
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 12, DECEMBER 2014 2621

Minitaur, an Event-Driven FPGA-Based
Spiking Network Accelerator

Daniel Neil and Shih-Chii Liu, Senior Member, IEEE

Abstract— Current neural networks are accumulating acco-
lades for their performance on a variety of real-world computa-
tional tasks including recognition, classification, regression, and
prediction, yet there are few scalable architectures that have
emerged to address the challenges posed by their computation.
This paper introduces Minitaur, an event-driven neural network
accelerator, which is designed for low power and high per-
formance. As an field-programmable gate array-based system,
it can be integrated into existing robotics or it can offload
computationally expensive neural network tasks from the CPU.
The version presented here implements a spiking deep network
which achieves 19 million postsynaptic currents per second on
1.5 W of power and supports up to 65 K neurons per board.
The system records 92% accuracy on the MNIST handwritten
digit classification and 71% accuracy on the 20 newsgroups
classification data set. Due to its event-driven nature, it allows
for trading off between accuracy and latency.

Index Terms— Deep belief networks, field programmable
arrays, machine learning, neural networks, restricted Boltzmann
machines, spiking neural networks

I. INTRODUCTION

RECENT advances in neural networks and machine learn-
ing have demonstrated their marked usefulness for real-

world tasks. However, neural network computation suffers
because the calculations required are not ideally suited to
modern computer architectures. In standard feedforward net-
works, the fundamental computation can be thought of as a
matrix multiplication between weights of a layer and their
activations; this can be done efficiently on GPUs, but matrix
multiplication scales poorly (with computation requirements
greater than O(n2)), ultimately requiring a very large number
of computations. An alternative approach would be ideal, one
that is significantly lower power (for robotics and mobile
computation) and can support much larger network sizes than
a full matrix multiplication can allow.

Minimizing wasted computation is necessary to dramati-
cally reduce computational load, and event-driven computation
is one approach that can achieve this goal. Computational
vision typically presents a static image in a completed
frame, but significant speedups can be achieved if visual
information is processed in a frame-free manner [1], [2],

Manuscript received May 18, 2013; revised October 6, 2013; accepted
November 21, 2013. Date of publication January 9, 2014; date of current
version November 20, 2014. This work was supported in part by the University
of Zürich, ETH Zürich, and in part by Samsung Electronics Corporation.

The authors are with the Institute of Neuroinformatics, University of Zürich,
ETH Zürich, Zürich CH-8057, Switzerland (e-mail: dneil@ini.phys.ethz.ch;
shih@ini.phys.ethz.ch).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2013.2294916

enabling extremely rapid computation. If every frame was to
be processed, a significant amount of computation would be
duplicated (and wasted) in computing static backgrounds or
uninteresting features. This computational style works excep-
tionally well for neuromorphic event-driven sensors, as shown
in [1] and [3]–[5]. These event-driven devices send out spikes
that show events that need processing resulting in much more
efficient computation.

Critically, the system performance in an event-based system
is proportional to network activity and not network size.
This allows for a dramatically larger parameter space to
obtain more accurate results, and does so while speeding
up runtime execution and requiring fewer computations (thus
requiring lower power as well). Furthermore, the decreased
computational load can allow the processing to be done in
the real-time domain, making a platform ideal for real-world
applications and platforms with real-time interaction.

Current computing architectures are not ideally suited for
network architectures like neural networks. The inherent
massive parallelism of neurons, in which each performs a
similar computation simultaneously, implies a more parallel
architecture than what CPUs currently provide. GPUs can
capitalize on the parallelism of the network but they are not
suited to event-driven computation. Current GPU program-
ming paradigms use a kernel-launch approach in which a
large chunk of computation is offloaded onto the GPU with
a batch of data instead of continuously run. In addition, the
power consumption of GPUs precludes most of the embodied
robotics applications. Because of the above reasons, none of
these platforms is suited for network architectures, such as
spiking deep belief networks (DBNs), especially event-driven
DBNs, which combine the dramatic advances achieved with
DBNs [6] with the performance of event-based processing [7].

Field-programmable gate array (FPGA) architectures,
however, can address these issues. They are low-cost devices,
available off-the-shelf in a variety of configurations, and are
reconfigurable to allow updating and the reconfiguration of the
source design as necessary. They inherently support parallel
processing and contain enough local memory to cache many
weights present in a typical deep network. They are low power
compared with CPUs and GPUs, and a successful design can
be turned into a lower power, higher performance application-
specified integrated circuit in the future. In addition, the
design code can be shared electronically to allow researchers
to collaborate and upgrade their physical hardware without
additional cost or physical adjustment.

This paper introduces Minitaur, an event-driven FPGA-
based spiking neural network accelerator. This accelerator is
used to study the ability of an FPGA platform to implement

1063-8210 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2622 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 12, DECEMBER 2014

a real-time, event-driven deep spiking network. Section II
introduces prior work on FPGAs and spike-based neural
network accelerators, followed by the theory of the event-
based processing in Section III. Section IV discusses the
specific design of Minitaur. In Section V, Minitaur’s per-
formance characteristics as well as real-world performance
on the MNIST and newsgroup classification tasks will be
evaluated. Finally, Section VI reviews future challenges and
raises questions for further investigation.

II. BACKGROUND

Significant work has been invested into software algorithms
allowing the acceleration of artificial neural networks, and
event-driven methods have emerged as one way of speeding
up the simulation time of these networks. An efficient event-
driven software implementation was described in [8], and the
time complexity of scaling these networks was investigated
in [9]. Event-driven optimizations have been considered for
advanced neuron model implementations as well, notably
including the Hodgkin–Huxley model in [10]. A comprehen-
sive review of the performance of both event-driven and time-
stepped software algorithms and implementations of spiking
neural networks can be found in [11].

Hardware systems, which accelerate these spiking networks,
including FPGA-based designs, are reviewed in [12] and [13].
These FPGA systems are predominantly time-stepped hard-
ware accelerators as in [14]–[16], achieving high speeds but
with performance proportional to the size of the network.
Event-driven, sparser-computation hardware implementations,
such as in [17]– [19] are rare, typically focusing on using
biologically descriptive neuron models, such as the Izhikevich
model [20] and biological network topologies.

In recent years, machine learning approaches have validated
alternative network topologies, such as those used in DBNs
[6], a multilayered probabilistic generative model. The
individual layers consist of undirected graphical models
called restricted Boltzmann machines (RBMs) with a bottom
layer of visible sigmoidal units and a top layer of hidden
sigmoidal units, bidirectionally connected with symmetric
weights. When RBMs are stacked to form a DBN, the hidden
layer of the lower RBM becomes the visible layer of the
next higher RBM. DBNs have proved effective in a variety
of domains, with notable successes in areas, such as machine
vision [21] and machine audition [22], [23]. In [7], spiking
DBNs are constructed by replacing these sigmoidal units with
spiking leaky integrate-and-fire (LIF) neurons.

Minitaur extends this prior work on event-driven systems,
FPGA implementations, and DBNs to accelerate spiking
neural network implementations. It is a low-power, compact,
event-driven system with a strong focus on spiking deep
networks as an application domain. The system supports the
loading of arbitrary spiking neural networks at runtime of up
to 65 536 neurons and millions of synapses (Table II). With
its focus on optimized memory fetches and simplified neuron
models as in [24], as well as on low power dissipation, it
eschews the high-power, high-performance memory elements
used in [15] and [18]. Its performance is validated on two
common machine learning tasks using a DBN composed of
spiking neurons, as described in Section V.

TABLE I

MINITAUR PARAMETERS

TABLE II

SYSTEM PERFORMANCE

III. ALGORITHM AND THEORY

A. Event-Driven Neural Model

The neural model used here is a common spiking model
containing three submodels: 1) a soma described by the LIF
model; 2) an instantaneous synapse for input current; and 3) a
fixed-delay axon for spike generation. The LIF model is both
mathematically and intuitively simple; the cell membrane is
modeled as a capacitor with a leak [25]. This simple circuit
forms an exponentially decaying RC system with decay time
constant τm . In a time-stepped model, the cell membrane
voltage Vmem on the n +1th step can be calculated as follows:

Vmem(n + 1) = Vmem(n) · e−�t/τm (1)

where �t is the time step.
The synapse model has instantaneous dynamics and a step

increase of W i, j is added to the membrane potential of
neuron i when it receives a spike from input neuron j .
The model implements three discontinuities to more accurately
model biological systems: 1) a threshold (Vthr) where a neuron
makes a spike once Vmem > Vthr; 2) a reset potential for the
membrane after a spike (Vreset); and 3) a refractory period (tref)
during which a neuron cannot make a new spike after it spikes.

NEIL AND LIU: EVENT-DRIVEN FPGA-BASED SPIKING NETWORK ACCELERATOR 2623

Algorithm 1 Time-Stepped Updating of an LIF Network

The complete time-stepped model can be found in
Algorithm 1.

This algorithm can easily be transformed into an event-
driven equivalent. Since the input current is instantaneous and
the membrane potential decays away exponentially, it is only
necessary to check for firing after the membrane potential has
been updated when there is an input spike. The time of the
previous update is stored; when the next spike arrives, the
neuron membrane is decayed according to the time difference,
and then summed with the instantaneous input current. This
yields the neuron model used in the Minitaur system. The
neuron only updates on input spikes, so the computation
speed is now proportional to network activity, not numbers
of neurons. The complete event-driven execution is described
by Algorithm 2.

B. Simulation

A model of the hardware was created in MATLAB to ensure
the viability of the design and quickly prototype the effects of
parameter adjustment. This implementation was primarily used
for prototyping caching strategies since memory bandwidth,
rather than compute time, fundamentally limits the perfor-
mance of the hardware. For more details on these strategies,
see Section IV-B.

IV. MINITAUR ARCHITECTURE

A. Spartan-6 FPGA Architecture

Minitaur was designed using the low-cost Xilinx Spartan-6
platform. The full implementation was done on an ZTEX
USB 1.15 board, which contains 128 MB of DDR2 RAM,
a microSD card slot for storage, 128-kB flash memory for a
bootloader, and an FX2 chip for USB interfacing. The com-
mercially available complete board (http://www.ztex.de) is low
cost and ideal for off-the-shelf interfacing and computation.

Algorithm 2 Event-Driven Updating of an LIF Network

The Xilinx Spartan-6 LX150 contains 150k logic cells, the
largest of the Spartan-6 family.

In addition to the large number of logic cells, the Spartan-6
contains 180 DSP units for low-power parallel math process-
ing. These DSPs support two 18-bit operands for fixed-point
multiplication and addition. Importantly, the Spartan-6 has a
total of 549 kB of memory in 268 individually addressable
low-latency block RAMs (BRAMs). These BRAMs require
one cycle for fetch and optionally one cycle to register
the output of the fetch, making them ideal for core-specific
caching.

The maximum supported clock speed of the Xilinx
Spartan-6 is 400 MHz, though as on all FPGA devices, this
number is heavily dependent on clock load and routing.

B. Minitaur Design Principles

The performance-limiting step in an event-based neural
network system occurs during spike generation. When a neu-
ron spikes, it performs two very memory intense operations:
1) determining the recipient neurons of the spike (between 102

and 104 destinations, typically) and 2) determining the weights
of each of these connections. Accomplishing these two tasks
quickly is of paramount importance in optimizing the system’s
performance.

To minimize the impact of connection lookups, rule-based
connections are stored. Although true biological networks are
typically recurrent and difficult to simplify, artificial neural
networks tend to follow specific connectivity patterns. DBNs,
autoencoders, single-layer RBMs, and multilayer perceptrons
all have a very stereotyped structure. Namely, there is a layer
of neurons receiving projections from the previous layer and
projecting connections to the following layer, typically in
an all-to-all fashion. A connection rule can be stored very
efficiently by stating connections in a ranged-rule format, for

2624 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 12, DECEMBER 2014

Fig. 1. Simplified architecture of the Minitaur system. It contains 32 parallel
cores and 128 MB of DDR2 for main memory. Each core has 2048 kB of
state cache, 8192 kB of weight cache, and two DSPs for performing fixed-
point math (one multiplying the decay and one for summation of the input
current). The exponential decay lookup uses 2048 kB of RAM, preloaded
from the design and used as a ROM.

example, all neurons in layer 1 project to all neurons in layer 2,
requiring only to store the SRC start, SRC end, DEST start,
and DEST end addresses to map the connection for an entire
layer.

Managing the multitude of outgoing postsynaptic currents
(PSC) is also a challenge for a neural network accelerator
system as neurons typically have a very large number of output
connections. When storing spikes in a spike queue, instead of
storing the addresses of neurons that are receiving spikes, it
is vastly more efficient to store the addresses of neurons from
which spikes are coming. In this way, the spike queue stores
the SRC addresses, not the DEST addresses, and only performs
the rule lookup to obtain the DEST address when evaluating
the postsynaptic update after axonal delay.

Finally, cache locality is critical in optimizing neuron weight
and state lookups. In an event-driven system that interacts with
the real world, there are also likely to be significant patterns in
the input data that can be exploited by the system. In the DVS
event-driven retina system [3], for example, a pixel that sees
an on event (on contrast change) is likely to have an off (off
contrast change) event soon after because of the movement of
a spatially extended object. These inherent correlations offer
a major advantage over time-stepped systems, and there is no
wasted computation as every input spike represents a change
in the world, which necessitates an update of the output. For
spatially similar input events, the weight and state values can
be cached and fetched much more quickly. Ensuring locality
was done by striping the neurons across the computational
cores. The last five bits of the neuron ID assigns each neuron
to a core, allowing a given core to store state and weights for
frequent and recently active neurons without contention.

C. Minitaur Implementation

The simplified architecture diagram is shown in Fig. 1, and
a list of the parameters and their formats can be found in
Table 1. The system is designed to exploit commonalities in
modern artificial neural networks to allow for greatly reduced
computational load. Though Minitaur is a digital, clock-based
system, no processing occurs except upon input events. This
hybrid approach takes advantage of the ease-of-use of digital
tools as well as the dramatic computation reduction of event-
driven processing.

Fig. 2. Visualization of the weights between the first and second layers
of the MNIST network [7] trained using rate neurons. This figure shows a
sample of 100 neurons in the second layer, in which the incoming 784 weights
are reshaped into a 28 × 28 pixel image. The weights shown are typical of
MNIST-trained networks.

In this implementation, spikes (events) arrive over USB
in packets, stamped with a four-byte timestamp, a one-byte
layer indicator, and a two-byte neuron address. After passing
through a ring buffer to allow for rapid bursts of spikes,
the spikes are dispatched to the event queue where they are
sorted by timestamp and layer. Time sorting is presumed
only necessary with axonal delays and mixing spikes from
external sources (e.g., spike-based neuromorphic devices) with
on-Minitaur computation layers.

To support recurrent connections and axonal delays, a
time delay must exist between when a neuron spikes and
when that spike is delivered to its receiving neuron. The
event queue maintains a sorted list of incoming spikes as
a priority queue, which allows for O(log(n)) operations of
insertion and root-node extraction. The event queue uses
a five-byte index key comprised of a four-byte timestamp
and an one-byte layer index to store the neuron address.
In this way, all spikes from the same layer simultaneously
(a common occurrence with all-to-all connectivity and
identical delays) will be sorted together and separated from
the spikes of another layer simultaneously. Seven 2048-byte
BRAMs are used to store up to 2048 events simultaneously.
A flag ensures that spikes cannot be emitted from a layer
until all inputs to that layer at that time have been evaluated.

Simultaneously, the parallel distributor block, which con-
nects all the cores together in Fig. 1, checks the event queue
to extract the first available spike for processing. Spikes are
stored according to spike origin, not spike destination, so a
connection lookup is necessary to determine which neurons
will have membrane potential updates.

Each neuron is assigned an ID number and neurons in
a given layer are assigned consecutive IDs. In this way, a
connection can be very compactly represented: 4 bytes for
the start and end of each of the SRC and DEST addresses
yields a 16-byte range rule. To support multiple layer fanout,
all possible rules are matched. Note that extremely complex,
nonlayer-based networks can still be represented in this form
using point-to-point connectivity. The number of comparisons
is usually very small when describing a typical DBN for
Minitaur’s intended use; for example, five rules are sufficient
to describe the MNIST handwritten digit identification
network shown in Fig. 3 (one for each layer and one to map
output to the computer). During a connection lookup, the
source address is iteratively compared with all connection

NEIL AND LIU: EVENT-DRIVEN FPGA-BASED SPIKING NETWORK ACCELERATOR 2625

Fig. 3. Visualization of the network configuration used for the MNIST task.

rules in the rule memory, and if a rule is found with a source
range containing the input spike address, the output range is
passed as the range to compute.

The bottom five bits of the address of the output range are
used to assign a particular neuron update to a particular core:
for example, a neuron with address ID 1025 will always be
assigned to core 1. This allows for cache locality and obviates
any issues causing stale caches from other cores updating
a given neuron. The parallel distributor assigns a batch of
32 neurons to be updated; waits until they are completed; and
increments to assign the next batch of 32. This continues until
the entire destination range of neurons has been addressed.

The event-driven algorithm (Algorithm 2) is executed by
the core once a neuron is assigned. State fetching is done
simultaneously with weight fetching to minimize latency, and
as soon as the state is fetched it is passed to the DSP for
computation. The state is stored as an eight-byte chunk: two
bytes for the refractory end time, three bytes for the last-update
timestamp, two bytes for state, and one byte for assorted
information including the cache tag, an initialization bit, and a
refractory bit. Because the DSP does not support exponentia-
tion, a ROM lookup table is generated with exponential decay
factors. Obtaining the time delta and dividing by the membrane
time constant yields an integer lookup index in this memory,
and the value at the address j , of 1024 addresses, is e− j/128,
approximated to 16 bits of fixed-point accuracy (five integer
bits and 11 fractional bits). This yields an accurate decay range
from 1/128τ to 8τ in steps of 1/128τ . The weight is stored
as two bytes in the same fixed-point format. During neuron
updates, the membrane is decayed, followed by an impulse
according to the weight of the input neuron, and the potential is
compared with the threshold. If the threshold is exceeded, then
a flag is raised by the core. After arbitration and depending on
system parameters, that spike is either assembled and sent to
the computer or it is added to the spike queue with an axonal
delay, where it will be sorted according to its time and layer.

Fast local memory is a key for optimizing neural network
computations by minimizing the impact of weight lookups.
This cache is implemented with a variant of the direct-mapped
cache algorithm: each neuron or weight lookup has only one
location that it can be mapped to, and at each location, a
reference counter tracks the number of consecutive misses.
The penalty for a DDR2 swap is not as severe as a hard disk,
so occasional contention for a specific memory location is an
acceptable tradeoff for very fast lookup.

For neuron state cache lookups, the eight-bit cache address
is formed using the middle part of the neuron’s address. The
lower five bits are common to all the neurons at a given core
due to the computational partitioning; the upper three bits are
used as a tag. Combined together, the core-specified five bits,
the cache address’s eight bits, and the tag’s three bits recovers
the entire 16-bit neuron address. In the case of a cache hit (i.e.,
a value was successfully retrieved from cache), a reference bit
is set to one; in the case of a miss (i.e., the value is not cached

and must be fetched from main memory), the bit is cleared,
and if already cleared, the entry is swapped out. The neuron
state is stored in eight bytes including the tag, allowing for
256 entries per core using one 2-kB BRAM.

For neuron weight lookups, a two-stage approach is used.
Optimized for fanout, the local weight cache is separated into
blocks of 16 entries. Each block of 16 has a single SRC neuron
address and up to 15 DEST neuron addresses. On a cache
lookup, the lower seven bits of the SRC address are used to
index the cache; if the SRC matches, then the four lower bits
of the DEST addresses are used to calculate a jump offset
from the initial SRC address. If the DEST address matches,
then the weight is retrieved from the cache. Here, the reference
bit for the SRC address is two bits since up to 15 DEST entries
could be swapped out at once; thus, four consecutive misses
are required to swap an address out. The DEST address uses
only one reference bit, requiring two misses to swap out.

V. RESULT

The completed Minitaur design uses 22k logic slices, 23%
of the capacity of the Spartan-6 LX150 FPGA. The power
consumption of the FPGA is 1.5 W, of which 400 mW sup-
ports electronics external to the FPGA. Of the on-chip power
budget, 10.0% supports logic and signals, 16.2% supports the
200 (of 268) block memories heavily used as cache to speed up
the system, and 73.8% is due to the PLLs, clock distributors,
IOs, and leakage. The system makes use of primarily three
clocks: the DDR2 clock at 132 MHz, the USB I/O clock at
48 MHz, and the logic clock operating at 75 MHz. Minitaur
is an early stage device, and many further optimizations can
be made to significantly increase its performance. A summary
of the results can be found in Table II. Following [12], the
connections per second, or more specifically, the PSCs/second,
was chosen as the primary performance metric.

The performance statistics were gathered on an Intel Core 2
Duo P7350 clocked at 2.00-GHz running Ubuntu Linux 12.04.
Minitaur was connected via USB using the Java libusb device
wrapper and received input spikes from benchmarking soft-
ware on the computer for performance benchmarking, the
MNIST task, and newsgroup classification task. In addition,
the CPU PSC/second performance statistics were calculated
using a high-performance parallel MATLAB implementation
of LIF neuron networks, rather than a block-wise model of
Minitaur, to ensure a fair peak performance comparison.

A. Data Sets

1) MNIST Handwritten Digits: The system was tested
extensively with the well-studied MNIST benchmark of
handwritten digits [26]. Where not otherwise specified, the
performance results were obtained using the full test set of
10 000 handwritten digits after training on the full 60 000
digit training set. To convert the static images into events, the
28 × 28 images were vectorized into 784 neuron addresses and
spikes were sent with probability proportional to the intensity
of the pixel.

The final feedforward network was 784–500–500–10 units
in size (Fig. 3). Since each layer is connected in the standard
all-to-all fashion, this yields 647 000 synapses in this task and
1785 neurons. Using weights previously trained to achieve

2626 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 12, DECEMBER 2014

Fig. 4. Example real-time run of digit identification, with an output spike
represented by a black dot. Each digit was presented in order, from zero to
nine, for a duration of 1 s during which 1000 spikes were presented; the
probability of an input spike for a given pixel is proportional to the pixel’s
intensity. The winning digit is chosen according to an exponentially decaying
histogram (τ = 0.11 s). Dark dotted line: a transition to a selection of an
incorrect winning digit. Lighter dashed lines: a transition to the correct choice
for that digit. For the trial shown here, the average time to transition to a newly
selected digit after a change in the input digit was 0.152 s.

94.2% accuracy on the MNIST task with LIF neurons in
software [7] and shown in Fig. 2, Minitaur achieved 92%
accuracy with 1000 spikes per image; the effects of different
input volume per image are discussed later in this paper
(Fig. 5). The loss of accuracy is likely due to the fewer bits
for representation of the weights, as the computer performs
the task with doubles (eight bytes) while Minitaur uses just
two bytes for a neuron’s weight. To ameliorate this, future
versions can have a reduced-accuracy training paradigm to
train weights that balance each other more accurately using
less-precise representations, rather than simply truncating the
more accurate representations.

The output behaviour of an example real-time execution of
the Minitaur system on the MNIST classification task can be
found in Fig. 4.

2) Newsgroups Data Set Classification Performance: Fur-
thermore, to demonstrate the runtime configurability of Mini-
taur, a nonvisual large data set was selected in addition
to the standard MNIST task. The 20 newsgroups data set
is a collection of approximately 20 000 documents evenly
partitioned across 20 newsgroup forums, collected in 1995
[27] and commonly used in text classification and clustering.
As shown in Table III, several of the document types are very
closely related, while others are more distant. The documents
are presented in a bag-of-words model: each document is
represented with a sparse vector of word counts.

Typically, the word counts of these documents are trans-
formed by applying the term frequency-inverse document
frequency (TF-IDF) transform to control for commonly used
words and identify the more salient usage of infrequent words.
This preprocessing step, however, requires both additional
transformations and knowledge of the complete data set.
Minitaur is designed to save computation time and the system
should operate with as a little preprocessing and unnecessary
computation as possible. Furthermore, word counts must be
transformed into events to be used in the system.

In the approach used here, an event corresponding to each
word is emitted whenever that word is encountered in text.
Time no longer has a concrete meaning in this domain so

Fig. 5. Increasing accuracy with additional information, using the complete
10 000 digits in the MNIST test set. For an event-based system, the natural
unit of time is number of input events, not seconds. Each input event refines
the answer estimate in the same way a long exposure time or multiple frames
accumulate evidence in a time-stepped model. Moreover, latency is measured
using input events because the system cannot produce an answer without
accumulated information added to the system. The top plot shows a histogram
of latency until the first output spike. Most of the trials produce a result spike
after four input spikes (as seen in the zoomed-in inset), but some trials can
take hundreds of inputs to produce their first output spike. The bottom plot
shows the effect of adding more events in the MNIST task. Additional spikes
cause the accuracy to asymptotically approach a 92% value.

TABLE III

NEWSGROUP CLASSIFICATION

it was chosen to assign random, small time steps to each
additional word spike. In this way, the network represents
the semantic context of the document, which gradually either
decays away or accumulates according to the types of words
that are presented.

The network used in this case is a simple two-layer network
of size 10 000–20, yielding a network of 10 020 neurons and
200 000 synapses. The number of neurons in the input layer is
equal to the number of words used (10 000 in this experiment),
and the number of neurons in the output layer equals the
number of distinct classes (20 distinct newsgroups). The
network was trained using standard backpropagation combined
with dropout [28].

NEIL AND LIU: EVENT-DRIVEN FPGA-BASED SPIKING NETWORK ACCELERATOR 2627

Without transforming the input using TF-IDF, word counts
were emitted as word spike counts, and using the standard
60% train, 40% test split on these documents, the Minitaur
system achieved 71% classification accuracy using the 10 000
most frequently used words in the data set. The breakdown by
category with the most common words is shown in Table III.

The PSC/second performance of both the CPU and the
Minitaur system decreased with the newsgroup classification
task. A given news item to be classified may only have
100 noncommon words, and the fanout for each of these words
is only 20. This means that Minitaur cannot fully use all
32 cores during computation of neuron updates. In addition,
the system has suboptimal caching from the significant weight
convergence (10 000 nodes to 20), which limits the number of
SRC neurons that can have cached weights. The CPU-based
approach suffers as well because the parallelism between trials
is low; a given news item may only have 100 noncommon
words while another might have 10 000, so the CPU is not able
to parallelize as many trials simultaneously as in the MNIST
task.

B. System Performance

The current design has a benchmarked USB-to-USB latency
of 236 μs (averaged over 10 000 trials), which is primarily
dominated by the latency of the operating system issuing
USB read and writes. Minitaur was benchmarked at processing
585 kevts/s or one input spike every 1.71 μs with all memory
fetches drawing from local cache. With each input spike
causing 32 PSC (fully using the parallel cores), Minitaur
processed 18.73 million PSC/second at its peak speed.

C. Initial Response and Additional Accuracy

Minitaur can be used to abort a computation early when suf-
ficient accuracy is reached. When operating on a fixed input,
event-based computation is a process of refinement rather than
a static computation. Sequential input events add information
to the system, and the system accumulates evidence over time
to arrive at a more accurate answer.

This implies that an embodied robotic platform using
Minitaur could use Minitaur’s initial output after a very low
response time to achieve a low-quality guess, or pay a small
time cost to allow subsequent processing to increase the
accuracy of that guess. In the MNIST task, 59.2% of the first
output spikes (not shown) showed a correct answer occurring
after the delay represented in the top half of Fig. 5. This would
allow the system to make a low-accuracy guess after a very
short delay. The bottom of Fig. 5 shows the increased accuracy
of the system as the number of input events increases.

Both early abort and longer refinement use cases have
obvious applications in robotics, and the freedom to choose
at runtime is a major advantage of the Minitaur system.

D. Noise Robustness and Indecision

With the fallibility of sensors in general, and the likelihood
of unexpected events in real-world data sets, robustness to
noise is a significant part of designing a real-time event-
driven system. To test the robustness of the system to noise,
the MNIST data set was employed with varying noise levels.

Fig. 6. Visualization of three digits from the MNIST data set with noise
added. From left to right: 0% noise, 30% noise, 55% noise, and 80% noise
for example handwritten digits four, nine, and three. Noise spikes were drawn
uniformly from the pixel space and used to replace informative spikes.

Fig. 7. System performance is robust to noise. Even when the input is only
20% signal and 80% noise, the event-driven system still correctly classifies the
digits with more than a 70% success rate. This is largely due to the robustness
of RBMs to uniform noise. Since no particular distribution is favored by
uniform noise, it does not strongly affect the result. The increased noise of
the data does create more indecision in the result. The number of output spikes
drops dramatically with increased noise and accounts for the falling accuracy.

As before, spikes are drawn from the image with probability
proportional to pixel intensity. Then, a percentage of spikes is
subsequently replaced with spikes from random pixels, drawn
uniformly from the pixel space, and the accuracy of the system
is calculated (Fig. 6). As shown in Fig. 7, the system is very
robust to noise due to the weights of the RBM, which act
to denoise the input by keeping only significant features as
events propagate through the layers. Interestingly, the number
of output spikes drops dramatically with increased noise; when
receiving 90% noise, the system will average just over two
output spikes for 1000 input spikes. The decrease of spikes
has practical advantages as well; a downstream system using
the output of Minitaur will be signaled with fewer spikes since
Minitaur is less confident of its result.

VI. CONCLUSION

In this paper, the authors have introduced the Minitaur
spiking network accelerator. In addition to the system’s per-
formance of 18.73 million PSCs/second, it consumes just
1.5 W of power, enabling it to be used in embedded robotics
applications. The system records 92% accuracy on the MNIST
handwritten digit classification and 71% accuracy on the
20 newsgroups classification data set. With proper weights,
the system is remarkably robust to noise. In addition, the
knowledge about the output spikes can be used to determine
how difficult a task is, and to weigh the confidence of the
output accordingly.

2628 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 12, DECEMBER 2014

A significant challenge of using this system right now is
the dearth of effective training methods for LIF-spike-based
systems. Various approaches for learning the weights for spike-
based LIF networks, in particular DBNs, are being explored
[7] especially where such networks prevent traditional training
regimens of real-valued sigmoidal activation functions and
backpropagation. Further work on event-based learning is
needed to improve training and runtime accuracy significantly.

The system raises questions for further research about event-
based processing in the real world. Systems with constrained
resources to acquire information, process it, and subsequently
act on it can benefit from event-based processing. Progressive
refinement can allow the system to gather as much information
as it needs to perform an action, determine a confidence of
its analysis, and act according to that level of confidence.
In closed-loop systems interacting in the real world, this can
greatly optimize resource usage, and Minitaur’s robustness to
noise bolsters confidence that this can be used in real-time
systems.

ACKNOWLEDGMENT

The authors would like to thank P. O’Connor, M. Pfeiffer,
and T. Delbruck for discussions and inspiration.

REFERENCES

[1] T. Delbruck, “Frame-free dynamic digital vision,” in Proc. Int. Symp.
Secure-Life Electron., Adv. Electron. Quality Life Soc., 2008, pp. 21–26.

[2] C. Farabet, Y. LeCun, K. Kavukcuoglu, E. Culurciello, B. Martini,
P. Akselrod, et al., Large-Scale FPGA-Based Convolutional Networks.
Cambridge, U.K.: Cambridge Univ. Press, 2011.

[3] P. Lichtsteiner, C. Posch, and T. Delbrück, “A 128 × 128 120 dB
15 μs latency asynchronous temporal contrast vision sensor,” IEEE J.
Solid State Circuits, vol. 43, no. 2, pp. 566–576, Feb. 2008.

[4] S.-C. Liu, A. van Schaik, B. Minch, and T. Delbrück, “Event-based
64-channel binaural silicon cochlea with Q enhancement mechanisms,”
in Proc. IEEE Int. Symp. Circuits Syst., May 2010, pp. 2027–2030.

[5] S.-C. Liu and T. Delbruck, “Neuromorphic sensory systems,” Current
Opinion Neurobiol., vol. 20, no. 3, pp. 288–295, 2010.

[6] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[7] P. O’Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer, “Real-
time classification and sensor fusion with a spiking deep belief network,”
Frontiers Neurosci., vol. 7, no. 178, p. 1, Oct. 2013.

[8] A. Delorme and S. Thorpe, “SpikeNET: An event-driven simulation
package for modeling large networks of spiking neurons,” Netw., Com-
put. Neural Syst., vol. 14, no. 4, pp. 613–627, 2003.

[9] I. Marian, R. Reilly, and D. Mackey, “Efficient event-driven simulation
of spiking neural networks,” in Proc. 3rd WSES Int. Conf., Neural Netw.
Appl., 2002, pp. 1–6.

[10] C. Lobb, Z. Chao, R. Fujimoto, and S. Potter, “Parallel event-driven
neural network simulations using the Hodgkin-Huxley neuron model,”
in Proc. Workshop PADS, 2005, pp. 16–25.

[11] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J. M. Bower,
et al., “Simulation of networks of spiking neurons: A review of tools
and strategies,” J. Comput. Neurosci., vol. 23, no. 3, pp. 349–398, 2007.

[12] J. Misra and I. Saha, “Artificial neural networks in hardware: A survey of
two decades of progress,” Neurocomputing, vol. 74, no. 1, pp. 239–255,
2010.

[13] L. Maguire, T. McGinnity, B. Glackin, A. Ghani, A. Belatreche, and
J. Harkin, “Challenges for large-scale implementations of spiking neural
networks on FPGAs,” Neurocomputing, vol. 71, no. 1, pp. 13–29, 2007.

[14] D. Thomas and W. Luk, “FPGA accelerated simulation of biologically
plausible spiking neural networks,” in Proc. 17th IEEE Symp. FCCM,
Apr. 2009, pp. 45–52.

[15] A. Cassidy, A. Andreou, and J. Georgiou, “Design of a one million
neuron single FPGA neuromorphic system for real-time multimodal
scene analysis,” in Proc. 45th Annu. CISS, 2011, pp. 1–6.

[16] B. Leung, Y. Pan, C. Schroeder, S. O. Memik, G. Memik, and
M. Hartmann, “Towards an ‘early neural circuit simulator’: A FPGA
implementation of processing in the rat whisker system,” in Proc. Int.
Conf. FPL, Sep. 2008, pp. 191–196.

[17] K. Cheung, S. Schultz, and P. Leong, “A parallel spiking neural network
simulator,” in Proc. Int. Conf. FPT, 2009, pp. 247–254.

[18] K. Cheung, S. R. Schultz, and W. Luk, “A large-scale spiking neural
network accelerator for FPGA systems,” in Proc. 22nd ICANN, 2012,
pp. 113–120.

[19] R. Agis, E. Ros, J. Diaz, R. Carrillo, and E. M. Ortigosa, “Hardware
event-driven simulation engine for spiking neural networks,” Int. J.
Electron., vol. 94, no. 5, pp. 469–480, 2007.

[20] E. Izhikevich, “Simple model of spiking neurons,” IEEE Trans. Neural
Netw., vol. 14, no. 6, pp. 1569–1572, Nov. 2003.

[21] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber,
“Deep, big, simple neural nets for handwritten digit recognition,” Neural
Comput., vol. 22, no. 12, pp. 3207–3220, 2010.

[22] A. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic modeling using deep
belief networks,” IEEE Trans. Audio, Speech, Lang. Process., vol. 20,
no. 1, pp. 14–22, Jan. 2012.

[23] F. Seide, G. Li, and D. Yu, “Conversational speech transcription using
context-dependent deep neural networks,” in Proc. INTERSPEECH,
2011, pp. 437–440.

[24] T. Schoenauer, N. Mehrtash, A. Jahnke, and H. Klar, “MASPINN: Novel
concepts for a neuroaccelerator for spiking neural networks,” Proc. SPIE,
vol. 3728, pp. 87–96, Mar. 1999.

[25] N. Brunel and M. C. W. van Rossum, “Lapicques̀ 1907 paper: From
frogs to integrate-and-fire,” Biol. Cybern., vol. 97, no. 5, pp. 337–339,
2007.

[26] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[27] K. Lang, “NewsWeeder: Learning to filter netnews,” in Proc. 12th Int.
Conf. Mach. Learn., 1995, pp. 331–339.

[28] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” Ph.D. dissertation, Dept. Comput Sci.,
Univ. Toronto, Toronto, ON, Canada, Jul. 2012.

Daniel Neil received the B.S. degree in biomed-
ical computation from Stanford University, Stanford,
CA, USA, and the master’s degree in the neural
systems and computation program from the Institute
of Neuroinformatics, Zurich, Switzerland. He is cur-
rently pursuing his Doctoral degree at the Institute
of Neuroinformatics, University of Zurich and ETH
Zurich, Zurich.

He was formerly a Research Assistant in Kwabena
Boahen’s Brains in Silicon Laboratory, Stanford
University. He also worked as a technical consultant

in the San Francisco Bay Area. His current research interests include scalable
computing architectures for machine learning, with an emphasis on inspiration
from biology.

Shih-Chii Liu (M’02–SM’07) received the B. S.
degree in electrical engineering from MIT and the
Ph.D. degree in the computation and neural systems
program from the California Institute of Technology,
Pasadena, CA, USA.

She worked at various companies, including
Gould American Microsystems, San Jose, CA, USA,
LSI Logic, Sherman Oaks, CA, USA, and Rock-
well International Research Laboratories, Thousand
Oaks, CA, USA. She is currently an Oberassistentin
with the Institute of Neuroinformatics, University of

Zurich and ETH Zurich, Zurich, Switzerland. Her current research interests
include neuromorphic visual and auditory sensors, cortical processing circuits,
and event-based circuits and algorithms.

Dr. Liu is a Past Chair of the IEEE CAS Sensory Systems and Neural
Systems and Applications Technical Committees. She is currently a Chair
of the IEEE Swiss CAS Society, and an Associate Editor of the IEEE
TRANSACTIONS OF BIOMEDICAL CIRCUITS AND SYSTEMS and the Neural
Networks Journal.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

