
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 31, NO. 6, JUNE 2023 749

A Real-Time Object Detection Processor With
XNOR-Based Variable-Precision Computing Unit

Wonjae Lee , Kukbyung Kim , Woohyun Ahn , Jinho Kim , and Dongsuk Jeon , Member, IEEE

Abstract— Object detection algorithms using convolutional
neural networks (CNNs) achieve high detection accuracy, but
it is challenging to realize real-time object detection due to
their high computational complexity, especially on resource-
constrained mobile platforms. In this article, we propose an
algorithm-hardware co-optimization approach to designing a
real-time object detection system. We first develop a compact
object detection model based on a binarized neural network
(BNN), which employs a new layer structure, the DenseToRes
layer, to mitigate information loss due to deep quantization.
We also propose an efficient object detection processor that runs
object detection with high throughput using limited hardware
rescources. We develop a resource-efficient processing unit
supporting variable precision with minimal hardware overheads.
Implemented in field-programmable gate array (FPGA), the
object detection processor achieves 64.51 frames/s throughput
with 64.92 mean average precision (mAP) accuracy. Compared
to prior FPGA-based designs for object detection, our design
achieves high throughput with competitive accuracy and lower
hardware implementation costs.

Index Terms— Binarized neural network (BNN), convolutional
neural network (CNN), field-programmable gate array (FPGA),
low-power design, object detection.

I. INTRODUCTION

RECENTLY, we have seen rapid advances in computer
vision, enabled by adopting deep learning approaches.

Various deep learning models offered very high algorithm
accuracy even comparable to that of human beings, which
opens the possibility of using those algorithms in practical
applications. Object detection, a widely studied sub-category
of computer vision, is a process of finding specific objects
in the input image or video [1], [2], [3], [4]. Typically,
the algorithm produces the location of each object in the
image along with its object type. It is an essential element
in various applications such as autonomous driving, security,
and robotics [5]. However, deep learning algorithms typically
require a large amount of computation and memory access,
making it difficult to implement those algorithms on hardware.

Manuscript received 20 September 2022; revised 7 February 2023;
accepted 28 February 2023. Date of publication 21 March 2023; date of
current version 23 May 2023. This work was supported by a grant-in-aid
of Hanwha Systems. (Wonjae Lee and Kukbyung Kim contributed equally to
this work.) (Corresponding author: Dongsuk Jeon.)

Wonjae Lee, Kukbyung Kim, and Dongsuk Jeon are with the Graduate
School of Convergence Science and Technology, the Research Institute
for Convergence Science, and the Inter-University Semiconductor Research
Center, Seoul National University, Seoul 08826, South Korea (e-mail:
djeon1@snu.ac.kr).

Woohyun Ahn and Jinho Kim are with Hanwha Systems, Seongnam 13524,
South Korea.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TVLSI.2023.3257198.

Digital Object Identifier 10.1109/TVLSI.2023.3257198

To address this issue, a wide range of hardware accelerators
for deep learning models have been proposed. Most
deep learning models employ deep neural networks such
as convolutional neural networks (CNNs), and they are
usually realized using matrix multiplications. Hence, deep
learning accelerators are aimed at efficiently accelerating
matrix multiplication through parallelization and architecture
optimization to maximize throughput [6]. However, the
computational complexity of deep learning models for object
detection continues to increase [7], [8], [9], and the amount
of computation and memory bandwidth well exceeds those
available on embedded platforms. Therefore, to achieve real-
time object detection on embedded platforms with limited
hardware resources and power budget, we need to develop a
highly optimized deep neural network accelerator paired with
a lightweight object detection algorithm having high detection
accuracy.

Deep learning model optimization is an active field of
research aimed at reducing the computational complexity
and memory requirements of deep learning models while
preserving algorithm accuracy. For instance, quantization [10],
pruning [11], and compression [12] are often employed
to reduce the number of model parameters and required
operations. Model quantization reduces the number of bits
that represent model parameters such as synaptic weights and
biases. Since the area and power consumption of arithmetic
units decrease with the bitwidth linearly (e.g., adders)
or quadratically (e.g., multipliers) [13], model quantization
effectively improves computation power efficiency and reduces
hardware overhead, which is critical in embedded applications.
In addition, reducing the model size through quantization
also decreases the amount of external memory access
that dissipates significantly larger energy than ON-chip
computation [14]. Furthermore, recent studies show that even
binarized neural networks (BNNs) achieve good algorithm
accuracy comparable to full-precision models in various tasks
including image classification and object detection [15], [16],
[17], [18], [19], [20]. In BNNs, the synaptic weights and
activations are expressed as 1-bit values, significantly reducing
memory bandwidth and hardware resources. However, using
fewer bits often leads to noticeable degradation in algorithm
accuracy (e.g., mean average precision (mAP) in object
detection), and a range of algorithmic techniques have been
proposed to mitigate this issue.

Recent studies present various application-specific inte-
grated circuit (ASIC) implementations to fully utilize the
advantage of deep quantization [21], [22], [23], [24].
Ando et al. [21] propose an efficient binary/ternary neural

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-2179-4666
https://orcid.org/0009-0005-7233-7870
https://orcid.org/0009-0003-3068-4220
https://orcid.org/0009-0006-2754-435X
https://orcid.org/0000-0002-0395-8076

750 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 31, NO. 6, JUNE 2023

network accelerator with an in-memory computing scheme.
On the other hand, the design in [23] supports variable weight
bit precision to support various quantized neural networks.
The high degree of freedom of ASIC allows designers to
apply hardware design techniques to optimize the hardware
for the target application and model. Hence, ASIC is usually
considered the most power-efficient solution when it comes
to accelerating BNN models. However, the initial design
and prototyping costs for ASIC are huge, especially when
fabricated in advanced nodes, and hence it is not an ideal
solution for applications with low-volume production. Also,
due to complex design verification and fabrication processes,
it is challenging to reduce time-to-market.

Field-programmable gate array (FPGA) is increasingly
utilized for accelerating deep learning as it offers an optimal
design choice in the trade-off between hardware flexibility
and processing efficiency. Since we can reconfigure the
hardware at the gate level in FPGA, the same hardware
design techniques could be applied to maximize performance
and efficiency. In addition, the prototyping and production
costs are significantly lower than those of ASIC, which
makes FPGA an attractive design choice in embedded
applications.

In this work, we present an FPGA-based processor for real-
time object detection on embedded platforms. We first propose
a deeply quantized neural network model for object detection.
We minimize performance degradation while binarizing
weights and activations in most layers throughout the network
by proposing quantization-friendly layer structures. Then,
we present an object detection processor supporting the
proposed object detection algorithm efficiently. The processor
features a resource-efficient variable bit-precision processing
element (PE) and completely removes OFF-chip DRAM access
by storing the entire model in ON-chip memory. Our design
demonstrates real-time object detection with 64.51 frames/s
throughput and 64.92 mAP and consumes 6.58 W.

The rest of the article is organized as follows. Section II
summarizes the background and related work. Section III
details the proposed object detection algorithm and Section IV
discusses the processor architecture. Experimental results are
presented in Section V. Finally, Section VI concludes the
article.

II. RELATED WORK AND BACKGROUND

A. Related Work on BNN

As BNNs use binary weights and binary activations, external
memory bandwidth is greatly reduced and convolutional
layers are efficiently implemented using simple XNOR and
bit count operations. An early work in [25] demonstrates
a BNN that adopts GoogleNet [26], and it achieves 47.1%
top-1 accuracy on ImageNet [27]. The XNOR-Net [15]
shows an improved performance of 51.2% top-1 accuracy
for ImageNet classification by introducing scaling factors
to reduce quantization errors and reordering the sequence
of layers for effective training. In addition, the authors
suggest that multiplication between activation and weight
can be efficiently implemented using XNOR operations in

binarized layers. However, some layers (e.g., first and last
layers) are not binarized to avoid performance drops, which
necessitates separate arithmetic units to support high-precision
operations and decreases hardware utilization. The Bi-Real
Net [16] utilizes additional shortcut connections to compensate
for information loss due to deep quantization, along with
a piecewise linear approximation of the derivative of the
sign function. The authors also propose a magnitude-aware
gradient and a clip function to replace the ReLU function.
The Bi-Real Net achieves 56.4% and 62.2% top-1 accuracy
on ImageNet with 18 and 34 layers, respectively. The
real-to-binary convolutions [17] adopts the block structure
of the XNOR-Net, double-skip connections, and real-valued
downsample layers of the Bi-Real Net. It also introduces
trainable scaling factors, which results in 65.4% top-1 accuracy
on ImageNet.

B. Related Work on FPGA-Based Object Detection Processor

Recent studies on FPGA-based object detection hardware
employ deep quantization to enhance processing efficiency.
Nakahara et al. [28] propose Lightweight YOLOv2 and
demonstrate the first FPGA object detector using BNN.
However, since binarizing the model severely degrades
the algorithm accuracy, they adopt a full-precision parallel
support vector regressor for localization, which significantly
increases external memory access. Tincy you-only-look-once
(YOLO) [29] employs 1-bit weights and 3-bit activations
in the entire neural network. The authors report the
end-to-end processing time from capturing an image to
displaying detection results, but their design processes the
first and last layers on software as they severely limit
throughput. Sim-YOLO-v2 [30] uses 1-bit weights and 4–6-
bit activations in the neural network. The authors propose
a streaming accelerator architecture that reduces external
DRAM access to improve throughput and power efficiency.
CoDeNet [31] adopts input-adaptive deformable convolution
to develop an efficient network for object detection, and the
network is quantized with 4-bit weights and 8-bit activations.
The authors propose hardware-friendly modification of a
deformable convolution operation on FPGA. The real-time
SSDLite [32] adopts MobileNetV2 [33] as a backbone
network for object detection. This model is not deeply
quantized, but the design demonstrates the highest throughput
to date. This is achieved through an efficient processing
unit supporting both depthwise and pointwise convolutions
and the task control unit that alleviates the overhead of job
scheduling.

C. YOLO Object Detection Models

The YOLO models [4], [7], [8], [34] are representative
one-stage object detector algorithms based on CNN, which
predict the bounding box and class of objects simultaneously
in the input image. They have a fast detection speed to enable
real-time object detection, and the object detection accuracy
has improved in more recent versions. YOLO models consist
of two parts: a backbone network and a head network. The
backbone network extracts features from the input image, and

LEE et al.: REAL-TIME OBJECT DETECTION PROCESSOR WITH XNOR-BASED VARIABLE-PRECISION COMPUTING UNIT 751

the head network detects objects by performing localization
and classification using extracted features. The backbone
network is usually pretrained for the image classification task
on a large dataset such as ImageNet. Then, the head network
is attached to it, and the entire model is trained for the object
detection task.

YOLOv2 [34] uses DarkNet-19, which is similar to
VGG-19, as the backbone network and uses five convolution
layers in the head network. The model divides the input image
into S × S grids and predicts five bounding boxes for each
grid based on anchor boxes. Each bounding box consists of
location (x and y), size (w and h), confidence score, and
classification score for 20 classes. Therefore, the detector
outputs 125 values for each grid. Finally, post-processing
such as non-maximum suppression (NMS) is performed to
find the best candidate from the detected boxes and complete
object detection. While more recent versions of YOLO models
provide higher object detection accuracy, they utilize much
larger backbone networks and complex connections between
the backbone and head networks. Hence, the original YOLO
and YOLOv2 have been widely used for ASIC [35], [36], and
FPGA [28], [29], [30] implementations.

D. Model Quantization

The power consumption and area of arithmetic blocks are
dictated by the precision they support, and hence model
quantization is a key to efficient hardware implementation.
In addition, we can significantly reduce memory footprint
and bandwidth by quantizing data stored in external memory.
Provided the number of bits n and quantization scale s, the
quantized value of a real number xr is expressed by

xq = s ×

(
round

(xr

s
+ 0.5

)
− 0.5

)
. (1)

Note that the equation above represents a uniform and
symmetric quantization scheme that does not include zero.
Then, the maximum value which can be represented in this
scheme is determined by

xq max = s ×

(
2n

− 1
2

)
. (2)

If xr is larger than xq max, then its quantized value is clipped
to xq max.

In 1-bit convolution layers of typical BNNs, the weights
and activations are both binarized to −1 and 1 through a sign
function

xb = sign(xr) =

{
+1, if xr ≥ 0
−1, if xr < 0.

(3)

If −1 and 1 are expressed as 0 and 1 as shown above,
multiplication and addition are replaced by bitwise XNOR and
bit count operations

Xb · Wb = 2 · BitCount
(

XNOR
(
X̂b, Ŵb

))
− N (4)

where Xb and Wb are the vectors of binary activations and
binary weights represented as −1 or 1 with N elements, while
X̂b and Ŵb are identical vectors represented as 0 or 1. These
operations can be efficiently implemented in hardware; for

instance, look-up tables (LUTs) could be used to realize this
function on FPGA. In addition, to reduce the quantization
error of the binarized weights, the mean of the absolute weight
values can be used as a scaling factor α

wb = α · sign(wr) =

{
+α, if wr ≥ 0
−α, if wr < 0.

(5)

This scaling factor is usually absorbed in the batch
normalization layer during inference and does not increase the
amount of computation [16], [18].

III. BINARIZED OBJECT DETECTION ALGORITHM

Recent studies reveal that deep neural networks are
relatively resilient to computation errors incurred during
inference. Hence, various model optimization techniques
such as quantization have been extensively studied, and
commercial devices now provide optimized datapaths for low-
precision operations [37], [38]. In this work, we propose
a software–hardware co-optimization approach to design an
energy-efficient object detection processor. In this section,
we first propose a deeply quantized object detection
model with a good algorithm accuracy and low hardware
implementation costs. More specifically, we aim at minimizing
the model size so that the entire model could be stored
in on-chip memory. Then, the processor can avoid costly
external memory access and achieves higher energy efficiency.
In addition, representing weight and activation in low precision
also reduces the power consumption of computing units.

A. Backbone Network Design

In object detection models consisting of a backbone
network and a head network, the backbone network is usually
pretrained for image classification tasks. Experimental results
in Fig. 1 show that the object detection performance is highly
correlated with the classification accuracy of the backbone
network; the better the image classification performance of the
backbone network, the better the object detection performance
of the entire network. The backbone networks in YOLO
models are generally prone to performance drop when deeply
quantized. For instance, the backbone network of YOLOv2,
DarkNet-19, has a similar structure to VGG-19, and it suffers
large performance degradation when activations are quantized
into less than three bits [30].

To alleviate this issue, we propose a new structure called
DenseToRes layer shown in Fig. 3(a). The DenseToRes layer
places both dense and residual connections in series. The
layer first processes the input using dense connections to
concatenate the input and output features. This preserves the
undamaged information [19] as separate channels, but the
preserved information is not yet distributed over the channels
that went through the quantized layers. Then, the DenseToRes
layer performs convolution with residual connections; the
convolution operation distributes the preserved information
to all channels, while the residual connections minimize the
information loss due to quantized convolution operations by
adding the undamaged input features to the output features
[16]. As a result, this architecture allows for preserving

752 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 31, NO. 6, JUNE 2023

Fig. 1. Correlation between the object detection performance and
classification accuracy of the backbone network.

TABLE I
PROPOSED BACKBONE NETWORK

original information through dense connections and then
immediately distributes this information to other channels
through the residual connections that follow. We construct a
backbone network that alternates between a DenseToRes layer
and a transition layer, as detailed in Fig. 2 and Table I. The
transition layer is used to reduce the horizontal and vertical
size of the feature map. The initial layer also reduces the initial
input size, reducing the computational cost of the following
layers. These layers are optimized with depthwise convolution
and quantization to increase computational efficiency. Below
are more implementation details of the backbone network.

1) Layer Structure: We use the post-activation structure
ordered as binarization–convolution–batch normalization–
activation and RPReLU activation function. RPReLU was first
proposed in [18], and it shifts the origin point of the PReLU
function with two trainable channelwise biases.

2) DenseToRes Layer: In DenseToRes layers, we first
use 3 × 3 full binary convolutions and concatenate input
and output features for dense connections. Then, we use
1 × 1 pointwise binary-weight convolutions with residual

connections. In this convolution, we use 2-bit input activations
to minimize performance degradation.

3) Transition Layer: The structure of the transition layer
is depicted in Fig. 3(b). In transition layers, we make the
output channel size the same as the input channel size to
improve performance, as suggested in [39], which is contrary
to prior work on binarized DenseNet [19]. In experiments,
we observe a large accuracy drop when transition layers are
deeply quantized. Hence, the transition layers are kept in full-
precision during training for the image classification task. They
are later quantized into 8 bits during training for the object
detection task, as described in Section III-C. We employ 3 ×

3 depthwise convolutions as they require fewer parameters
when the channel size increases in later layers compared to
1 × 1 pointwise convolutions. They are followed by residual
connections identical to those in the DenseToRes layer.

4) Initial Layer: Fig. 3(c) displays the initial layer in our
model. The initial layer reduces the input image size by 16×

using stride and max pooling before the first dense layer,
which significantly reduces the computational complexity of
the following layers.

5) Training Scheme: As BNNs have a limited capacity
to express features, it is hard to learn appropriate activation
distributions with conventional training schemes. To address
this issue, recent studies on BNNs [17], [18] propose to use
a full-precision baseline as a target of training rather than
directly using the ground truth. Then, the binarized model
starts to produce similar output distribution to a full-precision
baseline, which enhances accuracy. This transfer learning is
also adopted for training our model. We use ResNet-34 as a
teacher network and distributional loss with the output value of
this network as in [17]. In addition, we use a two-step training
scheme; we first train a network with binary activations and
full-precision weights and then use the resulting model as the
initial point to train a network with both binary weights and
activations following the scheme in [17] and [18]. We use the
RAdam optimizer [40] and the cosine annealing learning rate
scheduler [41], as in [42].

Table II displays the ablation study results, which show the
effects of each design optimization on the performance and
model size of the backbone network. In this experiment, the
model was trained on ImageNet for 120 epochs, and two-step
learning was not used to reduce training overhead. Note that
all non-binarized layers in the initial and transition layers are
implemented with full precision. First, we build a baseline
model using full binary convolution with dense connection
and 1 × 1 full-precision convolution in transition layers. The
model exhibits good accuracy but the model size is large
due to 1 × 1 high-precision convolution in the transition
layer. Starting from the baseline model, we try to reduce the
model size while maintaining performance by applying each
design optimization. Binarizing the transition layer greatly
reduces the model size, but it exhibits a large performance
degradation. To mitigate this performance degradation, we add
a residual connection after the dense connection and achieve
an improvement of 4.26% in accuracy. To improve accuracy
further, high-precision depthwise convolution is added in the
transition layer. As depthwise convolution has a small number

LEE et al.: REAL-TIME OBJECT DETECTION PROCESSOR WITH XNOR-BASED VARIABLE-PRECISION COMPUTING UNIT 753

Fig. 2. Architecture of the proposed backbone model.

TABLE II
EFFECTS OF EACH DESIGN OPTIMIZATION ON PERFORMANCE AND MODEL SIZE OF BACKBONE NETWORK SIZE

Fig. 3. (a) DenseToRes layer, (b) transition layer, and (c) initial layer of the
proposed model.

of parameters compared to conventional convolution, the
increase in model size is relatively small even if implemented
in high precision. Through this optimization, performance is
increased by 3.58%, while increasing the model size only by
0.08 MB. Finally, by increasing the bitwidth of input activation
in the convolution with residual connection to 2 bits, the
proposed model outperforms the baseline. This optimization
does not increase the model size since only the bitwidth of
activation is increased. Through the optimization techniques
discussed above, our proposed backbone network achieves
good performance with a significantly smaller model size.

TABLE III
COMPARISONS OF DIFFERENT QUANTIZATION SCHEMES

IN THE BACKBONE NETWORK

One may consider employing uniform quantization (i.e.,
quantizing all activations and weights into identical precision)
instead of the mixed-precision quantization we proposed.
For comparisons, we conducted additional experiments and
observed the performance when representing those values in
an intermediate uniform precision (Table III). Each model was
trained on ImageNet for 120 epochs, and two-step learning
was not used to reduce training overhead. Using 6- and
4-bit quantization improves the accuracy by 2.7% and 0.32%,
respectively, but the model size is significantly increased by
5.6× and 3.7×. On the other hand, 2-bit quantization results
in a large performance drop of 12.49% while still having a
1.75× larger model size. Therefore, the proposed model is an
optimal design point in the accuracy-model size trade-off.

B. Head Network Design and Detection Scheme

The head network is designed with a structure similar to
that of the backbone network. The last classification layer is
removed from the pretrained backbone network, and five dense
layers and two transition layers are attached at the end as a
head network. In the transition layer of the head network, max
pooling is not performed. In the last layer, 1 × 1 high-precision
convolution is used to perform detection. The entire network
is trained for the object detection task on PASCAL VOC
2007 + 2012 dataset [43].

The network predicts five bounding boxes that possibly
represent one of 20 types of objects in each grid, which is
similar to the detection scheme of YOLOv2. When training
the model for the object detection task, YOLOv2 uses the
mean squared error (MSE) loss as a loss function. On the
other hand, we use binary cross entropy (BCE) loss for class

754 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 31, NO. 6, JUNE 2023

and confidence score to improve training performance as in
YOLOv3 [7].

C. Layer Fusion and Quantization

While most layers in the proposed object detection model
are binarized, the initial layer, transition layers, and the
last detection layer are implemented in higher precision
as the object detection accuracy is largely affected by
computation errors in those layers. We quantize the activations
and weights of those layers into 8 bits with uniform
nonzero quantization (1) to minimize memory footprint and
computational complexity. We also employ scaling factors
in quantization, but their values are constrained to powers
of 2 so that quantization could be implemented using
simple shift operations. In those 8-bit layers, we fuse the
batch normalization layer into the convolution layer to
minimize hardware overheads. In other binarized layers such
as DenseToRes layers, the batch normalization layer, and
RPReLU are not fused and are quantized into 8 bits. The
detailed structure of our object detection model is presented
in Table IV.

D. Training Result of Proposed Object Detection Model

First, we implement the proposed object detection model
in software using the Pytorch framework [44] on Nvidia
RTX 2080 Ti GPUs. The backbone network is trained on
the ImageNet dataset with 512 batch size on four GPUs. The
initial learning rate is set to 2E-3 and the training continues
for 120 epochs in both steps of the two-step training described
in Section III-A. We use 1E-5 weight decay factor in training
step 1 and set it to 0 in step 2 as used in [17] and [18].
After two-step training, the backbone network exhibits 65.54%
image classification accuracy on the ImageNet validation set.
Then, the entire model including the head network is trained
for the object detection task on the PASCAL VOC 2007 +
2012 dataset with 16 batch size. The initial learning rate is
set to 1E-4. We also construct custom quantization functions
in PyTorch, so that the software model exactly matches the
hardware. The resulting model exhibits mAP score of 64.92%
when tested on the PASCAL VOC 2007 test set. The model
size is 1.80 MB.

IV. REAL-TIME OBJECT DETECTION PROCESSOR

A. Processor Architecture

Fig. 4 displays the overall architecture of the proposed
object detection processor. The processor has a unified feature
map memory implemented with dual-port SRAM. The feature
map memory reads 64 8-bit data at a time and transmits
the data to PEs depending on the operation of each layer.
The processor has 64 PEs in total, and hence 64 outputs
are obtained in parallel. Each PE has two memory blocks
that store the weights of the convolution layer and the
parameters of batch normalization and RPReLU. We optimize
the architecture to store all the network parameters in
ON-chip memory since external memory access is very costly
and often a processing bottleneck in deep learning accelerators.

TABLE IV
NETWORK STRUCTURE OF OUR OBJECT DETECTION MODEL

Fig. 4. Overview of the proposed object detection processor.

Specifically, we choose the output-stationary scheme depicted
in Fig. 5. While other processing schemes such as weight-
stationary allow for reusing weights, they necessitate a larger
buffer to temporarily store intermediate results. Contrarily,
our processor only needs to store a single output pixel at a
time, significantly reducing hardware resources and securing
enough ON-chip memory space to store network parameters.

LEE et al.: REAL-TIME OBJECT DETECTION PROCESSOR WITH XNOR-BASED VARIABLE-PRECISION COMPUTING UNIT 755

Fig. 5. Example of convolution layer processing.

TABLE V
COMPARISONS OF PROCESSING SCHEMES

Table V summarizes the hardware overhead of three different
processing schemes, where Bi and Bo are the bitwidth of input
activation and output accumulation, respectively, and Co is
the number of output channels calculated simultaneously in
the processor. H , W , and N represent the dimensions of input
feature map, and K is the filter size as depicted in Fig. 5. In the
weight-stationary scheme, each weight is reused for the entire
input feature map. The input feature map is processed by each
of Co weight blocks. To produce the final Co output feature
maps, temporary output accumulations with the same size and
the entire input feature maps need to be stored, necessitating
large ON-chip buffers. For the row-stationary scheme, the size
of input and output buffers is smaller as only some rows
of input features are processed and stored at a time, but it
still requires larger buffers than the output-stationary scheme.
With our configuration of hardware parallelism, the buffer
size is 1138× and 9× larger for weight-stationary and row-
stationary schemes, respectively. This is especially critical in
resource-constrained platforms such as FPGA devices. Due to
output stationary processing, we need to load a new weight
value for each input feature. However, they are read from
internal memory, and the energy savings due to removing
external DRAM access exceeds this overhead. In the proposed
DenseToRes-Net model, the number of channels increases by
64 after each DenseToRes layer. Hence, we can easily split
the output channels into blocks of 64, where each block is
processed by 64 PEs at a time. In other words, each PE is
responsible for generating one output channel.

B. Variable-Precision PE

In most BNN models, not all layers are binarized to suppress
performance degradation; for instance, the first layer and
the last classification layer are susceptible to performance
drop due to deep quantization, so they still remain in high

precision [15], [16], [17], [18], [19], [25], [42]. However,
this necessitates an additional arithmetic unit to support high-
precision operations. To mitigate this issue, we introduce a
unified PE that supports both 1-bit and multibit MACs using
simple bitwise operations through optimizing quantization
scheme.

Assuming that 1-bit quantized activation x ∈ {−1, 1} is
represented by a binary value x̂ ∈ {0, 1}, multiplications with
1-bit weights w ∈ {−1, 1} are realized using XNOR operations
as below

x = 2x̂ − 1 (6)

w = 2ŵ − 1 (7)

x · w = 2 ·
(
x̂ ⊙ ŵ

)
− 1 (8)

where ⊙ represents bitwise XNOR operation. Then, the
accumulation of multiplication results is substituted by a
simple bit count operation. If we extend the transformation
in (6) and (7) to n bits, an n-bit binary number X̂ in
the circuit translates to an integer X which is represented
in n-digit binary number format with signed digits (i.e.,
X = (xn−1 . . . x1x0)2 where xk ∈ {−1, 1}, and X̂ =

(x̂n−1 . . . x̂1 x̂0)2 where x̂k ∈ {0, 1})

X = (xn−1 . . . x1x0)2

= xn−1 · 2n−1
+ · · · + x1 · 21

+ x0

=
(
2x̂n−1 − 1

)
· 2n−1

+ · · · +
(
2x̂0 − 1

)
= 2 ·

(
x̂n−12n−1

+ · · · + x̂0
)
−

(
2n−1

+ · · · + 1
)

= 2X̂ −
(
2n

− 1
)

= 2 ·
(
X̂ − 2n−1)

+ 1. (9)

Note that the circuit can represent only odd values since
X ∈ {−2n

+ 1, −2n
+ 3, . . . , 2n

− 1} for X̂ ∈ {0, . . . , 2n
− 1}.

Consider multiplication of activation X and weight W which
are represented using n and m digits in the binary number
format with signed digits of {−1, 1}. According to (6)–(8),
multiplication can be implemented as

X · W =
(
xn−1 · 2n−1

+ · · · + x0
)
·
(
wm−1 · 2m−1

+ · · · + w0
)

= (xn−1 · wm−1) · 2m+n−2
+ · · · + (x0 · w0)

=
(
2 ·

(
x̂n−1 ⊙ ŵm−1

)
− 1

)
· 2m+n−2

+ · · ·

+
(
2 ·

(
x̂0 ⊙ ŵ0

)
− 1

)
= 2 ·

{(
x̂n−1 ⊙ ŵm−1

)
· 2m+n−2

+ · · · +
(
x̂0 ⊙ ŵ0

)}
−

(
2m+n−2

+ · · · + 1
)

= 2 ·
{(

x̂n−1 ⊙ ŵm−1
)
· 2m+n−2

+ · · · +
(
x̂0 ⊙ ŵ0

)}
−

(
2n−1

+ · · · + 1
)
·
(
2m−1

+ · · · + 1
)

= 2 ·
(
X̂ ⊙ Ŵ

)
−

(
2n−1

+ · · · + 1
)
·
(
2m−1

+ · · · + 1
)
.

(10)

This suggests that multibit multiplication X ·W can be
implemented using simple bitwise XNOR operations along with
a linear transform of y = 2x − b. Fig. 6 displays an example
of multiplying +5 (= (+1) · 22

+ (+1) · 21
+ (−1) · 20) by −3

(= (−1)·21
+(−1)·20). It should be noted that this only applies

when multiplying odd values since X and W can only have odd
values as discussed above. Hence, we employ uniform nonzero
quantization as the quantization scheme in our hardware since

756 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 31, NO. 6, JUNE 2023

Fig. 6. Example of XNOR-based multiplication of 3- and 2-bit binary numbers
with signed digits.

it can be configured to produce odd numbers only. More
specifically, (1) is reformulated as

xq = s ×

(
round

(xr

s
+ 0.5

)
− 0.5

)
= s ×

(
floor

(xr

s

)
+ 0.5

)
=

s
2

×

(
2floor

(xr

s

)
+ 1

)
. (11)

Then, we can store floor(xr/s) + 2n−1 in the circuit
following (9), and this is achieved by simply inverting
MSB. Therefore, if we use uniform nonzero quantization for
convolution, multibit multiplications can be realized using
XNOR operations.

Utilizing the property discussed above, we propose a
variable-precision MAC unit shown in Fig. 7(a). The unit
supports high-precision MAC operations through bit slicing.
An operation is first decomposed into bitwise operations,
and then the results are combined using shift-add operations
to produce the desired results. The MAC unit is capable
of processing 64 bitwise XNOR operations in parallel, and
their results are combined differently in the shift-adder tree
depending on the required precision. Specifically, the adders
in stage 1 are configured by the number of activation bits.
In stages, 2 through 4, the configurations of the shift-adders
are determined by the number of weights bits. With 64 XNOR
gates, the MAC unit can implement multiple high-precision
MACs in parallel. Some possible configurations are shown
below:

1) 64 1 b × 1 b MACs;
2) 32 2 b × 1 b or 16 2 b × 2 b MACs;
3) 16 4 b × 1 b, eight 4 b × 2 b, or four 4 b × 4 b MACs;
4) eight 8 b × 1 b, four 8 b × 2 b, two 8 b × 4 b, or one

8 b × 8 b MACs.
The input bits should be rearranged to support MAC operations
in different precision, which would incur hardware overhead
due to additional multiplexers. Therefore, we only implement
the input path for 1 b × 1 b, 2 b × 1 b, and 8 b × 8 b MACs,
which are required in the proposed object detection algorithm.
Finally, the MAC operation is completed by performing the
linear transform in (10) on the accumulation result through
the shift-add operation. Note that the bias value should be
multiplied by the number of operands, and it is precomputed
and stored in hardware for each layer in the network.

Fig. 8 displays the PE in our object detection processor
employing the variable-precision MAC unit. After the variable-
precision MAC unit, we employ a conventional MAC unit
with 16 b × 8 b precision to implement batch normalization.
The RPReLU activation function multiplies the input with a
weight when the input is negative, which is implemented using
a MUX that takes the sign bit of the MAC result as a control
signal. Also, the result should be shifted according to the scale
of the RPReLU weight. After adding the bias of RPReLU,
the result is quantized to 8 bits using the output scale. Since
all quantization scales are in the form of a power-of-2, all
scale-related operations can be implemented using simple shift
operations.

C. Memory and Datapath

The feature map memory stores 21 632 512-bit words.
To support 8-bit convolutions and residual connections, all
activations are stored as 8-bit values. Each row in the feature
map memory stores 8-bit features from 64 channels. The
feature fetcher, connected to the feature map memory, reads
64 8-bit values from memory and sends them to each PE
according to the bit configuration of each layer. For 1 b × 1 b
operation, only the sign bits of 64 values are selected and
shared across PEs. For 2 b × 1 b operation, 32 out of 64 values
are quantized into 2 bits and shared across PEs, while the
remaining 32 values are distributed in the next cycle. Thus,
it consumes a 512-bit word in two cycles. For 8 b × 8 b
operation, one 8-bit value is sent to all PEs, and hence a
512-bit word is used for 64 cycles. However, in 8 b × 8 b
depthwise convolution, it has a different datapath because there
is no operation between input channels. About 64 data are sent
to 64 different PEs, consuming 512-bit data in one cycle. The
convolution weight memory in each PE sends weight values to
the MAC unit according to the bit configuration of each layer
through a weight fetcher, whose operation is similar to the
feature fetcher. About 512-bit data produced by PE or the max
pooling module are first stored in the output feature buffer.
Since our processor architecture employs a unified feature
map memory, the address to which the output feature is to
be written may not be available if the input feature in that
address has not been processed yet. Therefore, we temporarily
store output features in the buffer until the destination address
becomes available. Our processor reads layer configurations
from the layer data memory before processing each layer. They
include feature map size, kernel size, and type of layer, and the
processor uses this information to check when an input feature
at a specific address is no longer used. In the convolution
operation, the number of output features that require a specific
input feature is determined by the kernel size and channel size.
Therefore, if all the output features related to an input feature
are obtained, this input feature is no longer used. As our
processor employs output-stationary processing, it calculates
output features in the order depicted in Fig. 5. Therefore, the
processor temporarily stores calculated output features in the
output feature buffer and then overwrites them in the addresses
of the input features that are no longer needed. This logic is

LEE et al.: REAL-TIME OBJECT DETECTION PROCESSOR WITH XNOR-BASED VARIABLE-PRECISION COMPUTING UNIT 757

Fig. 7. (a) Architecture of the proposed variable-precision MAC unit and configurations for (b) 64 1 b × 1 b MACs, (c) 32 2 b × 1 b MACs, and
(d) 1 8 b × 8 b MAC.

Fig. 8. Architecture of XNOR-based variable-precision PE.

implemented in the controller, which informs the memory and
the buffer when to write the output.

V. EXPERIMENTAL RESULTS

A. Demonstration System

To validate the proposed object detection model and
processor, we implement the design on the Xilinx ZCU102
evaluation board. The board features Xilinx Zynq UltraScale+
MPSoC device [46] which consists of a general-purpose
CPU (Processing System) and reconfigurable FPGA logic
(Programmable Logic), providing a high degree of flexibility.
Fig. 9 shows the overall architecture of the demonstration
system.

The system realizes end-to-end processing of object
detection from capturing images to displaying detection results
overlayed on the input image (Fig. 11). The proposed object
detection processor is implemented in FPGA logic, and it
runs the object detection model described in Section III.
Data transfer between CPU and FPGA are handled by Xilinx
interface IPs using AXI protocol [47]. All model parameters

are stored in the processor, and the data channel for input
images is implemented using a 512-bit AXI-Stream interface
along with a control channel using a 32-bit AXI-Lite interface.
The CPU and the object detection processor exchange START
and DONE signals through the AXI-Lite interface, while the
input image and the network output go through the AXI-
Stream interface. The entire process is as follows. When the
CPU opens the saved image file or a video stream from the
USB port, it is resized to 416 × 416 and normalized to match
the input resolution of the model. Resized images are copied
to the shared memory area of DRAM. The DMA IP on the
FPGA transfers the data to the object detection processor and
writes the object detection results back to DRAM. The CPU
converts the data type of the object detection results from
integer to 32-bit floating point, reorders the data sequence to
match the processing order of the CPU, and copies the 8-bit
data between different memory spaces using NEON [48]. After
the CPU receives the results from FPGA, it performs NMS and
overlays the location and object type of the detected objects
on the image, which is displayed via output channels such as
Ethernet and DisplayPort.

758 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 31, NO. 6, JUNE 2023

Fig. 9. Demonstration system overview (modified from [45]).

Fig. 10. Schematic of baseline MAC unit for comparison.

TABLE VI
HARDWARE OVERHEAD COMPARISON

B. Implementation Results

Our object detection processor utilizes variable-precision
MAC units described in Section IV-B. We compare the
implementation costs of our design and a baseline that has
independent datapaths dedicated for (1 W, 1 A), (1 W, 2 A),
and (8 W, 8 A) MAC operations. Fig. 10 shows the schematic
of the baseline that exhibits the same throughput as our
design. Table VI displays the hardware implementation costs
of those two designs when synthesized for the target FPGA
device. Experimental results show that the proposed variable-
precision MAC unit reduces the number of LUTs, flip-flops,
and carry logics (CARRY8) by 21.15%, 20.51%, and 40.00%,
respectively.

Our object detection processor design is synthesized
and place-and-routed in Xilinx Vivado 2018.3. The target
frequency is set to 300 MHz. Hardware resource utilization
is summarized in Table VII. The variable-precision MAC unit
only uses XNOR gates and adder trees, and those blocks are

TABLE VII
HARDWARE RESOURCE UTILIZATION

synthesized into only LUTs and flip-flops [49]. Consequently,
DSP slices [50] are not used for convolution operations,
and they are only used to implement batch normalization,
RPReLU, and the control unit generating read/write addresses
for ON-chip memory. All the blocks except BRAMs are
utilized under 50%, whereas BRAMs show a higher utilization
of 84.76% since we store all the model parameters and
activations in the processor to avoid costly external DRAM
access. In our object detection model, the largest feature
map has a size of 10.563 Mb. Considering the granularity
of BRAM, 10.775 Mb space is allocated to the activations,
which is equivalent to 33.6% BRAM utilization. The size of
the model parameters is 14.37 Mb, and 15.750 Mb BRAM
space is allocated to the parameters, which translates to 49.1%
BRAM utilization.

C. Performance Evaluations

We measure the processing latency of the processor as the
time difference between when the START command is issued
by the CPU and when the CPU receives the DONE signal
from the processor. When the processor runs at 300 MHz
clock frequency, the processing latency is measured at 15.5 ms,
which translates to a throughput of 64.51 frames/s.

Table VIII compares our design against prior FPGA-
based object detection processors. Since they use different
bit precision, we calculate the BitGOPs [51], [52], [53] for
each design, which represents the operation count normalized
with respect to the bit precision considering actual hardware
implementation costs. In general, our object detection model
achieves a competitive object detection accuracy, while the
number of parameters and operations are lower than those of
other models with a similar object detection accuracy. The
designs in [29] and [31] achieve low BitGOPs and small
model sizes, but their accuracy and frame rate are significantly
lower than our design. The designs in [28] and [30] exhibit
similar mAP to ours, but their models have a larger size
and require significantly more operations in BitGOPs, which
translate to more hardware resources such as DSP, LUT, and
FF. In addition, the design in [28] uses a costly full-precision
SVR as a detector, resulting in a lower frame rate. The design
in [32] achieves a higher mAP score since the model is not
deeply quantized and it is trained on a larger train set including
the MS COCO dataset [54]. This design also exhibits a high
frame rate of 84.8 frames/s, but using high-precision weights
and activations unavoidably requires a large amount of external
memory access and more complicated computing units.

For comparison between designs, we first calculate the
implementation cost as the number of equivalent LUTs. Each
FPGA device has different types of DSP and LUT, but we can

LEE et al.: REAL-TIME OBJECT DETECTION PROCESSOR WITH XNOR-BASED VARIABLE-PRECISION COMPUTING UNIT 759

TABLE VIII
COMPARISONS WITH PRIOR FPGA-BASED OBJECT DETECTION PROCESSORS

directly compare the hardware cost by counting the number
of LUTs to realize the same function. For Xilinx FPGAs,
a DSP slice in 7-Series devices (28 nm) can be configured as
a 25 b × 18 b 2’s-complement multiplier [55], whereas a DSP
slice in UltraScale+ devices (16 nm) can be configured as a
27 b × 18 b 2’s-complement multiplier [50]. Those multipliers
are synthesized into 483 and 517 LUTs, respectively. For Intel
FPGAs, a DSP slice can be configured as two 18 b × 18 b
2’s-complement multipliers [32], and they are synthesized
into 728 LUTs. We also conservatively convert an ALM in
Intel FPGAs into one LUT and one FF.

However, it is not fair to simply compare the number
of equivalent LUTs, since each design exhibits different
throughput (frame rate) and accuracy (mAP). Therefore, here
we define a new figure-of-merit (FoM) that can reflect both
accuracy and power consumption

FoM =
mAP × Frame Rate

Number of Equivalent LUTs
. (12)

This metric is based on the assumption that the power
consumption is proportional to the number of LUTs in the
design in a naïve implementation, and we are interested in
the energy consumption per frame (i.e., power consumption
divided by frame rate). Also, higher accuracy (mAP) tends
to incur larger power consumption as the model size and
complexity increases. Table VIII confirms that our design
exhibits 66% higher FoM than the prior art. Note that this
analysis does not include power consumption due to external
memory access, and hence the advantage of our design will
become even more significant when its effect is considered.

Fig. 11. Test setup for end-to-end processing demonstration.

The power consumption of the device could be measured
using Xilinx Power Advantage Tool [56]. The tool reports
the voltage and current of each power rail measured by the
onboard power monitoring and management ICs [57]. Table IX
shows the power consumption of three power domains when
the system is idle (i.e., only Linux OS is running) and

760 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 31, NO. 6, JUNE 2023

TABLE IX
POWER CONSUMPTION

active (i.e., object detection is running): full power domain
(FPD) includes quad ARM Cortex-A53 cores, low-power
domain (LPD) includes dual ARM Cortex-R5 cores, and
programmable logic domain (PLD) includes FPGA. Since we
do not use Cortex-R5 cores in the demonstration system,
we excluded the power consumption of LPD. The clock
frequency of FPGA and ARM Cortex-A53 is 300 MHz and
1.2 GHz, respectively.

VI. CONCLUSION

In this article, we propose a real-time object detection pro-
cessor suitable for embedded platforms. We present a binarized
object detection model, and it achieves a competitive accuracy
with fewer parameters and operations through an optimal
network structure employing the proposed DenseToRes layers.
We also propose an efficient object detection processor that
realizes real-time processing with limited hardware resources.
The design utilizes resource-efficient variable-precision MAC
units and completely removes the need for external DRAM
access by optimizing the processing scheme. Implemented in
FPGA, the object detection processor achieves 64.51 frames/s
throughput with 64.92 mAP accuracy. Compared to prior
FPGA-based designs for object detection, our design reduces
hardware implementation costs as well as external memory
bandwidth while maintaining high detection accuracy.

REFERENCES

[1] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Dec. 2015, pp. 1440–1448.

[2] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” Proc. Adv. Neural
Inf. Process. Syst. (NIPS), vol. 28, 2015, pp. 1–14.

[3] W. Liu et al., “SSD: Single shot multibox detector,” in Proc. Eur. Conf.
Comput. Vis. (ECCV). Cham, Switzerland: Springer, 2016, pp. 21–37.

[4] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[5] A. R. Pathak, M. Pandey, and S. Rautaray, “Application of deep learning
for object detection,” Proc. Comput. Sci., vol. 132, pp. 1706–1717,
Jan. 2018.

[6] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105,
no. 12, pp. 2295–2329, Dec. 2017.

[7] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
2018, arXiv:1804.02767.

[8] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal
speed and accuracy of object detection,” 2020, arXiv:2004.10934.

[9] M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and efficient
object detection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 10781–10790.

[10] B. Jacob et al., “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 2704–2713.

[11] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” 2015, arXiv:1506.02626.

[12] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” 2015, arXiv:1510.00149.

[13] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 4820–4828.

[14] M. Horowitz, “1.1 Computing’s energy problem (and what we can do
about it),” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2014, pp. 10–14.

[15] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet classification using binary convolutional neural networks,” in
Proc. Eur. Conf. Comput. Vis. (ECCV). Cham, Switzerland: Springer,
2016, pp. 525–542.

[16] Z. Liu, B. Wu, W. Luo, X. Yang, W. Liu, and K.-T. Cheng,
“Bi-real Net: Enhancing the performance of 1-bit CNNs with improved
representational capability and advanced training algorithm,” in Proc.
Eur. Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 722–737.

[17] B. Martinez, J. Yang, A. Bulat, and G. Tzimiropoulos, “Training
binary neural networks with real-to-binary convolutions,” in Proc. Int.
Conf. Learn. Represent. (ICLR), 2020, pp. 1–11. [Online]. Available:
https://openreview.net/forum?id=BJg4NgBKvH

[18] Z. Liu, Z. Shen, M. Savvides, and K.-T. Cheng, “ReactNet: Towards
precise binary neural network with generalized activation functions,” in
Proc. Eur. Conf. Comput. Vis. (ECCV). Cham, Switzerland: Springer,
2020, pp. 143–159.

[19] J. Bethge, H. Yang, M. Bornstein, and C. Meinel, “BinaryDenseNet:
Developing an architecture for binary neural networks,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. Workshop (ICCVW), Oct. 2019,
pp. 1951–1960.

[20] Z. Wang, Z. Wu, J. Lu, and J. Zhou, “BiDet: An efficient binarized object
detector,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 2049–2058.

[21] K. Ando et al., “BRein memory: A single-chip binary/ternary
reconfigurable in-memory deep neural network accelerator achieving
1.4 TOPS at 0.6 W,” IEEE J. Solid-State Circuits, vol. 53, no. 4,
pp. 983–994, Apr. 2018.

[22] F. Conti et al., “XNOR neural engine: A hardware accelerator IP for
21.6-fJ/op binary neural network inference,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 37, no. 11, pp. 2940–2951, Nov. 2018.

[23] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU:
An energy-efficient deep neural network accelerator with fully variable
weight bit precision,” IEEE J. Solid-State Circuits, vol. 54, no. 1,
pp. 173–185, Jan. 2019.

[24] R. Andri, G. Karunaratne, L. Cavigelli, and L. Benini, “ChewBaccaNN:
A flexible 223 TOPS/W BNN accelerator,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), May 2021, pp. 1–5.

[25] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” Proc. Adv. Neural Inf. Process. Syst.
(NIPS), vol. 29, 2016, pp. 1–9.

[26] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1–9.

[27] O. Russakovsky et al., “ImageNet large scale visual recognition
challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[28] H. Nakahara, H. Yonekawa, T. Fujii, and S. Sato, “A lightweight
YOLOv2: A binarized CNN with a parallel support vector regression
for an FPGA,” in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate
Arrays, Feb. 2018, pp. 31–40.

[29] T. B. Preuser, G. Gambardella, N. Fraser, and M. Blott, “Inference of
quantized neural networks on heterogeneous all-programmable devices,”
in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2018,
pp. 833–838.

[30] D. T. Nguyen, T. N. Nguyen, H. Kim, and H. J. Lee, “A high-throughput
and power-efficient FPGA implementation of YOLO CNN for object
detection,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27,
no. 8, pp. 1861–1873, Aug. 2019.

[31] Q. Huang et al., “CoDeNet: Efficient deployment of input-adaptive
object detection on embedded FPGAs,” in Proc. ACM/SIGDA Int. Symp.
Field-Program. Gate Arrays, Feb. 2021, pp. 206–216.

[32] S. Kim, S. Na, B. Y. Kong, J. Choi, and I.-C. Park, “Real-time SSDLite
object detection on FPGA,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 29, no. 6, pp. 1192–1205, Jun. 2021.

[33] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

LEE et al.: REAL-TIME OBJECT DETECTION PROCESSOR WITH XNOR-BASED VARIABLE-PRECISION COMPUTING UNIT 761

[34] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 7263–7271.

[35] X. Chen, J. Xu, and Z. Yu, “A 68-mW 2.2 Tops/W low bit width and
multiplierless DCNN object detection processor for visually impaired
people,” IEEE Trans. Circuits Syst. Video Techn. (CSVT), vol. 29, no. 11,
pp. 3444–3453, Nov. 2019.

[36] S. Yin et al., “A high energy efficient reconfigurable hybrid neural
network processor for deep learning applications,” IEEE J. Solid-State
Circuits, vol. 53, no. 4, pp. 968–982, Dec. 2017.

[37] J.-S. Park et al., “9.5 A 6K-MAC feature-map-sparsity-aware neural
processing unit in 5nm flagship mobile SoC,” in IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2021, pp. 152–154.

[38] A. Agrawal et al., “A 7nm 4-core AI chip with 25.6TFLOPS hybrid FP8
training, 102.4 TOPS INT4 inference and workload-aware throttling,” in
IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 64,
Feb. 2021, pp. 144–146.

[39] R. J. Wang, X. Li, and C. X. Ling, “Pelee: A real-time object
detection system on mobile devices,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31.
Red Hook, NY, USA: Curran Associates, 2018, pp. 1–77.
[Online]. Available: https://proceedings.neurips.cc/paper/2018/file/
9908279ebbf1f9b250ba689db6a0222b-Paper.pdf

[40] L. Liu et al., “On the variance of the adaptive learning rate and beyond,”
in Proc. Int. Conf. Learn. Represent. (ICLR), 2020, pp. 1–14. [Online].
Available: https://openreview.net/forum?id=rkgz2aEKDr

[41] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with
warm restarts,” 2016, arXiv:1608.03983.

[42] J. Bethge, C. Bartz, H. Yang, Y. Chen, and C. Meinel, “MeliusNet:
An improved network architecture for binary neural networks,” in
Proc. IEEE Winter Conf. Appl. Comput. Vis. (WACV), Jan. 2021,
pp. 1439–1448.

[43] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The Pascal visual object classes (VOC) challenge,” Int.
J. Comput. Vis., vol. 88, no. 2, pp. 303–338, Sep. 2009.

[44] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32.
Vancouver, BS, Canada, Dec. 2019, pp. 8026–8037.

[45] L. Crockett, D. Northcote, C. Ramsay, F. Robinson, and R.
Stewart, Exploring Zynq MPSoC: With PYNQ and Machine Learning
Applications. Glasgow, Scotland: Strathclyde Academic Media, 2019.

[46] XILINX. (2023). Zynq Ultrascale+ Device Technical Reference
Manual. Accessed: Jan. 28, 2023. [Online]. Available:
https://docs.xilinx.com/r/en-U.S./ug1085-zynq-ultrascale-trm/Zynq-
UltraScale-Device-Technical-Reference-Manual

[47] ARM. Amba AXI and ACE Protocol Specification AXI3, AXI4, and AXI4-
Lite Ace and Ace-Lite. Accessed: Jan. 28, 2023. [Online]. Available:
https://developer.arm.com/documentation/ihi0022/e

[48] ARM. Fundamentals of ARMV8 Neon Technology. Accessed:
Jan. 28, 2023. [Online]. Available: https://developer.arm.
com/documentation/102474/0100/Fundamentals-of-Armv8-Neon-
technology

[49] XILINX. (2017). Ultrascale Architecture Configurable Logic Block User
Guide. Accessed: Jan. 28, 2023. [Online]. Available: https://docs.xilinx.
com/v/u/en-U.S./ug574-ultrascale-clb

[50] XILINX. Ultrascale Architecture DSP Slice User Guide. Accessed:
Jan. 28, 2023. [Online]. Available: https://docs.xilinx.com/v/u/en-
U.S./ug579-ultrascale-dsp

[51] B. Wu, Y. Wang, P. Zhang, Y. Tian, P. Vajda, and K. Keutzer, “Mixed
precision quantization of ConvNets via differentiable neural architecture
search,” 2018, arXiv:1812.00090.

[52] Z. Guo et al., “Single path one-shot neural architecture search with
uniform sampling,” in Proc. Eur. Conf. Comput. Vis. (ECCV). Cham,
Switzerland: Springer, 2020, pp. 544–560.

[53] L. Yang and Q. Jin, “FracBits: Mixed precision quantization via
fractional bit-widths,” 2020, arXiv:2007.02017.

[54] T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” in
Proc. Eur. Conf. Comput. Vis. (ECCV). Cham, Switzerland: Springer,
2014, pp. 740–755.

[55] XILINX. 7 Series DSP48e1 Slice User Guide. Accessed:
Jan. 28, 2023. [Online]. Available: https://docs.xilinx.com/v/u/en-
U.S./ug479_7Series_DSP48E1

[56] XILINX. Zynq Ultrascale+ MPSoC Power Advantage Tool 2018.1.
Accessed: Jan. 28, 2023. [Online]. Available: https://xilinx-
wiki.atlassian.net/wiki/spaces/A/pages/18841803/Zynq+UltraScale+
MPSoC+Power+Advantage+Tool+2018.1

[57] XILINX. ZCU102 Evaluation Board User Guide. Accessed:
Jan. 28, 2023. [Online]. Available: https://www.xilinx.com/support/
documents/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf

Wonjae Lee received the B.S. degree from the
Department of Electrical and Computer Engineering,
Seoul National University, Seoul, South Korea,
in 2019, and the M.S. degree from the Graduate
School of Convergence Science and Technology,
Seoul National University, in 2022.

Since 2022, he has been an Engineer with
Samsung Electronics Company Ltd., Hwaseong,
South Korea. His research interests include quan-
tized neural network algorithms and systems, and
low-power and resource-efficient hardware design
for deep learning inference/training.

Kukbyung Kim received the B.S. degree in
electrical engineering from Korea University, Seoul,
South Korea, in 2009, and the M.S. degree
from the Graduate School of Convergence Science
and Technology, Seoul National University, Seoul,
in 2022.

Since 2012, he has been a Senior Engineer
with Hanwha Systems Company Ltd., Seongnam,
South Korea, where he is currently working
on embedded hardware development. His current
research interests include object detection algo-

rithms, hardware accelerators, field-programmable gate arrays (FPGAs), and
low-power embedded systems.

Woohyun Ahn received the B.S. and M.S. degrees
in electrical engineering from Chungbuk National
University, Cheongju-si, South Korea, in 2012 and
2014, respectively.

Since 2015, he has been a Senior Engineer
with Hanwha Systems Company Ltd., Seongnam,
South Korea, where he is currently working
on embedded software development. His current
research interests include digital signal processing
and embedded software implementation such as
DSP, field-programmable gate arrays (FPGAs), and
system-on-chip (SoC).

Jinho Kim received the B.S. and M.S. degrees
in information and telecommunication engineer-
ing from Korea Aerospace University, Goyang-si,
South Korea, in 2004 and 2006, respectively.

Since 2010, he has been the Chief Engineer
of Hanwha Systems Company Ltd., Seongnam,
South Korea, where he is currently working as a Sys-
tem Engineer. His current research interests include
object detection algorithms, hardware accelerators,
and system integration.

Dongsuk Jeon (Member, IEEE) received the B.S.
degree in electrical engineering from Seoul National
University, Seoul, South Korea, in 2009, and the
Ph.D. degree in electrical engineering from the
University of Michigan, Ann Arbor, MI, USA,
in 2014.

From 2014 to 2015, he was a Postdoctoral Asso-
ciate with the Massachusetts Institute of Technology,
Cambridge, MA, USA. He is currently an Associate
Professor with the Graduate School of Convergence
Science and Technology, Seoul National University.

His current research interests include hardware-oriented machine learning
algorithms, hardware accelerators, and low-power circuits.

