
1498 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 32, NO. 8, AUGUST 2024

High-Throughput Bilinear Pairing Processor for
Server-Side FPGA Applications

Junichi Sakamoto , Daisuke Fujimoto , Senior Member, IEEE, Riku Anzai, Naoki Yoshida ,
and Tsutomu Matsumoto, Member, IEEE

Abstract— This study focuses on the acceleration of crypto-
graphic pairing operations on field-programmable gate arrays
(FPGAs) for server-side applications. Previous studies on FPGA
pairing implementations focused on area efficiency for embedded
devices, trying to achieve maximum performance with minimal
circuit resources. However, their architectures are likely to be
inefficient for server-side applications, where the primary interest
is maximum performance when FPGA resources are finished.
Their architectures are inefficient for two reasons: low utilization
of the digital signal processor (DSP) and low operation frequency.
In this study, we propose a high-throughput pairing processor
architecture for server-side FPGAs, taking full advantage of
DSPs. First, we propose a loop-unrolled modular multiplication
algorithm that is suitable for a server-side FPGA. The algorithm
shows the highest throughput and area efficiency compared to
algorithms from previous studies. Second, we design a pair-
ing processor architecture that embeds the proposed modular
multiplier, thus, maintaining its high throughput by supporting
redundant adders and interleaved executions. We evaluate BN254
and BLS12_381 pairings on the proposed processor architecture
and the evaluation results show that it achieves good throughput
that is approximately two and five times faster than that from
previous studies, respectively.

Index Terms— Bilinear pairing, BLS12_381, BN254, field-
programmable gate array (FPGA), Montgomery multiplication,
multiplier.

I. INTRODUCTION

WITH the advent of the Internet of Things (IoT) society,
the demand for cryptosystem functions is becoming

increasingly diverse. For example, for the demand to reduce

Manuscript received 28 November 2023; revised 12 March 2024;
accepted 20 April 2024. Date of publication 27 May 2024; date of current
version 26 July 2024. This work was supported in part by the Cabinet Office
(CAO) through the Cross-Ministerial Strategic Innovation Promotion Program
(SIP) “Cyber Physical Security for IoT Society” under Grant JPNP18015
(funding agency: NEDO) and in part by JSPS KAKENHI under Grant
JP22K17893. (Corresponding author: Junichi Sakamoto.)

Junichi Sakamoto and Tsutomu Matsumoto are with the Institute of
Advanced Sciences, Yokohama National University, Yokohama 240-8501,
Japan, and also with the National Institute of Advanced Industrial Science and
Technology, Tokyo 100-8921, Japan (e-mail: sakamoto-junichi@aist.go.jp;
tsutomu@ynu.ac.jp).

Daisuke Fujimoto is with the Graduate School of Science and Technology,
Nara Institute of Science and Technology, Nara 630-0192, Japan, and also
with the National Institute of Advanced Industrial Science and Technology,
Tokyo 100-8921, Japan (e-mail: fujimoto@is.naist.jp).

Riku Anzai was with the Graduate School of Environment and Information
Sciences, Yokohama National University, Yokohama 240-8501, Japan (e-mail:
rikumannjuu@gmail.com).

Naoki Yoshida is with the Institute of Advanced Sciences, Yokohama
National University, Yokohama 240-8501, Japan (e-mail: yoshida-naoki-jb@
ynu.ac.jp).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TVLSI.2024.3402164.

Digital Object Identifier 10.1109/TVLSI.2024.3402164

the amount of data flowing through a network, aggregate
signatures [1] that reduce the number of transactions have
been proposed. In addition, for the demand to increase data
confidentiality, searchable cryptography has been introduced
to enable searching in the ciphertext state [2]. Some of these
advanced cryptographies are based on an operation known
as the (elliptic curve-based) bilinear pairing. A cryptographic
system based on pairing is known as pairing-based cryptogra-
phy (PBC). However, the pairing is computationally intensive,
typically requiring more than 10 000 modular multiplications
on a finite field [3]. Key-size update due to recent theoretical
attack [4] also increases the computational complexity of
the pairing. For PBC to be widely used worldwide, it is
important to accelerate the pairing computations. In this
study, we focus on PBC for server-side applications such as
aggregate signature verification in Section II-B) that requires
a large number of pairing computations in a batch manner.
Field-programmable gate array (FPGA) implementation is a
promising option for accelerating cryptographic operations
for server-side applications. Server-side FPGAs such as the
Xilinx Virtex Ultrascale+ XVU9P used in AWS, Alibaba, and
Huawei clouds [5], [6] have significantly huge resources for
a single crypto core; therefore, increasing throughput with a
multicore strategy [7] is an important factor. However, existing
studies of FPGA-based pairing processors are unsuitable for
multicore strategy in server-side applications for the following
two reasons.

A. Utilized Resource Imbalance
Several types of circuit resources are available in FPGAs,

including look-up tables (LUTs), flip-flops (FFs), and, digital
signal processors (DSPs). If the utilization of these resources
is unbalanced (if the utilization of one of the resources is
high), the number of cores in a multicore implementation will
be bounded by that resource, implying that some resources
are unused and do not contribute to performance (see Fig. 1).
Existing studies of FPGA pairing processors [8], [9], [10],
[11], [12], [13], [14] evaluate only single-core performance;
thus, do not take into account the utilized resource balance for
multicore performance.

B. Low Operating Frequency
Existing pairing processors on FPGAs [8], [9], [10], [11],

[14], [15] run at 200–300 MHz, which is lower than the maxi-
mum operating frequency of the FPGAs, 600–800 MHz. This
is mainly because the existing studies focus on low-latency

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5316-7555
https://orcid.org/0000-0001-9389-7977
https://orcid.org/0009-0008-4047-3546

SAKAMOTO et al.: HIGH-THROUGHPUT BILINEAR PAIRING PROCESSOR 1499

Fig. 1. Abstract images of multicore implementation with (a) high
SDR (≫ 43) cores and (b) low SDR (< 43) cores. (a) Large unused regions
including many DSPs, indicating that the FPGA does not achieve maximum
performance. (b) Use most of the DSP resources. The remaining unused slices
are effectively available for other peripherals such as I/O interfaces.

computation. Whereas server-side applications require high
throughput rather than low latency to respond to a large
numbers of cryptographic requests.

To solve these problems, this article: 1) introduces a metric,
the slice DSP ratio (SDR), that maximizes the use of circuit
resources on an FPGA and 2) uses the SDR metric, proposes a
methodology to maximize the performance of the crypto core
for server-side applications.

To implement a cryptographic core on an FPGA, we can
primarily use two resources: a logic slice, consisting of
LUTs and FFs, and a DSP, a dedicated unit for sum-of-
product operations. Balanced utilization of these two resources
leads to maximize the performance under multicore strategy.
We introduce the SDR as a metric for resource utilization
imbalance. Xilinx Virtex Ultrascale+ XVU9P, which is a stan-
dard server-side FPGA adopted in AWS, Alibaba, and Huawei
cloud, provides 295 000 slices and 6840 DSPs. The closer
the SDR of a cryptographic core is to 431

= 295 000/6840,
the more “balanced” the resource utilization, resulting in high
performance due to the full resource utilization as shown in
Fig. 1. In the previous studies [8], [9], [11], most pairing
cores had SDR > 43, which is not preferable for maximizing
multicore performance in terms of not taking full advantage
of FPGA resources (DSPs).

Our methodology for getting the SDR of the pairing circuit
close to 43 is to construct the modular multiplier with as
few slices as possible (with low SDR). Since the components
of the pairing circuit other than the modular multiplier (e.g.,
modular adders and sequencers) are composed only of slices,
the SDR of the entire pairing circuit is balanced by the low
SDR modular multiplier and the high SDR other components.

In order to reduce the SDR of the modular multiplier,
we propose a new modular multiplication algorithm designed
for the DSP of the cloud FPGA. This algorithm is carefully
designed to take full advantage of various DSP functions,
asymmetric multiplier, ternary post-adder, and pipeline reg-
isters, achieving high throughput at low SDR by integrating

1This is a device-dependent value. We believe that using this value is
justified because XVU9P is a de facto standard in cloud FPGAs.

functions previously implemented in slices into the DSP. The
low SDR of the modular multiplier allows us to implement
other components for the pairing computation, such as the
modular adders, with a large number of logic slices to improve
performance. Although adders and sequencers can typically be
a performance bottleneck, our pairing processor architecture
avoids the performance degradation through deep pipelining
and the use of redundant adders that consume a large number
of logic slices, resulting in high throughput of the entire
pairing computation.

As a demonstration of our proposed method, we show that
the proposed modular multiplier achieves a low SDR of less
than 22, an operating frequency of over 600 MHz, and at least
more than twice the throughput per area compared to previous
studies. Furthermore, we evaluate the pairing processor using
the proposed modular multiplier on BN254 and BLS12_381
curve pairings. The evaluation results show that our imple-
mentation have the good SDRs (46.96 and 41.24) and achieve
approximately 2 and 5 times multi-core throughput, compared
to those from previous studies. Our source code is available
on the web.2

The remainder of this article is organized as follows.
Section II discusses the preliminaries for this study, includ-
ing pairing mathematical background and related works.
Section III discusses the proposed method and the ways in
which it achieved a high performance on server-side FPGAs.
Section IV presents the evaluation results of our proposed
method on XVU9P FPGA and comparisons with results from
previous studies. Finally, Section VI concludes this article.

II. PRELIMINARIES

A. Pairing

The map below e

e : G1 ×G2 → G3 (1)
e(P, Q) 7→ R (2)

is called (admissible) “pairing” if it satisfies the following
three properties.

1) Non-degeneracy: For ∀P (∀Q), if e(P, Q) = 1, then
Q = 0 (P = 0).

2) Bilinearity: e([a]P, [b]Q) = e([b]P, [a]Q) =

e(P, Q)ab.
3) Computability: Efficiently computable in polynomial

time.
In the above expression, G1 and G2 are represented additive,
and G3 multiplicative. [a]P represents the scalar multiplica-
tion of P by an integer a.

Let p be a prime number, E be an elliptic curve defined
over Fp, and k is the embedding degree. Our target pair-
ing is the optimal Ate pairing [18], where G1, G2 are
defined as subgroups of elliptic curve group E(Fp), and
G3 is a subgroup of F∗pk . Although the unique property
of the pairing—bilinearity—produces various functionalities
in advanced cryptography, the security parameters for using
the pairing securely have not been decided yet with solid

2https://github.com/ankoman/HTBPA

1500 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 32, NO. 8, AUGUST 2024

Fig. 2. Typical operations required for optimal Ate pairing computation.
Hardware architecture suitable for Fp2 operations is effective in speeding up
the pairing since all operations can be decomposed into Fp2 operations.

consensus in the research community. In 2018, Razvan and
Sylvain [4] updated the security-bit length for the secure
pairing computation. The parameters can be updated again in
the future.

Over the optimal Ate pairing [18], the Barreto-Naehrig
(BN) curve [19] satisfies a 100-bit security level, if it
adopts parameters with 254-bit prime characteristics, while
the Boneh–Lynn–Shacham (BLS) curve [20] satisfies a 128-
bit security level, if it adopts parameters with 381-bit prime
characteristics [21].

Because these curves have the embedding degree k = 12,
the pairing computation involves performing the Fp12 arith-
metic. We use the following extension:

Fp2 = Fp[i]/
(
i2
− β

)
, where β = −1 (3)

Fp12 = Fp2 [w]/
(
w6
− ξ

)
, where ξ = i + 1. (4)

Since Fp12 is constructed on Fp2 , it is important to accelerate
the Fp2 operation in the optimal Ate pairing architecture.

Fig. 2 shows a top-down view of the operations required
for a typical optimal Ate pairing computation. The opti-
mal Ate pairing can be decomposed into two functions:
f , called the Miller loop, and its power of pk

− 1/r ,
called the final exponentiation, where r is the order of the
elliptic curve group. Each function is decomposed into finer-
grained operations: elliptic curve operations, Fp12 operations,
and Fp2 operations. The lowest-level operation is the prime
field (Fp) operation, i.e., addition and multiplication modulo
p, which can be implemented with log p-bit adders and
modular multipliers. According to [22], the pairing com-
putation for a 254-bit prime requires approximately 10 000
Fp multiplications and 57 000 Fp additions, indicating that
high-throughput adders and modular multipliers are effective
in speeding up the pairing computation. Because most oper-
ations for pairing can be decomposed into Fp2 operations,
as shown in Fig. 2, we design a hardware architecture opti-
mized for Fp2 operations by combining modular adders and
multipliers.

B. BLS Signature

The BLS digital signature scheme [1], [23] is an example of
PBC. The BLS digital signature has a short signature length
than the conventional elliptic curve digital signature algorithm
(ECDSA) and a signature aggregation function, which can
aggregate multiple signatures into a single signature. Accord-
ing to these advantages, some decentralized applications, such
as DFINITY [24] and Ethereum [25], adopt the BLS signature
to compress data and storage size.

G1 and G2 are elliptic curve groups, which have the same
prime order p; g1 and g2 are the generators of G1 and G2,
respectively, and H0 is a hash function such that H0 :M→
G1. The BLS signature consists of three functions, KeyGen,
Sign, and Verify.

1) KeyGen(λ): For security parameter λ, it outputs secret
key sk

$
←− Zp and public key pk ← [sk]g2 ∈ G2.

2) Sign(sk, m): For an input message m ∈ M, it outputs
signature σ ← [sk]H0(m) ∈ G1.

3) Verify(pk, m, σ): Outputs “accept” if e(H0(m), pk) =

e(σ, g2), otherwise “reject.”
The Verify function determines whether the signature is
acceptable using the pairing’s property of bilinearity.

In addition, the BLS signature allows the following Agg
and AggVerify functions.

1) Agg(σ1, . . . , σn): For input n signatures, outputs S ←
σ1 + · · · + σn .

2) AggVerify((pk1, m1), . . . , (pkn, mn),S): For n tuples
of public keys and messages, outputs “accept” if
e(S, g2) = e(H0(m1), pk1), . . . , e(H0(mn), pkn), other-
wise “reject.”

Because the BLS signature can compress multiple signature
data into one, owing to the Agg function, the BLS signature
is expected to be used to reduce network traffic and storage
size.

C. Importance of Server-Side FPGAs to Accelerate
Pairing Computations

The main bottleneck of the BLS signature is n + 1 pairing
computations involved in the AggVerify. As an example of
the BLS signature application [26], [27], we take a wireless
sensor network (WSN), where millions of sensor nodes sense
some physical quantities and the sensed data is accumulated
onto server nodes. Signing the sensed data on the sensor
nodes provides the ability for authenticity verification on the
server nodes. This prevents the data poisoning attack and
the adversarial example attack. However, the signature length
(64 B in typical ECDSA, for instance) is significantly larger
than the sensed data (we estimate a few bytes in many cases).
The load on the network bandwidth must be addressed when
many nodes send signed data. Introducing the BLS signature
onto the WSN significantly saves the network bandwidth by
aggregating multiple signatures on intermediate nodes such
as gateways. The server nodes must process n + 1 pairing
computation to verify the aggregated signature, which can
become a bottleneck.

Hardware implementation is a promising approach
for accelerating pairing computation. Among hardware

SAKAMOTO et al.: HIGH-THROUGHPUT BILINEAR PAIRING PROCESSOR 1501

implementations, we focus on reconfigurable FPGA because
security parameters can be updated. The server side can use
high-performance FPGAs, compared to IoT end devices.
FPGAs have recently become available for cloud services
with the Xilinx Virtex Ultrascale+ XVU9P. Our goal is,
therefore, to implement a high-throughput implementation
on the Xilinx Virtex Ultrascale+ XVU9P. We propose a
high-throughput implementation that can handle many pairing
requests, focusing on the fact that the pairing requests on the
server nodes occur in a batch-like manner when an aggregated
signature arrives.

D. Related Studies
Sakamoto et al. [15] proposed a pairing processor based

on Yao et al.’s work [8], and their pairing processors
have similar architectures. While Sakamoto et al. aimed to
develop a low-latency and large-scale pairing processor with
fully unrolled quotient pipelining Montgomery multiplication
(QPMM), Yao et al. aimed to achieve a good area-speed
efficiency with the residue number system (RNS). These stud-
ies have implemented pairing processors with 16–18 pipeline
stages on FPGAs, and they demonstrated that their pairing
processor can use the pipeline at high efficiencies of approxi-
mately 100%. This indicates that the pairing computation has
fewer computation dependencies, and we can maintain the
performance if we implement a deeper pipeline. We believe
that we can improve the throughput of a pairing processor
while maintaining the latency even when the pipeline stages
are deepened to maximize the DSP operating frequency.

Accelerating modular multiplication is a major topic in
cryptography research, as modular multiplication is the dom-
inant operation in computing many public key cryptosystems.
Barrett reduction [28] and Montgomery reduction [29] are the
most well-known modular multiplication algorithms, with the
latter being the mainstream method.

The key point to implementing modular multiplication in
FPGAs is effectively using DSPs, the dedicated hardware
elements for performing multiplications. The operating fre-
quency of the DSP is crucial in implementing a fast modular
multiplier. Some studies [16], [17] aimed to operate the DSPs
at the maximum frequency written in datasheets.

Suzuki [16] implemented a modular multiplier that oper-
ates at a maximum operating frequency of 400 MHz on
Virtex-4 devices by adequately assigning the QPMM [30]
algorithm to 17 DSPs. Gallin and Tisserand [17] implemented
a 128-bit modular multiplier operating at 349 MHz, compared
to the maximum operating frequency of 390 MHz for the
Spartan-6 device, by adequately assigning the coarsely inte-
grated operand scanning (CIOS)-Montgomery multiplication
to nine DSPs. Although these studies proposed methodologies
for maximizing the DSP operating frequency, their results
were validated only on small-scale (older generation) FPGAs.
We should take advantage of many resources (thousands of
DSPs) in modern large-scale FPGAs used in cloud services.

Gallin and Tisserand [17] implemented an elliptic curve
processor using their proposed modular multiplier. The elliptic
curve processor requires adders and memories, and not only
a modular multiplier. The adders and memories must also be

Fig. 3. Abstract overall architecture of the proposed pairing processor. The
brackets [,) represent the range of the output values of each module, where
M̃ is a constant for the modular multiplier algorithm. This architecture adopts
the lazy-reduction technique for fast modular additions; hence, modules other
than the QPMM extend the output ranges. The QPMM module performs all
reduction operations, in which a value up to 1024M̃ − 1 is reduced to up to
2M̃ − 1.

designed appropriately to maintain a high operating frequency.
In their study, the operating frequency of the elliptic curve
processor was decreased from 349 to 298 MHz.

III. PROPOSED PAIRING PROCESSOR ARCHITECTURE

A. Architecture Overview

Fig. 3 shows the overall architecture of our pairing pro-
cessor, which is an improved version of the one from our
previous study [15]. This architecture is mainly designed
to accelerate the Fp2 arithmetic frequently appearing in the
pairing computation. For example, we can efficiently calculate
the Fp2 multiplication and squaring using a Karatsuba-like
formula as the following:

z0 + z1i = (x0 + x1i) · (y0 + y1i)

= x0 y0 − x1 y1

+ ((x0 + x1) · (y0 + y1)− x0 y0 − x1 y1)i (5)

z0 + z1i = (x0 + x1i)2

= (x0 + x1) · (x0 − x1)+ 2x0x1i (6)

where z0, z1, x0, x1, y0, y1 ∈ Fp. Fig. 4 shows the ways in
which the above equations are processed in the proposed
architecture. As shown in Fig. 4, the architecture enables the
calculation of Fp2 multiplication or squaring by three or two
cycles on average, respectively. In Sections III-B and III-C,
we explain ways in which this architecture achieves both high
performance and a low SDR.

The pairing computation is performed on a finite field; there-
fore, all additions in the architecture require modular adders
rather than simple adders. Because the modular arithmetic

1502 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 32, NO. 8, AUGUST 2024

Fig. 4. Proposed architecture’s pipeline data flow when processing Fp2 through multiplication and squaring for three and two cycles on average, respectively.
The sequencer module first issues three opcodes (control signals) for the Fp2 multiplication, followed by two opcodes for Fp2 squaring. This figure shows
the computation process according to the control signals. In the figure, all computations are in the same-sized boxes, but the computation time is different.
This figure is not cycle-accurate, and the interleaved execution is omitted to simplify the explanation; τ data are read from the BRAMs for an issued opcode
when enabling an interleaved execution (we can also say that this figure shows the situation in which all threads are processing the same data).

usually involves a comparison operation, the addition results
must be determined before the comparison. This implies that
we cannot take advantage of a fast redundant adder such as
a carry-save adder (CSA), and it is difficult to increase the
operation frequency owing to the long carry chain. To solve
this problem, we adopted the lazy-reduction technique into
the architecture, which separates modulo operations from the
modular adders and pushes all the modulo operations to the
modular multiplier. This enables all adders in the architecture
to be converted to redundant adders, thus increasing the
operating frequency.

Although CSA is the most popular redundant adder that can
eliminate a long carry chain, it has a disadvantage of doubling
the number of used FFs. Consequently, for Xilinx FPGAs
that have dedicated logic for carry propagation (CARRY8),
a ripple-carry adder (RCA) is often more efficient. To avoid
a full carry chain of RCA, we employ the partially redundant
partitioned adder (PRPA) that divides an adder into κ sub-
adders and saves a γ -bit carry for each sub-adder. For a
non-redundant, R-bit integer A represented as

A =
κ−1∑
i=0

ai · 2r ·i (
ai ∈

[
0, 2r
− 1

])
(7)

we define a partially redundant κ-partitioned integer Â as
follows:

Â =
κ−1∑
i=0

âi · 2r ·i (
âi ∈

[
0, 2r+γ

− 1
])

(8)

where r = R/κ (we assume κ|R). In the PRPA, each
sub-addition is performed with r + γ -bit width to eliminate
the original R-bit carry chain. The length of the each carry
bit depends on the number of additions from the output of

the modular multiplier to the next input (γ = 8 bits are
sufficient for our scheduling). These saved carry bits are
used by the ToUint module in multiple cycles to maintain
a high operation frequency. We implemented a 256-bit two-
input RCA on an xcvu9p-2l device and found that it operates
at approximately 400 MHz. Because the BLS12_381 pairing
requires a 381-bit addition, we selected κ = 4 with an
operating margin.

B. Operation Modules
1) Sequencer: The sequencer issues control signals to

control the operation of each module. The sequencer has a
built-in ROM with 2048 entries, which contains a pairing
computation program optimized for the 18-stage pipeline
architecture [15]. Because the pipeline of our architecture
has more than 18 stages (89 stages for BN254 pairing and
121 stages for BLS12_381 pairing), this program cannot run
efficiently. We make our architecture to support an interleaved
execution (multithreading), where a core can concurrently
execute multiple pairings. For the number of threads τ , the
sequencer issues the control signal every τ cycles and issues
the memory address for corresponding threads every cycle.

Let σ be the number of pipeline stages of the entire pairing
processor. Our program works under the condition that σ <

18τ ; therefore, we set τ = 5 for the BN254 pairing and
τ = 7 for the BLS12_381 pairing. Our pairing program is
optimized by various techniques described in [3], including
twisted elliptic curves, sparse multiplication, and compressed
squaring techniques (see [15] for the detailed scheduling).

2) Preadder: The preadder shown in Fig. 5 is a two-input
two-output module for generating the input to the subsequent
modular multiplier. The data path is divided into two parts: the
left and right sides produce the multiplicand and multiplier

SAKAMOTO et al.: HIGH-THROUGHPUT BILINEAR PAIRING PROCESSOR 1503

Fig. 5. Preadder block diagram. A preadder has three operational modes
controlled by the control signal csigpre: 1) pass-through mode that directly
outputs di when csigpre = 0; 2) one-step-delay mode that outputs the sum of
dipre,l and dipre,r of τ -cycles-before when csigpre = 1; and 3) two-step-delay
mode that outputs the sum of dipre,l and dipre,r of 2τ -cycles-before when
csigpre = 2.

of the modular multiplier, respectively. The main arithmetic
units of the preadder are four adders (adders 1–4 constructed
as the PRPAs), where adder 3 is a subtractor taking two’s
complement value as the right-side input. This module has
three operational modes as shown in Fig. 5. First-in first-out
FIFO registers are for supporting τ interleaved execution.

3) ToUint Module: The ToUint module is a two-input two-
output module responsible for converting the PRPA form
values to non-redundant form and making the values unsigned.
We realize the unsigned operation by adding 512M̃ to the
input values because the minimum input value is −512M̃ by
carrying up the redundant γ bits, taking κ = 4 cycles to
eliminate the long carry propagation.

4) Cmul: The Cmul module is a two-input two-output mod-
ule responsible for multiplying by constants α ∈ {2, 3, 4, 6},
which consist of constant shifters and the PRPA. Multiplica-
tion by two is useful for accelerating Fp2 squaring which, has
a term of 2x0x1 [see (6)]. Multiplications by 3, 4, and 6 are
useful for accelerating Fp12 and elliptic curve operations.

5) Postadder: The postadder module shown in Fig. 6 is
a one-input one-output module responsible for accumulating
the output of the QPMM. The postadder consists of three
accumulators, two of them are mainly used for producing
the two terms of an Fp2 element, as shown in Fig. 4, and
the remainder is used for calculating Fp12 elements. Each
accumulator has eight modes of operations controlled as shown
in Fig. 6. Similar to the preadder, the postadder has FIFO
registers to support the interleaved execution.

6) Fp Inverter: In our pairing implementation, an Fp

inversion occurs only once per pairing; however, the inverse
operation can be a bottleneck if executed on the QPMM
by Fermat’s little theorem, because the computation causes
many pipeline bubbles. To solve this bottleneck, our pairing
processor has a dedicated module for Fp inversion, which
implements the Montgomery inverse algorithm [31] with
τ -stage pipeline.

Fig. 6. Postadder block diagram. This module has three accumulators; each
consists of the PRPA, two selectors, and a register. The operational mode
of an accumulator depends on the selector outputs controlled by the control
signal csigpost,1. When a sub signal which is a bit of csigpost,1 equals one, the
right-hand selector selects one of the inverted inputs, realizing a subtraction
operation using two’s complement value. The postadder output is selected
from three accumulators by the control signal csigpost,out.

7) QPMM: The improvement of the modular multiplier
module is the main part of our proposed method. The detailed
description is presented in Section III-C. So far, we discussed
that our architecture consumes many slices for adders to
accelerate Fp2 operations and FFs to support the interleaved
execution. Therefore, to maximize the throughput in multicore
implementations, the modular multiplier must be implemented
with a small SDR by efficiently utilizing the functions of DSP
primitives.

C. Low-SDR High-Throughput Modular
Multiplication Algorithm

The basic idea of lowering the SDR is to improve per-
formance while consuming a large amount of DSP with
loop-unrolled implementation. Sections III-C1 and III-C2
first describes the features of the Xilinx DSP48E2 primitive
and proposes a modular multiplication algorithm suitable for
using its asymmetric multiplier and sum-of-products arith-
metic functions.

1) DSP48E2: Many FPGAs contain DSP hardware macros
to accelerate signal-processing applications. The specifications
of the DSP vary by vendor and device. Virtex Ultrascale+
devices are the mainstream FPGAs available on many cloud
services, AWS F1, Huawei, and Alibaba cloud. This study
proposes a modular multiplication algorithm for DSP48E2,
which is the DSP primitive on Virtex Ultrascale+ FPGAs.

A simplified block diagram of DSP48E2 is shown in Fig. 7.
DSP48E2 takes 27-bit A, 18-bit B, 48-bit C, and PCIN as
inputs and outputs 48-bit P and PCOUT. PCIN is a dedicated

1504 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 32, NO. 8, AUGUST 2024

Fig. 7. Simplified block diagram of the DSP48E2 primitive.

line connected to PCOUT of the adjacent DSP, and it is used
to input the results of the adjacent DSP with a minimum delay.
DSP48E2 is a typical multiply-accumulate (MAC) unit, with a
27× 18-bit signed multiplier (26× 17-bit unsigned multiplier)
and a 48-bit three-input adder followed by the multiplier.
DSP48E2 has optional pipeline registers at various locations,
which can be used to increase the operating frequency instead
of the latency. The maximum operating frequency of the DSP
is listed in the datasheet [32], for example, up to 644 MHz
for Virtex Ultrascale+ xcvu9p-2l devices that are available on
the cloud services.

2) High-Throughput Modular Multiplication Algorithm for
DSP48E2: We propose a modified QPMM algorithm [30,
Algorithm 4] suitable for DSP48E2. The naive QPMM
algorithm is shown in Algorithm 1. QPMM is a variant
of Montgomery multiplication that eliminates computational
dependency in the conventional high-radix Montgomery
multiplication algorithm [30, Algorithm 1]. The essential
improvement of QPMM is the ability to delay the timing
when qi is required by d cycles. This eliminates the com-
putational dependency between L1 and L2 and allows them
to be executed in parallel. A larger value of d makes the
multiplication width long; therefore, d should be minimal.
Moreover, because qi is the lower k bits of Si , carry bits must
not be propagated to more than k bits during L2 calculation.
Thus, we can efficiently calculate most additions during the
L2 calculation using redundant representation adders such as
the CSA.

To execute the QPMM algorithm on the DSP48E2, we must
replace the L2 calculation with a multiple-precision operation
matched to the DSP48E2 operation width. Because the multi-
plier of DSP48E2 is asymmetric, we represent multiplicand A
and multiplier B using the different radixes 2ℓ and 2k (typically
ℓ = 26, k = 17), respectively, as the following:

A =
m−1∑
j=0

(
2ℓ

) j
a j , B =

n∑
i=0

(
2k)i

bi . (9)

Algorithm 1 QPMM [30]

Consider all values except B in the 2ℓ-radix representation.
The sum of qi−d M̃ and bi A becomes the sum of products of
the same index j as follows:

qi−d M̃ + bi A =
m−1∑
j=0

(
m̃ j qi−d + a j bi

)
· 2 jℓ. (10)

For c = ℓ− k (k ≤ ℓ)

Si/2k
= si,0/2k

+

m−1∑
j=1

si, j · 2c
· 2ℓ(j−1) (11)

and let ti, j = m̃ j qi−d + a j bi , then the sum of (10) and (11) is

L2 : Si+1 = si,0/2k
+

m−1∑
j=1

(
si, j · 2c

+ ti, j−1
)
· 2ℓ(j−1). (12)

DSP48E2 can calculate (12) easily; however, the length of si, j

increases by c bits as index i progresses. Let the lower 2k bits
of si, j be sli, j = si, j mod 22k and the remaining upper bits be
sui, j = si, j/22k . Equation (11) is rewritten as follows:

Si/2k
= si,0/2k

+

m−1∑
j=1

(
sli, j + sui, j · 22k)

· 2c
· 2ℓ(j−1)

= si,0/2k
+

m−1∑
j=1

(
sli, j + sui, j

)
· 22k+c+ℓ(j−1). (13)

Because 2k + c + ℓ(j − 1) = ℓ−c + ℓj = k + ℓj

Si/2k
= sli,0/2k

+

m−1∑
j=1

(
sli, j · 2c

+ sui, j−1 · 2k)
· 2ℓ(j−1)

(14)

L2 : Si+1 = sli,0/2k

+

m−1∑
j=1

(
sli, j · 2c

+ sui, j−1 · 2k
+ ti, j−1

)
· 2ℓ(j−1)

(15)

where each si, j is at most k + ℓ + 1 bits or less. When ℓ =

26, k = 17, k+ℓ+1 = 44. DSP48E2 can output up to 48 bits;
therefore, we can efficiently calculate these sum-of-products
operation within the DSP.

SAKAMOTO et al.: HIGH-THROUGHPUT BILINEAR PAIRING PROCESSOR 1505

Fig. 8. PE designs for four types of latency λPE. (a) λPE = 1 PE design. (b) λPE = 2 PE design. (c) λPE = 3 PE design. (d) λPE = 4 PE design.

Algorithm 2 d = 0 QPMM for DSP48E2

We propose a QPMM variant algorithm using (14), as shown
in Algorithm 2. Assigning the four-term sum-of-products at
Line 6 to two DSPs, as shown in Fig. 8, we can complete
most QPMM operations within the DSPs. We refer to the
combination of these two DSPs as a processing element (PE).
Fig. 8 shows four different latency PEs using optional registers
in the DSPs. The overall image of the unrolled implementation
of Algorithm 2 using these PEs is shown in Fig. 9. The
demultiplexers (DeMUXs) virtually have no cost because it
is a distribution of wires, and most functions except for few
adders can be completed within the DSP, which is expected
to contribute to a low SDR.

The algorithm parameters are k = 17, ℓ = 26, n = 17, m =
11 for BN254, and k = 17, ℓ = 26, n = 25, m = 16 for
BLS12_381, selected for extending R to perform the lazy
reduction (R = 2289 for BN254 and R = 2425 for BLS12_381).
Ma et al. [33] reported that increasing 2 bits in R can extend
the range of QPMM input A and B twice. These parameters
extend the maximum input of Algorithm 2 from 2M̃ to
1024M̃ .

IV. EVALUATION RESULTS

A. Evaluation Platform

We implemented the proposed method on a VCU118 evalu-
ation board and evaluated area and timing performances after
place and route (PAR) by Vivado 2020.1. We use default

and performance explore synthesis strategies for the modu-
lar multiplier and the pairing core evaluation, respectively.
The VCU118 board contained a 16-nm Virtex UltraScale+
xcvu9p-2l FPGA, which has 147 780 CLBs (1 182 240 six-
input LUTs and 2 364 480 FFs), 6840 DSPs, and 2160 36-kb
block random access memories (BRAMs). The xcvu9p is
a high-performance large-scale FPGA for use in server-side
applications and is adopted in Alibaba, Huawei, and AWS
clouds. Because the notations of the area differ between
Ultrascale and other devices, we converted certain values
in the implemented results, such that one RAMB36 = two
RAMB18s and one CLB = two slices.

B. Modular Multiplier Evaluation
We implemented Algorithm 2 with a fully unrolled manner

on the VCU118 board. The performance evaluation results for
BN254 and BLS12_381 (254- and 381-bit multipliers) on each
PE latency are shown in Table I. As the latency increased, the
operating frequency improved, and when λPE = 4, the 256-bit
modular multiplier operated at 623 MHz, which is close to the
maximum operating frequency of 644 MHz [32]. The latency
and the resource consumption worsened as λPE was increased;
however, we do not consider these to be problems as our goal
is to maximize throughput. Even at λPE = 4, the SDR remains
below 43, around 20, indicating that the DSP is being used
effectively. For these results, we adopted a λPE = 4 design that
has the best throughput, for the pairing processor evaluation
in Section IV.

Table II shows the comparisons of our proposed multipliers
(λPE = 4) to those from previous studies. The proposed
method achieved the highest throughput with the largest slice
and DSP resource consumption compared to the existing meth-
ods. The latency of the proposed method is also comparable
to other methods. The proposed method also has the best
TP/ESlices, a measure of area efficiency, indicating that it
is suitable for server-side FPGAs, where many resources are
available. Furthermore, the proposed method achieved the
lowest SDR. This indicates that the slice consumption does
not become a bottleneck when the proposed multiplier is
embedded in a pairing processor that spends many slices for
accelerating modular adders.

The papers [34] and [35] evaluate modular multipliers
on the same generation devices as ours. Reference [35]
is a low-latency architecture that uses a large number of
DSPs and LUTs to complete the modular multiplication in
a single cycle, achieving a latency of about 15% of our

1506 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 32, NO. 8, AUGUST 2024

Fig. 9. Fully unrolled QPMM design (see Algorithm 2) using PEs. DeMUX elements can be implemented as wire splitting with no cost. Hence, although the
right-most adders and the final four-cycle addition should be implemented with few slice resources, almost the entire QPMM circuit can be implemented with
DSP resources. This is the reason this module achieves a low SDR and high performance. This module can exhibit the DSP‘s maximum frequency without
making the slices a bottleneck.

TABLE I
PERFORMANCE EVALUATION RESULTS OF OUR PROPOSED 254- AND 381-bit MODULAR MULTIPLIERS IMPLEMENTED ON VCU118. λPE AND λMUL

REPRESENT THE LATENCY OF THE DSP AND THE ENTIRE MODULAR MULTIPLICATION, RESPECTIVELY

implementation. Meanwhile, the throughput is less than a
tenth of our implementation, making it unsuitable for server-
side applications. To compare our implementation with [34],
we need to take into account the resource utilization; however,
we cannot use the SDR and ESlice metrics of resource
utilization because Noyez et al. [34] do not provide the number
of slices information. If [34] were implemented with 62 cores
in parallel, the throughput and resource utilization would be
approximately 62 times larger, and thus throughput/LUTs/FFs/
DSPs = 78.05/39.618/81.158/372, which is comparable to

our implementation and number of DSPs. In this case, our
implementation achieves 1.5 times the throughput with about
1/12 and 1/3 of the LUTs and FFs.

The comparisons in Table II do not consider the difference
of device generations. The proposed method has been eval-
uated on the latest FPGA, Virtex Ultrascale+, whereas most
existing methods have been evaluated on Virtex-7, which is
two generations older. The manufacturing process has been
shrunk from 28 to 14 nm between these generations; therefore,
we should consider the increase in the operating frequency.

SAKAMOTO et al.: HIGH-THROUGHPUT BILINEAR PAIRING PROCESSOR 1507

TABLE II
PERFORMANCE COMPARISONS OF THE PROPOSED MODULAR MULTIPLIERS AND THOSE FROM PREVIOUS STUDIES

TABLE III
SINGLE-CORE PAIRING PERFORMANCE EVALUATION

Considering the maximum operating frequency of the DSPs,
Ultrascale+ is 644 MHz while Virtex-7 is 650 MHz, and there
is no significant difference. If the operating frequency from a
previous study running near the DSP’s maximum frequency
was evaluated on VCU118 [17], it would be bounced to
the maximum frequency and almost have a similar perfor-
mance. Conversely, it is difficult to predict the increase in
the performance of implementations that are not near the
maximum frequency limit. As an example, we estimate the
frequency difference in one device generation to be at most
1.22 times, based on the results [36], which are from evalu-
ations of the same multipliers on different FPGAs, Virtex-6
and Virtex-7. Even when assuming a frequency difference of
two generations (1.48×), our implementation achieves the best
TP/ESlices.

C. Pairing Processor Evaluation
1) Single-Core Evaluation: Table III shows the perfor-

mance comparison of the single-core pairing implementation.
In Table III, our pairing processors are evaluated using λPE =

4 because this parameter has the best throughput and the
closest SDR to 43. Note that we can adjust the trade-off
between latency and throughput of the pairing computation
using the different design modular multipliers with λPE =

{1, 2, 3}.
Our implementation executes τ = 7 pairings concurrently

and completes them with 452 µs. As shown in Table III,

Opasatian and Ikeda’s implementation [13] shows the best
latency and throughput performance. They implemented a
low latency core using an LUT modular reduction technique
and evaluated it on the same generation FPGA as ours. The
throughput of their implementation exceeds our implementa-
tion by approximately 4%. However, their implementation uses
a large number of LUTs to perform modular reduction, which
means that it has the SDR more than 43, expecting to make
worse the performance of multicore implementation. Since
their paper shows only LUT utilization (225 607), we esti-
mated their slice utilization as 56 401 = 225 607/4. Using
this value, the SDR of their implementation is calculated as
87.03, which is more than twice of our implementation‘s,
indicating that the number of slices restricts the number of
cores under multicore implementation, and lots of DSPs cannot
be used. On the other hand, our implementation has a good
SDR (41.24) and are expected to perform better performance
under multicore evaluation. Actual multicore performance
comparisons are given in Section IV-C2.

Devlin [11] implemented a large-scale, server-side pairing
processor and evaluated their implementation on xcvu37p,
which is the same generation device to our xcvu9p. These
devices have almost the same performance and circuit
resources; thus, their work is most comparable to our imple-
mentation results. Our implementation achieved approximately
9.8 times throughput and 0.71 times latency, compared to
Devlin’s implementation. Although our implementation uses

1508 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 32, NO. 8, AUGUST 2024

TABLE IV
MULTICORE PERFORMANCE EVALUATION. VALUES IN ITALIC ARE OUR ROUGH (THE BEST-CASE ESTIMATION) ESTIMATION. THROUGHPUT IN THE

BRACKET IS THE STRICT (WORST CASE) ESTIMATION

more than twice as much DSPs as Devlin’s, the slice usage is
less than 1/2; therefore, their implementation had a slice bot-
tleneck and did not take advantage of the fast DSP primitives.
Furthermore, our implementation has SDR = 41.24, whereas
theirs has SDR = 236.95, meaning the performance difference
will be spread for multicore implementations. Compared to the
state-of-the-art software implementation [42], our implemen-
tation shows a better performance of approximately ten times
throughput and 0.7 times latency.

For the BN254 curve, our implementation runs at 590 MHz,
which is close to 644 MHz of the DSP’s maximum frequency,
and completes τ = 5 pairings in 187 µs. Compared to
the previous studies, our pairing implementation achieved
the best throughput, comparable latency, and the best area
efficiency (TP/ESlices). Previous work [15] is the only one
that shows the evaluation results on the same device. It aims
for a low-latency pairing implementation and achieves the best
latency of 102 µs. The proposed method improves throughput
by 2.7 times at the cost of 1.8 times worse latency. This seems
like a good compromise. Note that our implementation allows
the trade-off between latency and throughput to be tuned
by changing the number of pipeline stages in the modular
multiplier.

It is difficult to directly compare performance on different
generation FPGAs (Virtex-6 or -7), but we can highlight some
of the advantages of our architecture. First, our implementation
has the SDR, which is a device-generation-independent metric,
close to 43; this indicates a good balance of DSP and slice
usage. In addition, because operating frequency is the main
difference when the same architecture is implemented on
different FPGAs, we can predict the performance of other
FPGAs by considering the frequency difference between dif-
ferent FPGAs. In [36], a modular multiplier was evaluated
on Virtex-6 and -7 devices, and the frequency difference was
approximately 1.22 times. Assuming 1.22 times frequency
difference in one generation, we can infer a difference of
approximately 1.82 times in three generations. If the proposed
architecture is implemented on a Virtex-6 FPGA, which is a
three generation older device than ultrascale+, the frequency
can be estimated to be 324 MHz. The throughput would be
14 616 pairings/s. Even in this case, the throughput of the
proposed architecture is the largest among existing studies.

2) Multicore Evaluation: This section compares multicore
performance for the pairing on the target FPGA xcvu9p (see
Table IV). While the performance of our implementation
is an actual PAR result, most of the values in Table IV
are ideal estimates, as few previous studies have provided
multicore evaluation results. These estimations are based on
the assumption that circuit resources and throughput are
proportional to the number of cores, and that the frequency
remains constant as the number of cores increases. The
number of cores is determined by the maximum number
of pairing processor cores implementable on an xcvu9p in
terms of FPGA resources. Formally, the number of cores
#Cores = min(⌊295 560/#LUTs⌋, ⌊6840/#DSPs⌋), where
295 560 and 6840 are the number of slices and DSPs available
on the xcvu9p, respectively. For Devlin‘s design [11], for
example, #Cores = min(⌊295 560/81 750⌋, ⌊6840/345⌋) =
min(3, 19) = 3, where slice resources limit the #Cores.

As shown in Table IV, our implementations present the
best throughput for both BN254 and BLS12_381 pairings.
Comparisons with [11], [13], and [14], evaluated on FPGAs
of the same generation, are important for fair evaluation.
Devlin [11] uses too many slices (81 750/295 560), which
limits the number of cores it can implement to three. Our
implementations achieve better latency and several times bet-
ter throughput compared to [11] and [14]. With the SDR
close to 43, our architecture can maximize performance in
multicore environments. For the comparison with Opasatian’s
implementation [13], which is the most comparative to our
implementation, we estimated his performance under two
conditions (the best and worst cases). Since their study only
provides the number of LUTs as resource utilization, we need
to estimate their slice utilization to calculate their multicore
performance. In the best case, the number of slices utilized
is converted as four LUTs = one slice; #Cores = 5 and the
throughput is 80 385. However, typical synthesis results do
not follow such an ideal case. For the synthesis results of our
implementation, the ratio between LUT and slice is 0.76:1,
using this ratio, the #Cores and throughput of Opasatian’s
implementation are estimated as 1 and 16 077, respectively.

As a result, our implementations show several times bet-
ter throughput than the previous studies for a multicore
implementation using the maximum resources of the xcvu9p.

SAKAMOTO et al.: HIGH-THROUGHPUT BILINEAR PAIRING PROCESSOR 1509

TABLE V
POWER AND ENERGY COMPARISONS OF THE SINGLE-CORE PROPOSED PAIRING PROCESSOR AND PREVIOUS STUDIES

Furthermore, we do not consider the negative effects, such as
the increase in routing delay caused by multicore implemen-
tation, in the performance estimation for the previous studies.
Taking this into account will result in greater performance
differences.

3) Energy Consumption Evaluation: Table V presents the
power and energy consumption of the proposed architecture as
estimated on Vivado. For previous studies that did not provide
power data, we estimated it based on the following CMOS
power equation [44, eq. (5.10)]:

P = α f CV 2 (16)

where P, α, f, C, and V denote the power, switching rate,
clock frequency, switching capacitance of the total circuit, and
supply voltage. Assuming that α and V are the same for all
implementations enables us to estimate power as P ∝ f C .
We furthermore assume that C is proportional to the circuit
area. As a metrics of circuit area to calculate the C values,
we use equivalent slices (ESlices = #Slices + 43 × #DSPs),
where 43 (the ratio of the number of slices to the number of
DSPs on the xcvu9p) is used as a weight to convert a DSP
to slices. As a result, we can estimate the power of previous
works as the ratio of frequency and ESlices. Vivado estimated
the dynamic power at 458 MHz to be 12.035 W for our
BLS12_381 implementation. We can estimate the power con-
sumption of [11] as 12.035 × (200/458) × (96 585/66 552) =

7.62 W. Table V shows that our architecture consumes a
significant amount of power, but the energy per pairing is
comparative to other studies. Note that our architecture is
designed for cloud FPGAs. Such cloud FPGAs are charged
per FPGA; therefore, users do not need to worry about the
power consumption, and using as much circuit resources as
possible is reasonable.

V. DISCUSSION

A. Performance Requirement for the Pairing Computation

Blockchain-based cryptocurrency is one of the applications
that actively uses PBC. Some modern blockchains [24], [25]
use the BLS signature, which requires a pairing computation
for signature verification, to check the validity of trans-
actions. When a transaction is issued in blockchain-based

cryptocurrencies, the payers sign their transaction and send
it to the blockchain’s peer-to-peer network. Each peer on
the blockchain verifies the signature and adds it to the next
block if the verification result is valid. Because signature
verification requires pairing, the speed of pairing is directly
related to the number of transactions the blockchain can
handle. The maximum throughput of 124 216 transactions in
our BLS12_381 implementation exceeds the current VISA
credit-card transaction capacity of 65 000 transactions per
second [45, p. 8]. If blockchain payments are used as much
or more than VISA credit cards, the proposed architecture
will be able to handle all transactions. In terms of latency,
the proposed architecture will be attractive in the future when
blockchain payments are used for latency-critical payments.

B. Evaluation as a PBC Accelerator

When we use an FPGA as an accelerator for a
general-purpose CPU rather than as a standalone encryption
circuit, there is an overhead due to the connection interface
between the FPGA and the CPU. We have experimentally esti-
mated this overhead in a system where the FPGA is connected
to the server PC via PCIe 3.0 × 16. The experimental results
show that 2 × 320 bits and 256 × 320 bits data transfers
take, independent of the transfer direction, about 17 and 22 µs,
respectively, where 320 bits is the size of an Fp element for
BN254 pairing. The transfer time t [µs] can be interpolated as
(5/81.280)x+16.96, where x is the number of bits transferred.
This implies the CPU execution time of the operating system
or application is more dominant than the physical data transfer;
the transfer time is not proportional to the amount of data.

Using the above equation, we estimate the performance of
the pairing accelerator. Our τ = 7 core BLS12_381 pairing
implementation takes 6 × 7 Fp elements as an input and 12 ×
7 Fp elements as an output, where the size of an Fp element
is 436 bits. Assuming the input and output data transfer time
is 18 and 19 µs, the latency and throughput will be about 7%
worse to 581 µs and 84 337 pairings/s, respectively.

To achieve the same throughput with a CPU, whose
single-core throughput is 1538 as shown in Table III,
⌊84 337/1538⌋ = 52 CPU cores must be operated in parallel.
With some recent high-end CPUs, it is not impossible to
achieve the same throughput as FPGAs; however, it is not

1510 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 32, NO. 8, AUGUST 2024

reasonable to devote all computational resources to pairing
computations because server CPUs must also provide many
services other than cryptographic operations. In addition,
FPGA accelerators have an advantage in power consumption.
Intel Xeon 8592+ CPU with 64 cores has a thermal design
power of 350 W, which is tens of times higher than that of
FPGAs (see Table V). When all cores are used, the expected
performance may not be achieved due to thermal throttling.

C. Applicability to Post-Quantum and Other Cryptography

Our pairing architecture is designed to efficiently perform
the Fp and Fp2 operations, which are the primitive operations
for the elliptic curve-based pairing computation. Therefore,
our architecture can efficiently execute the cryptosystems
constructed over Fp, such as isogeny-based cryptography and
elliptic curve cryptography. Isogeny-based cryptography is one
of the post-quantum cryptography (PQC). SQISign [46] is an
isogeny-based signature scheme and submitted to NIST as a
candidate for PQC standardization. SQISign has the advantage
of small key and signature size and the disadvantage of high
computational complexity, typically taking tens to thousands
of milliseconds on a standard CPU. We believe that FPGA
acceleration is a promising solution to this disadvantage, sim-
ilar to the pairing computation in this article. Our architecture
basically suitable for SQISign that is constructed over Fp2
just modifying instruction scheduling allows us to execute
SQISign. Since SQISign uses 252–506-bits p depending on
the security level, the data path width must be wider to support
high-security levels (our BL12_381 implementation supports
up to 381-bits p).

D. Tamper Resistance

The pairing architecture proposed in this article is primar-
ily designed to maximize throughput, and it has no tamper
resistance to physical attacks. However, recent studies report
that attackers can remotely perform side-channel [47] and
fault attacks [48] against FPGAs in the cloud, embedding
tamper-resistant techniques into our architecture stays remains
for one of the future works.

Side-channel attacks include timing attacks, which exploit
differences in processing time, and differential power analysis
(DPA)-type attacks, which focus on differences in power con-
sumption. Most of the pairing computations in this study are
implemented using constant-time algorithms, which are secure
against timing attacks because there are no timing differences.
The Fp inversion is the only variable-time part. To make it
secure, it is necessary to ensure that the computation always
completes in the same cycles by inserting dummy processes.

Against DPA-type attacks and fault attacks, Kim et al. [49]
propose the use of the randomized projective coordinate,
where a pairing input is represented as a kind of randomized
redundant form. To apply this countermeasure to our architec-
ture, we need to implement a process to add a random number
to the input. This can be done by changing the instruction
scheduling and is expected to have a time overhead of a
few percent at most. The FPGA resource consumption for
the random number generator is predicted to be negligible
compared to the relatively large multicore pairing circuit.

VI. CONCLUSION

First, we proposed an unrolled QPMM algorithm [30]
that is suitable for a server-side FPGA, XVU9P, which has
DSP48E2 primitives as dedicated multipliers. The proposed
method took full advantage of DSP48E2’s functions such
as the asymmetric multiplier and three-input post-adder, and
successfully completed most of the algorithms using only the
DSP, achieving the highest throughput (188.98 Gb/s), area
efficiency (6873 TP/ESlice), and low SDR (20.16).

We further designed a pairing processor architecture that
embeds the proposed modular multiplier. By supporting
redundant adders and interleaved executions, the proposed
architecture successfully maintained a high frequency and
achieved BLS12_381 pairing throughput (15 477 pairings/s).
In addition, the proposed pairing architecture has a good SDR
(41.24), indicating that it maximizes the performance under
multicore implementation. The multicore evaluation showed
that the throughput of the proposed method was more than
five times faster than that from previous studies.

REFERENCES

[1] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in Advances
in Cryptology—EUROCRYPT (Lecture Notes in Computer Science),
vol. 2656. Berlin, Germany: Springer, 2003, pp. 416–432, doi:
10.1007/3-540-39200-9_26.

[2] P. Yanguo, C. Jiangtao, P. Changgen, and Y. Zuobin, “Certificateless
public key encryption with keyword search,” China Commun., vol. 11,
no. 11, pp. 100–113, Nov. 2014, doi: 10.1109/CC.2014.7004528.

[3] D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and J. López,
“Faster explicit formulas for computing pairings over ordinary curves,”
in Advances in Cryptology—EUROCRYPT (Lecture Notes in Computer
Science), vol. 6632. Berlin, Germany: Springer, 2011, pp. 48–68, doi:
10.1007/978-3-642-20465-4_5.

[4] R. Barbulescu and S. Duquesne, “Updating key size estimations for
pairings,” J. Cryptol., vol. 32, no. 4, pp. 1298–1336, Oct. 2019, doi:
10.1007/s00145-018-9280-5.

[5] X. Wang, Y. Niu, F. Liu, and Z. Xu, “When FPGA meets cloud: A
first look at performance,” IEEE Trans. Cloud Comput., vol. 10, no. 2,
pp. 1344–1357, Apr. 2022, doi: 10.1109/TCC.2020.2992548.

[6] Valtix. (2019). How and Why on FPGA-Based AWS EC2 F1 Instances
for Cloud Network Security. [Online]. Available: https://valtix.com/
blog/valtix_ec2_f1_sc19/

[7] T. Güneysu and C. Paar, “Ultra high performance ECC over NIST primes
on commercial FPGAs,” in Cryptographic Hardware and Embedded
Systems—CHES (Lecture Notes in Computer Science), vol. 5154. Berlin,
Germany: Springer, 2008, pp. 62–78, doi: 10.1007/978-3-540-85053-3.

[8] G. X. Yao, J. Fan, R. C. C. Cheung, and I. Verbauwhede, “Faster pair-
ing coprocessor architecture,” in Pairing-Based Cryptography—Pairing
(Lecture Notes in Computer Science), vol. 7708. Berlin, Germany:
Springer, 2012, pp. 160–176, doi: 10.1007/978-3-642-36334-4.

[9] A. Lavice, N. E. Mrabet, A. Berzati, J.-B. Rigaud, and J. Proy,
“Hardware implementations of pairings at updated security levels,” in
Smart Card Research and Advanced Applications—CARDIS (Lecture
Notes in Computer Science), vol. 13173. Cham, Switzerland: Springer,
2022, pp. 189–209, doi: 10.1007/978-3-030-97348-3_11.

[10] A. Sghaier, M. Zeghid, L. Ghammam, S. Duquesne, M. Machhout,
and H. Y. Ahmed, “High speed and efficient area optimal ate
pairing processor implementation over BN and BLS12 curves on
FPGA,” Microprocess. Microsyst., vol. 61, pp. 227–241, Sep. 2018, doi:
10.1016/j.micpro.2018.06.001.

[11] B. Devlin. (Sep. 2019). Zcash FPGA Acceleration Engine. Version 1.4.2
Release. [Online]. Available: https://github.com/ZcashFoundation/zcash-
fpga

[12] A. Bag, D. B. Roy, S. Patranabis, and D. Mukhopadhyay, “FlexiPair:
An automated programmable framework for pairing cryptosystems,”
IEEE Trans. Comput., vol. 71, no. 3, pp. 506–519, Mar. 2022, doi:
10.1109/TC.2021.3058345.

http://dx.doi.org/10.1007/3-540-39200-9_26
http://dx.doi.org/10.1109/CC.2014.7004528
http://dx.doi.org/10.1007/978-3-642-20465-4_5
http://dx.doi.org/10.1007/s00145-018-9280-5
http://dx.doi.org/10.1109/TCC.2020.2992548
http://dx.doi.org/10.1007/978-3-540-85053-3
http://dx.doi.org/10.1007/978-3-642-36334-4
http://dx.doi.org/10.1007/978-3-030-97348-3_11
http://dx.doi.org/10.1016/j.micpro.2018.06.001
http://dx.doi.org/10.1109/TC.2021.3058345

SAKAMOTO et al.: HIGH-THROUGHPUT BILINEAR PAIRING PROCESSOR 1511

[13] A. Opasatian and M. Ikeda, “High-performance BLS12-381 pair-
ing engine on FPGA,” in Proc. IEEE 15th Int. Conf. ASIC
(ASICON), Oct. 2023, pp. 1–4, doi: 10.1109/ASICON58565.2023.
10396122.

[14] M. Bahadori and K. Järvinen, “Compact and programmable yet high-
performance SoC architecture for cryptographic pairings,” in Proc.
30th Int. Conf. Field-Programmable Log. Appl. (FPL), Aug. 2020,
pp. 176–184, doi: 10.1109/FPL50879.2020.00038.

[15] J. Sakamoto, Y. Nagahama, D. Fujimoto, Y. Okuaki, and T. Matsumoto,
“Low-latency pairing processor architecture using fully-unrolled quo-
tient pipelining Montgomery multiplier,” in Proc. Asian Hardw.
Oriented Secur. Trust Symp. (AsianHOST), Dec. 2019, pp. 1–6, doi:
10.1109/AsianHOST47458.2019.9006671.

[16] D. Suzuki, “How to maximize the potential of FPGA resources for
modular exponentiation,” in Cryptographic Hardware and Embedded
Systems—CHES (Lecture Notes in Computer Science), vol. 4727.
Berlin, Germany: Springer, 2007, pp. 272–288, doi: 10.1007/978-3-540-
74735-2.

[17] G. Gallin and A. Tisserand, “Generation of finely-pipelined GF(PP)
multipliers for flexible curve based cryptography on FPGAs,” IEEE
Trans. Comput., vol. 68, no. 11, pp. 1612–1622, Nov. 2019, doi:
10.1109/TC.2019.2920352.

[18] F. Vercauteren, “Optimal pairings,” IEEE Trans. Inf. Theory, vol. 56,
no. 1, pp. 455–461, Jan. 2010, doi: 10.1109/TIT.2009.2034881.

[19] P. S. L. M. Barreto and M. Naehrig, “Pairing-friendly elliptic curves of
prime order,” in Selected Areas in Cryptography—SAC (Lecture Notes
in Computer Science), vol. 3897. Berlin, Germany: Springer, 2005,
pp. 319–331, doi: 10.1007/11693383_22.

[20] P. S. L. M. Barreto, B. Lynn, and M. Scott, “Constructing elliptic
curves with prescribed embedding degrees,” in Security in Communica-
tion Networks—SCN (Lecture Notes in Computer Science), vol. 2576.
Berlin, Germany: Springer, 2003, pp. 257–267, doi: 10.1007/3-540-
36413-7_19.

[21] Y. Sakemi, T. Kobayashi, T. Saito, and R. S. Wahby. (2022). Draft-
irtf-cfrg-pairing-friendly-curves-11. [Online]. Available: https://www.
ietf.org/archive/id/draft-irtf-cfrg-pairing-friendly-curves-11.txt

[22] D. F. Aranha, P. S. L. M. Barreto, P. Longa, and J. E. Ricardini,
“The realm of the pairings,” in Selected Areas in Cryptography—SAC
(Lecture Notes in Computer Science), vol. 8282, 2013, pp. 3–25, doi:
10.1007/978-3-662-43414-7_1.

[23] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the
Weil pairing,” in Advances in Cryptology—ASIACRYPT (Lecture Notes
in Computer Science), vol. 2248. Berlin, Germany: Springer, 2001,
pp. 513–532, doi: 10.1007/3-540-45682-1_30.

[24] T. Hanke, M. Movahedi, and D. Williams, “DFINITY technology
overview series consensus system,” 2018, arXiv:1805.04548.

[25] R. Jordan. (2018). Ethereum 2.0 Development Update #17—Prysmatic
Labs. [Online]. Available: https://medium.com/prysmatic-labs/ethereum-
2-0-development-update-17-prysmatic-labs-ed5bcf82ec00

[26] C. Gentry and Z. Ramzan, “Identity-based aggregate signatures,” in
Public Key Cryptography—PKC (Lecture Notes in Computer Sci-
ence), vol. 3958. Berlin, Germany: Springer, 2006, pp. 257–273, doi:
10.1007/11745853_17.

[27] L. Shen, J. Ma, X. Liu, F. Wei, and M. Miao, “A secure and efficient
ID-based aggregate signature scheme for wireless sensor networks,”
IEEE Internet Things J., vol. 4, no. 2, pp. 546–554, Apr. 2017, doi:
10.1109/JIOT.2016.2557487.

[28] P. Barrett, “Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor,” in Advances
in Cryptology—CRYPTO (Lecture Notes in Computer Science), vol. 263.
Berlin, Germany: Springer, 2000, pp. 311–323, doi: 10.1007/3-540-
47721-7_24.

[29] P. L. Montgomery, “Modular multiplication without trial division,” Math.
Comput., vol. 44, no. 170, pp. 519–521, Apr. 1985.

[30] H. Orup, “Simplifying quotient determination in high-radix modular
multiplication,” in Proc. 12th Symp. Comput. Arithmetic, Jul. 1995,
pp. 193–199, doi: 10.1109/ARITH.1995.465359.

[31] E. Savaş and Ç. K. Koç, “Montgomery inversion,” J. Cryptograph.
Eng., vol. 8, no. 3, pp. 201–210, Sep. 2018, doi: 10.1007/s13389-017-
0161-x.

[32] Virtex UltraScale+ FPGA Data Sheet: DC and AC Switching Charac-
teristics, document DS923, Version 1.19, Xilinx, San Jose, CA, USA,
2021. [Online]. Available: https://docs.xilinx.com/v/u/en-U.S./ds923-
virtex-ultrascale-plus

[33] Y. Ma, Z. Liu, W. Pan, and J. Jing, “A high-speed elliptic curve cryp-
tographic processor for generic curves over GF(p),” in Selected Areas
in Cryptography—SAC (Lecture Notes in Computer Science), vol. 8282.
Berlin, Germany: Springer, 2013, pp. 421–437, doi: 10.1007/978-3-662-
43414-7_21.

[34] L. Noyez, N. E. Mrabet, O. Potin, and P. Veron, “Montgomery multipli-
cation scalable systolic designs optimized for DSP48E2,” ACM Trans.
Reconfigurable Technol. Syst., vol. 17, no. 1, pp. 1–31, Mar. 2024, doi:
10.1145/3624571.

[35] E. Öztürk, “Design and implementation of a low-latency modular multi-
plication algorithm,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67,
no. 6, pp. 1902–1911, Jun. 2020, doi: 10.1109/TCSI.2020.2966755.

[36] A. A. H. Abd-Elkader, M. Rashdan, E. A. M. Hasaneen, and
H. F. A. Hamed, “FPGA-based optimized design of Montgomery mod-
ular multiplier,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 68, no. 6,
pp. 2137–2141, Jun. 2021, doi: 10.1109/TCSII.2020.3040665.

[37] D. B. Roy, D. Mukhopadhyay, M. Izumi, and J. Takahashi, “Tile
before multiplication: An efficient strategy to optimize DSP multiplier
for accelerating prime field ECC for NIST curves,” in Proc. 51st
ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2014, pp. 1–6.

[38] D. Basu Roy and D. Mukhopadhyay, “High-speed implementation of
ECC scalar multiplication in GF(p) for generic Montgomery curves,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 7,
pp. 1587–1600, Jul. 2019, doi: 10.1109/TVLSI.2019.2905899.

[39] D. Mukhopadhyay and D. B. Roy, “Revisiting FPGA implementation of
Montgomery multiplier in redundant number system for efficient ECC
application in GF(p),” in Proc. 28th Int. Conf. Field Program. Log. Appl.
(FPL), Aug. 2018, pp. 323–333, doi: 10.1109/FPL.2018.00061.

[40] Z. Ni, D.-E.-S. Kundi, M. O’Neill, and W. Liu, “High-performance
systolic array Montgomery multiplier for SIKE,” in Proc. IEEE
Int. Symp. Circuits Syst. (ISCAS), May 2021, pp. 1–5, doi:
10.1109/ISCAS51556.2021.9401062.

[41] S. Ghosh, I. Verbauwhede, and D. Roychowdhury, “Core based archi-
tecture to speed up optimal ate pairing on FPGA platform,” in
Pairing-Based Cryptography—Pairing (Lecture Notes in Computer Sci-
ence), vol. 7708. Berlin, Germany: Springer, 2012, pp. 141–159, doi:
10.1007/978-3-642-36334-4_9.

[42] Herumi. (Nov. 7, 2018). Mcl: A Portable and Fast Pairing-based
Cryptography Library. Accessed: May 23, 2024. [Online]. Available:
https://github.com/herumi/mcl

[43] X. Hu, D. He, M. Luo, C. Peng, Q. Feng, and X. Huang, “High-
performance implementation of the identity-based signature scheme in
IEEE P1363 on GPU,” ACM Trans. Embedded Comput. Syst., vol. 22,
no. 2, pp. 1–35, Mar. 2023, doi: 10.1145/3564784.

[44] N. H. E. Weste and D. Harris, CMOS VLSI Design: A Circuits and
Systems Perspective, 4th ed. Reading, MA, USA: Addison-Wesley, 2010.

[45] Visa. (2016). VISA Annual Report. [Online]. Available: https://s1.
q4cdn.com/050606653/files/doc_financials/annual/Visa-2016-Annual-
Report.pdf

[46] L. D. Feo, D. Kohel, A. Leroux, C. Petit, and B. Wesolowski, “SQISign:
Compact post-quantum signatures from quaternions and isogenies,” in
Advances in Cryptology—ASIACRYPT (Lecture Notes in Computer
Science), vol. 12491. Cham, Switzerland: Springer, 2020, pp. 64–93,
doi: 10.1007/978-3-030-64837-4_3.

[47] M. Zhao and G. E. Suh, “FPGA-based remote power side-channel
attacks,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2018,
pp. 229–244, doi: 10.1109/SP.2018.00049.

[48] J. Krautter, D. R. E. Gnad, and M. B. Tahoori, “FPGAhammer: Remote
voltage fault attacks on shared FPGAs, suitable for DFA on AES,”
IACR Trans. Cryptograph. Hardw. Embedded Syst., vol. 2018, no. 3,
pp. 44–68, 2018, doi: 10.13154/tches.v2018.i3.44-68.

[49] T. H. Kim, T. Takagi, DG. Han, H. W. Kim, and J. Lim, “Side channel
attacks and countermeasures on pairing based cryptosystems over binary
fields,” in Cryptology and Network Security—CANS (Lecture Notes
in Computer Science), vol. 4301. Berlin, Germany: Springer, 2006,
pp. 168–181, doi: 10.1007/11935070_11.

http://dx.doi.org/10.1109/ASICON58565.2023.10396122
http://dx.doi.org/10.1109/ASICON58565.2023.10396122
http://dx.doi.org/10.1109/FPL50879.2020.00038
http://dx.doi.org/10.1109/AsianHOST47458.2019.9006671
http://dx.doi.org/10.1007/978-3-540-74735-2
http://dx.doi.org/10.1007/978-3-540-74735-2
http://dx.doi.org/10.1109/TC.2019.2920352
http://dx.doi.org/10.1109/TIT.2009.2034881
http://dx.doi.org/10.1007/11693383_22
http://dx.doi.org/10.1007/3-540-36413-7_19
http://dx.doi.org/10.1007/3-540-36413-7_19
http://dx.doi.org/10.1007/978-3-662-43414-7_1
http://dx.doi.org/10.1007/3-540-45682-1_30
http://dx.doi.org/10.1007/11745853_17
http://dx.doi.org/10.1109/JIOT.2016.2557487
http://dx.doi.org/10.1007/3-540-47721-7_24
http://dx.doi.org/10.1007/3-540-47721-7_24
http://dx.doi.org/10.1109/ARITH.1995.465359
http://dx.doi.org/10.1007/s13389-017-0161-x
http://dx.doi.org/10.1007/s13389-017-0161-x
http://dx.doi.org/10.1007/978-3-662-43414-7_21
http://dx.doi.org/10.1007/978-3-662-43414-7_21
http://dx.doi.org/10.1145/3624571
http://dx.doi.org/10.1109/TCSI.2020.2966755
http://dx.doi.org/10.1109/TCSII.2020.3040665
http://dx.doi.org/10.1109/TVLSI.2019.2905899
http://dx.doi.org/10.1109/FPL.2018.00061
http://dx.doi.org/10.1109/ISCAS51556.2021.9401062
http://dx.doi.org/10.1007/978-3-642-36334-4_9
http://dx.doi.org/10.1145/3564784
http://dx.doi.org/10.1007/978-3-030-64837-4_3
http://dx.doi.org/10.1109/SP.2018.00049
http://dx.doi.org/10.13154/tches.v2018.i3.44-68
http://dx.doi.org/10.1007/11935070_11

