
 

Addressing the CQI feedback delay in 5G/6G networks via
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Abstract: 5G  networks  apply  adaptive  modulation  and  coding  according  to  the  channel  condition  reported  by  the

user in order to keep the mobile communication quality. However, the delay incurred by the feedback may make the

channel quality indicator (CQI) obsolete. This paper addresses this issue by proposing two approaches, one based on

machine  learning  and  another  on  evolutionary  computing,  which  considers  the  user  context  and  signal-to-

interference-plus-noise  ratio  (SINR)  besides  the  delay  length to  estimate  the  updated SINR to  be  mapped into  a  CQI

value.  Our  proposals  are  designed  to  run  at  the  user  equipment  (UE)  side,  neither  requiring  any  change  in  the

signalling  between  the  base  station  (gNB)  and  UE  nor  overloading  the  gNB.  They  are  evaluated  in  terms  of  mean

squared error by adopting 5G network simulation data and the results show their  high accuracy and feasibility to be

employed in 5G/6G systems.
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1    Introduction

The  fifth  and  sixth  generations  of  mobile  networks
(5G/6G)  are  designed  to  support  applications  that
demand different levels of latency, connection density,
reliability,  and  throughput[1].  However,  the
unpredictability  and  dynamism  of  the  wireless
environment  (e.g.,  user  mobility  and  signal  reflection)
make the process of holding the mobile communication
quality challenging. In this respect, 5G networks apply
adaptive modulation and coding (AMC) to dynamically
select  the  downlink modulation order  and coding rate,
targeting  high  throughput  and  spectral  efficiency  but
keeping  the  block  error  rate  (BLER)  under  control[2].
The  AMC  is  based  on  the  channel  quality  indicator
(CQI),  a  4-bit  value[3] reported  by  the  user  equipment
(UE)  that  aims  at  expressing  the  current  channel
condition.  By using this  feedback,  the 5G base station

(gNB)  allocates  the  resources  and  defines  the
modulation and coding schemes to be used by the UE.

Having  a  CQI  value  that  faithfully  reflects  the
channel  quality  is  paramount  important  for  5G
communications  since  that  an  inaccurate  CQI  may
result  in  imbalanced  resource  distribution  and
unsuitable  modulation  and  coding  scheme  (MCS),
degrading the UE communication[4].  An overestimated
(underestimated)  CQI  leads  to  selection  of  a  higher
(lower)  order  MCS  by  the  gNB,  which  may  cause
higher  BLERs  and  excessive  retransmissions
(reduction in data rate and spectral efficiency).

Besides the way how the channel quality is estimated
(e.g.,  via  measurement  of  the  signal-to-interference-
plus-noise  ratio  (SINR)  of  a  reference  signal  sent  by
gNB[5]),  the  delay  incurred  by  the  CQI  feedback  may
also  make  the  CQI  inaccurate  since  that  variations  in
the  channel  quality  may  take  place  between  the
transmission  and  reception  of  the  CQI,  especially  in
scenarios with high mobility users.

This  paper  extends  our  previous  one[6] by  designing
two approaches to address the CQI feedback delay, one
based on machine learning and another on evolutionary
computing.  Different  from  solutions  presented  in  the
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literature,  which  only  adopt  a  single  input  (SINR,
signal-to-noise  ratio  (SNR),  or  CQI)  to  predict  its
future  value,  our  proposals  consider  the  UE  context
(expressed in term of velocity, direction, and position)
and  delay  length  besides  the  SINR  to  estimate  the
updated SINR to be mapped into a CQI value. They act
as regressive models and functions that map five input
variables  into  an  output  (updated  SINR),  whereas  the
previous  schemes  are  basically  time-series  forecasters
that  get  data  samples  equally  spaced  in  time.  In
addition,  our  solutions  are  designed  to  run  at  the  UE
side,  neither  requiring  any  change  in  the  signalling
between  gNB  and  UE  nor  overcharging  the  base
station.  The  proposed  approaches  are  evaluated  in
terms  of  mean  squared  error  (MSE),  by  using  5G
network  simulation  data,  and  the  results  show  their
high  accuracy  and  feasibility  to  be  adopted  in  5G/6G
networks.

This  paper  is  organized  as  follows.  Section  2
presents  works  that  deal  with  the  CQI  feedback
process. Section 3 describes the proposed solutions for
the  CQI  feedback  delay  problem,  which  are  evaluated
in  Section  4.  Section  5  concludes  this  paper  and
outlines future directions.

2    Related work

The CQI is an important indicator used by the 5G base
station  to  define  the  MCS  and  the  amount  of  radio
resources  to  be  considered  in  the  downlink.  In  this
aspect,  it  is  imperative  that  its  value  expresses  the
current  channel  quality,  but  there  are  three  important
issues that emerge in the feedback process and make it
challenging, which are: (1) the CQI accuracy, i.e., how
the  channel  quality  is  gotten  and  translated  into  a
channel  quality  indicator;  (2)  the  obsolete  CQI  value,
which may be a consequence of changes in the wireless
environment  during  the  reporting  time  (feedback
delay);  (3)  the  CQI  feedback  overhead,  an  excessive
signalling in the uplink, caused by too frequent reports
(e.g., in scenarios with high user density).

Different  studies  have  proposed  solutions  for  these
issues,  such  as  in  Ref.  [7],  which  addressed  the
obsolete  CQI problem by using linear  extrapolation to
predict  the  signal-to-noise  ratio  (SNR)  based  on

previous values. This is a low complexity scheme that
fails when employed in scenario with moderate or high
speed  users.  By  addressing  the  same  issue,  Ref.  [8]
used  a  long  short  term  memory  (LSTM)  neural
network  to  predict  the  CQI  and  considered  online
retraining  to  keep  the  high  accuracy  of  the  schemes
even in dynamic scenarios. Similar to Ref. [7], Ref. [8]
was  a  single  input  type  forecaster,  but  presented  two
differences:  it  predicted  the  CQI  and  ran  at  the  base
station.

The CQI accuracy issue was addressed in Ref. [4, 5,
9]. Reference [5] proposed a scheme that considers the
SNR  and  the  maximum  multipath  delay  spread  of
instantaneous  channel  state  to  precisely  compute  the
channel  quality  indicator  under  fading  channels.
Reference  [4]  adopted  three  machine  learning  (ML)
techniques  (stochastic  gradient  descent,  multilayer
perceptron  (MLP),  and  support  vector  machine)  to
predict  the  SNR  in  environments  with  different  user
speeds  and  channel  models  besides  considering  the
SNR and CQI as inputs. Reference [9] in turn designed
a  CQI  mapping  scheme  that  balances  the  energy
efficiency  (EE)  and  spectral  efficiency  (SE)  while
keeping  the  block  error  rate  under  control.  By
employing  this  proposal,  the  operators  may  set  their
priorities  via  weight  adjustments  for  SE  and  EE.  In
addition to the tackled problem, Refs. [4, 9] differ from
our  work  as  they  are  developed  to  run  on  the  base
station and do not adopt the user equipment speed as an
input to define the SNR or CQI.

The  CQI  feedback  overhead  was  addressed  via
spatial correlation of wireless channels in Refs. [10, 11],
where  the  authors  used  Gaussian  process  regression
(GPR) to estimate the CQI for some users based on the
selected  ones.  To  improve  the  scheme  performance,
Ref.  [10]  adjusted  the  model  by  considering  the  user
density  and  prediction  accuracy.  Different  from  our
approaches, Refs. [10, 11] are limited to scenarios with
static users and strongly dependent on the user density,
not working well in low user density cases. In Ref. [2],
the subband level and aperiodic feedback were used to
reduce  the  CQI  feedback  overhead.  The  authors
proposed a GPR-based scheme to estimate the CQI and
thus compensate for the feedback reduction, evaluating
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it  in  scenario  with  moving  users,  but  without
considering the user speed as an input to the scheme.

The  authors  in  Ref.  [12]  proposed  a  strategy  for
multicast  unmanned  aerial  vehicle  (UAV)  systems  in
which  the  base  station  determines  the  modulation  and
coding schemes for UAVs in the same group based on
their CQI feedbacks. Although the proposal is focused
on  UAVs,  it  does  not  consider  their  high  mobility,
which may impact on their positions and, consequently,
lead  to  an  obsolete  CQI  to  be  used  in  the  MCS
selection,  making  the  scheme  unsuitable  for  UAV
systems.  In  Ref.  [13],  the  feedback  overhead  was
addressed  by  estimating  the  channel  quality  indicator
of some users via CQI values reported by others. To do
so,  the  authors  used  two  neural  networks  (NNs)
running on the base station, one for selecting the users
and  subbands  to  be  used  in  the  CQI  estimation  and
another for estimating the CQI.

Table  1 points  out  the  main  characteristics  of  the
previous  works  and  compares  them  to  the  proposed
one, clarifying their differences.

3    Proposed approaches

The channel quality indicator is a key-element used by
the  user  to  report  the  channel  condition  to  the  base
station  in  5G  networks.  The  medium  access  layer
scheduler  adopts  the  CQI  to  allocate  resources,
determines  the  modulation  and  coding  schemes  along
with  the  transport  block  size  to  be  employed  in  the
downlink  and,  consequently,  defines  the  amount  of
data that will be transmitted at each time slot[8]. In this
regard, having a CQI that faithfully denotes the channel
quality  when  the  base  station  makes  decisions  is
fundamental.  Notwithstanding,  the  delay  incurred  by
the CQI transmission may make its value obsolete.

t

τ t+τ

To tackle this issue, we develop two approaches, one
based on machine learning and another on evolutionary
computing. Both consider the user context expressed in
terms  of  position,  velocity,  and  movement  direction,
the  SINR  measured  at  instant  and  also  the  delay
length  ( )  to  estimate  the  SINR  at  the  moment 
(updated),  which  is  then  mapped  into  a  CQI  value.
There  are  different  alternatives  for  the  SINR-CQI
mapping  (e.g.,  via  mapping  table  received  from  the

base station or using schemes such as Refs. [4, 13, 15])
and  our  approaches  support  these  different  ways,  not
demanding  any  change  in  the  gNB  or  signalling
protocol,  besides  being  planned  to  run  on  the  user
equipment. Figure  1 illustrates  the  approaches,  which
are described in Sections 3.1 and 3.2.

The  current  SINR  is  measured  regarding  the
reference  signal  sent  by  the  base  station.  The  UE
context in turn may be obtained via global positioning
system  since  it  is  commonly  embedded  in  the  current
mobile devices and, thus, it could be a natural solution.
However,  there  are  other  alternatives  to  get  the  UE
context such as databases of geo-tagged Wifi hotspots,
sensor-based  technologies  (e.g.,  cameras),  Wifi  signal
based  localization,  indoor  positioning  services  (IPSs),
as  well  as  their  combinations[16].  These  systems differ
from each other in terms of position accuracy, adopted
environment  (outdoor  and  indoor),  orientation  mode
(UE-based  or  network/server-based),  measurement
time,  energy  consumption,  and  privacy  level,  which
need  to  be  considered  in  the  selection  of  the  most
suitable  one  based  on  constraints  such  as  accuracy
threshold,  energy  budget,  and  desired  privacy  level.
For  instance,  considering  the  energy  consumption  and
privacy,  the  GPS consumes  more  energy  than  Wifi  or
cell  network  based  solutions[17],  but  as  it  runs  the
localization  directly  on  the  UE  with  no  location-
sensitive information received or sent from/to the base
station or  external  server,  such as  in  IPS,  it  may offer
better level of privacy to the user.

3.1    Machine learning based approach

For SINR estimation (see Fig. 1), we analyze two types
of  feedforward  artificial  neural  networks  (ANNs):
multilayer  perceptron  (MLP)  and  radial  basis  function
(RBF),  which  are  widely  used  for  regression  and
classification  problems  and  able  to  build  non-linear
mappings.  We  conducted  several  tests  with  different
ANN configurations by varying the key-parameters  of
each  network  type  and  evaluated  them  in  order  to
define  the  best  one  by  considering  the  ANN
complexity  in  addition  to  the  Formulas  (1)  and  (2),
which intend to point out the ANN that is able to learn
the  data  characteristics  used  in  the  training  stage  and
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Table 1    Approaches for CQI feedback related problems.

Reference Proposal CQI problem Technique Goal Side Input Output

[2] A packet loss and CQI
prediction approach

Feedback
overhead

Gaussian process
regression

To minimize the packet
loss and limit the CQI
signalling overhead

BS CQI and
packet loss

CQI and
packet loss

[4] An ML-based approach to
predict SNR Innaccuracy Machine learning

(SVR, MLP, SGD)

To provide a more
accurate channel quality

estimation
BS CQI and

SNR SNR

[5]
A multipath delay spread-

aware CQI scheme for
LTE system

Innaccuracy

Empirical
SNR/delay - CQI
mapping based on

simulation data

To achieve more precise
CQIs under fading

channels
UE

SNR and
multipath

delay spread
CQI

[7]

A linear extrapolation-
based scheme to predict
SNR and map it into a

CQI value

Feedback delay Linear
extrapolation

To improve the network
throughput UE SNR SNR and

derived CQI

[8]

An LSTM-based CQI
prediction method and

an online training
module in ns-3

Feedback delay LSTM artificial
neural network

To improve the CQI
prediction accuracy BS CQI CQI

[9]

A CQI mapping algorithm
that considers the spectral

efficiency and energy
efficiency tradeoff

Estimation
The VIKOR

ranking method
and weighted sum

To balance EE and SE in
the MCS selection BS

CQI and
weights for
EE, SE, and
coding rate

CQI

[10]

An SNR prediction
scheme based on the SNR

reported by spatially
correlated UEs.

Feedback
overhead

Gaussian process
regression

To reduce the CQI
feedback overhead and
improve the prediction

quality

BS

SNR and
spatial

correlation
of users

SNR and
CQI

[11]
An SIR prediction scheme
that uses SIR from spatial

correlated users

Feedback
overhead

Gaussian process
regression

To reduce the CQI
signaling overhead BS

SIR and
spatial

correlation
from a set of

users

SIR

[12] A CQI feedback scheme
for UAV multicast system

Feedback
overhead

Minimum function
and fixed channel
for CQI feeback

per group

To reduce the signalling
overhead and increase
the spectral efficiency

BS CQI CQI

[13] A CQI report scheme for
URLLC Estimation The worst-case

estimation

To accurately estimate
and report the the worst-

case SINR conditions
UE SIRN CQI

[14]

An ANN-based selector
and a dense ANN-based

for users/subbands
selection and CQI

estimation

Feedback
overhead

Artificial neural
networks

To reduce the CQI
feedback signalling

overhead
BS

CQI of
selected

subbands/
users

CQI

This work

ML and EC-based
approaches with multiple
inputs for CQI feedback

delay

Feedback delay

MLP and RBF
artificial neural
networks and

genetic algorithms

To accurately estimate
the SINR considering

the CQI feedback delay
UE

UE velocity,
movement

direction and
position,

delay length,
and SINR

SINR
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generalize them when fed with new data.
 

(MS Etrain and MS Evalid) ⩽ MS Ere f (1)
 

Minimize |MS Etrain−MS Evalid | (2)

MS Ere f

MS Etrain MS Evalid

where  the  denotes  the  desired  mean  squared
error  (MSE),  which  was  considered  as  0.01  in  this
paper;  and  mean the MSE got by the
ANN  in  the  training  and  validation  phases,
respectively.
3.1.1    MLP topology
The  multi-layer  perceptrons  (MLPs)  are  neural
networks  with  one  or  more  hidden  layers  that  adopt
non-linear function neurons[18]. They have been widely
used  in  diverse  problems  in  5G  networks  such  as
channel  estimation  in  massive  MIMO  systems[19],
throughput  prediction[20] as  well  as  in  CQI-related
issues[4, 6].

In  order  to  define  the  most  suitable  MLP  topology
for dealing with the CQI feedback delay,  we analyzed
different MLP ANNs, by testing parameters such as the

t+τ

number of hidden layers (NHL), neurons in the hidden
layer (NHLN) and their activation functions (AFHL) as
well  as  the  learning  rate  (LR).  The  sigmoid  (Eq.  (3))
and  hyperbolic  tangent  (Eq.  (4))  functions  were  the
options for NHLN. In all cases, the input layer was set
with  five  neurons,  which  are  associated  to  the  input
variables,  and  the  output  layer  was  defined  with  one
linear activation function (OLAF) based neuron, which
denotes  the  SINR  at  the  moment .  Moreover,  the
MLP ANNs were trained by using the backpropagation
learning algorithm[18]. Table 2 presents  the parameters
and tested values.
 

 

User equipment
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Measured SINR
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CQI
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Fig. 1    Proposed schemes.

 

 

Table 2    Tested MLP ANN hyper-parameters and values.

Hyper-parameter Value
Number of hidden layers (NHL) 1; 2; 3

Number of hidden layer neurons (NHLN) 5; 10; 15; 20; 25; 30
Activation function of hidden layer

neuron (AFHL) Tansig; Logsig

Learning rate (LR) 0.01; 0.045; 0.1
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Logsig(x) =
1

1+ e−x (3)
 

Tansig(x) =
2

1+ e−2x −1 (4)

The  number  of  neurons  in  the  hidden  layer  impacts
on  the  neural  network  performance.  Adopting  so  few
hidden  neurons  would  result  in  a  neural  network
without  the  capacity  to  learn  the  data  structure.  In
contrast,  too  many  hidden  neurons  would  severely
increase the neural network complexity and its learning
time,  without  improving  the  performance
significantly[18].  Similarly,  the  ANN’s  efficiency  and
complexity are also impacted by the number of hidden
layers,  where  conditions  of  overfitting  or  underfitting
may emerge as a consequence of adopting too many or
few  hidden  layers  in  the  ANN,  not  following  the
problem  complexity,  and,  thus,  causing  generalization
loss  over  new  data  or  inefficient  results[21].  On  these
points,  we  tested  six  and  three  values  for  NHLN  and
NHL, respectively, which are listed in Table 2.

MS Etrain 0.003217

MS Evalid = 0.005 0.001782

0.0004008 0.004127 0.004528

MS Etrain MS Evalid

Figure 2 presents the average results for all 144 MLP
configurations,  computed  by  considering  30
executions. Almost all configurations met Formula (1).
The  configuration  #48,  which  comprises NHL  =  1,
NHLN =  35  neurons,  sigmoid  AFHL,  and LR  =  0.2,
obtained  the  lowest  ( ),  but  its

 made  its  error  difference  ( )
bigger  than  the  configuration  #38,  which  got

, , and  for error difference,
, and , respectively.

The configuration #91 got the best performance with

0.0003183

MS Etrain

regard  to  Formula  (2),  error  difference  equals  to
,  but  being  more  complex  (double  hidden

layer with 30 neurons) and achieving an  slight
higher  than  the  configuration  #38.  With  this  in  mind,
we  adopted  the  configuration  #38  in  our  MLP-based
scheme,  which  is  summarized  in Table  3.  The  data
used in this evaluation are described in Section 4.
3.1.2    RBF topology
The  RBF  ANNs  are  composed  of  input,  hidden,  and
output layers. The first connects the neural networks to
the  environment.  Each  neuron  in  the  hidden  layer
represents  a  center  (cluster)  for  the  input  space  and
adopts  a  radial  basis  activation  function,  such  as  the
Gaussian  one,  in  which  its  output  is  given  by  the
euclidean  distance  between  the  center  and  the  input
data. Each activation function requires two parameters:
center  and  width.  The  outputs  of  the  hidden  layer  are
combined linearly by the second layer neurons[22].

Similarly  to  the  MLPs,  we  also  analyzed  different
RBF configurations, varying two important parameters,
the  spread  factor  (SF)  and  the  maximum  number  of
neurons  in  the  hidden  layer  in  order  to  define  the
proper  configuration  for  the  CQI  feedback  delay
problem.  The  spread  factor  controls  the  width  of  the
activation  function,  i.e.,  the  response  area  in  the  input
space  associated  to  each hidden layer  neuron. Table  4
summarizes the values tested.

MS Etrain

Figure  3 presents  the  average MSE  obtained  by  the
RBF  configurations  in  the  training  stage,  considering
30  executions.  All  configurations  achieved 
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Fig. 2    MSE values  got  by  the  MLP  under  different
configurations.
 

 

Table 3    Selected MLP configuration.

Parameter Value
Number of input layer neurons (NILN) 5

Number of hidden layers (NHL) 1
Number of hidden layer neurons (NHLN) 25

Activation function of hidden layer neurons Sigmoid (Eq. (3))
Number of output layer neurons (NOLN) 1

Activation function of output layer neuron Linear
Learning rate (LR) 0.1

 

 

Table 4    RBF hyper-parameters and values.

Hyper-parameter Value

Spread factor (SF) 0.1; 0.5; 0.7; 0.8; 0.9; 1; 1.5;
2; 5; 10

Maximum number of hidden
neurons (MN) 200; 500; 700; 800; 1000
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MS Etrain MS Evalid

S F = 0.1 MN = 200

lower  than  the  reference  one  (0.1),  being  the  lowest
value  got  by  the  configuration  #4.  However,  only  the
configurations  #1  and  #5  were  able  to  meet  Formula
(1), i.e., getting both  and  lower than
0.1, being Formula (1) better satisfied by configuration
#1, which achieved an absolute difference between the
errors being equal to 0.006 25 instead of 0.018 51, got
by  the  RBF  configuration  #4.  Besides  that,  the  fist
configuration  also  presented  less  complexity,  with

 and .

3.2    Evolutionary computing based approach

Besides the machine learning based approach, we also
propose  a  genetic  algorithm  (GA)  based  solution  for
the CQI feedback delay problem. It comprises a set of
base functions (e.g., linear and exponential) to map the
input  values  (e.g.,  UE  context,  measured  SINR,  and
delay)  into  an  output  one,  the  updated  SINR,  and
employs the GA to define the most suitable coefficient
values for the SINR estimation model, as shown in Fig. 1.

S INR∗

This  GA-based  proposal  admits  different  types  of
functions  (e.g.,  linear,  non-linear,  and  their
combinations), without the cost/need of linearizing the
models, which differs from works that are based on the
ordinary  least  squares  method.  This  flexibility  allows
that  each  input  variable  (or  a  subset  of  them)  may  be
handled  by  the  function  that  best  describes  its
relationship  with  the  output  (updated  SINR).  In  this
paper, we instantiate our proposal by adopting a linear
model to compute the updated SINR ( ), which is
given in Eq. (5),
 

(a0+a1v1+a2v2+a3v3+ · · ·+anvn) = S INR∗ (5)

vi ai iwhere  and   represent  the  input  variable  and  its
coefficient, respectively.

3.2.1    Chromosome structure and fitness function
GA is a search algorithm based on the natural selection
principles  that  employs  genetic  operators  (e.g.,
selection, crossover, and mutation) to evolve candidate
solutions,  represented  by  the  so-called  chromosomes,
toward the optimal one. In this process, GA eventually
finds  good  solutions  by  combining  different
chromosomes[23].

k

In  our  scheme,  the  individual  or  chromosome  is
represented by a sequence of coefficient values, where
each position (gene) refers to a model coefficient to be
defined. Figure  4 illustrates  the  chromosome structure
for a model that presents  coefficients.

To  evaluate  the  individuals  (solutions),  we  defined
the fitness function given in Eq. (6).
 

f itness(·) = S
1+MS E

(6)

MS E

S INR∗

S
S = 1000

where  is the mean squared error between the real
SINR and that one computed by the model considering
the  coefficients  given  by  the  GA  individual  ( )
and  is  a  scale  factor.  In  this  work,  we  adopted

.
3.2.2    Genetic operators and parameters
We adopted the roulette wheel as the selection operator
for  choosing  individuals  for  the  crossover  process
based  on  their  fitness  values,  i.e.,  the  higher  fitness
value,  the  higher  probability  of  being  selected.  An
arithmetic  operator  was  employed  for  the  crossover
operation, which combines linearly the genetic material
from  parent  chromosomes  to  create  new  ones
(offsprings) and is expressed in Eq. (7).
 

Fi = αPi+ (1−α)P j (7)

Pi P j α

ai

where  and  are two parent chromosomes and  is
a  number  uniformly  distributed  between  0  and  1.  In
order  to  avoid  the  premature  convergence  to  local
optima, we used uniform mutation, in which each gene
(coefficient )  may have its  value modified according
to the Eq. (8).
 

ai = a∗i +β (8)

a∗iwhere  is the gene value before the mutation process
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Fig. 3    MSEtrain for different RBF configurations.
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Fig. 4    Chromosome structure.
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βand  is  a  value  uniformly  distributed  in  a  given
interval.

Since  that  the  frequency  of  crossover  and  mutation
operations  has  great  impact  on  the  GA  performance,
multiple  tests  have  been  conducted  to  define  their
occurrence  probabilities  (pc  and  pm,  respectively)  in
our  GA-based  scheme.  In  this  way,  64  test  cases
obtained by the combination of values for the crossover
and mutation probabilities (see Table 5) were analyzed
and  we  selected  the  values  that  provided  the  highest
average fitness for the last generation’s population after
5 simulation instances to set our GA. Figure 5 presents
the results, in which the test case 37 displayed the best
performance  for  the  GA,  having  crossover  and
mutation  probabilities  equal  to  0.5  and  0.3,
respectively.  In  addition  to  these  parameters,  the
population  size  and  number  of  generations  were
defined as being equal to 100 and 200, respectively.
3.2.3    GA flow execution
The execution flow of our GA-based scheme is shown
in Fig. 6. Given an SINR model with coefficients to be
determined,  the  initial  population  is  randomly

generated  so  as  to  provide  candidate  solutions
(coefficient  values).  After  that,  the  individuals  are
evaluated via fitness function (see Eq. (6)) that is based
on the MSE .  Thereupon,  the  individuals  are  submitted
for selection, together with the crossover and mutation
operators, and moreover, an elitist strategy is employed
to  ensure  the  best  fitness  individuals  will  not  be  lost
during the selection process. Finally, a new generation
of  candidates  will  be  created  and  the  stop  criterion,
which is determined by the number of generations (G),
is  evaluated.  If  it  is  not  satisfied,  the  process  repeats
from  the  fitness  evaluation  stage.  Otherwise,  the  best
individual  is  chosen  as  the  final  solution.  This
represents  the  coefficients  to  be  adopted  in  the  SINR
model.

 

Table 5    Tested crossover and mutation probabilities.

Parameter Value
pc 0.1/0.2/0.3/0.4/0.5/0.6/0.7/0.8
pm 0.01/0.03/0.05/0.1/0.3/0.5/0.6/0.7
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Fig. 5    Average  fitness  of  the  GA  with  linear  model  under
different pc and pm values (test cases).
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Fig. 6    GA execution flow.
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4    Result

70% 30%

This section presents the results got by our approaches.
First, they are analyzed in terms of MSE obtained in the
training and validation stages. After that, a comparison
between the SINR real (target) and that one defined by
each  proposed  approach  is  conducted.  The  evaluation
used  data  generated  by  the  5G/mmwave  ns-3
simulation  framework[24],  considering  a  5G  network
where the UE speed, movement direction, and position
were varied during the simulations in order to produce
different  CQI  and  SINR  values.  2633  samples  were
collected,  being  and   used  for  training  and
validation, respectively.

Figure  7 compares  the  approaches  in  terms  of MSE
achieved  in  the  validation  and  training  stages.  We
noted  that  the  GA-based  scheme  presents  the  best
performance  in  both  phases,  achieving MSE  values
equal to 0.003 915 and 0.004 109, respectively. Besides
that,  GA  also  achieved  a  similar  performance  in  both
stages, which denotes it was able to properly define the
linear model coefficients by using the training data, but
not being addicted to them.

MS Etrain MS Evalid

10−4

MS Etrain MS Evalid

The  MLP-based  scheme  also  got  a  great
performance,  with  and   assuming
0.004  127  and  0.004  528,  respectively,  denoting  that
the  MLP-based  scheme  not  only  learned  the  data
characteristics in the training phase, but also provided a
great generalization capacity when faced the validation
data.  This  close  performance  in  both  stages  achieved
by these two approaches was not followed by the RBF-
based  one  in  the  same  order  ( ).  Although  it  had
gotten the lowest , i.e., 0.002 627, its 

10−3

assumed  a  value  equals  to  0.008  878,  denoting  a
difference  between  them  in  the  scale  of  and
showing  a  slightly  performance  reduction  in  its
generalization capacity.

Figures 8–10 compare the real SINR value (desired)
to that one estimated by the schemes. In general, for all
schemes,  the  curves  presented  similar  behaviors  with
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Fig. 7    MSE values achieved by the approaches.
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Fig. 8    SINR  estimated  by  the  MLP-based  scheme  and  the
real value.
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Fig. 9    SINR  estimated  by  the  RBF-based  scheme  and  the
real value.
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Fig. 10    SINR  estimated  by  the  GA-based  scheme  and  the
real value.
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some points of mismatches between real and estimated
values,  but  without  causing  high MSEs  (as  shown  in
Fig. 7). The results show that our proposed approaches
are feasible to overcome the CQI feedback delay, either
the  machine  learning  based  schemes  or  the
evolutionary computing one.

Since  our  proposal  is  designed  to  be  hosted  at  the
UE,  which  has  limited  energy  and  processing
capacities,  it  is  worth  mentioning  that  the  main
processing  load  (the  neural  network  training  or
execution of genetic algorithms to determine the model
coefficients) may be handled out of the UE, in a cloud
or  MEC  (multi-access  edge  computing)  server,  for
example.  Once  the  model  has  already  been  defined
(trained  neural  network  or  GA-based  one),  it  may  be
embedded  into  device  via  sums  and  products.  In  this
way, the processing load to compute the updated SINR
is  greatly  reduced,  being  now  predominant  that  one
related to the UE context acquisition, in which different
solutions may be adopted, as discussed in Section 3.

In  addition,  although  the  mapping  of  updated  SINR
into CQI value is not the focus of this paper, we point
that different aspects may be considered in this process,
such as spectral efficiency (SE) and BLER[15],  SE and
energy  efficiency  tradeoff[9],  or  application
requirements[13].  Furthermore,  when  the  SINR-CQI
translation  is  based  on  intervals,  the  distance  between
the  real  and  the  value  computed  via  proposed
approaches may not cause a CQI error.

5    Conclusion

This  paper  proposed  two  approaches  to  deal  with  the
CQI  feedback  delay,  one  based  on  machine  learning
and  another  on  evolutionary  computing.  We took  into
account  the  user  context,  measured  SINR,  and  delay
length  to  faithfully  estimate  the  SINR  and  conducted
extensive tests to define the best configuration for each
proposed  scheme.  All  approaches  presented  high
accuracy  values,  which  indicate  they  are  able  to
estimate the channel quality and thus assist the correct
MCS  selected  by  the  base  station.  Although  not
discussed,  our  approaches  support  online  re-training[8]

in  response  to  the  wireless  environment  changes.
Future works include embedding the proposed schemes
in  a  simulator  or  testbed  and  combining  them  with

different  CQI  mapping  mechanisms  in  5G  networks
with  heterogeneous  services.  In  addition,  comparing
our approaches to those ones presented in the literature
regarding aspects such as complexity and performance
(e.g.,  CQI  accuracy,  energy  consumption,  spectral
efficiency, and BER) under different mobility scenarios
is a work to be conducted.
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