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Abstract— Along with the National Institute of Standards and
Technology (NIST) post-quantum cryptography (PQC) standard-
ization process, lightweight PQC-related research, and develop-
ment have also gained substantial attention from the research
community. Ring-binary-learning-with-errors (RBLWE), a ring
variant of binary-LWE (BLWE), has been used to build a promis-
ing lightweight PQC scheme for emerging Internet-of-Things
(IoT) and edge computing applications, namely the RBLWE-
based encryption scheme (RBLWE-ENC). The parameter settings
of RBLWE-ENC, however, are not in favor of deploying typical
fast algorithms like number theoretic transform (NTT). Fol-
lowing this direction, in this work, we propose a Karatsuba
initiated novel accelerator (KINA) for efficient implementation
of RBLWE-ENC. Overall, we have made several coherent inter-
dependent stages of efforts to carry out the proposed work:
1) we have innovatively used the Karatsuba algorithm (KA)
to derive the major arithmetic operation of RBLWE-ENC into
a new form for high-performance operation; 2) we have then
effectively mapped the proposed algorithm into an efficient
hardware accelerator with the help of a number of optimization
techniques; and 3) we have also provided detailed complexity
analysis and implementation comparison to demonstrate the
superior performance of the proposed KINA, e.g., the proposed
design with u = 2 involves 64.71% higher throughput and
15.37% less area-delay product (ADP) than the state-of-the-
art design for n = 512 (Virtex-7). The proposed KINA offers
flexible processing speed and is suitable for high-performance
applications like IoT servers. This work is expected to be useful
for lightweight PQC development.

Index Terms— Karatsuba initiated novel accelerator (KINA),
lightweight, polynomial multiplication, post-quantum cryptogra-
phy (PQC), ring-binary-learning-with-errors (RBLWE).

NOMENCLATURE
a Public parameter (integer polynomial).
r1, r2, e1, e2, e3 Binary polynomials

(r2: secret key; e1, e2, e3: errors).

Manuscript received 24 April 2023; revised 22 June 2023; accepted 19
July 2023. Date of publication 21 August 2023; date of current version
27 September 2023. This work was supported by the Visiting Faculty Research
Program at the Air Force Research Laboratory, Rome, NY, USA under Grant
FA8750-20-3-1003. (Corresponding authors: Jiafeng Xie; H. S. Jacinto.)

Pengzhou He, Yazheng Tu, and Jiafeng Xie are with the Depart-
ment of Electrical and Computer Engineering, Villanova University,
Villanova, PA 19085 USA (e-mail: phe@villanova.edu; ytu1@villanova.edu;
jiafeng.xie@villanova.edu).

H. S. Jacinto is with the Air Force Research Laboratory Information
Directorate, Rome, NY 13441 USA (e-mail: h.jacinto@afrl.af.mil).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TVLSI.2023.3302289.

Digital Object Identifier 10.1109/TVLSI.2023.3302289

m Message.
n Scheme size.
q Modulus.
f (x) Ring polynomial ( f (x) = xn

+ 1).
u, v (n/2) = uv (u and v are integers).
B, W Binary polynomial (algorithm derivation and

hardware design).
D, T , Z Integer polynomial (algorithm derivation and

hardware design).

I. INTRODUCTION

IT HAS been proven that the current public-key cryptosys-
tems such as Rivest Shamir Adleman (RSA) and elliptic

curve cryptography (ECC) can be broken by Shor’s algorithm
[1], [2] operated on a large-scale quantum computer [1]. As it
is predicted that the well-established quantum computer will
be available in the not far future, the research community has
already started designing next-generation cryptosystems [3],
[4], [5], i.e., post-quantum cryptography (PQC). Indeed, the
National Institute of Standards and Technology (NIST) already
initiated the PQC standardization process [5], and the lattice-
based PQC has been regarded as one of the most important
categories of PQC schemes [5], [6].

Many of the lattice-based PQC are based on the learning-
with-errors (LWE) problem [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17]. While the ongoing NIST PQC standard-
ization process targets general-purpose applications [5], [6],
there is also a need to develop lightweight PQC algorithms.
This is also confirmed by the very recent National Science
Foundation (NSF) Secure and Trustworthy Cyberspace Prin-
cipal Investigators’ Meeting 2022 (SaTC PI Meeting’22) that
one of the future research directions is the “lightweight PQC”
[18]. Fortunately, some preliminary works on lightweight
lattice-based PQC have already been carried out. In an earlier
article, it is shown that for the LWE problem based on binary
errors [19], [20], [22], [23], [24], i.e., binary-LWE (BLWE),
the hardness of the lattice problem still remains [19] and can be
used to build lightweight PQC. Following this proof, the ring
variant of BLWE, RBLWE, is introduced to obtain a smaller
computational complexity than the regular Ring-LWE-based
PQC [24]. RBLWE-based encryption scheme (RBLWE-ENC)
is based on the average-case hardness of the RBLWE problem,
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and detailed security analysis has shown that it is secure
enough for lightweight applications [24].

A. Existing Works

After the initial introduction, Buchmann et al. [24] reported
the software implementation results. While on the hardware
platform: 1) the first hardware implementation of the RBLWE-
ENC was released in [25]; 2) the second hardware design for
RBLWE-ENC was reported in [26]; 3) a high-speed hardware
structure (but incomplete) was then reported in [27]; 4) a
compact RBLWE-ENC hardware architecture was presented
in [28]; 5) a lookup table (LUT)-like method-based hard-
ware architecture was reported in [29]; 6) another compact
structure for RBLWE-ENC was presented in [30]; 7) a new
high-speed hardware RBLWE-ENC was introduced in [31];
8) a pair of low-speed and high-speed RBLWE-ENC hardware
accelerators were presented in [32]; and 9) efficient hardware
RBLWE-ENC architectures were also recently reported in
[33], [34], and [35], respectively. Meanwhile, there also exist
other types of implementations like the fault detection scheme
of [36] (based on the high-speed structure in [26]). These
reports represent the major works in the field.

B. Challenges

The main operation of RBLWE-ENC is a particular poly-
nomial multiplication over the ring Zq/(xn

+ 1), where one
polynomial involves merely binary values and another poly-
nomial consists of integer coefficients. This particular setup
is not desirable for the direct deployment of a fast algorithm
(e.g., Karatsuba) as the addition-related iterative operations
will increase the small-size coefficient involved in processing
bit-width, which might offset the gain from deploying a fast
algorithm. Meanwhile, the parameter settings of the RBLWE-
ENC are not in favor of employing another widely used fast
algorithm, i.e., number theoretic transform (NTT) [37]. In fact,
the existing implementations of RBLWE-ENC are all based
on the schoolbook polynomial multiplication (complexity of
O(n2), e.g., [25], [26], [27]). For resource-constrained applica-
tions, the schoolbook-based method may still be a good choice
as it allows the basic point-wise operations to obtain com-
pact implementation [32], [35]. While for high-performance
applications like the Internet-of-Things (IoT) servers that
contain enough resources (e.g., field-programmable gate array
(FPGA) devices), we prefer to accelerate RBLWE-ENC based
on a hardware implementation strategy as it not only offers
high-speed operation but also provides opportunities to be
further developed into specific integrated circuits. In this
case, the schoolbook-based design strategy can be further
improved to obtain better performance, i.e., better area-time
complexities.

C. Major Contributions

Based on the aforementioned considerations, in this article,
we propose to introduce a Karatsuba initiated novel accelerator
(KINA) for efficient implementation of RBLWE-ENC. We
have carried out three steps of efforts to finalize the proposed
work (main contributions) as follows.

Fig. 1. Major phases of RBLWE-ENC.

1) We have used the Karatsuba algorithm (KA) to derive
the polynomial multiplication of RBLWE-ENC into a
new algorithm for high-speed processing.

2) We have then mapped the proposed polynomial multi-
plication algorithm into a new RBLWE-ENC hardware
accelerator (KINA) with the help of a number of opti-
mization techniques.

3) We have conducted thorough complexity analysis and
comparison to confirm the efficiency of the proposed
RBLWE-ENC accelerator (KINA).

Note that though KA-based polynomial multiplication is a
standard technique for the LWE-based scheme, how to effi-
ciently employ this technique to obtain high-speed processing
of RBLWE-ENC has not been explored in the literature. To the
authors’ best knowledge, the proposed KINA is the first report
about the KA-based RBLWE-ENC accelerator with flexible
processing speed for different high-performance applications.

The rest of the article is organized as follows. Section II
gives brief preliminaries. The proposed algorithm is presented
in Section III. The hardware accelerator is introduced in
Section IV. The complexity analysis and comparison are
presented in Section V. Related works and future research
are described in Section VI. The conclusion is given in
Section VII.

II. PRELIMINARIES

A. Ring-Binary-Learning-With-Errors-Based PQC

RBLWE-ENC consists of three main phases [24], [25], [26]:
key generation, encryption, and decryption, as shown in Fig. 1.
Major notations are also listed in Nomenclature.

1) Key Generation: The key generation is based on p =

r1 − a · r2, where p is the public key that will be sent to
Bob (r1 will then be discarded). In this phase, the secret
and public keys have n and nlog2q bits, respectively.

2) Encryption: The message binary polynomial m (m =

m0 + · · · + mn−1xn−1) is firstly encoded into m̃ based
on (1). Then, three binary polynomials (errors) e1, e2,
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and e3 will be used to produce the ciphertext c1 and
c2 for Alice (the length of the ciphertext is 2nlog2q bits)

(m0, . . . , mn−1) →

n−1∑
i=0

mi

(q
2

)
x i . (1)

3) Decryption: In this phase, Alice recovers the encoded
message (using secret key r2) from the original m.
Of course, a threshold decoder function [24] will be
employed to generate the final output: the output will
be “1” if the coefficient of the obtained value lies in the
range of (q/4, 3q/4), otherwise the outcome will be “0”.

The recent report of [26] proposed an inverted RBLWE-
based scheme, i.e., the coefficients of the polynomials are
represented in the inverted range of (−⌊(q/2)⌋, ⌊(q/2)⌋ − 1)

such that all the modular operations can be performed naturally
under the two’s complement form. The three phases of Fig. 1
under this strategy remain the same, except (m0, . . . , mn−1) →∑n−1

i=0 mi (−(q/2))x i , and the final decode function (opposite
of the original one). In this article, we also adopt this strategy.

Security Level and Parameter Sets: BLWE with a restricted
number of samples retains the worst case hardness of the
LWE problem [19], while RBLWE-ENC is based on the
average-case hardness of RBLWE. A relatively recent secu-
rity analysis has estimated that RBLWE-ENC achieves 73/84
and 140/190 quantum/classic security bits for the parameter
settings of (n, q) = (256, 256) and (n, q) = (512, 256),
respectively [21], [22]. In this article, we follow the existing
reports [22], [24] to use these parameter sets for possible
lightweight applications.

B. KA: Karatsuba Algorithm (Binary Field)

The typical two-term KA-like method over binary field is
as follows [38], [39], [40], [41] (where A′

L =
∑(n/2)−1

i=0 a′

2i x
2i ,

A′

H =
∑(n/2)−1

i=0 a′

2i+1x2i , the same as B ′)

A′
= A′

L + x A′

H , B ′
= B ′

L + x B ′

H . (2)

Then, define C ′ as the product of A′ and B ′ such that

C ′
=

{
(1 + x)A′

L B ′

L +
(
x2

+ x
)

A′

H B ′

H

+ x
[(

A′

L + A′

H

)(
B ′

L + B ′

H

)]}
mod f ′(x) (3)

where C ′
=

∑n−1
i=0 c′

i x
i and a′

i , b′

i ,and c′

i ∈ {0, 1}

( f ′(x) is the field polynomial). Equation (3) can be iteratively
applied to the polynomial multiplication to obtain subquadratic
complexity.

III. KINA: FROM MATHEMATICAL DERIVATION TO
STRATEGY FORMULATION

A. Major Challenges

The iterative deployment of KA on the polynomial multi-
plication involves parallel computation and thus is not ideal
for hardware implementation (the resource usage will be
too large). Meanwhile, as mentioned in the Challenges of
Section I, the small-size coefficient-involved processing bit-
width will bring extra overhead even if we choose only a very
small number of iterative deployments.

B. Overall Principle

We thus decided to use only the two-term decomposition
of (3) so that the small-size coefficient-related computation
will not cause large overhead. Still, the direct mapping of the
two-term KA into hardware will incur large resource usage.
Therefore, we propose to: 1) process all the input–output
in a serial-in and serial-out format (practical for deploying
in actual applications) and 2) compute the major arithmetic
procedure in an accumulation format to save the resource
usage (hardware implementation friendly). The steps below
have strictly followed this principle.

C. Extension of KA to RBLWE-ENC

It is obvious that the main operation of the RBLWE-ENC
is the polynomial multiplication, which can be defined as

T = B D mod f (x) (4)

where B =
∑n−1

i=0 bi x i , D =
∑n−1

i=0 di x i , and T =
∑n−1

i=0 ti x i

for di and ti are integers in Zq and bi ∈ {0, 1}. Then, we have
[follow (3)]

B = BL + x BH , D = DL + x DH (5)

where BL =
∑(n/2)−1

i=0 b2i x2i , BH =
∑(n/2)−1

i=0 b2i+1x2i , DL =∑(n/2)−1
i=0 d2i x2i , and DH =

∑(n/2)−1
i=0 d2i+1x2i .

Then, we can have

(BL + x BH )(DL + x DH ) mod f (x)

= BL DL + x(BL DH + BH DL) + x2 BH DH mod f (x)

= BL DL + x[(BL + BH )(DL + DH ) − BL DL − BH DH ]

+x2 BH DH mod f (x)

= (1 − x)BL DL + x[(BL + BH )(DL + DH )]

+
(
x2

− x
)
BH DH mod f (x) (6)

where the original n-size polynomial multiplication becomes
the addition of three n/2-size subpolynomial multiplications.

D. Proposed Algorithmic Derivation

Define BM = BL + BH and DM = DL + DH such that (6)
can be [42]

T = (1 − x)TL +
(
x2

− x
)
TH + xTM mod f (x)

= (1 − x)TL mod f (x) +
(
x2

− x
)
TH mod f (x)

+ xTM mod f (x) (7)

where TL = BL DL , TH = BH DH , and TM = BM DM .
1) Detailed Steps to Derive TL : Let us consider TL first,

TL = BL DL mod f (x) (8)



1554 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 31, NO. 10, OCTOBER 2023

which can be rewritten as

TL =
(
b0 + b2x2

+ · · · + bn−2xn−2)
×

(
d0 + d2x2

+ · · · + dn−2xn−2)
= d0

(
b0 + b2x2

+ · · · + bn−2xn−2)
+ d2x2(b0 + b2x2

+ · · · + bn−2xn−2)
+ · · ·

+ dn−2xn−2(b0 + b2x2
+ · · · + bn−2xn−2) (9)

which can be expressed as an equivalent matrix-vector product

[
TL

]
=



b0
b2 b0
b4 b2 b0
...

...
...

. . .

bn−2 bn−4 bn−6
. . . b0

bn−2 bn−4
. . . b2

bn−2
. . . b4
. . .

...

bn−2



×


d0
d2
d4
...

dn−2



= [BL ][DL ] (10)

which can be seen as a (n−1) × (n/2) circulant matrix-vector
product (the blank parts are actually “0”s). For instance, the
second column of [BL ] (from left, (n/2) nonzero elements)
is the circularly shifted version of the first column (circularly
downward by one position), so are the rest of the columns.

2) Computation Strategy for [TL ]: The direct implementa-
tion of (10), however, will involve too much resource usage,
and hence we propose to compute the matrix-vector product
of (10) into column-wise accumulations, i.e., the elements of
one column of [BL ] are multiplied with one corresponding
element of vector-matrix [DL ] and then accumulated with the
next column-based similar operation (so on and so forth). As
the nonzero elements in each column of [BL ] are identical,
we can hence share these coefficients during the accumulation
process while the elements of [DL ] can be fed in a serial
format. Note that we can also process multiple columns of
[BL ] at the same time (with related elements of [DL ]) for
higher speed applications.

There are in total (n/2) columns in the matrix [BL ], and we
can thus define the first column (from left) of [BL ] as [BL ]1,
the second column as [BL ]2, . . . , [BL ](n/2). We also define the
elements of vector-matrix [DL ] as: [DL ]1,1 = d0, [DL ]1,2 =

d1, . . . , [DL ]1,(n/2) = dn−2. Thus, (10) can be

[TL ] =

n
2∑

i=1

[BL ]i [DL ]1,i (11)

where (10) becomes the form of column-wise accumulations.
Define (n/2) = uv (u and v are integers). Then, (11)

becomes

[TL ] =

v∑
j=1

u∑
i=1

[BL ] ju+i [DL ]1, ju+i (12)

which has v groups of accumulation that each group has u
items of [BL ] ju+i [DL ]1, ju+i . These u computations can be
executed at the same time to speed up the overall processing.

3) Computation for [TH ] and [TM ]: Similarly, we have

[
TH

]
=



b1
b3 b1
...

...
...

. . .

bn−1 bn−3 bn−5
. . . b1

bn−1 bn−3
. . . b3

bn−1
. . . b5
. . .

...

bn−1


×


d1
d3
d5
...

dn−1



= [BH ][DH ]. (13)

Similarly, one can easily follow the same strategy for [TL ]

and [TH ] to compute [TM ].
4) Final Recombination: As seen from (7), each term of

the KA-deployed polynomial multiplication has factors such as
(1−x), x , and (x2

−x), which involves position-shifting-based
additions and hence is not hardware implementation friendly
(if we calculate all related coefficients at the same time). To
save resource usage, we can arrange the coefficients of the
final output of T to be delivered out in a serial format.

Specifically, we can define TL =
∑n−2

i=0 tL ,i x2i , TH =∑n−2
i=0 tH,i x2i , and Tm =

∑n−2
i=0 tM,i x2i .

Connecting with (7), we can have

TL(1 − x) + TH
(
x2

− x
)
+ TM x mod f (x)

= tL ,0 +
(
tM,0 − tL ,0 − tH,0

)
x

+
(
tL ,1 − tH,0

)
x2

+
(
tM,1 − tH,1 − tL ,1

)
x3

+ · · ·

+
(
tH,n−2

)
x2n−2 mod f (x) (14)

which can be substituted with xn
≡ −1 to have

TL(1 − x) + TH
(
x2

− x
)
+ TM x mod f (x)

=
(
tL ,0 − tL , n

2
− tH, n

2 −1
)

+
(
−tL ,0 + tL , n

2
+ tH, n

2
− tH,0 + tM,0 − tM, n

2

)
x

+
(
tL ,1 − tL , n

2 +1 + tH,0 − tH, n
2

)
x2

+ · · ·

+
(
−tL , n

2 −2 + tH,n−2 − tH, n
2 −2 + tM, n

2 −2 − tM,n−2
)
xn−3

+

(
tL , n

2 −1 + tH, n
2 −2 − tH,n−2 + tM, n−2

2

)
xn−2

+
(
−tL , n

2 −1 − tH, n
2 −1 + tM, n

2 −1
)
xn−1

= t0 + t1x + · · · + tn−1xn−1 (15)

where it is found that the final output coefficients ti are just
the addition of the corresponding values of tL ,i and/or tH,i

and/or tM,i . The actual computation process can be seen in
the corresponding hardware component section in Section IV.

5) Final Algorithm Formulation: Based on the above math-
ematical derivation of (4)–(15), we can have the proposed
KA-based polynomial multiplication algorithm as follows.
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Fig. 2. Proposed RBLWE-ENC accelerator (KINA, u = 1), where Z and W denote the additional two polynomials (Z is an integer polynomial and W is a
binary polynomial. CSR: circular shift-register. A constant error (Const. err.), delivered from a counter, is also needed when executing the addition with the
integer polynomial Z , following the suggestion of [34].

Algorithm 1 Algorithm of KA-Based Polynomial Mul-
tiplication for RBLWE-ENC

Where TL , TH , and TM are processed in parallel to obtain
high-performance computation. Note that for RBLWE-ENC,
we also need to consider the operations related to other poly-
nomials like the additions with an integer polynomial as well
as the decoder function in the decryption phase. The following
section will cover details of the hardware accelerator.

IV. KINA: PROPOSED RBLWE-BASED
PQC ACCELERATOR

Following Algorithm 1 of Section III, we can have the pro-
posed RBLWE-ENC accelerator (KINA) as described below.
As shown in Fig. 1, the major arithmetic operation involved
within RBLWE-ENC includes a polynomial multiplication
followed by the addition with two polynomials (e.g., ciphertext

c2 in the encryption phase), which can be extended to the oper-
ations in other phases (the subtraction in the key generation
can be easily realized by the hardware implementation). Thus,
this major arithmetic operation, one polynomial multiplication
along with the additions with two other polynomials, is used to
construct the proposed accelerator. Meanwhile, we have also
presented a higher speed version of KINA (when u > 1).
Finally, we have also proposed several optimization techniques
to further maximize the design efficiency.

A. KINA: Proposed RBLWE-ENC Accelerator

1) Architectural Overview: As shown in Fig. 2, the
proposed RBLWE-ENC accelerator consists of three major
components, namely the input processing component, the mul-
tiplication component, and the linear combination component.
During the actual execution process, e.g., encryption phase or
decryption phase, inputs B and D are firstly decomposed based
on (5), and then loaded into the corresponding shift-register
in the input processing component, i.e., DL /DH and BL /BH .
Besides, two adders are needed to produce the corresponding
BM and DM . After that, three computational units in the
multiplication component, TL , TM , and TH , take the processed
coefficients as input and execute point-wise multiplications
of the related coefficients as well as the accumulation of
the matrix-vector products. When this multiplication step is
executed, the three results are then delivered to the linear
combination component to produce the final results according
to Line-11 of Algorithm 1 in Section III (see (15) as well).
The final result will be delivered out in a serial format until
the whole computation process is finished. It is noted that the
output for the encryption phase is 8 bit, while the output for
decryption is 1 bit. The detailed internal structures and related
functions of these components in Fig. 2 are described below.

2) Input Processing Component: The input processing com-
ponent is responsible for loading and delivering the decom-
posed coefficients of BL , BH , DL , and DH , as well as the
producing and delivering of correct coefficients of BM and
DM to the following multiplication component. Overall, the
input processing component consists of three circular shift-
registers [CSRs, length of (n − 1)] and two adders (different
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Fig. 3. Details of the CSRs for BH , BL , and BM (from up), respectively.

sizes), as seen from Fig. 3. Overall, it takes (n/2) cycles to
load in coefficients of BL and BH , which work in parallel
with the multiplication process. Meanwhile, the serially loaded
coefficients of BL and BH will pass through a 1-bit adder to
produce the corresponding coefficient of BM to be loaded into
the 2-bit CSR. When all the (n/2) coefficients are loaded into
the corresponding CSRs, the rest (n/2) registers are still set
as “0”s. The MUXes inside the CSRs then close the loop, and
all the related coefficients will be circularly shifted, which
function the same as the feature of “circularly downward-
shifted columns” in [TL ], [TH ], and [TM ] [see (10) and (13)].
Meanwhile, the values of DL , DH , and DM are serially fed into
the accelerator, which matches the column-based accumulation
in Lines 5–7 of Algorithm 1. Note the output of all (n − 1)

registers of three CSRs are connected to the related processing
units in parallel.

3) Multiplication Component: The multiplication compo-
nent consists of three parallel processing units for TH , TL ,
and TM , respectively. The internal structures of the processing
units for TH /TL and TM are shown in Fig. 4(a) and (b),
respectively. As the computation processes of TL and TH are
very similar [see (10) and (13)], we just use one set of the
internal structure to illustrate the detailed design. Basically,
the (n − 1) bits from related CSRs are fed to (n − 1) sets
of a point-wise multiplier followed by an accumulator, where
the point-wise multiplier is executed by an 8-bit AND cell
[Fig. 4(a)] and the accumulator contains an adder followed by
a register (the output of the register is also used as another
input of the adder to form the loop). Thus, after (n/2) cycles’
accumulations, the output of the register becomes tL ,i or tH,i

(0 ≤ i ≤ n−2). Note that we have also inserted a 2-to-1 MUX
in the middle of the accumulator such that these final output
values of tL ,i or tH,i (0 ≤ i ≤ n − 2) can be circularly shifted,
which facilitates the delivering of the final output in a serial
format (see the linear combination component). The internal
structure of the processing unit of TM is almost the same as
TL and TH , except that one input to the point-wise multiplier
has now become 2 bit, which can be realized by a MUX-based
design as shown in Fig. 4(c). Three precalculated values (based
on the input dM,i , where dM,i represents the corresponding
coefficients of DM ), i.e., “0,” “dM,i ,” and “2dM,i ,” are attached
to the MUX, and the result will be determined according

to the 2-bit bM,i (bM,i is the corresponding coefficient of
BM ). After being accumulated, the output of the TM unit
is delivered to the Linear Combination Unit together with
the outcomes of the other two units for the calculation of
the final result T . Note that the connected (n − 1) registers
in the accumulators, through the insertion of MUXes, and
functions as a shift-register to provide correct input signals
for the following linear combination component to produce
the correct output in a serial format.

Case Example: For a clear demonstration, we have also used
a case example of n = 8. Connecting with (10), we have

[
TL

]
=



b0
b2 b0
b4 b2 b0
b6 b4 b2 b0

b6 b4 b2
b6 b4

b6


×


d0
d2
d4
d6

 = [BL ][DL ]. (16)

Meanwhile, the output of the CSR for TL is “b0, b2, b4, b6,

0, 0, 0, 0,” which becomes “0, b0, b2, b4, b6, 0, 0, 0” in the next
cycle, “0, 0, b0, b2, b4, b6, 0, 0” in the third cycle, and finally
“0, 0, 0, b0, b2, b4, b6” in the last cycle. This process exactly
matches the column-based accumulations of (10). Since each
column of the matrix in (16) takes one cycle, the entire
multiplication needs four cycles. Based on this case example,
we can conclude that a total of (n/2) cycles are needed for
the multiplication component.

4) Linear Combination Component: The linear combina-
tion component is responsible for the calculation of the
final result by combining the outputs of the three units in
the multiplication component using linear operations (addi-
tion/subtraction) according to (14) and (15). As shown in
Fig. 5, a set of sign inverters (SIs) and adders are used
in this component to obtain the correct output. During the
linear combination process at each cycle, corresponding values
stored in the accumulators from the multiplication component
are fed into the SIs and adders, respectively, according to
the setup of Fig. 5 to obtain the desired output. Note the
selection signals to the MUX are generated from the control
unit. The linear combination component can be seen as the
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Fig. 4. (a) Processing unit for TH or TL . (b) Processing unit for TM .
(c) Point-wise multiplier for TM .

output component, and it takes n cycles to deliver all output
values.

Example of the computation inside the linear combination
component: As seen from (15), e.g., the first term associated
with x0

= 1 is (tL ,0 − tL ,(n/2) − tH,(n/2)−1), which can be
obtained through the SI and adders attached to tL ,0, tL ,(n/2),
and tH,(n/2)−1 as well as related MUXes to deliver the desired
coefficient, added with corresponding coefficients of (Z +

Cons. Err.) and W , to produce the final output t0. Similarly,
the other output values of T can be obtained through the
coordination of SIs, adders, and MUXes.

5) Control Unit: Finally, a control unit is also required to
coordinate the proper operation of the RBLWE-ENC acceler-
ator. Specifically, this control unit is based on a finite state
machine (FSM), where it involves five operational states,

Fig. 5. Linear combination component, where SI denotes the sign inverter.
Cons. Err.: constant error. The green and blue signals denote that they are
connected with the corresponding registers in Fig. 4; while the red signals
are control signals, e.g., “odd_sel” denotes that the MUX works in the lower
channel when the odd order of output coefficient is selected to be produced
when “odd_sel” = “1” (similar to the “cnt” control signals attached to the
MUXes, e.g., “cnt = N −1” means that the MUX works in the lower channel
when this counting signal is “1”).

namely “clear/reset,” “load,” “compute,” “output,” and “done.”
During the “clear/reset” state, the signals and registers in the
accelerator are cleared up for preparing the execution of the
new task. Then, during the “load” state, all the signals are
loaded into respective CSRs for the following “compute” state.
While the following “compute” state executes the point-wise
multiplication-based accumulation to obtain the desired result
for TL , TH , and TM . The next state is the “output” period,
which executes the linear combination operation to obtain
the desired output in a serial format following (15). After
all the output coefficients ti (0 ≤ i ≤ n − 1) are delivered,
the accelerator will release the final “done” signal.

6) Overall Operation: After the proposed KINA loads the
values of BL and BH into the CSRs ((n/2) cycles), the related
three units for TL , TM , and TH need (n/2) cycles to produce
the correct output values (or decryption output) to be sent to
the linear combination component for final serial outputting
(n cycles). Overall, the computation time of the multiplication
component can be viewed as the major latency of KINA.

B. KINA: Higher Speed Version

The RBLWE-ENC accelerator of Fig. 2 processes one col-
umn (u = 1) per cycle. For higher speed applications, however,
we can increase the number of column-based accumulation,
i.e., parallel processing based on larger u, to obtain a higher
speed version of KINA.

The overall data flow of the proposed higher speed RBLWE-
based accelerator is very similar to the basic version shown
in Fig. 2. The coefficients of B and D are grouped into
three groups, respectively, and are then fed into different
multiplication units, the products go through the accumulation
and permutation before they are sent to the linear combination
component for the final calculation. The output size is also
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Fig. 6. Internal structure of the shift-register for B for the proposed higher speed KINA (“oti ” denotes the output of the individual register).

Fig. 7. Internal structure of the computation unit in the multiplication
component, where each unit contains the adder trees (here we have used
TL and the input of BL is 1-bit). Note that for TM , we need to set the input
(BM ) as 2-bit. Meanwhile, we have also demonstrated the internal structure
for the adder tree for u = 4, which can be extended to different values of u.

8 or 1 bit for encryption/decryption phase. Nevertheless, slight
modifications have been made in the three multiplication
components as well as the shift-registers for D in the input
processing component since u (u = 2, 4, . . .) columns of B
are involved in the calculation at the same cycle.

The modification made in the input processing component
is that shift-registers for D are changed to u-parallel output
instead of the original serial-out. This is because we need
u of the coefficients delivered out at the same time for the
parallel calculation. Also, the shift-registers do not shift one
position per cycle—they shift u numbers every cycle, which is
implemented by connecting the register to the uth one in front
of its position in a circular format (and the internal structure
is shown in Fig. 6). Another modification is made in the
multiplication component. Unlike the one in the basic version
of Fig. 2, which has only one layer of point-wise multiplier-
based accumulator-sets, there are u layers of the multiplier
accumulator-sets, where each set has (n −1) point-wise multi-
pliers and the products are sent to a special component, adder
tree, for the addition (see Fig. 7). Each layer of point-wise
multipliers takes (n−1) coefficients of B and one coefficient of
D as its inputs and calculates the products. A single adder tree
takes u products as its inputs and calculates their summation

as its output. After the multiplication and permutation are
finished, the results will be delivered to the accumulators for
the final linear combination. One unit of the multiplication
component consists of u × (n − 1) point-wise multipliers, u
adder trees, and (n + u − 1) accumulators. Meanwhile, each
adder tree contains (n − 2) adders.

Overall Operation of the Proposed Higher Speed KINA:
The higher speed KINA, after all the values of BL and BH

are loaded into the CSRs [(n/2) cycles], the accelerator needs
only n/(2u) cycles to compute the TL , TM , and TH at the cost
of increased hardware usage in the multiplication component.
The final output still needs n cycles (for the linear combination
component). Thus, the major computation time of the higher
speed KINA is n/(2u) cycles.

V. COMPLEXITY AND COMPARISON

A. Complexity Analysis

The area-time complexities of the proposed KINA (Fig. 2)
are listed as follows.

1) The input processing component requires three CSRs
(two CSRs, respectively, for BL and BH , contain (n/2)

1-bit registers; one CSR for BM needs (n/2) 2-bit
registers), one 1-bit adder, and one 8-bit adder.

2) The computation unit for TH (and TL ) has (n −1) AND
gates, (n − 1) 8-bit adders, and (n − 1) 8-bit registers,
while the computation unit for TM has (n − 1) 3-to-1
MUXes, (n −1) 8-bit adders, and (n −1) 8-bit registers.

3) The linear combination component has 6 8-bit adders,
5 SIs, 8 8-bit MUXes, and an XOR gate. The proposed
KINA takes (n/2) cycles to execute related accumula-
tions (multiplication component) and another n cycles
to output the final results in a serial format.

For the higher speed design of KINA, the input processing
component area consumption remains the same as the basic
version. In the multiplication component, a total number of
two × u × (n − 1) AND gates and u × (n − 1) MUXes
are needed for the point-wise multiplications and 3 × u ×

(n−1) 8-bit adders, as well as 3 × (n−1) + log2u × (n−2)

8-bit registers, will be used for permutation and accumulation.
The area usage of the linear combination component remains
the same. Finally, the time required for the computation (mul-
tiplication component) decreases as u increases, i.e., n/(2u)

cycles.
The area-time complexities of the proposed designs (both

the basic and higher speed versions), in terms of the number of
AND gates, XOR gates, adders, MUXes, and latency cycles,
are listed in Table I along with those of the existing high-speed
designs of [25], [26], [31], [32], [33], and [34]. Note that
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TABLE I
MAJOR AREA-TIME COMPLEXITIES FOR THE PROPOSED RBLWE-BASED ACCELERATOR AND THE STATE-OF-THE-ART STRUCTURES

we have listed the major computation time (clock cycles)
as the latency for all the designs, following what we have
discussed in Section IV (which was also reported in these
existing designs).

Note that we do not include the following designs since:
1) the design of [29] is a special design based on LUT-like
method; 2) the structures of [28] and [30] belong to compact
designs (similar to [43], which is a compact implementation
of an approximate Ring-LWE based scheme); and 3) the
designs in [31] and Architecture-II of [33] did not consider
the input–output processing resources in structural design.

One can see that from Table I, the proposed designs overall
have relatively larger area complexities than those of the
existing ones because of the proposed Karatsuba-based design
strategy that three processing components are processed in
parallel. But as we consider the overall area-time complexities,
it is very obvious that all the existing designs have a complex-
ity of O(n2), while the proposed one can achieve O((3n2)/4).
Finally, one has to mention that the listed complexities are
based on theoretical estimation, and the corresponding imple-
mentation can reflect a more precise result.

B. FPGA Implementation Results and Related Comparison

1) Experimental Setup: While the comparison of area-time
complexities listed in Table I is more on the theoretical side,
there is a need for a more detailed comparison. Thus, we have
implemented the proposed accelerator on the FPGA platform
and the experiment is setup as follows: 1) we have coded
the proposed RBLWE-ENC accelerator (KINA) with VHDL
and have verified its functionality through ModelSim; 2) we
have followed the existing strategies [25], [26], [31], [32], [33]
to synthesize and implement the coded design on the Xilinx
FPGAs (after place and route), i.e., Virtex-7 XC7V2000t
and Kintex-7 XC7K325t devices, respectively, through Vivado
2020.2; 3) we have chosen the same parameter settings accord-
ing to the existing designs of [25], [26], [31], [32], and [33],
i.e., (n, q) = (256, 256) and (n, q) = (512, 256) (̃q = 8),
which correspond to the quantum/classic security of 73/84 bits
and 140/190 bits, respectively [22]; 4) the proposed accelerator

also includes the third and fourth polynomials Z and W for
operations of both encryption and decryption phases as well as
related resources; 5) for a more general demonstration, we do
not use the other available resources on the FPGA devices such
as the block RAM (BRAM), etc.; 6) we have chosen u = 1,
u = 2, u = 4, u = 8, and u = 16 for the proposed KINA,
respectively, to showcase the high-speed operational perfor-
mance under different processing setups; and 7) the obtained
area-time complexities, in terms of area usage (the number
of (LUTs, registers (FFs), and slices), maximum frequency
(Fmax, MHz), latency cycles, delay (critical-path × latency
cycles), area-delay product (ADP), and throughput are all
listed in Table II.

2) Discussion: From Table II, we can clearly see that
the area consumption of the proposed KINA increases as u
becomes bigger. This is because the number of adders and
point-wise multipliers in the KINA is positively proportional
to u, i.e., the number of involved adders and point-wise
multipliers increases to execute the parallel calculation and
permutation in the multiplication component. However, the
latency drops significantly as u increases as more columns of
[D] ([DL ], [DH ], and [DM ]) can be involved in the calculation
at the same time, and thus the number of cycles required
for the multiplication process decreases rapidly. Finally, one
can also find that the higher speed version of the proposed
KINA has relatively better performance than the basic one.
Meanwhile, in terms of the overall area-time complexities, the
proposed design with u = 2 obtains the best ADP among all
the cases.

3) Comparison With the Existing RBLWE-ENC Implemen-
tations: The comparison with those of the state-of-the-art ones
(i.e., [25], [26], [31], [32], [33] is seen in Table III). We have
carefully considered the comparison setup, as described below.
First of all, as the designs of [29] and [32] are reported on the
Intel Straix-V device, we thus also obtained the performance
of the proposed KINA (u = 2) on the same Stratix-V device,
as listed in Table IV. Secondly, we want to mention that some
of the existing designs do not include the input processing
component in the implementation, and hence we need careful
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TABLE II
FPGA IMPLEMENTATION PERFORMANCE OF THE PROPOSED ACCELERATOR ON AMD-XILINX DEVICES∗

consideration when selecting the proper competing designs.
For instance, we notice that the designs of [31] do not include
the input processing component (reported area is smaller than
the actual value, similar to Arch.-II of [33]), and we also
consider that the designs of [33] have shown their efficiency
over the ones in [31], we thus just list the result of [31] for
discussion. Note Arch.-I of [33] is listed for actual comparison
due to its complete setup in this aspect (see Fig. 4 of [33]).

4) Comparison Discussion: When comparing with the
existing designs, although the area consumption of KINA
is relatively high, the latency of the proposed design with
different choices of u is much lower than the existing designs,
e.g., it (u = 2) involves at least 53.92% less delay than the
best of the existing designs on the Virtex-7 device for n = 256.
Also, the ADP of the proposed design is at least 15.37%
less than the existing design of [34] for n = 512 on the
Virtex-7 device. Another noticeable advantage of the proposed
design is the throughput, which refers to the performance of
calculation over a unit period time. From Table III, we can see
that the throughput of the proposed design (u = 2) is 2.17×

to 5.24× than the existing designs on the Virtex-7 device.
This similar situation happens on the Intel Stratix-V device,
as shown in Table IV, where the proposed accelerator (u = 2)
has significantly better ADP than [29] and [32] (we followed
the existing designs to calculate the ADP). This indicates
that the proposed design is extremely suitable for high-speed
calculation, such as IoT servers.

5) Comparison With Software Implementation (CPU): To
demonstrate the efficiency of the proposed accelerator, we have
also measured the performance of the software implemented
(coded in C language) RBLWE-ENC deploying the proposed
KA strategy. The hardware setup is as follows: 1) we have

used the microbenchmark support library from Google [47]
as the benchmark library; 2) we have used the single core
of AMD Ryzen Threadripper 3960× processor running at
3.8 GHz; 3) the testing was carried out on the Ubuntu 20.04
LTS OS on a virtual machine; and 4) we have used g++

9.4.0 to compile the code and disabled the optimization flag.
The software implementation of KA-deployed RBLWE-ENC
(decryption) takes 145 762 ns (number of testing iterations is
4798) and 545 954 ns (number of testing iterations is 1282) for
n = 256 and n = 512, respectively. From the obtained data,
one can see that the proposed hardware KINA accelerator is
much faster than the software implementation one and hence
is preferred for practical deployment. Finally, we want to
mention that the FPGA-based implementation can also be
extended further as specific integrated circuits for potential
applications, which the CPU implementation does not offer.

6) Discussion About the Performance With Other PQC:
We have also listed other lattice-based schemes in Table V
for a more comprehensive discussion. In particular, we have
selected the available implementations of NIST PQC schemes
for discussion: NewHope [44], Kyber [45], and Saber [46].
Note the existing designs mostly did not report the slice
number, and we thus use the number of LUTs to calculate
the ADP.

It is seen that the proposed KINA has significantly better
area-time complexities than the existing designs. Besides that,
we want to point out that the designs of [44] and [45]
have used extra numbers of DSPs and BRAMs, and hence
their actual area-time complexities are larger than the calcu-
lated ADP. Meanwhile, when comparing with the public-key
scheme Saber of [46] (KA-based implementation as well),
the proposed KINA not only has smaller area usage but also
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TABLE III
COMPARISON OF FPGA IMPLEMENTATION PERFORMANCE (AMD-XILINX DEVICES)∗

TABLE IV
COMPARISON OF FPGA IMPLEMENTATION PERFORMANCE (INTEL DEVICES)∗

involves much faster processing time. One may conclude that
the proposed KINA is more suitable for high-performance
lightweight applications where the processing speed is more
desirable with relatively small resource usage.

Lastly, we also want to mention that both Kyber and Saber
explore module rings in constructing the security keys and
ciphertext (e.g., Kyber is built on the Module-LWE [49]).
Meanwhile, Kyber has utilized a built-in NTT ciphertext struc-
ture to improve practical implementation performance [49],
while Saber explores the small secret-key size and rounding
techniques [50]. Still, it is encouraging to see that comparing
the implementation result of KINA with Kyber (and even
Saber) also highlights the potential efficiency of Ring-LWE,
especially when the parameter (e.g., modulus q) is selected as
small. Due to the module ring setup, Kyber may obtain better
efficiency on area usage; Ring-LWE-based scheme, however,
can achieve faster computation (which leads to better overall

area-delay efficiency). For lightweight applications, where
the security requirement is not that high, one may choose
to use the Ring-LWE-based setting with small parameters
(i.e., RBLWE in this article) to obtain better feasibility and
efficiency.

7) Unique Features: Overall, the proposed KINA possesses
two unique features: 1) this is the first RBLWE-based PQC
accelerator based on KA and 2) the proposed accelerator
provides flexible processing throughput, depending on the
choices of u, for potential high-speed environments. These
two unique features facilitate the deploying of the proposed
KINA in various high-performance applications.

VI. RELATED WORKS AND FUTURE RESEARCH

While RBLWE is a relatively new ring variant of BLWE,
which uses binary errors to achieve low-complexity imple-
mentation [19], [20], [22], [23], [24], there also exist works
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TABLE V
DISCUSSION ABOUT THE PERFORMANCE WITH OTHER PQC IMPLEMENTATIONS

about the regular Ring-LWE-based PQC [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [48]. As Kyber and NewHope
can be seen as important representatives of them, we do not
compare with these regular Ring-LWE-based PQC.

The proposed KINA has constant time operation and hence
is resistant to regular timing attacks [53]. While this article
focuses mostly on the developing KA-initiated computation
strategy for the major arithmetic operation of RBLWE-ENC
(polynomial multiplication) as well as the overall hardware
accelerator, the research on designing and implementing a
key-encapsulation mechanism (KEM) of RBLWE-ENC and
related works (such as side-channel attacks) is out of the
scope of this article. Nevertheless, we want to mention that
developing an efficient KEM version of RBLWE-ENC can
be seen as one of our future research directions. Meanwhile,
side-channel analysis and related countermeasures can also be
extended further on the proposed accelerator.

Finally, we also want to emphasize that the research and
development for lightweight PQC is still an under-explored
area (as pointed out in the NSF SaTC PI Meeting’22 [18]),
though the NIST PQC standardization has recently selected
algorithms like Kyber for general-purpose usage [6]. There-
fore, we hope the proposed work in this article can stimulate
many follow-up investigations from the research community,
e.g., scheme development, parameter selection, security anal-
ysis, implementation techniques, etc. Besides that, we also
hope the proposed KINA design strategy can be extended
for polynomial multiplication used in NIST-selected schemes
like Falcon [51] and even Dilithium [52], where they are not
bound with fast algorithms [6] (Kyber is built-in with NTT
already [49]). As KINA provides a flexible and extensible
way for accelerating large integer polynomial multiplications,
it is natural to think about applying similar structures to
these NIST PQC schemes. While emphasizing the plausible
high-throughput and flexible processing, a couple of related
works need to be done for such endeavoring, including mod-
ular reduction, point-wise multiplier, sampler design, etc.

VII. CONCLUSION

In this article, we propose an efficient RBLWE-ENC accel-
erator, KINA, on the hardware platform. The key contributions
of this work include: 1) usage of KA to derive an efficient

computation of the polynomial multiplication over ring, the
major arithmetic operation of the RBLWE-ENC; 2) efficiently
mapped the proposed algorithm into a new RBLWE-ENC
accelerator, KINA (including the higher speed version); and
3) conducted analysis and comparison to show the efficiency
of the proposed accelerator. It turns out to be: a) the proposed
KINA is the first Karatsuba-based RBLWE-ENC accelera-
tor that achieves a complexity of O((3n2)/4) and b) the
proposed accelerator provides flexible processing capabilities.
The proposed design strategy and implementation results are
expected to help the further development of the RBLWE-based
lightweight PQC scheme.
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