A. Traffic Manager Overview

Traffic management allows bandwidth management, priori-
tizing, and regulating the outgoing traffic through the enforce-
ment of service-level agreements (SLAs). An SLA defines
the requirements that a network must meet for a specified
customer or service, and it must be ensured, as a subscriber
must get the level of service that was agreed upon with
the service provider. The relevant criteria include, but are
not limited to the performance metrics, such as guaranteed
bandwidth, end-to-end delay, and jitter.

A generic TM in a line card (switch, router, etc.) is depicted
in Fig. 1. In the flowthrough mode, the TM is in the data
path. In the look-aside mode, the TM is outside the data path
and communicates only with the packet processor, acting as a
coprocessor. Generally, TMs reside on the line card next to the
switch fabric interface, as they implement the output queuing
necessary for the switch fabric or manage the packet buffers
of the packet processor.

B. Structural Design

A packet processor is used to classify the data traffic to
flows (flow tagging) prior its entry into the TM especially
in the look-aside mode. A crude definition of a flow is
a set of packets associated with a client of the infrastruc-
ture provider. These packets may be classified according to
their header information. For example, packet classification
is done by the packet processor using the five-tuple header
information (source and destination IP, source and destination
port, and protocol). The classified data traffic allows the TM
to prioritize and decide how packets should be scheduled
(i.e., when they should be sent to the switch fabric), how traffic
should be shaped when sending packets onto the network,
and which appropriate actions to take, for example, drop,
retransmit, or forward.

1942 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 10, OCTOBER 2018

Fig. 2. SIMD register-array hardware PQ content.

1) Traffic Manager Operations: Traffic scheduling ensures,
during times of congestion, that each port and each class of
service (CoS) gets its fair share of bandwidth. The scheduler
interacts with the QM block, notifying it of scheduling events.
Packet congestion can cause severe network problems, includ-
ing throughput degradation, increased delay, and high packet
loss rates. Congestion management can improve network con-
gestion by intelligently dropping packets.

The policer makes decisions on which packets to drop in
order to prevent queue overflow and congestion. The shaper
enforces packets to follow a specific network pattern by
adding delays. The shaper imposes temporary delays to the
outgoing traffic to ensure it fits a specific profile (link usage,
bandwidth, etc.). During the TM operation, different statistics
are being gathered for ingress and egress traffic in terms of
received and transmitted packets, the number of discarded
packets, etc. These data are stored for future analysis or system
diagnosis.

The central piece of the TM is the QM. It maintains the
packet priority sorted at link-speed using only the packet
descriptor identification (PDI) [3]. The PDI enables packets
to be located in the network through small metadata that can
be processed in the data plane, while the entire packet is
stored outside the TM in the packet buffer. This provides fast
queue management with reduced buffering delays. The QM is
responsible for packet’s enqueue and dequeue or both at the
same time. In this paper, we focus on the QM module in the
TM of Fig. 1.

2) Packet Scheduling: The scheduler is responsible to tag,
in the packet PDI, the new received packets, with a priority
according to the scheduler policy. The PDI contains a priority
field with 32 or 16 bits, the packet size in bytes expressed
on 16 bits (to support any standard Internet packet size),
the packet address location also expressed on 16 bits, and it
may also contain other relevant attributes (see Fig. 2). This
priority tagging may represent the expected departure time
from the QM, as given by a scheduling algorithm [22], [23].
Also, this priority tagging may represent the CoS (voice,
video, signaling, transactional data, network management,
basic service, and low priority) for each packet, such that each
classified packet corresponding to a flow is given a priority
according to its respective traffic class. Packet classification
and scheduling are not discussed further in this paper, as we
focus on QM functionalities with the proposed SIMD PQ
architecture.

3) Queue Manager: The QM presented in this paper per-
forms enqueue operations of incoming PDIs. Also, the QM
produces as outputs the PDIs of the packets that should be
sent back to the network through either dequeue or replace
operations. More details about the QM architecture are given
in Section IV. For convenience, the term “packet PDI” is
shortened to simply a “packet” in the next sections. It is worth
noting that the QM’s hardware PQ is composed of groups,
each being connected with its adjacent groups, and each inde-
pendently applying in parallel a common operation on its data.
This architecture is register-based SIMD, with only local data
interconnects, and a short broadcasted instruction. Thus, this
would also qualify the proposed QM as a systolic architecture
by some definitions in the literature. In the proposed QM,
a fast hardware SIMD PQ is used to sort the packets from
highest to lowest in priority, namely, in ascending order.

IV. BASIC OPERATIONS OF THE SIMD PRIORITY QUEUE

In general, PQs used in network devices have two basic
operations: enqueue and dequeue. An enqueue inserts an
element into the queue with its priority. A dequeue extracts
the top or highest priority element, and removes it from the
queue. In this paper, a dequeue–enqueue operation, or simply
a replace operation, is considered as a third basic operation.
Most works in the literature consider only the two first basic
operations [3], [9], [10], [15], [21], but a few considered the
third operation [13], [16], [17] achieving a higher throughput
with better scalability.

In this paper, our proposed SIMD hardware PQ supports
the following operations.

1) Enqueue (insert): A new element is inserted into the
queue that is combined (partly sorted) with exist-
ing elements to restore the queue invariants (see
Section IV-C).

2) Dequeue (extract min): The highest priority element is
removed, and remaining elements are partly sorted to
restore the queue invariants (see Section IV-C).

3) Replace (extract min with insertion): Similar to com-
bined dequeue–enqueue operations, after which the
number of elements inside the queue does not change.
This operation is simultaneous for the insert and extract-
min elements (see Section IV-B) while respecting the
queue invariants (see Section IV-C).

The PQ behaves differently according to the operation
to perform (the instruction). It is divided into m groups
(see Fig. 2); a group contains N packets Ag . . . Zg , where
g is the group number, Ag and Zg represent the min and max
elements, respectively, and a subset S containing the remaining
elements in any order, namely, a group Xi contains N elements
{Ai ,Si , Zi } with Si = {Xi \ {min Xi , max Xi }}. The letters
A . . . Z are used for generality regardless of the actual number
of packets except in examples where N is known.

This architecture is based on the work we presented in [22],
extended to add a third basic operation and generalizing to
N packets in each group. Also, a proof of correct ordering
of the queue elements is provided. For convenience, a queue
supporting only the same operations as the previously reported

BENACER et al.: A FAST, SINGLE-INSTRUCTION–MULTIPLE-DATA, SCALABLE PRIORITY QUEUE 1943

Fig. 3. Hardware PQ algorithm.

architecture [22], without replace operation, is called an orig-
inal PQ (OPQ).

A. Enqueue and Dequeue Operations

The algorithm of the OPQ is a combination of insert-and-
sort or extract-and-sort for enqueue and dequeue operations,
respectively. At every clock cycle, the queue accepts a new
entry or returns the packet with the lowest priority value (the
highest in priority). Packet movements obey the algorithm
depicted in Fig. 3(a) and (b) for N packets in each group,
see the Appendix for the notation.

In Fig. 3, Element Out is always connected to A1 (top ele-
ment) to reduce dequeue latency, but it is considered valid only
on a dequeue or replace, not on an enqueue or no operation.
The PQ just executes the same operation for all groups in
parallel. All groups are ordered at the same time such that the
OPQ enables independent enqueue and dequeue in constant
time, regardless of the number of groups. Our implementation
(see Section VI) does it in a single clock cycle for different
queue depths and group sizes.

Note that the algorithm is well defined for any group size
N ≥ 2 and order is equivalent to fully sorting the elements of
X only when N ≤ 3. The unordered set has a single possible
order in that case, it has 0 or 1 element for N = 2 and 3,
respectively.

B. Replace Operation

An augmented PQ (APQ) is proposed to support the OPQ
functionalities with the addition of a combined dequeue–
enqueue operation, or simply replace, in the same clock
cycle. In the case where both enqueue and dequeue must
be performed on the OPQ with only two basic operations,
the enqueue operation is prioritized over the dequeue, as to
not lose the incoming packet. It should be noted that in case
the OPQ is full, the lowest priority element is dropped as
a consequence of the enqueuing. To overcome this issue of
delaying the dequeue until no enqueue operation is activated in
the same cycle, the third basic operation (replace) is proposed
to deal with this case.

The algorithm of this APQ is a combination of insert,
extract, and order for replace operation, in addition to the sup-
port of the enqueue and dequeue operations. The queue accepts
a new entry and returns the packet with the highest priority at
the same time. It does so correctly on a data set composed of a
combination of the new entry combined with the current queue
content. This can be done at every cycle (see Section VI).
Packet movements obey the algorithm specified in Fig. 3(c).
Note that for the last group m, the definition of Am+1 and the
comparison operator implies that min {Zi , Ai+1} = Zi . For
enqueue operation, this last element is dropped when the PQ
is full, but in a replace operation, no element is dropped as one
element is dequeued and another is enqueued simultaneously.

Note that min{A, B} and max{A, B} functions must be
defined such that one will return A and the other will return B ,
even when A and B are considered equal by the priority
comparison operator.

An illustrative example of packet priorities movement in the
OPQ and APQ is shown in Fig. 4 for few cycles, assuming the
exemplary case of three packets in each group. Initially, the PQ
contains empty cells. Empty cells priorities are represented by
the maximum value of the priority. While time elapses cycle
after cycle, the content of the PQ groups is displayed. It is
of interest that the highest priority elements (smallest) remain
close to the first groups, ready to exit, whereas the elements
with lower priorities (largest) tend to migrate to the right of the
queue. Meanwhile, it is worth noting that for the same example
(see Fig. 4), the OPQ that does not support replace operation
took more cycles and more storage elements as compared to
the APQ.

C. Proof of Validity of the OPQ and APQ Behaviors

Queue invariants are provided to prove the correct func-
tionality of the hardware PQ during enqueue, dequeue, and
replace operations. The first two invariants will prove that the
top element of the queue is always the highest priority one with
no invariant ordering violation. The third invariant is provided
to ensure that a drop may occur only in the situation where
all the queue groups are full.

For all groups i with i = 1, 2 . . . m in the PQ, where each
group contains N packets {Ai ,Si , Zi }, where Si is a subset
containing the remaining N − 2 elements of group i in any
order.

1) Invariant 1: Ai and Zi are, respectively, the highest and
lowest priority elements in the group i . Note that in our
case, the highest priority is the smallest value. That is

Ai = min{Ai ,Si , Zi } and Zi = max{Ai ,Si , Zi } (1)

where {Ai ,Si , Zi } = {Ai , Zi } ∪ Si .
2) Invariant 2: Except Zi , all elements in group i are of

higher or equal priority than the first element in group
i + 1. That is

max{Ai ,Si } ≤ Ai+1. (2)

Invariant 2 implies that A1 ≤ A2 ≤ . . . ≤ Am , and
by invariant 1, these Ai ’s are the minimum in their
respective groups. Thus, A1 is the smallest of all values.

1944 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 10, OCTOBER 2018

Fig. 4. Example of packet priorities movement in (a) OPQ—packet priorities
movement in the original SIMD and (b) APQ—packet priorities movement
in the augmented SIMD PQ for few cycles.

So, the top element of the first group is the highest
priority one in the PQ.

3) Invariant 3: A group i contains valid elements only if
all the preceding groups are full.

We need to prove these invariants are preserved by the
algorithm specified in Fig. 3. In the proof, we define that in
the following.

a) Ai . . . Zi are the elements in group i before the opera-
tion, Ai being the first element of the vector, Zi being
the last.

b) Gi is the set of elements passed to the order function
for group i in the algorithm (see Fig. 3).

c) A′
i . . . Z ′

i are the elements after the operation, thus the
result of the order function.

We will prove that if Ai . . . Zi satisfy the invariants,
A′

i . . . Z ′
i will also satisfy them. The initial state is an empty

queue, where all elements in the queue compare equal to each
other (represented by the maximum value of the priority),
satisfying the invariants. We will prove by induction that the
algorithm preserves those invariants for all operations.

1) Proof for Invariant 1: All three operations (enqueue,
dequeue, and replace) do

〈
A′

i ,S ′
i , Z ′

i

〉 = order Gi

= 〈min Gi , Gi \ {min Gi , max Gi }, max Gi 〉. (3)

Thus, A′
i = min Gi , Z ′

i = max Gi and the other elements are
the remaining elements of Gi in any order represented with
the subset S ′

i . After the operation, invariant 1 is thus satisfied
regardless of whether invariants were satisfied or not before
the operation.

2) Proof for Invariant 2: Supposing invariants are
satisfied on Ai . . . Zi , from (2) we have to verify whether
max{A′

i ,S ′
i } ≤ A′

i+1 for the three operations. By (3),
A′

i and S ′
i represent all elements of Gi except its max, thus

max{A′
i ,S ′

i } is the second largest element in Gi . We thus
define 2nd max X as the second largest element in set X .
Also by (3), A′

i+1 = min Gi+1, the above verification is
equivalent to

2nd max Gi ≤ min Gi+1. (4)

In (4), as Gi is defined in terms of Ai . . . Zi , not A′
i . . . Z ′

i ,
by the induction hypothesis, we can use (1) and (2) on these
variables. The following property will also be used:

2nd maxX ≤ max(X \ any single element). (5)

In (5), if the single element removed was not the max
of X , the max remains the same, and 2nd max X ≤ max X
by definition, and if it was the max of X , 2nd max X =
max(X \ max X) also by definition, proving (5).

a) Proof for the enqueue operation:

Gi = {Zi−1, Ai ,Si } by Fig. 3(a) .a

2nd max Gi ≤ max{Ai ,Si } by .a into (5) .b

" ≤ Zi by (1) on .b .c

" ≤ Ai+1 by (2) on .b .d

" ≤ min{Ai+1,Si+1} by (1) on .d .e

" ≤ min{Zi , Ai+1,Si+1} by merging .c, .e .f

" ≤ min Gi+1 by .a on .f .g

By .g, we verified (4), thus invariant 2 is preserved.

BENACER et al.: A FAST, SINGLE-INSTRUCTION–MULTIPLE-DATA, SCALABLE PRIORITY QUEUE 1945

b) Proof for the dequeue operation:

Gi = {Si , Zi , Ai+1} by Fig. 3(b) .a

2nd maxGi ≤ max{Si , Ai+1} by .a into (5) .b

" ≤ Ai+1 by (2) on .b .c

" ≤ min{Si+1, Zi+1} by (1) on .c .d

" ≤ Ai+2 by (2) on .c .e

" ≤ min{Si+1, Zi+1, Ai+2} by merging .d, .e .f

" ≤ min Gi+1 by .a on .f .g

By .g, we verified (4), thus invariant 2 is preserved.
c) Proof for the replace operation:

Gi = {max{Zi−1, Ai },Si , min{Zi , Ai+1}} by Fig. 3(c) .a

Left part of (4): 2nd max Gi

2nd max Gi ≤ max{Si , min{Zi , Ai+1}}
by .a into (5) .b

max{Si } ≤ Ai+1 by (2) .c

min{Zi , Ai+1} ≤ Ai+1 by definition of min .d

max{Si , min{Zi , Ai+1}} ≤ Ai+1 by merging .c, .d .e

2nd max Gi ≤ Ai+1 by .e on .b .f

Right part of (4): min Gi+1

min Gi+1 = min{max{Zi ,Ai+1},Si+1, min{Zi+1,Ai+2}}
by .a .g

" = min{max{Zi , Ai+1},
Si+1, Zi+1, Ai+2} by associativity on .g .h

Ai+1 ≤ max{Zi , Ai+1} by definition of max .i

" ≤ min{Si+1, Zi+1} by (1) .j

" ≤ Ai+2 by (2) .k

" ≤ min Gi+1 by merging .i-.k into .h .m

By .f and .m, we verified (4), thus invariant 2 is preserved.
Note that the above proof does not use A1 for valid values

of i(1 . . . m), thus the special definition of max{Z0, A1} at the
bottom of Fig. 3 has no influence on the proof.

We have thus proven that the algorithm preserves the
invariants 1 and 2. For the algorithm to be proven correct,
we also need to verify that the inserted elements are correctly
conserved in the queue, not deleted nor duplicated. In Fig. 3,
the order function clearly keeps all elements without dupli-
cation if the min and max removed to make S are the same
as those placed in the first and last elements (remember that
elements can have similar priorities, and thus compare as equal
in the ordering, but having different associated metadata).

On dequeue [Fig. 3(b)]: A1, the outgoing element, is cor-
rectly removed; Ai+1 goes into group i , other elements stay
in the same group; group m has an empty cell.

On replace [Fig. 3(c)]: A1, the outgoing element, is correctly
removed because of the special case at the bottom of Fig. 3;
Zi and Ai+1 are in a min (in Gi) and a max (in Gi+1), and this
will keep both element by the way we defined the min/max

pair; for Gm , min{Zm, Am+1} correctly keeps Zm if it is valid,
by the definition of Am+1.

On enqueue [Fig. 3(a)]: Z0, the incoming element, enters
in group 1; Zi goes into group i + 1, other elements stay in
the same group; Zm is dropped. It is important to show that
Zm will only contain a valid element when the queue is full,
and thus, it would be required to drop an element during an
enqueue.

3) Proof for Invariant 3: From invariant 1, where Ai and Zi

are, respectively, the smallest and largest in group i , and defini-
tion of “none” packet/element (bottom of Fig. 3) which states
they compare as greater than any valid element, we deduce
two remarks as follows.

Remark 1: Ai is valid if and only if group i contains at
least one valid element.

Remark 2: Zi is valid if and only if group i is full.

a) Proof for the enqueue operation: On enqueue
[Fig. 3(a)]: 〈A′

i ,S ′
i , Z ′

i 〉 = order{Zi−1, Ai ,Si }. For group i
to contain valid elements after the operation, two cases must
be considered:

Case 1: Group i was not empty, thus Ai is valid by
Remark 1, and Ai being still in group i after the operation,
A′

i is also valid by Remark 1. By invariant 3 (induction
hypothesis), groups 1 . . . i − 1 were full (A1 . . . Zi−1 are
valid), and Z0 is valid by definition of enqueue. Thus, groups
preceding i are full (A′

1 . . . Z ′
i−1 being a reordering of valid

Z0, A1 . . .Si−1). Therefore, invariant 3 is preserved.
Case 2: Group i was empty, but Zi−1 is valid thus group

i−1 was full by Remark 2. A1 . . . Zi−2 are valid by invariant 3
and Ai−1 . . . Zi−1 are valid as group i −1 was full, thus, as in
previous case, it implies that invariant 3 is preserved.

b) Proof for the dequeue operation: On dequeue
[Fig. 3(b)], Am+1 is the “none” element entering into the
last group m per dequeue operation, with 〈A′

i . . . Z ′
i 〉 =

order{Si , Zi , Ai+1}.
For group i to contain valid elements after the operation,

at least one element in the set passed to order must be
valid. As Ai+1 cannot be valid without A1 . . . Zi being valid
(induction hypothesis), at least one element of {Si , Zi } is
valid, and by remark 1, Ai is valid. By induction hypothesis,
groups 1 . . . i − 1 were full (A1 . . . Zi−1 are valid). Thus,
groups preceding i are full (A′

1 . . . Z ′
i−1 being a reordering

of valid S1 . . . Ai), and invariant 3 is preserved.

c) Proof for the replace operation: On replace [Fig. 3(c)],
〈A′

i . . . Z ′
i 〉 = order{max{Zi−1, Ai }, Si , min{Zi , Ai+1}}.

Two cases must be considered for group i before the operation
as follows.

Case 1: Group i was not empty, by Remark 1, Ai is valid.
By invariant 3, groups 1 . . . i − 1 were full (A1 . . . Zi−1 are
valid), and Z0 is valid by definition of replace. Thus, groups
preceding group i are still full after the operation (A′

1 . . . Z ′
i−1

being a reordering of valid Z0, A1 . . . Ai), and invariant 3 is
preserved.

Case 2: Group i was empty. By Remark 1, Ai is empty,
group i remains empty after the operation as the max
{Zi−1, Ai } returns always a “none/empty” element (Ai). Thus,
invariant 3 is preserved.

1946 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 10, OCTOBER 2018

Fig. 5. Proposed order function architecture supporting two, four, and eight
elements in each group.

If Zm is valid, group m is full by Remark 2, and groups
1 . . . m −1 are full by invariant 3, meaning that the PQ is full.
Therefore, an element (Zm) will be dropped only in the case
of an enqueue operation when the PQ is full.

We note that, from invariants 1 and 2, we have

A1 ≤ (S1) ≤ A2 ≤ (S2) ≤ A3 . . . , etc.

The only unordered elements are the Zi ’s, thus, in the worst
case, Zm is the mth lowest priority element. For a constant
queue depth, increasing N reduces m, and the dropped element
when enqueuing on a full queue will be of lower priority. Also,
if the order function fully sorts the elements (which is always
true for groups of size N ≤ 3), the whole queue is sorted
except the Zi ’s.

D. Original and Augmented PQs Decision Tree

A decision tree (DT) is used to implement the ordering
independently in each group of the PQ. The entire PQ’s
group elements are evaluated in parallel and at the same
time according to the priority of each element. Increasing the
number of elements in each group (the space complexity) will
impact directly the DT and the overall queue performance (the
time comlexity). Also, this impacts the quality of dismissed
elements when the queue is full. This tradeoff is detailed in
Section IV-D1.

1) Tradeoff (Time Versus Space): To choose the number
of elements in each group, two things should be taken into
consideration: performance and quality of dropped elements
when the queue is full. The complexity of the proposed DT
for sorting the elements, i.e., the order function depicted
in Fig. 3, is O(log(N)). This DT belongs to the family of
parallel networks for sorting [29], [30]. Fig. 5 depicts the order
function scheme for N = 2, 4, and 8 elements, respectively.

The proposed DT can be further optimized for N = 3.
In this special case, we take advantage of the present infor-
mation on already ordered elements in the current group. This
DT is depicted in Fig. 6 for the enqueue, dequeue, and replace

Fig. 6. Proposed DT giving the result of order 〈A, B, C〉, for three packets
in each group of the PQ. Note that we used 〈〉 instead of {} on the order
function, because it can be optimized relying on known current ordering of
elements in the group i . The element coming from another group is called A
and the elements from current group are called B and C in priority order in
the case of en/dequeue, whereas in replace only A and C are calculated from
max/min, respectively, and B is in the current group.

Fig. 7. SIMD PQ architecture for three packets in each group.

operations in each group. On each side of the DT, a specific
test is made. For example, the right side is dedicated for the
group ordering when only en/dequeue operation is activated,
and the left side is for the replace operation. The order is
determined by comparing the priorities of the packets tag
present in the different PQ groups using only two comparators.
The overall architecture of the proposed hardware SIMD PQ
is depicted in Fig. 7.

2) Quality of Dismissed Elements: To achieve good perfor-
mance in terms of latency and number of cycles spent for
operations (we target 1 cycle per operation), the proposed
architecture is sacrificing two characteristics compared to
previous reported approaches depending on the number of
groups (m) and the size of the groups (N) for a constant queue
depth as follows:

1) quality of dismissed elements if m is large (the number
of elements N in a group is small);

BENACER et al.: A FAST, SINGLE-INSTRUCTION–MULTIPLE-DATA, SCALABLE PRIORITY QUEUE 1947

2) resource usage if m is small (number of elements N in
a group is large).

In the worst case, the dismissed element is the mth lower
priority element in the queue (the bottom element in the
last group m). The queue depth is m × N . So, the qual-
ity of the dismissed element is calculated according to the
following equation:
Quality of dismiss = Number of groups

Queue depth
= m

m × N
= 1

N
.

(6)

For example, N = 2, the quality of dismiss is 50%, namely,
the dropped element is within the 50% lower priority elements.
However, for N = 64, this dropped element would be in the
1.56% lower priority elements. So, the higher is N , the best
is for the quality, but the performance decreases in O(log(N)).
More details about the experimental results are in Section VI.

V. HLS DESIGN METHODOLOGY AND CONSIDERATIONS

HLS allows raising the design abstraction level and flexi-
bility of an implementation by automatically generating syn-
thesizable register transfer logic (RTL) from C/C++ models.
In addition, exploring the design space using the available
directives and constraints allows the user to guide the HLS
tool during synthesis. Also, HLS require less design effort,
when performing a broad design space exploration as many
derivative designs can be obtained with a small incremental
effort. Once a suitable specified functionality has been derived,
a designer can focus on the algorithmic design aspects rather
than low-level details required when using a hardware descrip-
tion language (HDL).

The first step in any HLS design is the creation of high-level
design description of the desired functionality. This descrip-
tion is typically subject to design iterations for refinement
(code optimization and enhancement), verification and testing
to eliminate bugs, errors, etc. Then, design implementation
metrics should be defined such as the target resource usage,
desired throughput, clock period, design latency, input–output
requirements, etc., which are closely related to the design
process, and that are in fact part of the design process.
These metrics can be controlled through directives/constraints
applied during HLS process. The HLS process can be
described in two steps: 1) extraction of data and control paths
from the high-level design files and 2) scheduling and binding
of the RTL in the hardware, targeting a specific device library.
In this paper, we performed all design experimentation with
the Vivado HLS tool version 2016.2, while the design was
coded in C++.

A. Design Space Exploration With HLS

Table III summarizes the results of design space exploration
for the OPQ with two elements in each group, while the total
specified queue capacity is 64 packets. The metrics used to
measure performance in any HLS design are area, latency,
and initiation interval (II). Partition directive is used to force
the tool to use only logic resources with no BRAMs (on-chip
block RAMs) even available in the FPGA. This reduces

TABLE III

HLS DESIGN SPACE EXPLORATION RESULTS OF A 64-ELEMENT
OPQ, WITH N = 2 AND 64-bit PDI

latency by cutting down the time to memory access. The
unroll directive lead to parallelized design producing an output
each clock cycle (II = 1), but at higher costs in terms of
lookup tables (LUTs) compared to the previous directive. The
pipeline directive gives similar results to unroll but it achieves
the best clock period. Exploring combinations of the above
cited directives with inline for order function gives similar
results to unroll or pipeline, respectively. However, putting
all four directives together in the right place in the code
(pipelining the PQ design with II = 1, partition of the queue
elements, unrolling the queue groups) gives the best design
in terms of resource usage, and performance. These HLS
results were generated for all queue configurations (OPQ and
APQ) and for different queue depths ranging from 34 up to
1024, while the number of elements in each group varies from
N = 2, 3, . . . 64. More details on the experimental results of
placement and routing in the FPGA are given in Section VI.

B. Real Traffic Trace Analysis

In order to establish the parameters for the design (espe-
cially the queue depth), a detailed analysis was undertaken to
find the number of packets that are seen in Internet traffic. This
was done by examining real traffic traces with different rates,
collected by CAIDA from OC-48 and OC-192 representing,
respectively, 2.5- and 10-Gb/s links [20]. Table IV depicts
the trace characteristics and the rate of packets seen with
a monitoring window of 1 ms and 1 s, for 300- and 60-s
traces duration for OC-48 and OC-192, respectively. A 1-ms
monitoring window is sufficient to satisfy a requirement of
high speed as packets are processed in ns time window. From
Table IV, there are only ∼75 and 560 packets on average in
OC-48 and OC-192 links, respectively, seen in a 1-ms time
window. For a queue capacity of 1024 PDIs, it can support
today’s high-speed links requirement ranging from 2.5 up
to 10 Gb/s.

VI. EXPERIMENTAL RESULTS

In this section, we detail the hardware implementation of
our proposed SIMD PQ, as well as its resource usage and

1948 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 10, OCTOBER 2018

Fig. 8. Experimental results for different queue configurations (OPQ and APQ) with depths ranging from 34 up to 1 Ki. (a) Plots of the maximum frequency
of operation for both queues. (b) LUTs cost per queue depth in terms of the number of elements in each group (N). For FFs cost, we obtained a constant
64-bit representing the size of one element (tag) in each group for both OPQ and APQ. These reported results are for 64-bit PDI, with 32-bit priority.

TABLE IV

TRAFFIC TRACE CHARACTERISTICS AND AVERAGE PACKETS SEEN IN

1-ms AND 1-s TIME INTERVALS FOR 300- AND 60-s DURATION FOR

OC-48 AND OC-192 LINKS CAIDA [20] TRACES, RESPECTIVELY

achieved performance for different configurations (OPQ and
APQ). Then, comparisons to existing works in the literature
are made.

A. Placement and Routing Results

The proposed hardware SIMD PQ was implemented (placed
and routed) on the Xilinx Zynq-7000 ZC706 evaluation board
(based on the xc7z045ffg900-2 FPGA). The resource utiliza-
tion of the implemented hardware PQ architecture for different
queue depths are shown in Table V for OPQ and APQ, with
two cases: N = 2 and 3 packets in each group. Each hardware
PQ element has a 64-bit width, with 32 bit representing the
priority, 16 bit for packet size, and 16 bit for the address
(see Fig. 2). The queue depth is varied from 34 to 256,
in order to allow comparing with [15]. Also, complexity
of 512 and 1024 (1 Ki) deep PQs are summarized in Table V.
Other experimental results for different configurations with N
varying up to 64 with frequency of operation are shown in
Fig. 8(a), and logic resource utilization in Fig. 8(b). Slices
utilization for both OPQ and APQ configurations are depicted
in Fig. 9(a) and (b), respectively.

When implementing the QM’s hardware PQ, only flip-
flops (FFs) and LUTs were used to obtain a fast, low latency

TABLE V

RESOURCE UTILIZATION OF THE ORIGINAL AND AUGMENTED

HARDWARE PQS, WITH 64-bit PDI

architecture. The queue is able to take an input and provide
an output in the same clock cycle, thus the proposed PQ
implementation has a 0-cycle latency. This PQ is capable of
performing all the three basic operations in a single clock
cycle. Note that as mentioned earlier, the required clock period
after placement and routing remains almost constant regardless
of the queue depth, as depicted in Fig. 8(a) for different N
ranging from 2 up to 64 elements in each group, for both
OPQ and APQ, with queue depths varying from 34 up to 1 Ki.

BENACER et al.: A FAST, SINGLE-INSTRUCTION–MULTIPLE-DATA, SCALABLE PRIORITY QUEUE 1949

Fig. 9. Slices utilization results for different queue configurations. OPQ (left) and APQ (right) histogram with 64-bit PDI.

The operating frequency reported, after placement and routing
(using Vivado 2016.2 with the Explore directive enabled),
by the timing analysis tool degrades in O(log(N)) between
a maximum 258 and a minimum 69 MHz for the OPQ with
a group size of 2 up to 64. For the APQ, similar behavior is
observed while the maximum frequency is 206 degrading to
65 MHz.

From Table V and Fig. 8(b), it is clearly seen that increasing
the group size N , leads to an increase in LUTs consumption
and not FFs (cost of FFs per elements remained constant
and equal to 64-bit, i.e., reflecting the element size). This
is due to the required logic in the DT for the additional
packets in each group, leading to larger multiplexers and more
levels of comparators. Also, the added replace operation to
the hardware PQ does increase the LUTs consumption only
for small N < 16. This LUT usage increase is related to the
fact that the replace operation did not require architectural
modification on the OPQ. Indeed, it only added a min and
max calculation prior to the DT or the order function in each
group. However, when N increases, the impact of the min/max
decreases and the OPQ and APQ LUTs usage converges to
nearly the same value when N ≥ 16.

Fig. 9 summarizes the slice usage for the OPQ and APQ
with different configurations (queue depth and number of ele-
ments N). It is of interest that both OPQ and APQ have similar
slice usage for N ≥ 16 (similar to the previous explanation
of min/max influence needed in the replace operation). On the
other hand, as the APQ is more complex than the OPQ, this
min/max influence is mostly seen for N < 16. For N = 3,
the slices usage for different queue capacities in OPQ can be
lower compared to the APQ (as for 128 and 256), and it is
always larger in the remaining queue capacities, this particular
case is only observed for N = 3. A lower complexity APQ
was only observed for this particular case.

The achieved frequency for the different hardware PQs are
also reported as functions of queue depth in Table V and
Fig. 8(a). The achieved throughput in the case where there are
two packets in each group with replace (APQ) is 206 Millions
packets per second (Mp/s) and in the case of three packets per
group, it is 150 Mp/s for a 256 queue capacity. In the case of
the OPQ, the throughput is 122 and 99.5 Mp/s for the cases of
two and three packets in each group of the PQs, respectively,

TABLE VI

RESOURCE UTILIZATION COMPARISON WITH

KUMAR et al. [15], WITH 64-bit PDI

for similar queue capacity. Noting that the minimum number
of operations required to pass a packet through the OPQ is
two (enqueue and dequeue), in contrast to APQ which is one
(replace). This achieved throughput is stable for the different
queue capacities ranging from 34 to 1 Ki and for both queue
types. Moreover, even in the worst case performance with
N = 64, both OPQ and APQ can reach 40 Gb/s throughput
for 84-B minimum size Ethernet packets, including minimum
size packet of 64 B, preamble and interpacket gap of 20 B.

B. Comparison With Related Works

When compared to the systolic array in Moon’s work [9]
(see Table VI) supporting only enqueue and dequeue opera-
tions, our resource usage in terms of LUTs and FFs is lower.
The resource usage results obtained with the proposed archi-
tecture (OPQ with 2 packets in each group) are comparable
with the shift-register architecture in terms of FFs. They are
lower in terms of LUTs (up to N = 64, our architecture
remains comparable in terms of FFs), and they are higher than
those reported for the hybrid p-heap architecture [15]. The
reported design is entirely coded at high-level C++ language
as compared to existing architectures coded at low-level in
Verilog, VHDL, etc.

Table VII compares results obtained and reported in the
literature with some relevant queue management architectures.
The reported throughput of the QMRD [24] system depends
on the protocol data unit payload size, while the reported

1950 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 10, OCTOBER 2018

TABLE VII

MEMORY, SPEED, AND THROUGHPUT COMPARISON WITH QUEUE
MANAGEMENT SYSTEMS, WITH 64-bit PDI

OD-QM [3] results are for 512 active queues, and 64 bytes
per packet. Our design is implemented with a total of 1-Ki
queue PDIs capacity. The reported throughput is for the worst
case egress port speed with 64-B sized packets, while offering
10× throughput improvements (APQ with N = 2). It should
be noted that our design supports pipelined enqueue, dequeue
and replace operations.

The number of cycles between successive dequeue–enqueue
(hold) or replace operations, as depicted in Table VIII, for the
OPQ is two clock cycles and only one clock cycle for the
APQ supporting the replace. This is less than the FIFO [3]
for 256-deep queues, binary heap [15], and p-heap architec-
ture [16]. The reported shift register and systolic architectures
in Moon’s work [9] have both a latency of two clock cycles
for en/dequeue. The systolic PQ described by Moon et al. [9]
is not fully sorted until several cycles due to the fact that
only one systolic cell is activated each time, i.e., the lower
priority entry is passed to the neighboring block on the next
clock cycle. In the case of the shift register proposed by
Chandra and Sinnen [10], the performance degrades logarith-
mically. Compared to the p-heap architecture [16], even though
it accept a pipelined operation each clock cycle (except in case
of successive deletions), the latency is O(log(n)) in terms of
the queue capacity against O(1) time latency for our proposed
architecture.

For the PIFO queue [38], we implemented (placed and
routed) the sorting data structure used in the PIFO block,
called flow scheduler, on the ZC706 FPGA board with 16-bit
priority and 32-bit metadata, using the Verilog code pro-
vided by the authors. This design supports a total capacity
of 1024 elements. It is worth mentioning that this code
was intended for a 16-nm standard cell ASIC implemen-
tation. Meanwhile, this architecture supports a dequeue–
enqueue or replace each cycle. This architecture fully sorts
all elements in parallel in a single pass through parallel
comparators and encoder to determine the right position (the
first 0–1 inversion) in which an incoming packet should be
inserted. Both enqueue and dequeue operations require two
clock cycles to complete. The FFs cost for PIFO is comparable
to our architecture with a total of 58.5k FFs against 49.1k FFs,
respectively. However, in terms of LUTs cost, our architecture
(APQ with N ≤ 64 and 32-bit metadata) is similar to the
PIFO with 210 LUTs per element [see Fig. 8(b)] with 32-bit
priority, while the cost in LUTs is only 149 per element for
APQ with 16-bit priority. The total LUTs usage for the PIFO

TABLE VIII

PERFORMANCE COMPARISON FOR DIFFERENT PQ ARCHITECTURES

architecture is 215k LUTs. This expensive cost for the PIFO
is mainly due to the extra logic necessary to fully sort the
elements in the PIFO block, while our architecture partially
sort the elements in each group, and it is capable to restore the
queue invariants (see Section IV-C) in a single clock cycle.

Both architectures (OPQ and APQ) are capable of satisfying
the invariants property for the entire queue in only one clock
cycle (in each cycle all groups are being sorted in parallel).
Also, this fixed number of cycles in our design is independent
of queue depth unlike the O(log(n)) time for the dequeue oper-
ation with the heap [15], [26]–[28] and binary heap [13], where
n is the number of nodes (keys). The achieved throughput is
151 Mp/s for the OPQ and 250 Mp/s for the APQ with 16-bit
priority, and 32-bit metadata, against 76.3 Mp/s as the highest
reported throughput in Table VIII for Huang’s work [13], while

BENACER et al.: A FAST, SINGLE-INSTRUCTION–MULTIPLE-DATA, SCALABLE PRIORITY QUEUE 1951

having the same FPGA board, Ioannou and Katevenis [16]
with 90 Mp/s, and Chandra and Sinnen [10] with 102 Mp/s.
The APQ is at least 2.45× faster than the latter architectures.
For 32-bit priority with 32-bit metadata, our design achieves
121 and 201 Mp/s for OPQ and APQ, respectively. Moreover,
the APQ is 2.0× faster than the reported works. Compared
to [3], [9], [13], [16], [17], the reported throughput is inde-
pendent of the queue depth.

Compared to existing NPU solutions like Broadcom [32],
Mellanox (EZchip) NPS-400 [33], that can support up to
200 and 400 Gb/s, respectively, with built-in queue manage-
ment systems, our proposed architecture is scalable in terms
of performance for different queue capacities. Using a single
FPGA (Zynq-7000), we can support links of 100 Gb/s with
64-B sized packets (32-bit priority with APQ). To scale up
to 400 Gb/s and beyond, we can use a larger FPGA, for
example, an UltraScale that has more logic resources could
accommodate all design requirements, or using many FPGAs
in parallel like in a multicard “pizza box” system, and/or some
combination of these latters. Moreover, it should be noted that
the FPGA solution is more flexible than the one of a fixed and
rigid logic of an ASIC chip solution.

VII. CONCLUSION

This paper proposed and evaluated a priority queue in the
context of flow-based networking in a TM. The proposed QM
was entirely coded in C++, and synthesized using Vivado
HLS. The resource usage of this implementation is similar
to other priority queues in the literature, even though they
were coded with low-level languages (Verilog, VHDL, etc.).
Meanwhile, the achieved performance is at least 2× better
than a comparable priority queue design, with a throughput
of 10× faster than reported queue management system work in
the literature for 1024 deep queues with 32-bit priority. Also,
the achieved latency is in O(1) time for enqueue, dequeue,
and replace operations, independent of the queue depth. HLS
provides flexibility, rapid prototyping, and faster design space
exploration in contrast to low-level hand-written HDL designs.

Future work will focus on integrating the proposed priority
queue in a flow-based TM, and on assessing its capabilities
and performance in practical high-speed networking systems.

VIII. APPENDIX: SUMMARY OF NOTATION

{ } Unordered set of elements.
〈 〉 Ordered vector of elements.
〈{ }〉 Elements of the set can be placed in any order in the

vector.
A \ B Set difference.
{{X}} = {X}, i.e., sets are flattened.
2nd max X = max (X\{max X}), i.e., the second largest

element.

ACKNOWLEDGMENT

The authors would like to thank N. Bélanger, researcher at
the École Polytechnique de Montréal, Montréal, QC, Canada,
for his suggestions and technical guidance. They would also
like to thank the anonymous reviewers for their valuable and
enriching comments.

REFERENCES

[1] N. Panwar, S. Sharma, and A. K. Singh, “A survey on 5G: The next gen-
eration of mobile communication,” Phys. Commun., vol. 18, pp. 64–84,
Mar. 2016.

[2] S. O’Neil, R. F. Woods, A. J. Marshall, and Q. Zhang, “A scalable
and programmable modular traffic manager architecture,” ACM Trans.
Reconfigurable Technol. Syst., vol. 4, no. 2, May 2011, Art. no. 14.

[3] Q. Zhang, R. Woods, and A. Marshall, “An on-demand queue man-
agement architecture for a programmable traffic manager,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 10, pp. 1849–1862,
Oct. 2012.

[4] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based
networking with DIFANE,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 41, no. 4, pp. 351–362, 2011.

[5] Y. Xu, K. Li, J. Hu, and K. Li, “A genetic algorithm for task scheduling
on heterogeneous computing systems using multiple priority queues,”
Inf. Sci., vol. 270, pp. 255–287, Jun. 2014.

[6] C. Ni, C. Gan, and H. Chen, “Joint bandwidth allocation on dedi-
cated and shared wavelengths for QoS support in multi-wavelength
optical access network,” IET Commun., vol. 7, no. 16, pp. 1863–1870,
Nov. 2013.

[7] S. H. S. Ariffin, J. A. Schormans, and A. H. I. Ma, “Application of
the generalised ballot theorem for evaluation of performance in packet
buffers with non-first in first out scheduling,” IET Commun., vol. 3,
no. 6, pp. 933–944, Jun. 2009.

[8] R. Brown, “Calendar queues: A fast 0(1) priority queue implementation
for the simulation event set problem,” Commun. ACM, vol. 31, no. 10,
pp. 1220–1227, Oct. 1988.

[9] S.-W. Moon, J. Rexford, and K. G. Shin, “Scalable hardware priority
queue architectures for high-speed packet switches,” IEEE Trans. Com-
put., vol. 49, no. 11, pp. 1215–1227, Nov. 2000.

[10] R. Chandra and O. Sinnen, “Improving application performance with
hardware data structures,” in Proc. IEEE Int. Symp. Parallel Distrib.
Process., Workshops Phd Forum (IPDPSW), Apr. 2010, pp. 1–4.

[11] G. Bloom, G. Parmerl, B. Narahari, and R. Simha, “Shared hardware
data structures for hard real-time systems,” in Proc. 10th ACM Int. Conf.
Embedded Softw., 2012, pp. 133–142.

[12] P. Lavoie, D. Haccoun, and Y. Savaria, “A systolic architecture for fast
stack sequential decoders,” IEEE Trans. Commun., vol. 42, no. 234,
pp. 324–335, Feb. 1994.

[13] M. Huang, K. Lim, and J. Cong, “A scalable, high-performance cus-
tomized priority queue,” in Proc. IEEE 24th Int. Conf. Field Program.
Logic Appl. (FPL), Sep. 2014, pp. 1–4.

[14] C. N. G. Kumar et al., “Improving system predictability and performance
via hardware accelerated data structures,” Procedia Comput. Sci., vol. 9,
pp. 1197–1205, Jun. 2012.

[15] C. N. G. Kumar, S. Vyas, R. K. Cytron, C. D. Gill, J Zambreno, and
P. H. Jones, “Hardware-software architecture for priority queue man-
agement in real-time and embedded systems,” Int. J. Embedded Syst.,
vol. 6, no. 4, pp. 319–334, Sep. 2014.

[16] A. Ioannou and M. G. H. Katevenis, “Pipelined heap (priority
queue) management for advanced scheduling in high-speed networks,”
IEEE/ACM Trans. Netw., vol. 15, no. 2, pp. 450–461, Apr. 2007.

[17] R. Bhagwan and B. Lin, “Fast and scalable priority queue architecture
for high-speed network switches,” in Proc. 19th Annu. Joint Conf. IEEE
Comput. Commun. Soc. (INFOCOM), Mar. 2000, pp. 538–547.

[18] H. Wang and B. Lin, “Pipelined van Emde Boas tree: Algorithms,
analysis, and applications,” in Proc. 26th IEEE Int. Conf. Comput.
Commun., May 2007, pp. 2471–2475.

[19] R. Rönngren and R. Ayani, “A comparative study of parallel and
sequential priority queue algorithms,” ACM Trans. Model. Comput.
Simul. (TOMACS), vol. 7, no. 2, pp. 157–209, Apr. 1997.

[20] Center for Applied Internet Data Analysis. (Dec. 2017). CAIDA Data—
Overview of Datasets, Monitors, and Reports. [Online]. Available:
http://www.caida.org/data/passive/

[21] Y. Afek, A. Bremler-Barr, and L. Schiff, “Recursive design of hardware
priority queues,” Comput. Netw., vol. 66, pp. 52–67, Jun. 2014.

[22] I. Benacer, F.-R. Boyer, N. Bélanger, and Y. Savaria, “A fast systolic
priority queue architecture for a flow-based Traffic Manager,” in Proc.
14th IEEE Int. New Circuits Syst. Conf. (NEWCAS), Jun. 2016, pp. 1–4.

[23] I. Benacer, F.-R. Boyer, and Y. Savaria, “A high-speed traffic manager
architecture for flow-based networking,” in Proc. 15th IEEE Int. New
Circuits Syst. Conf. (NEWCAS), Jun. 2017, pp. 161–164.

[24] H. Fallside, “Queue manager reference design,” Xilinx Inc., San Jose,
CA, USA, Appl. Note 511, 2007.

1952 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 10, OCTOBER 2018

[25] A. Nikologiannis, I. Papaefstathiou, G. Kornaros, and C. Kachris,
“An FPGA-based queue management system for high speed networking
devices,” Microprocess. Microsyst., vol. 28, nos. 5–6, pp. 223–236,
Aug. 2004.

[26] X. Zhuang and S. Pande, “A scalable priority queue architecture for
high speed network processing,” in Proc. 25th IEEE Int. Conf. Comput.
Commun. (INFOCOM), Apr. 2006, pp. 1–12.

[27] K. McLaughlin, S. Sezer, H. Blume, X. Yang, F. Kupzog, and T. Noll,
“A scalable packet sorting circuit for high-speed WFQ packet schedul-
ing,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16, no. 7,
pp. 781–791, Jul. 2008.

[28] H. Wang and B. Lin, “Succinct priority indexing structures for the
management of large priority queues,” in Proc. 17th IEEE Int. Workshop
Quality Service (IWQoS), Jul. 2009, pp. 1–5.

[29] D. E. Knuth, “The art of computer programming,” Sorting and
Searching, vol. 3, 2nd ed. Boston, MA, USA: Addison-Wesley, 1998,
Sec. 5.3.4, pp. 219–247.

[30] T. Leighton, “Tight bounds on the complexity of parallel sorting,” IEEE
Trans. Comput., vol. TC-34, no. 4, pp. 344–354, Apr. 1985.

[31] 10G Network Processor Chip Set (APP750NP and APP750TM), Agere
Systems, Allentown, PA, USA, 2002.

[32] 200 G Integrated Packet Processor, Traffic Manager, and Fabric Inter-
face Single-Chip Device, document BCM88650, Broadcom, 2012.

[33] NPS-400 400Gbps NPU for Smart Networks, Mellanox (EZchip),
San Jose, CA, USA, 2015.

[34] N. Possley, “Traffic management in Xilinx FPGAs,” Xilinx, San Jose,
CA, USA, White Paper WP244, 2006.

[35] “Enabling quality of service with customizable traffic managers,” Altera,
San Jose, CA, USA, White Paper WP-STXIITRFC-1.0, 2005.

[36] A. Khan et al., “Design and development of the first single-chip full-
duplex OC48 traffic manager and ATM SAR SoC,” in Proc. IEEE Conf.
Custom Integr. Circuits, Sep. 2003, pp. 35–38.

[37] B. Alleyne, “Chesapeake: A 50Gbps network processor and traffic
manager,” in Proc. IEEE Hot Chips 19 Symp. (HCS), Stanford, CA,
USA, Aug. 2007, pp. 1–10.

[38] A. Sivaraman et al., “Programmable Packet Scheduling at
Line Rate,” in Proc. ACM SIGCOMM Conf., 2016, pp. 44–57.
[Online]. Available: https://github.com/programmable-scheduling/pifo-
hardware/blob/master/src/rtl/design/pifo.v

Imad Benacer (S’16) received the B.E. degree
in electrical and electronic engineering from
Boumerdès University, Boumerdès, Algeria, in 2012
and the M.E. degree in electrical engineering from
École Militaire Polytechnique, Algiers, Algeria,
in 2014. He is currently working toward the Ph.D.
degree at the École Polytechnique de Montréal,
Montréal, QC, Canada.

His current research interests include the embed-
ded implementation of image and video processing
algorithms, network communication systems, and

high-level synthesis targeting FPGA designs and implementations.

François-Raymond Boyer received the B.Sc. and
Ph.D. degrees in computer science from the Univer-
sité de Montréal, Montréal, QC, Canada, in 1996 and
2001, respectively.

Since 2001, he has been with the École
Polytechnique de Montréal, Montréal, where he is
currently a Professor at the Department of Com-
puter and Software Engineering. He has authored
or coauthored more than 30 conference and journal
papers. His current research interests include micro-
electronics, performance optimization, parallelizing

compilers, digital audio, and body motion capture.
Dr. Boyer is a member of the Regroupement Stratégique en Microélec-

tronique du Québec, the Groupe de Recherche en Microélectronique et
Microsystèmes, and the Observatoire Interdisciplinaire de Création et de
Recherche en Musique.

Yvon Savaria (S’77–M’86–SM’97–F’08) received
the B.Ing. and M.Sc.A. degrees in electrical engi-
neering from the École Polytechnique de Montréal,
Montréal, QC, Canada, in 1980 and 1982, respec-
tively, and the Ph.D. degree in electrical engineering
from McGill University, Montréal, QC, Canada,
in 1985.

He has been a consultant or was sponsored for
carrying research by Bombardier, CNRC, Design
Workshop, DREO, Ericsson, Genesis, Gennum,
Huawei, Hyperchip, ISR, Kaloom, LTRIM, Miranda,

MiroTech, Nortel, Octasic, PMC-Sierra, Technocap, Thales, Tundra, and VXP.
Since 1985, he has been with the École Polytechnique de Montréal, where
he is currently a Professor at the Department of Electrical Engineering.
He has out carried work in several areas related to microelectronic circuits and
microsystems such as testing, verification, validation, clocking methods, defect
and fault tolerance, the effects of radiation on electronics, high-speed intercon-
nects and circuit design techniques, CAD methods, reconfigurable computing
and applications of microelectronics to telecommunications, aerospace, image
processing, video processing, radar signal processing, and digital signal
processing acceleration. He has authored or coauthored 140 journal papers and
428 conference papers, and holds 16 patents, and he was the thesis advisor
of 160 graduate students who completed their studies. He is currently involved
in several projects that relate to aircraft embedded systems, radiation effects on
electronics, asynchronous circuits design and test, green IT, wireless sensor
network, virtual network, computational efficiency and application specific
architecture design.

Dr. Savaria is a member of the Regroupement Stratégique en Microélectron-
ique du Québec, the Ordre des Ingénieurs du Québec, and has been a member
of the CMC Microsystems board since 1999 and he was the Chairman of that
board from 2008 to 2010. He was a recipient of the 2001 Tier 1 Canada
Research Chair on the design and architectures of advanced microelectronic
systems that he held until 2015 and the 2006 Synergy Award of the Natural
Sciences and Engineering Research Council of Canada. He was the Pro-
gram Co-Chairman of ASAP’2006 and the General Co-Chair of ASAP’2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

