
2262 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 6, JUNE 2016

Streaming Elements for FPGA Signal and Image
Processing Accelerators

Peng Wang and John McAllister, Senior Member, IEEE

Abstract— Field-programmable gate array (FPGA) devices
boast abundant resources with which custom accelerator com-
ponents for signal, image, and data processing may be realized;
however, realizing high-performance, low-cost accelerators cur-
rently demands manual register transfer level design. Software-
programmable soft processors have been proposed as a way
to reduce this design burden, but they are unable to support
performance and cost comparable to custom circuits. This
paper proposes a new soft processing approach for FPGA that
promises to overcome this barrier. A high-performance, fine-
grained streaming processor, known as a streaming accelerator
element, is proposed, which realizes accelerators as large-scale
custom multicore networks. By adopting a streaming execution
approach with advanced program control and memory address-
ing capabilities, typical program inefficiencies can be almost
completely eliminated to enable performance and cost, which are
unprecedented among software-programmable solutions. When
used to realize accelerators for fast Fourier transform, motion
estimation, matrix multiplication, and sobel edge detection, it is
shown how the proposed architecture enables real-time perfor-
mance and with performance and cost comparable with hand-
crafted custom circuit accelerators and up to two orders of
magnitude beyond existing soft processors.

Index Terms— Fast Fourier transform (FFT), field-
programmable gate array (FPGA), matrix multiplication (MM),
motion estimation, processor, streaming.

I. INTRODUCTION

RECENT years have seen rapid evolution in field-
programmable gate array (FPGA) technologies, both in

the scale of traditional devices and their extension to system-
on-chip FPGA, incorporating heterogeneous multicore proces-
sor architectures. A key motivation for the use of FPGA is its
ability to host components (known here as accelerators) that
realize specific operations on the device’s programmable logic,
enabling that operation to be realized with high performance
and/or low cost.

The resources available within modern FPGA, which may
be used to compose the accelerators, are unprecedented:
per-second access to trillions of multiply–accumulate (MAC)
operations and bit-level memory locations via on-chip DSP

Manuscript received May 26, 2015; revised August 27, 2015 and
October 16, 2015; accepted November 24, 2015. Date of publication
January 6, 2016; date of current version May 20, 2016. This work was
supported by the Engineering and Physical Sciences Research Council under
Grant EP/H051155/1.

P. Wang is with ARM, Cambridge CB1 9NJ, U.K. (e-mail:
pwang04@qub.ac.uk).

J. McAllister is with the Institute of Electronics, Communications and
Information Technology, Queen’s University Belfast, Belfast BT3 9DT, U.K.
(e-mail: jp.mcallister@ieee.org).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2015.2504871

units [1], [2] and block RAM (BRAM) [2], [3]. These mark
FPGA as ideal hosts to high-performance custom computing
architectures for signal, image, and data processing [4].
However, as the scale and the sophistication of FPGA devices
increase with each passing generation, harnessing these
resources becomes increasingly difficult. Traditionally,
achieving requisite performance and cost has required
manual design of custom circuits at register transfer level
in a hardware design language. This is a highly effective
approach, but imposes a heavy development load due to the
low level of design abstraction.

Soft processors have been proposed to alleviate this design
burden by employing a predominately software-based develop-
ment route, but at present, adopting such an approach demands
substantial compromise on performance and cost. No approach
has been shown to support performance and cost even close
to custom circuits designed via the traditional approach.

This paper proposes a resolution to this issue. A novel
streaming accelerator element (SAE) is presented which
enables software-based accelerator development, while main-
taining the performance and cost of custom circuits. By appli-
cation to accelerators for fast Fourier transform (FFT), matrix
multiplication (MM), motion estimation, and sobel edge detec-
tion (SED) accelerators, the following contributions are made.

1) A novel streaming processor for FPGA, the SAE,
is described and shown to overcome the performance
limitations of existing soft processors.

2) It is shown how the SAE is unique among softcores
in enabling real-time accelerators for standards, such as
802.11ac wireless and H.264 video.

3) It is shown how SAE-based accelerators are unique
in exhibiting performance and cost which are highly
competitive with custom circuits.

4) It is shown how SAE accelerators exhibit performance
and cost up to two orders of magnitude beyond that of
existing soft processors.

To the best of our knowledge, the SAE is the highest
performance, lowest cost software-programmable component
on record for FPGA and the first to enable signal and image
processing accelerators with performance and cost comparable
with custom circuits.

The remainder of this paper is as follows. Sections II and III
survey FPGA soft processors. Sections IV and V propose
the SAE to resolve the limitations outstanding in these.
Section VI describes the SAE-based accelerators comparing
these against real-time requirements, existing custom circuits,
and soft processor solutions.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

WANG AND MCALLISTER: STREAMING ELEMENTS FOR FPGA SIGNAL AND IMAGE PROCESSING ACCELERATORS 2263

II. BACKGROUND

Modern FPGA boasts enormous on-chip computation,
memory, and communications resources—for instance the
Virtex-7 family of Xilinx FPGAs offers up to 7 × 1012

MAC operations per second and 40 × 1012-bits/s memory
access rates. These are ideal for the construction of accelera-
tors for signal, image, or data processing operations, either as
coprocessors for high-performance computing [5], [6] archi-
tectures or standalone. However, realizing high-performance,
low-cost accelerators has traditionally required manual custom
circuit design at register transfer level—a process made
increasingly unproductive by the scale of modern FPGA.

Attempts to overcome this productivity barrier are emerging.
For example, high-level synthesis (HLS) approaches simplify
this process by deriving accelerators from specifications in, for
instance, C/C++ [7], CUDA [8], OpenCL [9], or Java [6]. The
productivity benefits of HLS are unquestioned, but there is no
compelling evidence that these can support performance and
cost comparable with custom circuits, while the requirement
for a host processor for any CUDA or OpenCL program
imposes high resource and performance overheads.

An alternative approach is to realize software-programmable
processors in the FPGA programmable logic. These soft
processors allow their architecture to be tuned before synthesis
to improve the performance and cost of the final result.
Their use is desirable in instances where HLS approaches are
constrained—for instance when specific programmatic con-
structs, such as pointers, are used which cannot be synthesized
by HLS approaches. In addition, soft processors have been
shown to enable performance scaling beyond that of HLS [10].

Soft general-purpose processors, such as MicroBlaze [11]
and Nios-II [12], are performance-limited and a series of
approaches attempt to resolve this issue. One approach
uses soft vector coprocessors [13]–[16] employing either
assembly level [13] or mixed C-macro and inline assembly
programming. These have enabled orders of magnitude
increases in performance relative to Nios-II and MIPS [13]
but performance and cost still lag custom circuits by a signif-
icant margin—VIPERS [13] reports full block-search motion
estimation with 1.2% of the throughput of a custom circuit,
while consuming around 80 times the resources. An alternative
approach is to redesign the architecture of the central proces-
sor architecture for performance/cost benefit—for instance,
iDEA [17] reduces cost by ∼50% relative to MicroBlaze [17],
but performance is, in general, little better. Finally, the multi-
core architectures incorporating up to 16 processors have been
studied in [18]–[20] and up to even 100 processors in [20].
The work in [18] and [19] does show some speedup relative
to standard MicroBlaze performance, but scalability is limited
by basing the architecture on low-performance MicroBlaze
processors. Similarly, while Hannig et al. [20] report the
modest speedup of up to 25% relative to ARM Mali-T604
GPU and is based on a lower cost processing component, the
demand for network-on-chip interconnect for grid-structured
architectures imposes a high resource overhead. The result is
that the performance of these architectures is only marginally
beyond that of software-programmable devices and there is

no evidence that these are competitive with custom circuits.
It appears that if FPGA soft processors are to be a viable
alternative to custom accelerators, then performance and cost
must improve radically.

A series of alternative device architectures seek to overcome
this limitation by sacrificing the fine-grained configurable
nature of FPGA in order to enable more productive design.
Data-centric (as opposed to control-centric) processors, such
as the XPuter [21], replace the program counter prevalent in
the traditional von Neumann architectures with a data counter,
which supports the sequencing of data with low addressing
overhead. This approach demonstrated substantial reductions
in program execution overhead due to control and address-
ing operations, allowing generic memory address generators
to iterate over patterns, known as scans, of data memory
(DM) to realize computationally intensive operations with
high performance and low cost. Reconfigurable processors,
such as PACT XPP [22], take an alternative data-centric
approach, with arithmetic logic unit (ALU)-based functional
units combined via configurable interconnect to operate on
abstract data streams with a specific emphasis on enabling fast,
frequent reconfiguration via the use of novel reconfiguration
circuitry. These data-centered processing philosophies enable
high-performance realizations for typical signal, image, and
data processing operations, but so far as we are aware, no
one has attempted to apply similar techniques in FPGA soft
processors, nor for the design of custom FPGA accelerators.

The work in [23] is a first step in that direction, sharing
some characteristics of these non-FPGA-based architectures,
specifically the use of large-scale multicore networks and
operation on streams of data. It attempts to rethink these
for the realization of custom FPGA accelerators. It uses
so-called processing elements (PEs)—extremely fine-grained
processors—combining these into large-scale ad hoc multi-PE
architectures. A PE is not a general-purpose softcore processor,
but is designed to enable software programmability with
lowest resource cost, while maximizing performance and
scaling. This approach is promising—it is the only processor-
based real-time solution, and performance and cost were
highly competitive with comparable custom circuits for any
application, but still a general capability to enable performance
and cost comparable with custom circuits is not in evidence.

This paper proposes an approach to resolve this issue.1

Building on the PE concept, streaming soft processors are
created and used to enable real-time performance with
efficiency comparable with custom circuit accelerators and
well in advance of existing soft processors, including that
in [23].

Section III describes the PE acceleration approach before
the SAE is devised to overcome PE efficiency, program con-
trol, and memory addressing limitations in Sections IV and V.
Finally, Section VI uses the SAE to realize FFT, motion
estimation, MM, and SED, comparing the results against
standard performance criteria as well as custom circuits and
existing soft processors.

1Preliminary versions of this paper are reported in [24] and [25].

2264 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 6, JUNE 2016

Fig. 1. Conceptual multicore PE accelerator architecture.

III. FPGA PROCESSING ELEMENT ACCELERATORS

Fig. 1 shows the conceptual multi-PE accelerator architec-
ture proposed. As this shows, these are composed of multiple
PEs communicating via a point-to-point network composed
of first-input, first-output (FIFO) queues. A PE is a software-
programmable single-instruction multiple-data (SIMD)
component whose architecture is soft for configuration
presynthesis in a number of aspects, most notably number
of SIMD lanes. Each PE adopts a configuration independent
of all others and PE execution is decoupled, such that the
network is a heterogeneous multiple-instruction, multiple-
data (MIMD) machine. Point-to-point links are made between
communicating lanes whether housed within the same or
disparate PEs, while the multicore point-to-point topology is
tailored before synthesis appropriate to the operation being
realized.

Realizing architectures of this kind efficiently demands
two key PE features.

1) Standalone: A PE must be able to process data, man-
age memory access, and communicate externally under
software control without a host processor.

2) Lean: Combined very high performance and low cost
are demanded to support large-scale multicores.

None of the alternative soft processing approaches surveyed
in Section II satisfy both of these criteria. One such which does
is the FPGA PE (FPE).

A. The FPGA Processing Element

The FPE [23] is a reduced instruction set computer load-
store PE, SIMD, and single instruction, single data (SISD)
(i.e., single-lane SIMD) variants of which are shown in Fig. 2.
It houses a program counter, program memory (PM), instruc-
tion decoder, register file (RF), branch detection, DM, imme-
diate memory, and an ALU based on the DSP48E in Xilinx
FPGA [1]. A COMM module allows direct insertion/extraction
of data into and out of the FPE pipeline.

The FPE is very lean, incorporating only those components
critical to software programmability and in addition is highly
configurable for low-cost realization—the reader is referred
to [23] for detail on instruction set architecture (ISA) and
configurability. The result is exceptionally high performance
at low cost—a 16-bit SISD FPE on Xilinx Virtex 5 VLX110T
supports 480 MMACs/s requiring 90 lookup tables (LUTs)—
just 14% of the cost of a Microblaze and 35% of that of the
iDEA lean processor on the same device [17], while the 10 ×
10 tightly-coupled processor array (TCPA) multicore in [20]
consumes 134 570 LUTs. This performance/cost combination

Fig. 2. FPE. (a) FPE–SISD mode. (b) FPE–SIMD mode.

Fig. 3. FPE-based SD for 4 × 4 802.11n.

endowed a multi-FPE accelerator for sphere decoding (SD) in
4×4 multiple-input, multiple-output 802.11n, shown in Fig. 3,
with two unique features—it is the only real-time software-
programmable FPGA solution for this application, and perfor-
mance and cost were highly competitive with custom circuit
solutions.

The key feature of the FPE, which enables these capabilities,
is extreme resource efficiency. By ensuring absolute lowest
cost FPE structure, the economies of scale produce dramatic
reductions in multicore resource cost. However, this extreme
focus comes at the cost of flexibility: once synthesized, the
FPE does not exhibit the same degree of flexibility as a general
soft processor because the architecture is highly constrained
at design time to support the desired operation with highest
performance and lowest cost; hence, while it may be repro-

WANG AND MCALLISTER: STREAMING ELEMENTS FOR FPGA SIGNAL AND IMAGE PROCESSING ACCELERATORS 2265

Fig. 4. FFT256: FPE-based 256-point FFT. (a) FFT mappings. (b) 8-FPE1.
(c) FPE8.

grammed after synthesis, it cannot enable general-purpose
operation in the manner of a standard softcore. In addition,
to minimize cost while supporting software programmability,
the FPE operates under two substantial absolute restrictions.

1) Processor and ISA: The FPE is a load-store processor
which can only source non-constant ALU operands and
produce results to RF, with all memory and communi-
cations access via loads and stores to RF.

2) Addressing Modes: The FPE supports only direct
memory addressing.

Sections IV and V illustrate the effects of these restrictions
in the context of typical image and signal processing opera-
tions and proposes the SAE as their resolution.

IV. STREAM PROCESSING FOR FPGA ACCELERATORS

A. Load-Store PEs

In common with all of the soft processors surveyed in
Section II, the load-store FPE supports only register–register
and immediate instructions; this means that all nonconstant
operands and results access the ALU via RF. Consider the
effect of this requirement in the context of a 256-point
FFT (FFT256) realized via two FPE configurations: an
eight-way FPE SIMD (FPE8) or an MIMD multi-FPE com-
posed of eight SISD FPEs (8-FPE).2 The FFT mappings and
the itemized ALU, interprocessor communication, memory
(MEM), and NOP instructions for each are shown in Fig. 4.

2Numeric prefix denotes the number of processors, with the subscript
denoting number of lanes; 1 is assumed if either is absent.

TABLE I

256-POINT FFT PERFORMANCE/COST COMPARISON

Fig. 5. Load-store paths in the FPE.

As shown in Fig. 4, the efficiency of each of these programs
is low—only 52.5% and 31.8% of the respective cycles
in 8-FPE1 and FPE8 are used for ALU instructions. The
resulting effect on accelerator performance and cost is clear
from Table I, which compares 8-FPE1 with the Xilinx Core
Generator FFT [26] component. As this shows, for this opera-
tion, the FPE is not competitive with the custom circuit Xilinx
FFT, which exhibits twice the performance at a fraction of the
LUT cost.

These results are a direct consequence of permitting only
register–register instructions. Each FFT256 stage, and hence
each FPE iteration, consumes/produces 512 complex words.
Since RF is the most resource-costly element of the FPE,
buffering this volume of data requires BRAM DM; in order
for these operands to be processed and results stored, a
large number of loads (stores) are required between BRAM
and RF. Given the simplicity of the FFT butterfly operation,
the proportion of the program occupied by these instruc-
tions is significant. However, in the context of the FPE,
the situation worsens still: since the FPE is standalone and
handles its own communication, further cycles are consumed
transferring incoming and outgoing data between DM and
COMM, reducing program efficiency still further. Finally,
each of these transfers induces a latency between source and
destination—as shown in Fig. 5, each FPE DM-RF (black)
and COMM-RF (red) transfer takes eight cycles, imposing the
need for NOP instructions. Ultimately, these factors combine
to severely limit the efficiency of the FPE.

This situation is not unique to the FPE—all of the processors
surveyed in Section II adopt load-store architectures and
accordingly all suffer the same limitation. In order to overcome
this inefficiency, two properties should be supported.

1) Direct instruction access to any combination of RF, DM,
and COMM for either instruction source or destination.

2) In cases where local buffering is not required, data
streaming through the PE should be enabled.

The design challenge is to enable these features without
compromising on the resource efficiency required to compete
with custom circuitry.

2266 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 6, JUNE 2016

Fig. 6. SAE SISD architecture and ALUE access paths. (a) SISD SAE1
architecture. (b) SAE ALU operand access paths.

B. Stream Accelerator Elements

To support these streaming features, a novel SAE is
proposed. The SAE maintains standalone behavior and
a software-programmable lean architecture, but supports
advanced data streaming—i.e., the ability to stream data into
and out of operation sources and destinations and through
the ALU without the need for load and store cycles. This
streaming takes two forms.

1) Internal: Peer access to RF, DM, COMM, and IMM
without the need for load-store cycles.

2) External: Unbuffered streaming of data from input
FIFOs to output FIFOs via only ALU.

The architecture of an SISD SAE1 is shown in Fig. 6. There
are three main architectural features of note:

1) the dedication of an entire pipeline stage to ID;
2) the FlexData data manager;
3) decoupled off-SAE read (COMMGET) and

write (COMMPUT) components.
In the SAE, ID and FlexData dominate full pipeline stages.

The ID determines the source/destination of any instruction
operand/result, with all of the potential sources or destinations
of data incorporated in FlexData to allow each to be addressed
with equal latency; this flat memory architecture is unique to
the SAE and distinct from that employed by any other soft
processor. Its effect is to reduce the complexity of accessing
each of the distinct operand sources via a regular dataflow.
If these were not in the same pipeline stage, instruction
decode and pipeline management would be substantially com-
plicated to align the data arriving at the ALU with variable
latency. As a result, data operands and results may be
sourced/produced to any of IMM, RF, DM, or COMM with
identical pipeline control and without the need for explicit load
and store cycles or instructions for DM or COMM.

TABLE II

ALU OPERAND/DESTINATION INSTRUCTION CODING

In addition, in order to allow unbuffered streaming operation
from input FIFOs to output FIFOs via ALU, simultaneous
read/write to external FIFOs is required, with direct access to
ALU in both directions. In order to support this capability,
decoupled COMMGET and COMMPUT components are
deployed in the SAE within FlexData. Note that these both
reside in the same pipeline stage and, hence, conform to the
regular dataflow pipeline maintained across the remainder of
FlexData. In addition, since all of COMMGET, COMMPUT,
DM, RF, and IMM access distinct memory resources (with
separate memory banks employed within the SAE and an
FIFO employed per off-SAE communication channel), there
is no memory bandwidth bottleneck resulting from decoupling
these accesses in this way—all could be accessed, simultane-
ously if needed. SAE operand and result read/write cycles are
shown in Fig. 6(b).

C. Instruction Coding

To allow input (output) of data from (to) the appropriate
source (destination), both the physical source component
(RF, COMMGET, COMMPUT, DM, and IMM) and the appro-
priate addresses within each (i.e., memory location or com-
munication channel) have to be relayed within the instruction.
To accommodate this, SAE ALU instructions are expressed in
the following format:

INSTR dest,opA,opB,opC

where INSTR is the instruction class, dest identifies the
result destination, and opA, opB, and opC identify the source
operands. The possible encodings of each of dest, opA,
opB, opC, and the destination are described in Table II.

As described in Table II, all of RF, DM, COMMGET, and
COMMPUT are addressed directly via the absolute addresses
of the source/sink registers, memory locations, or external
channel, respectively. Constant operands are hard-coded into
the instruction and IMM locations allocated by the assembler.
The sizes of the address fields in the final instructions are
dynamically generated to match the configuration of the
processor and program—i.e., five bits are assigned for register
location for a 32-element RF, six bits for a 64-element RF,
and so on. Instruction fields for RF, DM, COMMGET, and
COMMPUT addresses are similarly determined at compile-
time by the SAE assembler.

D. Configuration

The highly customizable nature of the FPE is maintained
in the SAE, with the addition of parameters specific to the
configurable FlexData. The sizes of FlexData’s constituent

WANG AND MCALLISTER: STREAMING ELEMENTS FOR FPGA SIGNAL AND IMAGE PROCESSING ACCELERATORS 2267

TABLE III

FLEXDATA CONFIGURATION PARAMETERS

components can be defined presynthesis such to enable
operation-specific cost optimization via the configuration para-
meters described in Table III.

These configuration parameters enable substantial
customization: data_ws controls the data word size
for the SAE, while the depth of each the IMM, DM, and
RF is set by imm_depth, dm_depth, and rf_depth,
respectively. In addition, the number of physical delay cycles
inserted by FlexData is defined pre-synthesis via pp_depth:
any of zero, one or two cycles may be adopted.

There are two implicit issues of note in regard to config-
uration parameters. In the case where any of imm_depth,
dm_depth, and rf_depth are zero, the associated com-
ponent (IMM, DM, and RF) is absent from the synthesized
version of FlexData; this allows the absolute minimum set of
resources required to realize a given operation to be realized,
minimizing cost, with the added benefit of reducing the size of
the FlexData multiplexer whose size is configurable according
to the same parameters.

Furthermore, the nature of individual components can
change. For instance, the DM component is configured to
allow realization as either distributed RAM (DisRAM) realized
in the FPGA programmable logic LUTs, or by using the
dedicated on-chip BRAM. The threshold for this decision is
configurable as dm_thr. Specifically, if the DM capacity
does not exceed dm_thr, then it will be realized using
DisRAM; otherwise, it will be realized using BRAM. This
configurability allows this substantial architectural decision to
be made in an application specific manner. For the remainder
of this paper, this threshold is taken to be 256 words.

The SAE forms the basic building block of large-scale
streaming multicore architectures in a manner similar to that
of the FPE—it is a configurable-width SIMD with direct
external communication capability from which networks may
be composed via FIFO queues.

E. SAE-Based FFT

To illustrate the effect of the streaming architecture on
program size and efficiency, consider SAE-based FFT256 in
the same configurations analyzed in Section IV-A. Fig. 7
itemizes the program instructions for both 8-SAE and SAE8
and compares with those of the FPE.

As shown in Fig. 7(b), the streaming capabilities of the
SAE enable realizations which are much superior to the FPE.
In MIMD 8-SAE form, the total number of instructions
required is 257, a decrease of ∼91%. In addition, the

Fig. 7. FFT256: FPE and SAE comparison. (a) 8-FPE1. (b) 8-SAE1.
(c) FPE8. (d) SAE8.

Fig. 8. Itemized SAE MM and motion estimation (ME) operations. (a) MM.
(b) Motion estimation.

efficiency of this realization is now 99.6%, with only a
single non-ALU instruction required for control. Similarly,
SAE8 requires 95.9% fewer instructions and operates with
an efficiency of 98.4%. Given these metrics, it is reason-
able to anticipate increases in throughput for 8-SAE and
SAE8 by factors of 20 and 30 over their FPE counterparts.
Section VI-A measures the absolute performance and cost of
SAE-based FFT accelerators and compares these with custom
circuit architectures.

V. STREAMING BLOCK PROCESSING

The efficiency increases resulting from the streaming nature
of the SAE are highly encouraging, but in many operations,
addressing modes other than simple direct addressing are
vital; for instance, an itemized instruction breakdown for
the multiplication of two 32 × 32 matrices and full-search
ME (FS-ME) with a 16 × 16 macroblock on a 32 × 32 search
window are shown in Fig. 8.

These report the same high efficiency as the FFT detailed
in Section IV-E, but also extremely large programs—35 375
instructions for MM and 284 428 for FS-ME. This places
a heavy demand on FPGA memory resources for PM—in
the case of FS-ME, this would require 241 BRAMs for

2268 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 6, JUNE 2016

Fig. 9. SPE block matrix multiply operand addressing.

Listing. 1. Streaming MM C code.

PM storage alone. These extreme sizes follow from the restric-
tion to direct addressing, which dictates that the number of
instructions is bounded below, by the number of ALU opera-
tions; for MM and ME, this translates a very large number of
instructions.

Both MM and FS-ME perform a given operation many
times, repeatedly, on small subsets of the input data at reg-
ularly spaced memory locations leading to highly repetitive
behavior on regularly spaced memory locations. For instance,
consider block-MM of two matrices A ∈ R

m×n and B ∈ R
n×p

when m = n = p = 8 via four 4 × 4 submatrices. Assuming
that A and B are stored in DM contiguously and in row-major
order and that C is derived in row-major order, and the operand
memory access is shown in Fig. 9.

To compute an element of a submatrix of C , the inner
product of a four-element vector of contiguous locations in A
(a row of the submatrix) and a four-element vector of elements
spaced by eight locations in B (a column of the submatrix) is
formed. Afterward, either or both of the row of A or column
of B are incremented to derive the next element of C , before
the operation proceeds to the next submatrix. The resulting
memory accesses are highly predictable: a regular repeated
increment along the rows of A and the columns of B and
periodic realignment to a new row of A and/or column of
B repeated multiple times before realigning for subsequent
submatrices.

This behavior is compactly represented using a loop-based
code—for example, MM pseudocode is given in Listing 1.
Each repeat operation realizes a predefined number of iter-
ations over its body, with affine combinations of the iterators
j, k, or l indexing the operands.

To support this highly compact expression of behavior
for operations, such as MM and FS-ME, the SAE needs to
combine two facilities: repeat-style behavior with the abil-
ity for a single instruction to address blocks of memory

Fig. 10. SAE loop manager elements. (a) PC architecture. (b) PCM behavior.

at regularly-spaced locations when invoked multiple times
by a repeat. While repeat-type instructions are evident
in conventional processors, there is no record of a softcore
processor for FPGA which realizes these capabilities and as
such their realization within the stringent cost constraints of
the FPGA accelerators.

A. Zero-Overhead Loop Execution

In order to support low overhead loop operation, the SAE is
augmented with the ability to perform repeat-type behavior.
This means managing the PC, such that in the event of such
an instruction, the body of the repeat statement is executed a
number of times. This task is fulfilled by a PC manager (PCM).
The structure of the SAE PC and PCM and the behavior of
the PCM are shown in Fig. 10.

The PCM controls the update of the PC given its previous
value and the instruction referenced in PM given pieces of
information—the start and end lines of the body statements to
be repeated S and E, the number of repetitions N. These are
encoded in an RPT instruction added to the SAE instruction
set. These instructions are encoded as

RPT N S E.

WANG AND MCALLISTER: STREAMING ELEMENTS FOR FPGA SIGNAL AND IMAGE PROCESSING ACCELERATORS 2269

Listing. 2. RPT instruction coding.

TABLE IV

PC CONFIGURATION PARAMETERS

The intended use of RPT is shown in Listing 2, which
dictates five repetitions of lines 2–5. Any number of repeat
instructions can be nested to allow efficient execution of loop
nests with static and compile-time known loop bounds.

The PCM arbitrates the PC to ensure the correct number
of repetitions of the body statement and to support the con-
struction of nested repeat operations by enacting the flowchart
in Fig. 10. Specifically, for an n-level nest, it maintains
n + 1-element lists of metrics, with an additional element
added to support infinite repetition of the top-level program,
considered to be an implicit infinite repeat instruction. For
layer i of the loop nest, the start line, end line, and number of
repetitions are stored in element i + 1 of the lists s, e, and n,
respectively. In all cases s0 = 0, e0 = ∞ and n0 = ∞ to
represent the start line, end line, and number of repetitions of
the top-level program [in Fig. 10(b)].3 Every time a repeat
instruction is encountered i , the current index into s, e, and n
is incremented and the values of the new element initialized
using S, E, and N from the decoded instruction in ❸. Regular
PC updating then proceeds (❶) until either another repeat
instruction is detected or until ei is encountered. In the latter
case, the number of iterations of the current statement is
decremented (❷), or if ni = 0, all of the iterations of the
current repeat statement have been completed and control of
the loop nest reverts to the previous level (❹).

The PCM operation described in Fig. 10 was realized
using behavioral VHDL and synthesized. The cost of the
basic PCM component is 36 LUTs, a cost which should
only be accepted in cases where it can enable a substantial
cost/performance benefit, for instance when it can substan-
tially reduce program size and, therefore, PM cost, with the
saving preferably outweighing the cost of the PCM. To allow
minimum cost for every application, the PC is configurable
via the parameters listed in Table IV.

As shown in Table IV, pcm_en dictates whether the PCM is
included in the synthesized architecture or otherwise it takes
a Boolean value. In the case where a PCM is included, the
maximum depth of loop nest is configurable via pcm_en
which can take, hypothetically, any value. As such, the PCM
may be included or excluded and, hence, imposes no cost when
it is not required; furthermore, when it is included, its cost can

3Note that this assumes that the end line of the program is a JMP instruction
with the start line as the target.

Fig. 11. SAE block memory management elements. (a) SAE FlexData.
(b) Pointer architecture.

be tuned to the application at hand by adjusting the maximum
depth of loop nest.

B. Block Data Memory Access

To enable block memory access capability, three important
capabilities are required:

1) autoincrement with any constant stride;
2) manual increment with any stride;
3) custom offset.
Each of these behaviours is evident in MM: auto-increment

traverses along rows and colmuns with a fixed stride. There
are many such operations and so eliminating the need for an
individual instruction for each reduces the overall instruction
count considerably. Manual increment is required for move-
ment between rows/columns, while custom offset is used to
identify the starting point for the increments, such as the first
element of a submatrix.

To enable these capabilities, a block memory man-
ager (BMM) is incorporated in the SAE FlexData, as shown
in Fig. 11. As shown, the BMM arbitrates access to DM via
read pointers (RPs) and write pointers (WPs). The architecture
of FlexData and a pointer is shown in Fig. 11(b).

Each pointer controls access to a subset (block) of the
SAE DM and addresses individual elements of that block via
a combination of two subaddress elements as follows.

1) Offset selects the root block data element.
2) Base iterates over elements relative to the offset.
A pointer operates in one of three modes. Either the base

autoincrements, or it is incremented by explicit instruction, or
the offset increments by explicit instruction. All three modes
are supported under the control of the set, inc, and data
interfaces. The offset is used to select the root data element
of the submatrices of A, B , and C , with the base added to
address elements relative to the offset. The base is updated
via two mechanisms, under the control of inc. The first
autoincrements by a value [s_stride in Fig. 11(b)], the

2270 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 6, JUNE 2016

TABLE V

BMM CONFIGURATION PARAMETERS

TABLE VI

BMM INSTRUCTIONS

TABLE VII

ALU BLOCK OPERAND INSTRUCTION CODING

value of which is set as a constant presynthesis. To enable
manual increment of the base, c_stride is set via the data
signal. Finally, when update of the offset is required, the value
of data is accepted on the assertion of set.

The BMM and pointer architectures were expressed in
behavioral VHDL and synthesized, with a total resulting cost
of 40 LUTs per pointer. In common with the PCM, this
is a substantial overhead and one which should be incurred
only when the performance/cost benefit makes it sustainable.
To allow absolute minimum cost for any operation, the config-
uration parameters for the SAE FlexData, BMM, and pointer
components are included as listed in Table V.

As shown in Table V, addressing mode is now a config-
uration parameter of the SAE, with direct and block modes
supported. In the former, the BMM is absent and imposes
no cost on synthesis, while it is included in the latter. In the
case of block addressing mode, the cost can be tuned to the
application at hand by defining the number of RP and WP via
n_rptrs and n_rptrs. Finally, the autoincrement stride
s_stride for each pointer is fixed at the point of synthesis.

To support custom increment of the base and offset for each
pointer, the SAE instruction set is updated to BMM instruc-
tions of the form

INSTR n val

where n denotes the pointer to which the instruction is to be
applied. The permitted values of INSTR and the correspond-
ing behavior are as described in Table VI.

To control the extra functionality enabled by the BMM,
ALU operands accessing DM have an alternate encoding,
which takes the form

&<ofs><idx><!>.

This encoding is elaborated in Table VII.

C. Off-SAE Communications

The COMMGET and COMMPUT components are shown
in Fig. 12, with the aspects in which both are configurable
pre-synthesis summarized in Table VIII.

Fig. 12. SAE COMM adapters. (a) COMMGET. (b) COMMPUT. (c) COMM
pointer.

TABLE VIII

COMM CONFIGURATION PARAMETERS

As shown in Fig. 12, each of COMMGET and COMMPUT
can operate under direct and block addressing modes as
determined via the mode parameter. In direct mode, individual
FIFO channels via addresses encoded within the instruction.
Instructions for either COMM unit are encoded as

ˆ<p><ofs/idx><!>

where p differentiates peek (read-without-destroying) and
get (read-and-destroy) operations, ofs denotes the offset,
idx denotes the pointer reference, and ! denotes the autoin-
crement flags.

D. Stream Frame Processing Efficiency

Consider the impact of adopting the repeat and block
memory access facilities of the SAE on the realizations of MM
and FS-ME detailed previously. The number of instructions in
each category for the direct (SAE) and block-based (SAE-B)
SAE modes is described in Table IX.

As shown in Table IX, the substantial reductions in program
size have resulted, with SAE-B requiring fewer than 1% of the
number of instructions required by SAE. As such, adopting
a stream processing model and enabling advanced program
control and memory addressing have had a clear beneficial
effect on program efficiency and scale.

It should be noted that the only side effect of employing
zero-overhead loop execution and/or block DM accesses is

WANG AND MCALLISTER: STREAMING ELEMENTS FOR FPGA SIGNAL AND IMAGE PROCESSING ACCELERATORS 2271

Fig. 13. SAE accelerators. (a) T . (b) Clk (MHz). (c) LUTs. (d) DSP48e. (e) BRAM.

TABLE IX

SAE-BASED MM AND ME: ITEMIZED PM

that of the extra resource cost required to integrate these
components within the SAE. There is no effect on the timing
or behavior of a program beyond that made explicit in the pro-
gram by deploying INC_RP, INC_WP, SET_RP, or SET_WP
in the program instruction stream. For instance, in a typical
indirect addressing scheme, the use of an indirect addressing
instruction implies lookup of another value from, for example,
a specific register or memory address, implying multicycle
latency. This scheme, in contrast, contains all information
required to properly handle RPT instructions, and block mem-
ory accesses are either available in the instruction or locally in
the handling PCM or BMM units. No multicycle or variable
latency instructions are required.

Section VI quantifies and compares the SAE-based accel-
erators for a number of typical signal and image processing
operations against real-time performance criteria and custom
circuit and soft processor alternatives.

VI. EXPERIMENTS

SAE-based accelerators for five typical signal and image
processing operations were created:

1) 512-point FFT;
2) 1024 × 1024 MM;
3) SED on 1280 × 768 image frames;
4) FS-ME with 16 × 16 macroblock and 32 × 32 search

window on common intermediate format (CIF) 352×288
images;

5) variable block size ME (VBS-ME) with 16 ×16 macro-
block and 32 × 32 search window on CIF 720 × 480
images.

These applications have been chosen to gauge the ability
of the SAE configurations for each of these accelerators is
detailed in Table X, which enable real-time performance for
communications and video standards (FFT, FS-ME, and VBS-
ME), and to allow objective comparison with fixed-function
custom circuits (FFT). The SAE assembler has been updated to

TABLE X

SAE-BASED ACCELERATOR CONFIGURATIONS

support all of the new instructions detailed in Sections IV and
V. All accelerators target Xilinx Kintex-7 XC7K70TFBG484
using Xilinx ISE 14.2; all quoted performance and cost results
are post-place-and-route.

These configurations reveal much about the SAE; partic-
ularly notable is the absence of any RF component in MM,
FS-ME, and FFT, a very substantial saving enabled directly by
the dual-streaming nature of the SAE exploiting only COMM
and DM components. The wide flexibility of the SAE enables
a number of notable firsts in the performance and cost results
in Fig. 13. Specifically, throughput for FS-ME is sufficiently
high as to enable real-time performance for H.264, while
VBS-ME can support real-time processing of 480p video in
H.264 Level 2.2. To the best of our knowledge, this is the first
time an FPGA-based software-programmable component has
demonstrated this capability. These performance and cost met-
rics are compared with custom circuit and softcore realizations
in the remainder of this section.

A. IP Comparison Case Study: FFT for 802.11ac

To objectively measure and compare the performance and
cost of SAE-based accelerators relative to custom circuits,
SAE-based FFTs for IEEE 802.11ac transmitters have been
developed and compared with realizations using the Xilinx
FFT and those generated by Spiral [27]. The IEEE 802.11ac
standard [28] mandates eight-channel FFT operations on
20-, 40-, 80-, and 160-MHz frequency bands with FFT size
and throughput requirements as outlined in Table XI.

The multi-SAE accelerator configurations are summa-
rized in Table XII.4, 5 The performance and cost of the

4In the case where more than one SAE is used, the configurations of each
are presented in vector format.

5Note that FFT512 takes a different configuration to the 512-point FFT
previously addressed.

2272 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 6, JUNE 2016

Fig. 14. FPGA-based FFT: performance and cost. (a) LUT cost (×103). (b) DSP48E cost. (c) BRAM cost. (d) % Device occupied. (e) T (×109 samples/s).
(f) T /LUT (×106). (g) T /DSP48E (×106). (h) T /BRAM (×106).

TABLE XI

802.11ac FFT CHARACTERISTICS

TABLE XII

SAE FFT CONFIGURATIONS

resulting architectures are described in Fig. 14. The LUT,
DSP48E, BRAM, and overall device occupation costs are
given in Fig. 14(a)–(d), while throughput T and resource effi-
ciency are shown in Fig. 14(e) and Fig. 14(f)–(h), respectively.

Fig. 14 shows that the SAE FFT accelerators for 802.11ac,
supported by the clock rates of 528 MHz (FFT64 and FFT128),
506 MHz (FFT256), and 512 MHz (FFT512), the real-time
throughput requirements listed in Table XI are satisfied.
In addition, the performance and cost are highly competi-
tive with the Xilinx and Spiral custom circuits. As shown
in Fig. 14(a)–(c), the LUT, DSP48E, and BRAM costs are
lower than the Xilinx FFT in 9 out of 12 cases, with the
savings of up to 69%, 53%, and 56%. When measured as the
proportion of device occupied (Fig. 14), the SAE is up to 36%
smaller. The Xilinx FFT offers consistently higher throughput
but at disproportionately greater cost, with SAE resource effi-
ciency superior in 7 out of 12 cases in Fig. 14(f)–(h); increases
in LUT, DSP48E, and BRAM efficiency exceed the factors
of 3.2, 1.7, and 1.3.

Relative to the Spiral FFT, the performance and cost of
the SAE accelerators are similarly encouraging, enabling

increased throughput in all but one case and reduced LUT
and BRAM costs in 7 out of 8 cases; savings reaching
62.8% and 55%, respectively. The Spiral FFTs have consis-
tently lower DSP48E cost; however, the total proportion of the
device occupied by each, reported in Fig. 14, remains in favor
of the SAE in all but one instance. These metrics describe
consistently more efficient use of LUT and BRAM by the
SAE by factors of up to 3.3 and 2.9, respectively; although
Spiral is consistently more efficient in its use of DSP48E, the
SAE still exhibits superior efficiency in 8 out of 12 cases.

These are highly encouraging results, repeated when
compared with commercial FFT components—e.g., the
6.4-Gsample/s 512-point FFT in [29] exhibits LUT, DSP48E,
and BRAM efficiency metrics of 0.17, 22.2, and 100.2—in
only the DSP48E case are these figures superior, with the
SAE exhibiting substantially higher LUT and BRAM resource
efficiency. The generally more favorable cost, performance,
and efficiency metrics in all the alternatives surveyed here
suggest that the SAE enables architectures, which are highly
competitive with custom circuits. Given that the SAE is
a software-programmable processor, this is a substantial
breakthrough—indeed to even get within an order of mag-
nitude is a unique result. To the best of our knowledge, this is
the first record of a software-programmable components with
this capability for FPGA, or indeed, any other technology.

B. Soft Processor Comparison

The performance and cost of SAE-based MM and FS-ME
are compared with other soft processors in Figs. 15 and 16.

When applied to MM, the performance and cost advan-
tages relative to 32-way VEGAS (VEGAS32) [15] and 4-way
VENICE (VENICE4) [16] are clear. Relative to VEGAS32,
throughput is increased by a factor of 2, despite requiring
only 25% of the number of datapath lanes. The accompa-
nying LUT, DSP48E, and BRAM cost reductions of 96%,
75%, and 50% lead to LUT, DSP48E, and BRAM effi-
ciency increases by factors of 66.7, 8.8, and 4.5, respec-
tively. Compared with VENICE4, throughput is increased by

WANG AND MCALLISTER: STREAMING ELEMENTS FOR FPGA SIGNAL AND IMAGE PROCESSING ACCELERATORS 2273

Fig. 15. Softcore MM: performance and cost comparison. (a) T (MM/s). (b) LUTs. (c) DSP48E. (d) BRAM. (e) T /LUT (×10−3). (f) T /DSP (×10−3).
(g) T /RAM (×10−3).

Fig. 16. Softcore FS-ME: performance and cost comparison. (a) T (frames/s). (b) LUTs (×103). (c) DSP48E. (d) BRAM. (e) T /LUT (×10−3). (f) T /DSP48E.
(g) T /BRAM.

a factor of 4.7, while LUT and BRAM costs are reduced by
76% and 5%, respectively; correspondingly, the efficiency of
LUT, DSP48E, and BRAM exploitation reaches the factors
of 20, 2.9, and 5.1, respectively. The increased throughput
over [24] is accompanied by LUT, DSP48E, and BRAM
resource cost reductions by 69.4%, 50%, and 83.3% with
efficiency increased by factors of 5, 2.7, and 9, respectively.

SAE-based ME is compared with the VIPERS16, the
VEGAS4 and VENICE4, and the FPE in Fig. 16. SAE32 is the
only realization capable of supporting the 30-frames/s through-
put requirement for standards, such as H.264, with absolute
throughput increased by factors of 22.3, 9.8, and 6.8 relative
to VIPERS16, VEGAS4, and VENICE4. This increased perfor-
mance is accompanied by very strong reductions in resource
cost. LUT and DSP48E costs are reduced by 80.1% and 98.1%
relative to VIPERS16 increasing LUT, DSP48E, and BRAM
efficiency by factors of 112, 1203.9, and 7, respectively.
Similarly, LUT, DSP48E, and BRAM costs are reduced by
77.7%, 95%, and 50% relative to VEGAS4, with efficiency
increased by factors of 44.1, 196.4, and 19.6. Finally, relative
to VENICE4, LUT and DSP48E costs are reduced by 97.2%
and 95%, indicating efficiency increases in LUT, DSP48E,
and BRAM resources by factors of 239.3, 135.5, and 3.6,
respectively. In addition these performance and cost metrics
are well beyond those of the early works presented in [24],
with throughput increased by a factor of 1.9 with associated
LUT, DSP48E, and BRAM costs reduced by 60.2%, 95.5%,
and 27.3% leading to efficiency increases by factors of 4.8,
41.7, and 2.6, respectively. As a reference, Li and Leong
[30] quote an FS-ME circuit for Xilinx Virtex-II FPGA with
T /LUT of 0.053.

While it is very difficult to precisely directly compare the
SAE approach with that of VIPERS, VESPA, or VEGAS
owing to differences in the FPGA technologies device gen-
erations,6 it is clear that very substantial cost and perfor-
mance benefits have accrued from the use of SAE. Similarly,
assuming performance and cost scale linearly with matrix size,

6VIPERS and VEGAS both exploit Altera Stratix III FPGA, while VEGAS
exploits Altera Stratix IV.

the TCPA described in [20] would require ∼21 000 LUTs
for a 4 × 4 array, which would support the multiplication
of 1024 × 1024 at ∼8 MM/s. The resulting T /LUT metric
of 3.81 × 10−4 is almost an order of magnitude lower than
that of the SAE.

These results demonstrate the benefit of the SAE relative to
other soft processors—coupled performance/cost increases of
up to three orders of magnitude. Of course, the softcores to
which the SAE is compared here are general-purpose compo-
nents and, hence, offer substantially greater run-time process-
ing capability than the SAE, which is highly tuned to the
operation for which it was created. In that respect, the SAE is
more a component for constructing fixed-function accelerators
than a general-purpose softcore. However, despite employing
similar multilane processing approaches as VIPERS, VEGAS,
and VENICE, the SAE’s focus on extreme efficiency, multi-
core processing, stream processing, and novel block memory
management has enabled very substantial performance and
cost benefits.

VII. CONCLUSION AND FUTURE WORK

Soft processors for FPGA suffer from substantial cost and
performance penalties relative to custom circuits handcrafted
at register transfer level. Performance and resource overheads
associated with the need for a host general-purpose processor,
load-store processing, loop handling, addressing mode
restrictions, and inefficient architectures combine to amplify
cost and limit performance.

This paper describes the first approach, which challenges
this convention. The SAE presented realizes accelerators using
multicore networks of fine-grained, high-performance, and
standalone processors. The SAE enables performance and cost
unprecedented among soft processors by adopting a streaming
operation model to ensure high efficiency combined with
advanced loop handling and addressing constructs for very
compact and high-performance operation on large data sets.
These enable efficiency routinely in excess of 90% and per-
formance and cost which are comparable with custom circuit
accelerators and well in advance of existing soft processors.

2274 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 6, JUNE 2016

Specifically, the real-time accelerators for 802.11ac FFT and
H.264 FS-ME VBS-ME are described; the former of these
exhibits performance and cost, which are highly competitive
with custom circuits. In addition, it is shown how SAE-based
MM and ME accelerators offer improvements in resource/cost
by up to three orders of magnitude. To the best of our
knowledge, these capabilities are unique, not only for FPGA,
but for any semiconductor technology.

This paper lays a promising foundation for the construction
of complete FPGA accelerators, but in addition may be used
to further ease the design process. For example, in the case
where off-chip memory access is required, the programmable
nature of the SAE means that it may also be used as a memory
controller to execute custom memory access schedules and
highly efficient block access. However, resolving this and other
accelerator peripheral functions is left as future work.

ACKNOWLEDGMENT

The authors would like to thank Dr. X. Chu and Dr. Y. Wu
for their valuable input to this paper.

REFERENCES

[1] 7 Series DSP48E1 Slice User Guide, Xilinx, Inc., San Jose, CA, USA,
Aug. 2013.

[2] Stratix V Device Handbook, Altera, Inc., San Jose, CA, USA, Jan. 2014.
[3] 7 Series FPGAs Memory Resources User Guide, Xilinx, Inc., San Jose,

CA, USA, Jan. 2014.
[4] J. McAllister, “FPGA-based DSP,” in Handbook of Signal Processing

Systems, S. S. Bhattacharyya, E. F. Deprettere, R. Leupers, and
J. Takala, Eds. New York, NY, USA: Springer, 2010,

[5] B. Klauer, “The convey hybrid-core architecture,” in High-Performance
Computing Using FPGAs, W. Vanderbauwhede and K. Benkrid, Eds.
New York, NY, USA: Springer, 2014, pp. 431–451.

[6] O. Pell, O. Mencer, K. H. Tsoi, and W. Luk, “Maximum performance
computing with dataflow engines,” in High-Performance Computing
Using FPGAs, W. Vanderbauwhede and K. Benkrid, Eds. New York,
NY, USA: Springer, 2014, pp. 747–774.

[7] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for FPGAs: From prototyping to deployment,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 4,
pp. 473–491, Apr. 2011.

[8] A. Papakonstantinou, K. Gururaj, J. A. Stratton, D. Chen, J. Cong, and
W.-M. W. Hwu, “FCUDA: Enabling efficient compilation of CUDA
kernels onto FPGAs,” in Proc. IEEE 7th Symp. Appl. Specific Processors,
Jul. 2009, pp. 35–42.

[9] S. O. Settle, “High-performance dynamic programming on FPGAs with
OpenCL,” in Proc. IEEE High Perform. Extreme Comput. Conf. (HPEC),
Sep. 2013, pp. 1–6.

[10] J. Yu, G. Lemieux, and C. Eagleston, “Vector processing as a soft-core
CPU accelerator,” in Proc. 16th Int. ACM/SIGDA Symp. Field Program.
Gate Arrays (FPGA), 2008, pp. 222–232.

[11] MicroBlaze Processor Reference Guide, Xilinx, Inc., San Jose, CA,
USA, Apr. 2014.

[12] Nios II Processor Reference Handbook, Altera, Inc., San Jose, CA, USA,
Feb. 2014.

[13] J. Yu, C. Eagleston, C. H.-Y. Chou, M. Perreault, and G. Lemieux,
“Vector processing as a soft processor accelerator,” ACM Trans.
Reconfigurable Technol. Syst., vol. 2, no. 2, Jun. 2009, Art. ID 12.

[14] P. Yiannacouras, J. G. Steffan, and J. Rose, “Portable, flexible,
and scalable soft vector processors,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 20, no. 8, pp. 1429–1442, Aug. 2012.

[15] C. H. Chou, A. Severance, A. D. Brant, Z. Liu, S. Sant, and
G. G. F. Lemieux, “VEGAS: Soft vector processor with scratchpad
memory,” in Proc. 19th ACM/SIGDA Int. Symp. Field Program. Gate
Arrays (FPGA), 2011, pp. 15–24. [Online]. Available: http://doi.acm.org/
10.1145/1950413.1950420

[16] A. Severance and G. Lemieux, “VENICE: A compact vector
processor for FPGA applications,” in Proc. Int. Conf. Field-Program.
Technol. (FPT), Dec. 2012, pp. 261–268.

[17] H. Y. Cheah, F. Brosser, S. A. Fahmy, and D. L. Maskell,
“The iDEA DSP block-based soft processor for FPGAs,” ACM Trans.
Reconfigurable Technol. Syst., vol. 7, no. 3, Aug. 2014, Art. ID 19.

[18] K. Ravindran, N. Satish, Y. Jin, and K. Keutzer, “An FPGA-based soft
multiprocessor system for IPv4 packet forwarding,” in Proc. Int. Conf.
Field Program. Logic Appl., Aug. 2005, pp. 487–492.

[19] D. Unnikrishnan, J. Zhao, and R. Tessier, “Application specific
customization and scalability of soft multiprocessors,” in Proc. 17th
IEEE Symp. Field Program. Custom Comput. Mach. (FCCM), Apr. 2009,
pp. 123–130.

[20] F. Hannig, V. Lari, S. Boppu, A. Tanase, and O. Reiche, “Invasive
tightly-coupled processor arrays: A domain-specific architecture/
compiler co-design approach,” ACM Trans. Embedded Comput. Syst.,
vol. 13, no. 4s, Jul. 2014, Art. ID 133.

[21] R. W. Hartenstein, A. G. Hirschbiel, M. Riedmuller, K. Schmidt, and
M. Weber, “A novel ASIC design approach based on a new machine
paradigm,” IEEE J. Solid-State Circuits, vol. 26, no. 7, pp. 975–989,
Jul. 1991.

[22] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and
M. Weinhardt, “PACT XPP—A self-reconfigurable data processing
architecture,” J. Supercomput., vol. 26, no. 2, pp. 167–184, 2003.

[23] X. Chu and J. McAllister, “Software-defined sphere decoding for
FPGA-based MIMO detection,” IEEE Trans. Signal Process., vol. 60,
no. 11, pp. 6017–6026, Nov. 2012.

[24] P. Wang and J. McAllister, “Soft-core stream processor for sliding
window applications,” in Proc. IEEE Workshop Signal Process.
Syst. (SiPS), Oct. 2013, pp. 213–218.

[25] P. Wang, J. McAllister, and Y. Wu, “Soft-core stream processing on
FPGA: An FFT case study,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process. (ICASSP), May 2013, pp. 2756–2760.

[26] LogiCORE IP Fast Fourier Transform v7.1, Xilinx, Inc., San Jose, CA,
USA, Mar. 2011.

[27] P. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Computer
generation of hardware for linear digital signal processing transforms,”
ACM Trans. Design Autom. Electron. Syst., vol. 17, no. 2, Apr. 2012,
Art. ID 15.

[28] Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications—Amendment 4: Enhancements
for Very High Throughput for Operation in Bands Below 6 GHz,
IEEE Standard P802.11ac/D2.2, 2012.

[29] Dillon Engineering—Dual Parallel FFT. [Online]. Available: http://
www.dilloneng.com/dual-parallel-fft.html, accessed Dec. 1, 2015.

[30] B. M. H. Li and P. H. W. Leong, “Serial and parallel FPGA-based
variable block size motion estimation processors,” J. Signal Process.
Syst., vol. 51, no. 1, pp. 77–98, Apr. 2008.

Peng Wang received the B.S. degree in electronics
engineering from Shandong University, Shandong,
China, in 2008, the M.Sc. degree in instrumentation
science from Beihang University, Beijing, China,
in 2011, and the Ph.D. degree in electronics engi-
neering from Queen’s University Belfast, Belfast,
U.K., in 2014.

He has been a Design Engineer with ARM,
Cambridge, U.K., since 2014. His current research
interests include processor architectures and signal
processing.

John McAllister (S’02–M’04–SM’13) received
the Ph.D. degree in electronics engineering from
Queen’s University Belfast, Belfast, U.K., in 2004.

He is currently a Senior Lecturer with Queen’s
University Belfast, where he leads a group of
researchers in embedded architectures, and elec-
tronic system level design technologies for stream-
ing applications, with a specific focus on field-
programmable gate array targets. He is the
Co-Founder of Analytics Engines Ltd., Belfast.

Dr. McAllister is a member of the IEEE Signal
Processing Society and its Technical Committee on Design and Implementa-
tion of Signal Processing Systems. He is the Chief Editor of SigView, the IEEE
SPS tutorial library, and an Associate Editor of the IEEE TRANSACTIONS

ON SIGNAL PROCESSING and the Journal of Signal Processing Systems
(Springer). He serves on the program committees of a number of IEEE
conferences, including the International Conference on Acoustics, Speech and
Signal Processing and the Workshop on Signal Processing Systems: Design
and Implementation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

