
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 5, MAY 2015 905

An I/O Efficient Model Checking Algorithm
for Large-Scale Systems

Lijun Wu, Huijia Huang, Kaile Su, Shaowei Cai, and Xiaosong Zhang

Abstract— Model checking is a powerful approach for the
formal verification of hardware and software systems. However,
this approach suffers from the state space explosion problem,
which limits its application to large-scale systems due to space
shortage. To overcome this drawback, one of the most effective
solutions is to use external memory algorithms. In this paper,
we propose an I/O efficient model checking algorithm for
large-scale systems. To lower I/O complexity and improve time
efficiency, we combine three new techniques: 1) a linear hash-
sorting technique; 2) a cached duplicate detection technique; and
3) a dynamic path management technique. We show that the new
algorithm has a lower I/O complexity than state-of-the-art I/O
efficient model checking algorithms, including detect accepting
cycle, maximal accepting predecessors, and iterative-deepening
depth-first search. In addition, the experiments show that our
algorithm obviously outperforms these three algorithms on the
selected representative benchmarks in terms of performance.

Index Terms— Duplicate detection, dynamic search path
management, linear hash-sorting, model checking, state space
explosion.

I. INTRODUCTION

MODEL checking is a powerful approach for the formal
verification of hardware and software systems. When

applicable, it automatically checks whether or not a system
satisfies a given specification via detection of counterexamples.
There have been a lot of efforts applying model check-
ing in hardware verification [1]–[4]. However, this approach
severely suffers from the state space explosion problem, which
renders it inapplicable to large-scale systems due to space
shortage [5].

Practical model checking algorithms mainly fall into
two types: 1) internal memory algorithms; and 2) external
algorithms. To overcome the state space explosion problem,

Manuscript received November 22, 2013; revised May 4, 2014; accepted
June 9, 2014. Date of publication July 8, 2014; date of current version
April 22, 2015. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grants 61370072 and 61073033 and in part
by the Australian Research Council Discovery under Grant DP110101211.

L. Wu is with the School of Computer Science and Engineering, University
of Electronic Science and Technology of China, Chengdu 611731, China
and also with the School of Information Technology and Electrical Engi-
neering, University of Queensland, Brisbane, Qld. 4072, Australia (e-mail:
wljuestc@gmail.com).

H. Huang and X. Zhang are with the School of Computer Science
and Engineering, University of Electronic Science and Technology
of China, Chengdu 611731, China (e-mail: gzzsudocwlj@yahoo.com;
xiaosongzhanguestc@sina.com).

K. Su is with the Institute for Integrated and Intelligent Systems, Griffith
University, Brisbane, Qld. 4072, Australia (e-mail: kailesuuestc@sina.com).

S. Cai is with the State Key Laboratory of Computer Science, Institute of
Software, Chinese Academy of Sciences, Beijing, China and the Queensland
Research Laboratory National ICT Australia, Brisbane, Australia (e-mail:
shaoweicaiuestc@sina.com).

Digital Object Identifier 10.1109/TVLSI.2014.2330061

internal memory algorithms focus on reducing system size or
representation. To this end, many techniques are introduced,
such as partial order reduction [6], symmetry reduction [7],
abstraction [8], compositional approach [9], symbolic model
checking [10], symbolic trajectory evaluation (STE), automata
theory [11], and bounded model checking [12]. Nevertheless,
due to the internal memory limitation, internal memory algo-
rithms become inapplicable to real-life industrial systems with
large scale.

Compared with internal memory, external memory devices
(disks) can provide much larger space. In addition, in the past
few years, there have been enormous increase in the capacity
of magnetic disks, with little increase in their cost, resulting
in dramatic reductions in the cost per byte. Magnetic disk
is about two and a half orders of magnitude cheaper than
the semiconductor memory [13], which suggests the idea of
using external memory in model checking large-scale systems.
Because external memory access is orders of magnitude slower
than internal memory access [14], [15], the main concern for
external memory algorithms is to reduce the number of I/O
operations so as to improve their time efficiency.

In this paper, we propose an I/O efficient model checking
algorithm for large-scale systems based on nested depth-first
search [16], called IOEMC. To lower I/O complexity and
improve time efficiency, we combine three new techniques:
1) a linear hash-sorting algorithm denoted by LHS; 2) a cached
duplicate detection technique denoted by CDD; and 3) a
dynamic path management technique denoted by DPM. The
algorithm LHS aims to quickly locate a record in a hash table
on disk by the hash value of a state. Whenever the hash table
storing visited states in the internal memory is full, it merges
the hash table into the sorted hash table in external memory
and sorts the new hash table in external memory by a special
technique. The I/O complexity of this algorithm is linear in
the size of the two hash tables together. The CDD technique
allows almost all duplicate detections to be performed in
internal memory by efficient management of visited states.
With LHS together, CDD significantly reduces the cost of
duplicate detection. The scheme DPM makes two stacks of the
nested depth-first search, dynamically share the same memory
section, and solves the memory dithering problem by efficient
management of stacks and states, where the memory dithering
refers to the phenomenon that states are frequently moved into
and out of the internal memory (see Section V-D), which may
significantly increase the number of I/O operations and thus
reduce the efficiency of an algorithm.

For demonstrating the effectiveness of IOEMC, we compare
it with state-of-the-art I/O efficient linear temporal logic (LTL)

1063-8210 © 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

906 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 5, MAY 2015

model checking algorithms, including detect accepting cycle
(DAC) [14], maximal accepting predecessors (MAP) [17], and
iterative-deepening depth-first search (IDDFS) [18]. The com-
plexity comparisons show that IOEMC has lower I/O complex-
ity than DAC, MAP, and IDDFS. Furthermore, the experiments
show that the time efficiency of IOEMC is obviously better
than its competitors.

The rest of this paper is organized as follows. We describe
a running example in Section II. Section III provides some
necessary knowledge used in this paper. In Section IV, we
introduce the related work. And then, we propose an I/O effi-
cient LTL model checking algorithm for large-scale systems
based on LHS, CDD, and DPM in Section V. In Sections VI
and VII, we compare our algorithm’s I/O complexity and
practical performance with that of DAC, MAP, and IDDFS.
Section VIII discusses the parameter used in the dynamic path
management technique DPM and state number limit. Finally,
we conclude this paper in Section IX.

II. EXAMPLE

In order to illustrate the related concepts and our
algorithm, we use I T C ′99, b15(std) as a running example,
which is also a benchmark in the experiment of this paper.
I T C ′99, b15(std) is a standard 80386 processor (subset) that
has 671 VHDL (VHSIC Hardware Description Language)
lines, three processes, 8922 gates, 36 primary inputs,
70 primary outputs, 449 flip-flops, 21 logic-zero, nine logic-
one, and 53 018 faults in complete fault list, where VHSIC
is the abbreviation of very high speed integrated circuit. Its
RT (register transfer) level VHDL description can be found
in [19]. Two properties to be verified for I T C ′99, b15(std)
are as follows.

1) P1: AG(reset=′1′∧ Pro0@s3), meaning that whenever
80386 processor is reset, the system process Pro0 will
forever stay at the third state s3.

2) P2: E F(reset=′1′∧ Pro0@s3), meaning that there is
one path such that the system process Pro0 will even-
tually research the third state s3 along the path when
80386 processor is reset.

III. PRELIMINARIES

In this section, we provide a brief introduction of some nec-
essary notions used in this paper. Please refer to [5] and [20]
for more details.

A. Model Checking and Automata

Model checking is a technique that checks if a system
satisfies the given specification, where the specification is
the property that the system needs to satisfy, which is
expressed by a logical formula. For example, the verified
properties of the benchmark I T C ′99, B15(std) are expressed
by AG(reset=′1′∧ Pro0@s3) and E F(reset=′1′∧ Pro0@s3).
The automata-theoretic approach is one of the most efficient
model checking techniques.

Formally, a finite automaton (over finite words) M is a five
tuple (

∑
, Q,�, Q0, F) such as follows.

1)
∑

is the finite alphabet. The letters in
∑

are used for
transition labels.

2) Q is the finite set of states.
3) � ⊆ Q × ∑ × Q is the transition relation,

(q1, a, q2) ∈ � means that state q1 transits to state q2
through the edge labeled with letter a. The a is called
a transition label.

4) Q0 ⊆ Q is the set of initial states.
5) F is the set of final states (or accepting states).

We use L(M) to denote the language accepted by M. Suppose
the specification (or property) that the system needs to satisfy
is expressed by LTL formula ϕ, the negation ¬ϕ of the specifi-
cation is translated into automaton S = (

∑
, Q2,�2, Q0

2, F2),
and the system to be verified is translated into automaton
A = (

∑
, Q1,�1, Q0

1, F1). According to [5] and [14], model
checking is to check whether or not there is an accepting cycle
accessible from some initial state in the intersection automaton
of A and S which is denoted by A ∩ S, where a cycle is a
path that first vertex (state) and last vertex of the path are
the same, and an accepting cycle is a cycle going through
some accepting vertex. If there exists such a cycle, then the
path consisting of the accepting cycle and the path from some
initial state to the cycle is a counterexample; otherwise, the
system satisfies the given specification. Thus, transition labels
can be ignored, which does not affect the verification results.

The intersection of automata of A and S is an automaton
that accepts language L(A) ∩ L(S). Note that intersection of
automata here is different from that of sets. Because accepting
states from both automata may appear together only finitely
many times even if they appear individually infinitely often [5],
setting F = F1 × F2 does not work. Hence, we build
A ∩ S following the method in [5]. Namely, A∩S =(

∑
, Q1×

Q2 × {0, 1, 2},�, Q0
1 × Q0

2 × 0, Q1 × Q2 × 2), where
∑

is the alphabet, Q1 × Q2 × {0, 1, 2} is the state set, � is
the transition relation, Q0

1 × Q0
2 × 0 is the initial state set,

Q1 × Q2 × 2 is the accepting state set of A∩S, respectively.
The transition relation � of A ∩ S is defined as following:
let (ri , q j , x), (rm , qn, y) ∈ Q1 × Q2 × {0, 1, 2} be two states.
((ri , q j , x), a, (rm , qn, y)) ∈ � if and only if the following
conditions hold:

1) (ri , a, rm) ∈ �1 and (q j , a, qn) ∈ �2, that is, the local
components agree with the transitions of A and S;

2) the third component is affected by the accepting condi-
tions of A and S;

3) if x = 0 and rm ∈ F1, then y = 1;
4) if x = 1 and qn ∈ F2, then y = 2;
5) if x = 2 then y = 0;
6) otherwise, y = x .
Fig. 1 shows an automaton that has a counterexample,

where s1 is an initial state marked with an incoming arrow,
s5 is an accepting state marked with a double circle, the path
s3s4s5s6s3 is an accepting cycle, and the path s1s2s3s4s5s6s3
is a counterexample.

B. I/O Complexity Model

Because the access to information stored on an external
memory device is orders of magnitude slower than the access

WU et al.: I/O EFFICIENT MODEL CHECKING ALGORITHM 907

Fig. 1. Automaton with a counterexample.

to information stored in the internal memory [14], [15],
complexities of external memory algorithms are usually mea-
sured in terms of the number of I/O operations. Here, an
I/O operation is a transfer of data from a disk to internal
memory or from internal memory to a disk. For example, for
the benchmark I T C ′99, B15(std), P1, our algorithm costs in
total 210 I/O operations when finding one counterexample.

For complexity analysis of external memory algorithms,
a widely used model is the model of Aggarwal and Vitter [20].
In the model, the number of I/O operations is usually described
by O(scan(N)) and O(sor t (N)), standing for O(N/B) and
O(N/B · logM/B(N/B)), respectively, where N denotes the
total number of states of system, M denotes the number of
states that fits into the internal memory, B denotes the number
of states that can be transferred in a single I/O operation, and
O(N/B) denotes the same order as N/B .

IV. RELATED WORK

Different I/O efficient algorithms for LTL model checking
have been proposed. Most algorithms are based on nondepth-
first search (non-DFS) which include breadth-first search
(BFS) and A* [14], [21]–[27], because they utilize the delayed
duplicate detection technique which is incompatible with
DFS [25]. The technique needs to maintain a set of visited
states on disk to prevent them from being reexplored. It is
based on the observation [21] that a newly generated state does
not need to be checked against the state table immediately; one
can postpone the checking until an entire level of the search
has been explored and then check all states in the level together
by linearly reading the table from the disk.

To the best of our knowledge, in the last few years, among
this kind of algorithms, DAC [14], MAP [27], and IDDFS [18]
achieve state-of-the-art performance and represent the most
recent advances.

The algorithm DAC [14] adapts an existing
non-DFS-based accepting cycle detection algorithm one
way catch them young [28] to the I/O efficient setting.
The algorithm first inserts all reachable vertices into an
approximation set. After that, it repeatedly reduces the
approximation set until a fixpoint is reached. In detail,
vertices violating the condition are gradually removed from
the approximation set using two procedures. One procedure
removes those vertices from the approximation set that lie
outside any cycle. The other removes vertices lying on
nonaccepting cycles. Finally, if the approximation set is
empty, there is no accepting cycle in the graph, otherwise the
presence of an accepting cycle is ensured. The algorithm is

especially useful for verification of large systems with valid
properties. But, it needs to create the whole state space.

Since DAC does not work on-the-fly, Barnat et al. [14],
the same authors of DAC, further proposed an on-the-fly
algorithm: MAP algorithm [17], [27], which is a revisiting
resistant algorithm for I/O efficient LTL model checking.
Revisiting resistant graph algorithms are those that signif-
icantly reduce the number of expensive I/O operations at
the price of reexploration of edges (or vertices) in internal
memory. They are actually an improvement on the delayed
duplicate detection technique. The idea of the delayed dupli-
cate detection technique is to postpone the duplicate check
of single vertex against disk and perform them together in a
group, for the reduction of the number of I/O operations. In the
case of BFS traversal, the group (also called candidate set)
consists typically of a single BFS level. However, if the
level is small, the utility of delaying duplicate detection
drops down. A possible solution is to maximize the group
by exploring more BFS levels at once which will lead to
revisiting of vertices due to cycles. However, even though
vertex revisits result in performing more (cheap) operations in
internal memory, it might significantly reduce the number of
expensive I/O operations. Thus, revisiting resistant algorithms
are expected to be more I/O efficient than nonresistant ones
in practice. The main idea behind the MAP algorithm is
based on the fact that each accepting vertex lying on an
accepting cycle is its own accepting predecessor. Instead of
expensive computing and storing of all accepting predecessors
for each (accepting) vertex, the algorithm computes and stores
a single representative accepting predecessor for each vertex,
namely the maximal one in a suitable ordering of vertices.
Experiments showed the algorithm outperformed previous I/O
efficient algorithms on invalid LTL properties.

The IDDFS is a 5-bit semiexternal LTL model checking
algorithm proposed in [18]. Semiexternal graph algorithms
are algorithms, in which the vertices but not the edges fit
in memory [29]. The IDDFS uses heuristic EPH to construct
a minimal perfect hash function from the vertex set stored
on disk, which allows compressing V to 5|V | bits, and only
needs to store the 5|V | bits but not V into internal memory,
where V is the vertex set of a graph. Thus, the algorithm can
handle spaces that are orders of magnitudes larger than internal
memory. However, IDDFS still has a limitation on the size of
the graph because it needs 5 bits of internal memory for every
vertex. This algorithm works on-the-fly by applying iterative-
deepening strategy.

V. I/O EFFICIENT MODEL CHECKING

FOR LARGE-SCALE SYSTEMS

In this section, we propose an I/O efficient LTL model
checking algorithm based on the nested depth-first search [16],
namely IOEMC. The IOEMC incorporates three key ideas:
1) a new linear hash-sorting algorithm LHS; 2) a new dupli-
cate detection technique CDD; and 3) a dynamic search
path management scheme DPM. By using linear hash-sorting
algorithm and new duplicate detection technique, IOEMC can
significantly reduce the time cost of duplicate detection of

908 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 5, MAY 2015

states. In addition, IOEMC also solves the memory dithering
problem by using DPM technique.

We first present related data structures and memory usage.
And then, LHS, CDD, and DPM techniques are proposed.
Finally, we describe the model checking algorithm IOEMC,
which is based on the above techniques. In the following,
#(Q) expresses the number of elements in Q, and we assume
that the algorithm can read or write B records from or into
external memory in each I/O operation.

A. Data Structures and Memory Usage

The IOEMC needs a database DB on disk and two stacks
stack1 and stack2 in the internal memory for two DFSs,
respectively. There are four tables in DB, explained as follows.

1) Tables tableDD1 and tableDD2: They are used for
duplicate detection of states and have the same data
structure that consists of two fields: state field and hash
field, which store those visited states and their hash
values, respectively. Both tableDD1 and tableDD2 are
sorted in nondecreasing order by hash values. Those
records with the same hash value are located together.

2) Tables tableP1 and tableP2: They store the states on
the path in the first DFS and ones on the path in the
second DFS, respectively.

In our algorithm, the internal memory space is divided into
code segment and data segment. The data segment is divided
into two equal parts: T1 and T2. The first one is further divided
into two subparts T11 and T12, which are of the same size and
store two hash tables H1 and H2 for two DFSs, respectively.
Each element in H1 and H2 is a tuple (h, s), where s is a
visited state, and h is the hash value of the state, and all
elements in H1 or H2 are stored in time sequence. The other
part T2 is shared by stack1 and stack2 in a dynamic way.

Note that the aim of using tuples is to accelerate the search
of disk tables tableDD1 and tableDD2, and to avoid hash
collision. By using tuples, we cannot only search the disk
tables sorted by hash values quickly, but also differentiate two
different states even if they share the same hash value.

B. Linear Hash-Sorting Algorithm

In this section, we propose a linear hash-sorting algorithm
LHS, which is used to reduce I/O complexity and improve the
practical performance of our model checking algorithm.

The hash-sorting problem we consider in this paper is
described as follows.

1) Problem Instance: There are m tuples in Q and n records
in tableDD, where Q consists of the first (#(H) · ρ1)
tuples of H , H may be H1 or H2, ρ1 is a parameter
with 0 < ρ1 < 1, and tableDD may be tableDD1 or
tableDD2, sorted in nondecreasing order by hash val-
ues. The records with the same hash value in tableDD
are located together.

2) Goal: Q is empty, and the m tuples are appended into
tableDD, and the (n + m) records in tableDD are
sorted in nondecreasing order by hash values.

The hash-sorting algorithm is outlined in Algorithm 1 and
described as follows.

Algorithm 1 Linear Hash-Sorting Algorithm

1) The algorithm appends m empty records into tableDD.
2) The algorithm reads B records from the (n − B + 1)th

to the nth in tableDD to the internal memory by invok-
ing the function read(), and replaces these records in
tableDD with B empty records by calling the function
empty(). Every record corresponds to a tuple. This
needs only one I/O operation. Suppose t is the smallest
hash value in the B records. If there are k1 tuples in
Q whose hash values are larger than or equal to t , then
the algorithm moves (B + k1) tuples, including the k1
tuples and the B tuples read before, into tableDD to
cover the records from the (n +m − B − k1 +1)th to the
(n+m)th in turn by hash value’s nondecreasing order, by
invoking the function store(). After that, the algorithm
deletes the (B + k1) tuples from the internal memory,
by calling the function Delete().

3) The algorithm continues to read B records from the
(n − 2B + 1)th to the (n − B)th in tableDD to the
internal memory and replaces these records in tableDD
with B empty records, then does like (2).

4) This goes on until Q is empty or the first record in
tableDD is dealt with.

Note that we move only the first (#(H) · ρ1) tuples of H
into external memory in order to improve the efficiency of
duplicate detection (see Section V-C).

Lemma 1: The total number of I/O operations that the
hash-sorting algorithm executes is smaller than or equal
to (m + 2n)/B .

Proof: From the process described in Algorithm 1, we
can observe that the i th loop mainly executes two types of
operations: one is to read B records from disk to the internal
memory; the other is to move (B + ki) tuples to disk, where
1 ≤ i ≤ n/B . Thus, the i th loop needs ((B + ki)/B + 1) I/O

WU et al.: I/O EFFICIENT MODEL CHECKING ALGORITHM 909

TABLE I

STATES BEFORE MERGING. (a) STATES IN INTERNAL MEMORY.

(b) STATES ON DISK

TABLE II

STATES AFTER MERGING. (a) STATES IN MEMORY.

(b) STATES ON DISK. (c) FINAL RESULT

operations in total. Thus, the overall number of I/O operations
the algorithm executes is ((B + k1)/B + 1) + ((B + k2)/
B +1)+· · ·+((B +kn/B)/B +1). Because k1+k2 +· · ·+kn/B

is equal to m, the total number of I/O operations is smaller
than or equal to (m +2n)/B . Thus, the I/O complexity of this
algorithm is O(n + m), linear in the input size.

In the following, we still use the example I T C ′99,
B15(std) to illustrate how the hash storing algorithm is
working. Note that every state is denoted by its hash value.
Table I shows the states in the internal memory and the
states in table on disk before merging, which are sorted in
nondecreasing order by hash values. Our aim is to merge
those in the internal memory into a table on disk. The last line
“−−−” in Table I(b) means 1000 empty records are appended,
where 1000 is equal to the number of the states in the
internal memory. The 100 states can be transferred in a single
I/O operation. After performing sequentially the following
operations: 1) moving the last 100 states in Table I(b) (which
are from 4409 to 5833) into the internal memory; 2) sorting
them in the internal memory; and 3) moving the states in the
internal memory whose hash value are greater than or equal
to 4409 into Table I(b), the corresponding result is shown in
Table II(a) and (b). This goes on until all records in Table I(b)
are handled. The final result is shown in Table II(c) on the
disk.

C. Cached Duplicate Detection Technique

In this section, we propose a cached duplicate detection
technique CDD, which can significantly improve the perfor-
mance of IOEMC.

In our duplicate detection technique, the visited states are
divided into two groups: 1) the recent states; and 2) the
historical states. The recent states are the ones generated
most recently and stored in the hash table H in the internal
memory, and the historical states are the ones stored in the
hash table tableDD on disk, where H may be H1 or H2, and
tableDD may be tableDD1 or tableDD2. When H is full,
CDD invokes LHS to move only the first (#(H) · ρ1) tuples
in H into tableDD and sorts the new tableDD. Thus, the
corresponding states become historical states.

In the following, we describe how to perform duplicate
detection of a state. When a state is generated, CDD first
checks by the hash value of the state whether or not it is
in H in the internal memory, which costs no I/O operation.
If this is the case, then the state was visited before. Otherwise,
CDD further checks by the hash value of the state whether or
not the state is in tableDD in external memory. If this is the
case, then the state was visited before; otherwise, the state is
a new state.

In general, if we select ρ1 < 0.05, then duplicate detections
of almost all states are carried out in the internal memory.

We give an intuitive explanation as follows. Suppose the
data segment is allocated 2G memory and every state needs
500 bits of internal memory and every hash value needs
12 bits. Then, H1 should be 0.5G of size and can hold 220

tuples nearest generated. When H1 is full and the algorithm
moves the first (#(H) · ρ1) tuples of the hash table H into
external memory, the tuple number of H1 is still close to 220

because ρ1 < 0.05. In general, the probability that the cur-
rently generated state goes back beyond the 220 states nearest
generated is extremely small. Therefore, for most states, their
duplicate detections are executed in the internal memory.

To verify our argument, we conduct some experiments to
figure out the proportion of states whose duplicate detec-
tions are performed in internal memory. The selected bench-
marks and experimental environment are the same as that of
Section VII. The experimental results are listed in Table III.
The experiments show that for all models, the rates of the
number of states whose duplicate detections are carried out in
internal memory to that of all generated states are at least 90%.
In addition, we also observe that setting ρ1 = 0.02 yields the
best performance for most large-scale models. The main cause
is as follows. There is a tradeoff about time consumption in
the setting of ρ1. As the value of ρ1 decreases, the number
of visited states stored in internal memory increases, which
saves time for duplicate detection, but this also results in more
frequent movement of state blocks from the internal memory
to the disk, leading to more time of state management, and
vice versa.

The above analysis and experimental evidence show CDD
can significantly reduce the cost of duplicate detection due
to the fact that almost all duplicate detections of IOEMC are
carried out in internal memory and tableDD is sorted by hash
values.

910 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 5, MAY 2015

TABLE III

RATES OF DUPLICATE DETECTIONS IN INTERNAL MEMORY

D. Dynamic Search Path Management

The search path management includes the static and
dynamic ones. The static management means the algorithm
allocates fixed internal memory sections to two stacks of the
nested depth-first search, while the dynamic one means two
stacks share the same internal memory section. Thus, the
dynamic management can more efficiently make use of the
internal memory. In this section, we introduce a scheme for
dynamic search path management, called DPM.

During search, when T2 is full and a new state is generated,
in order to avoid memory overflow, we need to move states
from the two stacks to DB. However, this may result in
the phenomenon that states are frequently moved inside and
outside the internal memory.

In the following, we analyze how this phenomenon occurs.
Suppose we swap M2 states at a time between T2 and the disk,
where M2 is the number of states that T2 can hold. When T2
is full, if we transfer all states in T2 to the disk, then T2
becomes empty. In succession, if the algorithm needs to pop
a state from stack1 or stack2 because of backtracking, then
immediately those M2 states just moved to the disk have to
be moved back to the internal memory, and thus T2 becomes
full. Afterward, if another new state is generated and needs to
be pushed into stack1 or stack2, then the M2 states have to
be moved outside the internal memory again to make space
for the new state, and so on. We call such a phenomenon
of frequent state movement memory dithering, which can
significantly increase disk accesses and thus the algorithm’s
I/O complexity.

In order to avoid memory dithering, we present an efficient
scheme which works as follows.

1) When T2 is full, the algorithm moves only some states
(not all) of stack1 and stack2 into the database to make
memory space for new states. For stack1, the algorithm
moves k1(= #(stack1)·ρ2) states from the bottom of the
stack into tableP1 by invoking the function Append(),
and releases the corresponding memory space, where ρ2
is a parameter with 0 < ρ2 < 1. Along with this, the
bottom pointer of stack1 points to the (k1 + 1)th state.
For stack2, the algorithm handles it in the same way.
This procedure is implemented in the Dmem-DB()
function, as shown in Algorithm 2.

2) When stack1 becomes empty, if tableP1 is not
empty, then the algorithm pushes k1 states stored most

Algorithm 2 Dynamic Full-Memory Management

recently in tableP1 into stack1 in turn by calling
the function Push(), and deletes them from tableP1
by invoking Delete(), where k1 = min(#(tableP1),
(M2 − #(stack2) · ρ2)). When stack2 is empty, the
algorithm works similarly. The corresponding procedure
is implemented in DDB-mem() function and is outlined
in Algorithm 3.

Note that by reserving some states in both stacks when
T2 is full, we ensure there are always some states in both
stacks, which to some extend reduces the memory dithering
phenomenon.

E. Model Checking Algorithm IOEMC

Based on LHS, CDD, and DPM, we design the IOEMC
algorithm. The IOEMC is an I/O efficient on-the-fly model
checking algorithm based on the nested depth-first search.

We use V0 to denote the initial state set and F to denote
the accepting state set. Also, we assume the state transition
graph of the automata is implicitly given from the function
successor(x) that generates all successors of the state x .

WU et al.: I/O EFFICIENT MODEL CHECKING ALGORITHM 911

Algorithm 3 Dynamic Empty-Stack Management

The first DFS, outlined in Algorithm 4, is to search for a
path from an initial state to some accepting state by postorder
traversal. In each while loop, for the current state x , the
algorithm first performs duplicate detection for successor s by
using CDD technique. If s is a new state, then the algorithm
puts s into stack1 and puts the tuple (hash(s), s) into H1.
Before these two operations, the algorithm needs to check
whether or not stack1 and T11 are full. If the former is
full, then it invokes the function DMem-DB() to handle the
stack; if the latter is full, then it puts a part of tuples of
H1 into tableDD1 and sorts the new tableDD1 by invoking
the function Merge-sor t (). The number of tuples moved into
tableDD1 is determined by the parameter ρ1. If all successors
of state x have been visited, then the algorithm pops out x from
stack1; if x is an accepting state, then the algorithm goes into
the second DFS.

The second DFS is to detect an accepting cycle and finally
return a counterexample if the system does not satisfy the
given specification. The counterexample consists of an accept-
ing cycle and a path to the cycle from some initial state. The
second DFS works similarly as the first DFS, and is outlined
in Algorithm 5.

VI. COMPLEXITY ANALYSIS

In this section, we analyze the I/O complexity of IOEMC.
Note that the correctness of IOEMC can be easily proved
by following the similar proof line in [16]. In the following,
we let N express the number of states of the verified system
and M be the number of states that the internal memory can
hold.

A. Complexity of Algorithm IOEMC

In this section, we estimate the I/O complexity of IOEMC.
Lemma 2: The total I/O operations that dynamic search

path management needs in the nested depth-first search is
O(scan(N)).

Proof: The worst case is the one with the most number of
I/O operations. Thus, the algorithm should traverse all states
and pop them out from the two stacks, and the number of states
moved from the internal memory to the disk is equal to the

Algorithm 4 First DFS Based on Quick Hash-Sorting
Algorithm

number of states moved from the disk to the internal memory.
Thus, when T2 is full, (M2 · ρ2) states are moved from the
internal memory to the disk, and then (M2 ·(1−ρ2)) states are
continuously popped out from the two stacks one by one and
T2 becomes empty, and then (M2 ·ρ2) states have to be trans-
ferred to the internal memory from the disk again; afterward,
the algorithm pushes continuously (M2 · (1 − ρ2)) states into
the stacks one by one and T2 becomes full, and then it moves
(M2 · ρ2) states from the internal memory to the disk again,
and this goes on until all states of system are traversed. In this
process, the block of states is moved from the internal memory
to the disk ((N − M2 ·ρ2)/(M2 · (1 −ρ2))− 1) times. Because
every movement of a block of states needs (M2 · ρ2/B) I/O
operations and the number of states moved from the internal
memory to the disk is equal to that from the disk to the
internal memory, the whole process costs 2((N − M2 · ρ2)/

912 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 5, MAY 2015

Algorithm 5 Second DFS Based on Quick Hash-Sorting
Algorithm

(M2 · (1 − ρ2)) − 1) · (M2 · ρ2/B) I/O operations. Therefore,
the total I/O operations that dynamic search path management
needs in the nested depth-first search is O(ρ2/(1 − ρ2) ·
scan(N)), i.e., O(scan(N)).

Theorem 1: The I/O complexity of algorithm IOEMC is
O(N/M · scan(N) + sor t (|E |)).

Proof: From Section V-E, we can see the I/O
complexity of IOEMC is determined by the functions
Merge-sor t(), check(), Dmem-DB(), and DDB-mem(). For
Merge-sor t (H1, tableDD1), in the worst case, when the
while loop ends, Merge-sor t(H1, tableDD1) is invoked
N/M11 times, where M11 is the number of the states that T11
can hold. From Lemma 1, the total number of I/O operations
that it executes is at most (M11 + (M11 + 2M11) + (M11 +
2 · 2M11) + · · · + (M11 + 2(N/M11 − 1) · M11))/B
which is smaller than N/B + N2/(B · M11), namely,

(1 + N/M11) · scan(N). Similarly, when the while loop
ends, the total number of I/O operations executed by
Merge-sor t (H2, tableDD2) is at most (1+N/M12)·scan(N),
where M12 is the number of the states that T12 can hold. From
Algorithm 4, we can see that on the hand, the number of check
operations (namely, check(s, tableDD1)) is equal to at most
the number |E | of edges; on the other hand, every check oper-
ation can cause that CDD checks by the hash value of a state
whether or not the state is in the sorted tableDD1 in external
memory, thus, the number of I/O operations in every check is
logB |E |. Thus, the overall number of I/O operations invoked
by check(s, tableDD1) is O(|E | · logB N) = O(logB(M/B) ·
sor t (|E |))=O(sor t (|E |)). For check(s, tableDD2), we have
the same result as check(s, tableDD1). From Lemma 2,
we have the total number of the I/O operations that invoking
of Dmem-DD() and DDB-mem() needs is O(scan(N)).
Because T1 and T2 are of the same size and T11 and T12 are
of the same size, the I/O complexity of algorithm IOEMC is
O(N/M · scan(N) + sor t (|E |)).

B. Complexity Comparison

In this section, we compare IOEMC with DAC, MAP, and
IDDFS, in terms of I/O complexity.

The DAC is an I/O efficient algorithm for accepting cycle
detection proposed in [14]. The [14, Th. 1] claims the I/O
complexity of DAC is O(lSCC · (hBFS + |pmax | + |E |/M) ·
scan(N)), where lSCC denotes the length of the longest path
in the SCC graph, and pmax is the longest path in the graph
going through trivial strongly connected components (without
self-loops), and hBFS is the BFS height, and |E | is the number
of edges. Because both N/M · scan(N) and sor t (|E |) are
clearly smaller than |E |/M ·scan(N), IOEMC has much lower
I/O complexity than DAC.

For MAP, I/O complexity is O(|F |((d + |E |/M + |F |)
scan(N) + sor t (N))) in the case for candidate set in RAM,
and O(|F |((d +|F |)scan(N)+sor t (|F |·|E |))) in the case for
candidate set on disk, where d is diameter of the graph [27].
Because |E | is larger than N , I/O complexity of IOEMC is
much lower than that of MAP in the case for candidate set in
RAM. In the case for candidate set on disk, from Section III-A,
we can observe that |F | is equal to N/3 for the intersection
of automata A and S. It follows that I/O complexity of MAP
is O(N3). Thus, IOEMC outperforms MAP in terms of I/O
complexity.

The IDDFS is a semiexternal algorithm proposed in [18].
Its I/O complexity is O(εs · sor t (N) + sor t (|E |)), where
εs = max{δ(s, v)|v ∈ V } [18] is the maximal BFS level
and δ(s, v) is the length of a shortest path from s to v. Thus,
IDDFS is especially useful for the model checking problem of
systems with small number of BFS levels. Assume that each
state needs k bits of internal memory space, then for 5-bit
semiexternal search on a computer with m GB RAM, IDDFS
cannot solve the model checking problem for the systems
with larger size than (m · 230 · 8/5) states [18]. Thus, for
the systems that IDDFS can verify, N/M is smaller than
(m · 230/5)/(m · 230/k) = k/5. Hence, the corresponding
I/O complexity of IOEMC is O((k/5) · scan(N)+ sor t (|E |)),

WU et al.: I/O EFFICIENT MODEL CHECKING ALGORITHM 913

TABLE IV

EXPERIMENTAL RESULT ON MODELS WITH VALID PROPERTIES

TABLE V

EXPERIMENTAL RESULT ON MODELS WITH INVALID PROPERTIES

TABLE VI

RUN TIMES WITH DIFFERENT VALUES OF THE PARAMETER ρ2

namely O(sor t (|E |)). Therefore, IOEMC has a lower I/O
complexity than IDDFS.

VII. EXPERIMENT

In this section, we compare runtime and allocated disk space
of IOEMC with that of DAC, MAP, and IDDFS.

A. Benchmarks

In order to compare the performance of IOEMC with
that of DAC, MAP, and IDDFS, we selected benchmarks
from [14], [18], [19] and added models Peterson(6), P4 and
Szyman.(6), P4. The two models are to show the limitation of
scale of systems IDDFS can verify. All selected benchmarks
are from the BEEM project [30], which include models with
valid properties and models with invalid properties, ranging
from less than 50 000 states to more than 6 000 000 000 states.
They are typical ones in the literatures and serve as a good
test bed to justify the efficiency and performance of model
checking algorithms.

B. Experimental Setup

The four algorithms have been implemented on top of the
DiVine library [31], providing the state space generator, and
the STXXL library [32], providing the I/O primitives. For
IOEMC, we set the parameters ρ1 = 0.02 and ρ2 = 0.90.

All experiments were run on a PC with CPU P4 2.4 G,
memory 2G, disk space 400 GB, and Linux 9.0 operation sys-
tem. For each instance, each algorithm is performed 100 runs.
For each algorithm on each instance, we report the average
runtime (time) and average disk consumption (disk). The time
format is hh:mm:ss (the elapsed hours, minutes, and seconds).

C. Experimental Results

Experimental results on models with valid properties are
presented in Table IV. As is clear in Table IV, IOEMC verifies
these valid models significantly faster than other algorithms.
On the five benchmarks, namely Elevator2(16), P4, MC S(5),
P4, Phils(16, 1), P3, Lamport (5), P4, and I T C ′99,
b15(std), P2, for which all the algorithms verify the validity
within 10 h, IOEMC does this two to three times faster than
other algorithms. For the two hard benchmarks Peterson(6),
P4 and Szyman.(6), P4, IDDFS fails to handle them due to
internal memory shortage, as it is a semiexternal algorithm
which needs five extra bits of internal memory for every state.
In addition, both DAC and MAP need more than 30 h to
verify each of these two benchmarks, while IOEMC only
needs 12 and 15 h for Peterson(6), P4 and Szyman. (6), P4,
respectively. Nevertheless, as IOEMC needs to store not only
state, but also its hash value on disk for every state, it has a
bit more space consumption than other algorithms on models
with valid properties.

914 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 5, MAY 2015

Experimental results on models with invalid properties are
reported in Table V. An obvious observation from Table V
is that all the algorithms but DAC can find a counterex-
ample for these benchmarks very quickly (within several
minutes). Notably, IOEMC dominates other algorithms on
four benchmarks, namely, Bakery(5,5),P3, Elevator2(16),P5,
Szyman(4),P2, and Lifts(7),P4, in terms of time consumption.
For these three benchmarks, IOEMC performs at least two
times faster than the best of other algorithms. Admittedly,
for two of small models, namely, I T C ′99, b15(std),P1, and
Li f ts(7),P4, IOEMC is a bit slower than other three algo-
rithm. This is because the three new techniques used in
IOEMC is designed to reduce the number of I/O operations
for large models, and has no effect for small models.

VIII. DISCUSSION

A. ρ2 Parameter

The ρ2 parameter must be provided in order to execute
IOEMC. It influences the performance of IOEMC by control-
ling the size of state blocks moved into or out of the internal
memory.

To observe the parameter’s impact on the performance
of IOEMC, we run IOEMC with different values of the
ρ2 parameter for each of the used instances. The selected
benchmarks and experimental environment are the same as
that of Section VII except for models I T C ′99, b15(std),P2,
Szyman.(4),P2, I T C ′99, b15(std),P1, Elevator2(7),P5, and
Li f ts(7),P4, because small models do not need to use DPM
technique. The experimental results are reported in Table VI.

From Table VI, we observe that the ρ2 parameter has an
obvious impact on the performance of IOEMC, and there are
different optimal values of the parameter between different
instances, and the optimal values mainly are between 0.85
and 0.90. The investigation about adjusting the ρ2 parameter
automatically is left for future work.

B. State Number Limit

In this section, we discuss the state number limit over which
our approach cannot get a solution in reasonable time. We may
regard 24 h as reasonable time, and assume the computer has
a 7200-r/min desktop hard disk drive (HDD) and a Serial
Advanced Technology Attachment (SATA) bus interface, and
every state occupies 100 bits in our approach.

According to [33], as of 2010, a typical 7200-r/min desktop
HDD has a disk-to-buffer data transfer rate up to 1030 Mb/s,
and a widely used standard for the buffer-to-computer interface
is 3.0-Gb/s SATA. Thus, the transfer rate between disk and
computer is less than 772 Mb/s. In order to find a coun-
terexample, if the state number to be searched is larger than
772 × 1024 × 1024 × 24 × 3600/100 (<6.68 × 1010), then
our approach cannot carry out this operation successfully in
reasonable time (24 h). Thus, a state number limit to our
approach is about 6.68 × 1010.

IX. CONCLUSION

In this paper, we proposed and introduced a linear
hash-sorting algorithm LHS, a cached duplicate detection

technique CDD, and a dynamic search path management
technique DPM. Based on the above techniques, we pro-
posed an I/O efficient LTL model checking algorithm for
large-scale systems. We have implemented our model check-
ing algorithm, and carried out the experiments on selected
representative benchmarks. The complexity analysis and the
experimental results show IOEMC has lower I/O complexity
and obviously better practical performance than state-of-the-
art I/O efficient algorithms, including DAC, MAP, and IDDFS.
The low I/O complexity and good performance indicate that
IOEMC is very promising for verifying large-scale systems
efficiently.

ACKNOWLEDGMENT

The authors would like to thank the anonymous review-
ers for their helpful comments on earlier versions of
this paper.

REFERENCES

[1] K. L. McMillan, “A methodology for hardware verification using com-
positional model checking,” Sci. Comput. Program., vol. 37, nos. 1–3,
pp. 279–309, 2000.

[2] J. Yang and C.-J. H. Seger, “Introduction to generalized symbolic
trajectory evaluation,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 11, no. 3, pp. 345–353, Jun. 2003.

[3] H. Seger et al., “An industrially effective environment for formal hard-
ware verification,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 24, no. 9, pp. 1381–1405, Sep. 2005.

[4] M. Talupur, “Hardware model checking: Status, challenges, and oppor-
tunities,” in Proc. Int. Conf. Formal Methods Comput.-Aided Design
(FMCAD), 2011, pp. 154–160.

[5] E. Clarke, O. Grumberg, and D. A. Peled, Model Checking, 1st ed.
Cambridge, MA, USA: MIT Press, 1999, pp. 121–140.

[6] P. Godefroid and D. Pirottin, “Refining dependencies improves partial-
order verification methods,” in Proc. Comput. Aided Verificat. (CAV),
1993, pp. 438–449.

[7] D.-H. Chu and J. Jaffar, “A complete method for symmetry reduction in
safety verification,” in Proc. Int. Conf. Comput. Aided Verificat. (CAV),
2012, pp. 616–633.

[8] E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking
and abstraction,” ACM Trans. Program. Lang. Syst., vol. 16, no. 5,
pp. 1512–1542, 1993.

[9] J.-P. Krimm and L. Mounier, “Compositional state space generation
from Lotos programs,” in Proc. Tools Algorithms Construct. Anal. Syst.
(TACAS), 1997, pp. 239–258.

[10] G. Morbé, F. Pigorsch, and C. Scholl, “Fully symbolic model checking
for timed automata,” in Proc. 23rd Int. Conf. Comput. Aided Verificat.
(CAV), 2011, pp. 616–632.

[11] G. Holzmann, The SPIN Model Checker: Primer and Reference Manual.
Reading, MA, USA: Addison-Wesley, 2004, pp. 1–596.

[12] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking,” Adv. Comput., vol. 58, no. 5, pp. 117–148,
2003.

[13] R. E. Korf, “Linear-time disk-based implicit graph search,” J. ACM,
vol. 55, no. 6, pp. 1–40, 2008.

[14] J. Barnat, L. Brim, and P. Simecek, “I/O efficient accepting cycle
detection,” in Proc. Int. Conf. Comput. Aided Verificat. (CAV), 2007,
pp. 281–293.

[15] S. Jabbar and S. Edelkamp, “Parallel external directed model checking
with linear I/O,” in Proc. 7th Int. Conf. Verificat., Model Check., Abstract
Interpret. (VMCAI), 2006.

[16] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis, “Mem-
ory efficient algorithms for the verification of temporal proper-
ties,” Formal Methods Syst. Design, vol. 1, nos. 2–3, pp. 275–288,
1990.

[17] L. Brim, I. Cerna, P. Moravec, and J. Simsa, “Accepting predecessors are
better than back edges in distributed LTL model-checking,” in Proc. 5th
Int. Conf. Formal Methods Comput.-Aided Design (FMCAD), vol. 3312.
2004, pp. 352–366.

WU et al.: I/O EFFICIENT MODEL CHECKING ALGORITHM 915

[18] S. Edelkamp, P. Sanders, and P. Šimeček, “Semi-external LTL model
checking,” in Proc. Int. Conf. Comput. Aided Verificat. (CAV), 2008,
pp. 530–542.

[19] (1999). ITC’99 [Online]. Available: https://lis.ei.tum.de/projects/faultify/
browser/hardware/benchmark_circuits/itc99/itc99-poli2

[20] A. Aggarwal and J. S. Vitter, “The input/output complexity of sorting
and related problems,” Commun. ACM, vol. 31, no. 9, pp. 1116–1127,
1988.

[21] U. Stern and D. Dill, “Using magnetic disk instead of main memory in
the Mur ϕ verifier,” in Proc. 10th Int. Conf. Comput. Aided Verificat.
(CAV), 1998, pp. 172–183.

[22] R. E. Korf, “Best-first frontier search with delayed duplicate detection,”
in Proc. 19th Nat. Conf. Artif. Intell. (AAAI), 2004, pp. 650–657.

[23] R. E. Korf and P. Schultze, “Large-scale parallel breadth-first search,”
in Proc. 20th Nat. Conf. Artif. Intell. (AAAI), 2005, pp. 1380–1385.

[24] K. Mehlhorn and U. Meyer, “External-memory breadth-first search with
sublinear I/O,” in Proc. 10th Annu. Eur. Symp. Algorithms (ESA), 2002,
pp. 723–735.

[25] S. Edelkamp and S. Jabbar, “Large-scale directed model checking LTL,”
in Proc. SPIN, 2006, pp. 1–18.

[26] J. Barnat, L. Brim, and J. Chaloupka, “Parallel breadth-first search LTL
model-checking,” in Proc. 18th IEEE Int. Conf. Autom. Softw. Eng.
(ASE), Oct. 2003, pp. 106–115.

[27] J. Barnat, L. Brim, P. Šimeček, and M. Weber, “Revisiting resistance
speeds up I/O-efficient LTL model checking,” in Proc. 14th Int. Conf.
Tools Algorithms Construct. Anal. Syst. (TACAS), vol. 4963. 2008,
pp. 48–62.

[28] I. Cerna and R. Pelanek, “Distributed explicit fair cycle detection,” in
Proc. SPIN, vol. 2648. 2003, pp. 49–73.

[29] J. Abello, A. L. Buchsbaum, and J. R. Westbrook, “A functional
approach to external graph algorithms,” in Proc. 6th Annu. Eur. Symp.
Algorithms (ESA), 1998, pp. 332–343.

[30] R. Pelanek, “BEEM: Benchmarks for explicit model checkers,” in Proc.
SPIN, vol. 4595. 2007, pp. 263–267.

[31] J. Barnat, L. Brim, I. Cerna, P. Moravec, P. Rockai, and P. Šimeček,
“DiVinE: A tool for distributed verification,” in Proc. 18th Int. Conf.
Comput. Aided Verificat. (CAV), vol. 4144. 2006, pp. 278–281.

[32] R. Dementiev, L. Kettner, and P. Sanders, “STXXL: Standard template
library for XXL data sets,” in Proc. 13th Ann. Eur. Symp. Algorithms
(ESA) vol. 3669. 2005, pp. 640–651.

[33] Wikipedia. (2013, Mar. 10). Hard Disk Drive [Online]. Available:
http://en.wikipedia.org/wiki/Hard_disk_drive

Lijun Wu was born in 1965.
He is an Associate Professor with the University

of Electronic Science and Technology of China,
Chengdu, China. His current research interests
include formal methods and artificial intelligence.

Huijia Huang was born in 1988. She is currently
pursuing the Degree with the University of Elec-
tronic Science and Technology of China, Chengdu,
China.

Her current research interests include formal meth-
ods and artificial intelligence.

Kaile Su was born in 1964.
He is a Professor with Griffith University, Bris-

bane, QLD, Australia. His current research interests
include formal methods and artificial intelligence.

Shaowei Cai received the Ph.D. degree in computer
science from Peking University, Beijing, China, in
2012.

His current research interests include optimization,
heuristics, and randomized algorithms.

Xiaosong Zhang was born in 1966.
He is a Professor and Ph.D. Supervisor with the

University of Electronic Science and Technology
of China, Chengdu, China. His current research
interests include network and information security.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

