

Public-private-core maintenance in public-private-graphs

Dongxiao Yu, Xilian Zhang, Qi Luo*, Lifang Zhang, Zhenzhen Xie, and Zhipeng Cai

Abstract: A public-private-graph (pp-graph) is developed to model social networks with hidden relationships, and it

consists of one public graph in which edges are visible to all users, and multiple private graphs in which edges are only

visible to its endpoint users. In contrast with conventional graphs where the edges can be visible to all users, it lacks

accurate indexes to evaluate the importance of a vertex in a pp-graph. In this paper, we first propose a novel concept,

public-private-core (pp-core) number based on the k-core number, which integrally considers both the public graph

and private graphs of vertices, to measure how critical a user is. We then give an efficient algorithm for the pp-core

number computation, which takes only linear time and space. Considering that the graphs can be always evolving over

time, we also present effective algorithms for pp-core maintenance after the graph changes, avoiding redundant re-

computation of pp-core number. Extension experiments conducted on real-world social networks show that our

algorithms achieve good efficiency and stability. Compared to recalculating the pp-core numbers of all vertices, our

maintenance algorithms can reduce the computation time by about 6–8 orders of magnitude.

Key words: core decomposition maintenance; public-private-graph (pp-graph); critical user; social network

1 Introduction

%

G
G u

Gu

G

In social networks, due to privacy concerns, users tend
to hide their social connections, making the relations
between two users not visible to other users in public
but only to themselves. For example, Dey et al.[1]

crawled a snapshot of 1.4 million New York City
Facebook users and reported that 52.6 of them hid
their friends list. A model of public-private-graphs (pp-
graph) is developed to represent this kind of social
network[2]. For a pp-graph , it contains a public graph

, which is visible to all users, and each user has a
private graph , which is only visible to itself.
Therefore, the pp-graph can be regarded as the union
of the public graph and the private graphs of all

vertices. Recently, many graph analytic tasks have
been investigated on pp-graphs, such as all-pairs
shortest path distances[3], pairwise node similarities[4],
and correlation clustering[5]. However, there are few
researches on user engagement on public-private
graphs.

k
k k

k k

u5

User engagement on social networks has attracted
significant interest over recent years[6]. It can be used
as a measure of how critical a user is, such as -core[6−8]

and -truss[9]. -core is a simple and popular model
based on degree constraint that the degree of each
vertex in a -core is no less than , and the core number
of a vertex can be used to measure its importance/
influence. But the definition of core number cannot be
used in pp graphs directly, since there are some edges
private so that a vertex cannot know the number of
neighbors the other vertices have. For example, though
vertex in Fig. 1a does not have any neighbor in the
public graph, its core number in the whole pp-graph is
3, indicating that the vertex is relatively important.
Therefore, simply considering the public graph cannot
do a good job of capturing the importance of vertices.
To solve this problem, adapting the concept of core
number in general graphs[10], we propose the concept

 • Dongxiao Yu, Xilian Zhang, Qi Luo, Lifang Zhang, and

Zhenzhen Xie are with the School of Computer Science and
Technology, Shandong University, Qingdao 266200, China.
E-mail: dxyu@sdu.edu.cn; xilianzhang@mail.sdu.edu.cn;
luoqi2018@mail.sdu.edu.cn; zhanglf@mail.sdu.edu.cn; xiezz
21@sdu.edu.cn.

 • Zhipeng Cai is with the Department of Computer Science,
Georgia State University, Atlanta, GA 30080, USA. E-mail:
zcai@gsu.edu.

 * To whom correspondence should be addressed.
 Manuscript received: 2021-12-03; accepted: 2022-01-18

Intelligent and Converged Networks ISSN 2708-6240
2021, 2(4): 306−319 DOI: 10.23919/ICN.2021.0022

© All articles included in the journal are copyrighted to the ITU and TUP. This work is available under the CC BY-NC-ND 3.0 IGO license:

https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.

of public-private-core (pp-core) number in the pp
graph, which considers both the public graph and the
private graph for each vertex.

Our contributions are summarized as follows.

u

● We first propose the concept of pp-core number of
a vertex , which integrally considers both the public
graph and the private graphs of vertices. We also give
an algorithm that can compute the pp-core number of
vertices in linear time and linear space.

● We further propose efficient algorithms for the
core maintenance problem, i.e., updating the pp-core
number of vertices after the graph is changed. We
focus on the scenario of edge change, since the vertex
change can also be seen as edge change[11].
Specifically, the core maintenance algorithm will be
divided into four cases, i.e., public edge
insertion/deletion and private edge insertion/deletion.
We first show the pp-core number of each vertex in the
pp-graph changes by at most 1 after the insertion or
deletion of an edge (public or private), and then give
sufficient conditions for identifying the vertices whose
pp-core number will change for each case. In addition,
we propose an optimization algorithm by giving a
definition named Super Support vertex Number (SSN)
in the case of a public edge insertion, where SSN
indicates a more accurate condition for the change of
pp-core number of a vertex.

● Finally, we perform extensive experiments to
evaluate our algorithms over four real-world datasets,
and the results demonstrate the good efficiency and
scalability of the algorithms. The proposed dynamic
maintenance algorithm can reduce the computation

SSN

time by about 6–8 orders of magnitude compared to
recomputing the pp-core number of all vertices. In
addition, the algorithm based on traversal algorithm
and is five or six times better than the one based
on traversal only.

The rest of this paper is organized as follows. We
first present some basic concepts in Section 2, and we
give the method and algorithm of pp-core computation
in Section 3. Then, the theoretical findings that
facilitate incremental pp-core maintenance are
proposed in Section 4. In Section 5, the experimental
results are reported, and Section 6 reviews the related
work. At last, the paper is concluded in Section 7.

2 Problem definition

G = (V,E) V(G) E(G)
n = |V(G)| m = |E(G)|

H = (V(H),E(H)) G
H ⊆G V(H) ⊆ V(G) E(H) ⊆ E(G)

V′ ⊆ V G
V′ G(V′) (V′,E′) E′

{(u,v) ∈ E | u,v ∈ V′} NH(u) = {u ∈ V |
(u,v) ∈ E(H)} dH(u) = |NH(u)|

u H
H ∆(H)

δ(H)

We consider a simple undirected and unweighted graph
, where and are the vertex set and

the edge set, respectively. Let and .
We say a graph is a subgraph of ,
denoted as , if and .
Given a vertex set , the subgraph of induced
by , is defined as = where =

. We define
 and as the set of neighbors

and the degree of a vertex in . The maximum and
minimum degrees of vertices in are denoted as
and , respectively. We next give some useful
formal definitions.

k G = (V,E)

k G H G

H k

δ(H) ⩾ k u

c(u) k u

k G

Definition 1 (-core) Given a graph , the
-core of is a maximal connected subgraph of ,

such that each vertex in has at least neighbors, i.e.,
. The core number of a vertex , denoted by

, is defined as the largest , such that is contained
in a -core of .

(u,v) G
(u,v) w ∈G

(u,v) u
v

u
u

For an edge in graph , it is called a public
edge if is visible to each vertex , while it is
called a private edge if is only visible to vertex
and . A graph is a public one where each edge is a
public edge, and a private one of vertex if each edge
in the graph is only visible to .

G = (V,E)

Definition 2 (pp-graph[2]) Given a graph
, it is called a pp-graph if it contains both

public and private edges.
G = (V,E)

G = (V,E) V =V E

Given a pp-graph , it constains a public
graph as a subgraph, where and

u8

u1

u2

u3

u9

u5

u4

u6u7

2,2 2,2 1,2

2,2 3,3 3,3

3,3 3,3

0,3

(a) pp-graph G

u8

u1

u2

u3

u9

u5

u4

u6u7

(b) Personalized pp-graph
of vertex u9

Fig. 1 Examples of pp-graph and personalized pp-graph.
Public edges are represented by solid lines and privated
edges are represented by dashed lines. The first number
denotes the public-core of the corresponding vertex, while
the second number denotes the pp-core number.

 Dongxiao Yu et al.: Public-private-core maintenance in public-private-graphs 307

E
u ∈ V u

Gu = (Vu,Eu) Vu ⊆V Eu ⊆ E\E

G Gu

u

u

G

Gu

consists of all public edges in . Besides, for each
vertex , has an associated private graph

, where and . The public
graph is visible to everyone, but the private graph
is only visible to vertex . Hence, in the view of the
vertex , the entire graph it can see and access is the
one composed by the public graph and its own
private graph . For the sake of simplicity, we will
use a pp-graph to represent a pp-graph directly in the
rest of this paper.

G = (V,E) u ∈ V G = (V,E)

Gu = (Vu,Eu)

u u

Gu = (Vu,Eu) Vu =V Eu = E∪Eu

Definition 3 (personalized pp-graph) Given a pp-
graph and a vertex , let be
the public graph and the private graph of
vertex . The personalized pp-graph of is denoted by

, where and .
G c(u)In a pp-graph , each vertex has a core number ,

which is public, to represent its cohesiveness in the
public graph. However, it does not represent the
cohesiveness of vertices in the pp-graph well, where
each vertex not only has public neighbors, but also has
private neighbors. So we propose a new concept of pp-
core number to solve this problem.

G = (V,E) u Gu

pc(u)

Definition 4 (pp-core number) Given a pp-graph
, the pp-core number of in , denoted by

, is computed by the following formula.

argmax
pc⩾0
{|{v ∈ N (u) |c (v) ⩾ pc}| ⩾ pc} (1)

G = (V,E)

G = (V,E)

G
(u2,u9)

u2 u9

Gu9 = (Vu9 ,Eu9) u9 G
Vu9 Vu9 {u9,u2,u3}

u9 Gu9 = (V,E∪Eu9)

u5

Example 1 Consider the pp-graph in
Fig. 1a, the public edges and private edges are
represented by solid lines and dashed lines,
respectively. The public graph is the
subgraph of that is represented by all vertices and the
solid lines. Given a private edge , it is only
visible to vertices and . The private graph

 of is the subgraph of induced by
, where = and the personalized pp-

graph of is , which is shown in
Fig. 1b. The core number and the pp-core number of
each vertex are illustrated using numbers of black and
red, respectively. From Fig. 1b, it can be seen that the
core number and the pp-core number can be
significantly different. For example, the core number of

 is 0, while its pp-core number is 3. Clearly, the pp-
core number can better illustrate the real cohesiveness

of vertices when private edges exist.
In subsequent sections, we will present efficient

algorithms for computing the pp-core number of
vertices and maintaining the pp-core number when the
graph changes (with public/private edge insertion/
deletion).

3 pp-core number computation

We present an efficient algorithm in this section for
computing the pp-core number of vertices in a pp-
graph. Some useful theretical results that support the
correctness of our algorithm will be first given.

3.1 Theoretical basis

G = (V,E)

G

Different from core decomposition in a general graph [12],
where the core number can be computed globally, the
pp-core number of a vertex in a pp-graph has to be
computed locally, based on the core numbers of its
neighbors, as shown in Definition 4, due to the
existence of the private edges. Hence, given a public-
private graph , we first conduct core
decomposition in the public graph of to calculate the
core numbers of all vertices, and then compute the pp-
core of each vertex.

u pc pc

pc

ulist u

Based on Formula 1, the pp-core number of a vertex
 is the largest integer , such that there are at least

neighbors with core number at least . We here let
 be a list containing the core numbers of ’s

neighbors in a descending order. Then we can get that

k (u) = max
1⩽i⩽len(ulist)

(min (i,ulist[i−1])) (2)

k(u) i

1 ⩽ i ⩽ len(list) u i

i

ulist ulist

u i

k(u)

u pc(u)

k(u) k(u) > pc(u) u

pc(u)+1

pc(u)+1

According to the above equation, is the largest
in to guarantee that has at least
neighbors with core number not less than the (–1)-th
value in . Because the values in are stored in a
decreasing order, for each , it has at least neighbors
whose core numbers are at least . By the definition
of pp-core number of a vertex , is not less than

. However, if , then has at least
 neighbors whose core numbers are not less

than according to Eq. 2, which will conflict
with Definition 4. Based on these analysis, we give the
following lemma.

G = (V,E)Lemma 1 Given a pp-graph , the pp-core

 308 Intelligent and Converged Networks, 2021, 2(4): 306−319

pc(u) u ∈ V pc(u) = k(u)number of vertex satisfies that .

u

pc(u) k(u) pc(u)

ulist(i−1)

i ulist(i−1) i

ulist(i−1)

i

ulist(i−1) i

In the following sections, we will use the above
formula to calculate the pp-core number of a vertex
and directly use to represent . Note that
is the maximum value of the smaller of and
, then we can regard and as two functions

for ease of understanding, where is a
monotonous non-increasing and is monotonically
increasing. From a geometric perspective, the
maximum of their minimums occurs at the intersection
of the curve and , which is shown in Fig. 2.

G = (V,E)

pc(u) pc(u) ⩾ c(u)

u G

Lemma 2 Given a pp-graph , the pp-core
number satisfies that for each vertex
 in .

u ∈ V pc(u) < c(u)
u c(u)−1

c(u)−1
pc(u)

u c(u) u
c(u)
c(u)

pc(u) ⩾ c(u)
u G

Proof. We prove the lemma by contradiction.
Suppose there exists a vertex and .
This means has at most neighbors whose core
numbers are not less than , according to the
definition of pp-core number. Otherwise, is not
the maximum value that satisfies Formula 1. However,
the core number of is . This means has at least

 neighbors whose core numbers are not less than
 according to Definition 1. Therefore, our

hypothesis is impossible, i.e., for each
vertex in . ■

u9

u2,u3 u4

ulist

u9

ulist = {3,3,2}
i ulist[i−1] ⩾ i

u9

Example 2 In Fig. 1a, has three vertices, i.e.,
, and , and their core numbers are 2, 3, and 3,

respectively. Let be the list containing the core
numbers of neighbors of vertex in a descending
order, then . Because the maximum value
of that satisfied is equals to 2, we can
know that has at least 2 neighbors whose core

pc(u9) = 2number is not less than 2, i.e., , which is the
same as the result calculated by Formula 1.

3.2 Algorithm

G

In this section, we will introduce the algorithm to
compute the pp-core number of vertices in a pp-graph

, as shown in Algorithm 1.

u ∈ V
u Gu

u ulist
u

i 1 ⩽ i ⩽ len(ulist) u
i ulist i−1

In Algorithm 1, according to the definition of pp-
core number, we need first compute the core number of
each vertex , then compute the pp-core number of
each vertex in its personalized pp-graph (Lines
1–3). In Procedure ComputePC, the pp-core number of
vertex is computed based on Eq. 2, and stores
the core numbers of all neighbors of in a decreasing
order (Lines 4–8). The algorithm next computes the
largest in to guarantee that has at
least neighbors with core number at least []
(Lines 9–13).

G

∆(G)

O(∆ log∆)
|V |

O(|V |∆ log∆) O(|E| log∆)

O(|E|+ |E| log∆)

Algorithm complexity. For each vertex in graph
, we compute their pp-core numbers by sorting their

neighbors based on the core number, thus the worst
case happens when the vertex’s degree is equal to ,
which is the max degree of the pp-graph. The time
complexity of the sorting process is . For the
whole graph with vertices, the complexity is

, which is simplified to . In
addition, we should first compute the core number of
vertices before we compute their pp-core number.
According to the linear time complexity of the
traditional core decomposition algorithm[13], the whole
time complexity is .

pc(u)

i

ulist(i)

i (index of ulist)

ul
is

t

pc(u) yFig. 2 is the -value at intersection of two functions.

C

S

≤

≤

pp-core number computation

 Dongxiao Yu et al.: Public-private-core maintenance in public-private-graphs 309

4 pp-core number maintenance

In this section, we first give some lemmas to explain
how to maintain pp-core numbers in Section 4.1, and
we propose pp-core maintenance algorithms in the
scenario of single edge insertion/deletion. When
multiple edges are inserted/deleted, it can be handled
by executing our maintenance algorithms for multiple
times. The maintenance algorithms consider four cases:
(i) private edge insertion; (ii) private edge deletion; (iii)
public edge insertion; and (iv) public edge deletion.

4.1 Theoretical basis

In this section, we will give theoretical basis of our
core maintenance algorithms when an edge is inserted
or deleted. Previous work has proved that the core
number of each vertex in a simple graph changes by at
most 1 when an edge is inserted/deleted[14], and this
also holds true for pp-core number in a pp-graph.

e = (u,v)

G
G′

Lemma 3 If an edge is inserted to or
removed from a pp-graph , then the pp-core number
of each vertex in can change by at most 1.

Proof. We first analyze the case of insertion.
According to the type of inserted edge, it can be
divided into two cases, i.e., a public edge and a private
edge.

e

G
u v

u v

If is a private edge, the core numbers of all vertices
will not increase because the public graph of has not
changed. The only change in the graph is that and
add a new neighbor, so the pp-core number of or
may increase by at most 1 and the pp-core numbers of
others cannot change, which can be easily obtained by
Formula 1.

e

w p

p+ x x > 1

w p+ x

p+ x

p+ x−1 w

p+ x−1

(u,v)

pc(w) p+ x−1 G

On the other hand, if is a public edge, assume there
is a vertex whose pp-core number changes from to

, where . That is to say, after inserting an
edge, has at least neighbors whose core values
are not less than . Because the core number of
each vertex can change by at most 1 after inserting one
edge, so there must be at least neighbors of
whose core numbers are not less than after
deleting the edge . According to Definition 4,

 is at least in , which contradicts our
assumption.

For the deletion case, assume the pp-core number

pc(w) w x

(u,v) x > 1 (u,v)

pc(w) x

 of vertex is decreased by after deleting an
edge , where . Adding back to the graph
will increase by , which contradicts with the
result proved above. ■

G = (V,E)

(u,v) G G
G′ pc(u) u

c(v) ⩽ pc(u) c(u) ⩽ pc(v)

pc(v) v

Lemma 4 Given a pp-graph , if we
insert/delete a private edge into/from and
becomes , then the pp-core number of cannot
change if . Similarly, when ,
then the pp-core number of cannot change.

u

c(v) ⩽ pc(u) = p pc(u) p+1

(u,v) G
G

pc(u)

v

u p p+1

u p G
p+1 p+1 G′

p+1

v u c(v) ⩾ p+1

Proof. For the case of insertion, we take the vertex
as an example for analysis. Assume that

 and becomes after a private
edge is inserted into . Note that the core
numbers of all vertices in the public graph of are not
changed, so the increase of can only be due to the
support of the new neighbor . The pp-core number of
 changes from to after insertion, which means
 has at most neighbors in whose core number is at

least , but it has at least neighbors in
whose core number is at least . In other words, the
only new neighbor of must satisfy that ,
which contradicts with our assumption.

pc(u) u c(v) ⩽ pc(u)

(u,v) pc(u)

For the deletion case, assume that the pp-core
number of vertex decreases when .
Adding back to the graph will increase ,
which contradicts with the result above. ■

G = (V,E)

w ∈ V pc(w) w

w

w

Lemma 5 Given a pp-graph and a vertex
, the pp-core number of changes only

when there exists a neighbor of whose core number
changes or the number of 's neighbors changes.

pc(w) w

pc(w)

Proof. According to Definition 4, because the pp-
core number of is determined by the core
numbers of its neighbors, so cannot change if the
core numbers of its all neighbors do not change. ■

Next, we will give a lemma to find the vertices
whose core number might change after inserting or
deleting an edge.

G = (V,E)

(u,v) k = c(u) ⩽ c(v)

G G′ w ∈ V\ {u}
pc(w) = k

Lemma 6 Given a pp-graph , if a public
edge is inserted/deleted, where , and

 becomes , then only the vertices
satisfying may have their pp-core numbers
changed.

w c(w) = k

Proof. We first analyze the case of insertion, it can
be known that only the vertices that have

 310 Intelligent and Converged Networks, 2021, 2(4): 306−319

G
pc(w) < k pc(w) > k

may have their core numbers changed. As for the pp-
core numbers of the vertices in , we consider two
cases: and .

pc(w) < k pc(w)

p p+1 p+1 ⩽ k

w v v

k w

pc(w)

p p+1 w p

p+1

G p+1

p+1 G′

w

p p+1

w c(w) = k

(1) When , assume that changes from
 to , where (Lemma 3 claims the pp-core

number of each vertex changes by at most 1). Note that
 cannot be , since the pp-core number of is not less

than according to Lemma 2, which means has no
new neighbors after insertion. If can become
from to , then it means has at most
neighbors whose core numbers are not less than in

, and has at least neighbors whose core numbers
are not less than in . In other words, there exists
the core number of a neighbor of that changes from

 to , which contradicts the previous conclusion,
since only the vertices that have may have
their core numbers changes.

pc(w) > k pc(w)

p p+1 p > k

w p p+1

w

p+1 w = v

k c(u) = k < p+1

(2) When , assume that changes from
 to , where , then there must be the core

number of a neighbor of that changes from to
or adds a new neighbor whose core number is not
less than (i.e.,). However, neither case is
true, because only the core number of the vertex with
value can change and .

In the case of deletion, we can use a method similar
to that of insertion. Up to now, we have proved Lemma
6 is correct. ■

u

u

We next give a definition to explain which neighbors
of a vertex in a pp-graph can support the increase in
the pp-core number of .

G = (V,E) u ∈ V w u G
c(w) > pc(u) w

u

u SSN(u)

Definition 5 (Superr SSN) Given a pp-graph
 and , if the neighbor of in

satisfies that , then is called a super
support vertex of and the number of super support
vertices of is denoted by .

u pc(u)

According to Definition 4, only the super support
vertex of can support its pp-core number
increase. Based on this observation, we will give a
more specific lemma to illustrate the pp-core number
maintenance after inserting an edge to the public-
private graph.

G = (V,E)

(u,v) G G G′

k = c(u) ⩽ c(v) w ∈ V\ {u}

Lemma 7 Given a pp-graph , if we insert
a public edge into and becomes . Suppose
that , then only the vertex

SSN(w) G′ k

pc(w)

whose value in is larger than , may have
 increased.

w ∈ V u pc(w) = k

w k k+1

k+1

k+1 G′ SSN(w) w G′

k

Proof. According to Lemma 6, it can be known that
only the vertices except satisfying
may have their pp-core numbers changed. For a vertex

, if its pp-core number can increase from to ,
then it has at least neighbors whose core numbers
are not less than in , i.e., the of in
is larger than . ■

4.2 Private edge insertion/deletion

Here we give the pp-core number maintenance
algorithm after inserting/deleting a private edge.

(u,v) G
u v

(u,v) pc(u) pc(v)

pc(u) u

c(v) > pc(u)

pc(u)

v

c(v)

pc(u)

pc(u) c(v) > pc(u) ComputePC

pc(u)

v

After inserting a private edge into , this edge
is only visible to its endpoint vertexes and , so the
insertion of can only impact and . In
addition, we know that the pp-core number of
increases only when according to Lemma 4
and we then recalculate the in this case. A similar
process is done for the vertex . The detailed pp-core
number maintenance algorithm after inserting a private
edge is given in Algorithm 2. We first compare and

 to make sure whether it is necessary to update
. If , the algorithm calls to

recompute (Lines 1 and 2). The similar
operations are done for vertex (Lines 3 and 4).

(u,v)

O(∆ log∆)

Algorithm complexity. When a private edge is
inserted or deleted, there are only two vertices whose
pp-core number changes. Thus, the time complexity is

.

4.3 Public edge insertion

G
pc(w) w

w

In this section, we discuss public edge insertion in a
pp-graph . According to Lemma 5, the pp-core
number of a vertex changes only when there
exists a neighbor of whose core number changes.

set of and

 Dongxiao Yu et al.: Public-private-core maintenance in public-private-graphs 311

C

G
NC

C

NC

Thus, if we have found a vertex set, denoted by in
which each vertex changes its core number, then we
can reduce the range of vertices in whose pp-core
number changes. Let represent the vertex set in
which each vertex has at least a neighbor in . Then
we only need to update the pp-core number of the
vertices in .

MCD PCD MCD(u)

w u c(w) ⩾ c(u)

PCD(u) w u

c(w) = c(u) c(w) > c(u)

MCD(w) > c(u) PCD u

c(u)

To find the vertices whose core number changes, we
adopt an algorithm called Traversal, which is proposed
in Ref. [14]. In Traversal algorithm, there are two
definitions, and . represents the
number of neighbors of , such that ;

 is defined as the number of neighbor of ,
such that either or and

. The value of a vertex
represents its potential number of neighbors that
support the increase of . We give two useful
lemmas as follows and more details can be found in
Ref. [14].

(u,v)

G c(u) < c(v) c(v)

Lemma 8 If a public edge is inserted to or
removed from a pp-graph , where , then
cannot change.

G = (V,E)

(u,v) G
c(u) ⩽ c(v) w ∈ V
c(w) = c(u) MCD(w) > c(u)

u

c(u) MCD c(u)

Lemma 9 Given a pp-graph , if a public
edge is inserted to or removed from and

, then only the vertices that have
 and , and are reachable from

 via a path that consists of vertices with core number
equal to and values greater than , may
have their core numbers incremented.

G = (V,E)

V
C

C

Given a pp-graph , the algorithm for
updating the pp-core numbers of all vertices in
requires two steps. First, it computes the set based on
the Traversal algorithm, which is a set of vertices
having their core numbers updated. The second step is
to compute the pp-core number of all vertices that have
neighbors in according to Lemma 5.

(u,v)

u v (u,v) E
S

r S

V visited cd

removed

The detailed pp-core number maintenance algorithm
after inserting a public edge is given in Algorithm 3.
We first set the root vertex as the vertex with a smaller
core number between and , then add into
(Lines 1–4). Let be the vertex set in which the core
number is possible to increase and add to (Line 5).
For each vertex in , we set the flags and to
0, and set to 1 (Lines 6 and 7). As mentioned

w ∈ V\ {u}
pc(w) = k

k = c(r) cd(r)

PCD(r) r visited [r] = 1

w ∈ S

cd(w) k

t

S

w

C

in Lemma 6, only the vertices satisfying
 may have their pp-core numbers changed,

where (Line 8). We use the to record the
value of and set (Lines 9 and
10). For a vertex , we check if it is possible to
increase its core numbers by compare and
(Lines 11–13). If yes, then we check its neighbors
according to Lemma 9 and add the vertices whose core
numbers may increase into . (Lines 11–18).
Otherwise, we call Algorithm 4 to remove and
update the information of its neighbors (Lines 19–21).
After processing all vertices whose core number may
increase, then we add the core number of a vertex that
is visited but not removed by 1 and we add it to

ø

ø

and and

and

;; ;
;;

 312 Intelligent and Converged Networks, 2021, 2(4): 306−319

(Lines 22–25).
C

NC

ComputePC

In the second step, we put all neighbors of into the
set and recompute their pp-core numbers by
invoking (Lines 26–30).

InsertWithS S N
w ∈C

pc(v) v w k
pc(v) = k SSN(v)

v w

k v

By using the SSN value and Lemma 7, we propose
an optimized algorithm named in
Algorithm 5. For each vertex , we will compare
the pp-core number of the neighbor of with
(Lines 1 and 2). If , then will increase
by 1, since has the neighbor to support its pp-core
number increase (Lines 3 and 4). When SSN value is
increased to be more than , the vertex can have its
pp-core number increased by 1 (Lines 5 and 6).

cd k

O(|E|)
C

NC

C

O(|C|)

Algorithm complexity. Traversal algorithm in
Algorithm 3 basically does a depth-first traversal on
vertices whose values are greater than the value of
root vertex. In the worst case, the whole graph will be
traversed, i.e., each edge in the graph will be visited at
least once. Thus, the time complexity for Traversal
algorithm is at the worst. After we find vertices
set whose core number was changed by Traversal
algorithm, we need to find the neighbor set of
vertices in and recompute their pp-core number,
which will take in the worst case. In total, the
time complexity for public edge insertion algorithm is

O(|C|+ |E|+ |NC|∆ log∆)

NC

. Algorithm 5 introduces a
method to facilitate incremental pp-core maintenance
by filtrating vertices from which can surely
increase their pp-core number.

4.4 Public edge deletion

u v

(u,v) G c(u)

c(v)

c(u) = c(v) u v

S earchVertex

S earchVertex V′

The detailed algorithm to maintain the pp-core number
of each vertex when a public edge is deleted is given in
Algorithm 6. We first set the root as the vertex between
 and as the one with the smaller core number, and

remove from (Lines 1–5). By comparing
and , the algorithm will be analyzed in two cases. If

, then we traverse and respectively by
invoking Procedure (Lines 6–8).

 helps us find the vertex set in which
each vertex has its core number changed and computes

and

1
2
3
4
5
6

SSN ;;
;;

SSN

SSN

SSN
SSN

having

-

ø

cd
in order

S

break;

;
;

; ;
;

 Dongxiao Yu et al.: Public-private-core maintenance in public-private-graphs 313

cd V′

c(u) , c(v)

S earchVertex

k c(r)

cd

w

cd V′

cd(w) k

cd(w) k w k

c(w) ⩾ k u

c(w) = k

k−1 c(w)

S

cd t w

cd(w)

w k

cd

cd(w) ⩾ k

V′ k

w S ComputePC

the value for vertices in (Lines 9 and 10). In the
case of , we only invoke Procedure

 to traverse from root vertex (Lines 11
and 12). Let be the core number of root vertex
and sort values in an increasing order (Lines 13 and
14). In the next step, we select a vertex with the
minimum value in the set , then judge whether

 value is smaller than (Lines 15 and 16). If
 is less than , then it means has no more than

neighbors such that , i.e., can no longer keep
. In consequence, its core number decreases to

 (Line 17). The decrease in may lead to the
decrease of the pp-core numbers of its neighbors, then
we put all its neighbors into the set (Lines 18–20).
Meanwhile, the value of the neighbor of which
is larger than will also decrease, as it decreases a
neighbor whose core number is larger than . Then
we reorder the values accordingly (Line 21–23). If

, the algorithm will exit the loop because all
remaining vertices in are still in a -core (Lines 24
and 25). For each vertex in , we call to
recalculate their pp-core numbers (Lines 26 and 27).

Q

v

V′ w

v w c(w) ⩾ k

cd v

k Q

visited

In Algorithm 7, it first initializes some parameters
like Algorithm 3 (Lines 1–5). While is not empty,
the algorithm will pop the vertex one by one and put
it into (Lines 6–8). We next check each neighbor
of , if the vertex satisfies the condition that ,
then we increase the value of by 1 (Lines 9–11).
Finally, we put all vertices whose core numbers are
equal to and are not visited into , and set their

 value to be 1 (Lines 12–14).
S earchVertex

S earchVertex

O(|E|) V′

O(|V′|) S

Algorithm complexity. Procedure
does a depth-first traversal from the root vertex, the
worst case happens when all vertices are be traversed,
thus the time complexity of procedure is

. After the vertex set is found, it will take
 time to search , which is the vertex set of the

V′

ComputePC

S O(|S |∆ log∆)

O(|V′|+ |E|+ |S |∆ log∆)

neighbors of vertices in . According to the time
complexity of , the computation of the pp-
core number in will take . In total, the
time complexity for public edge deletion algorithm is

.

5 Experiment

In this section, we conduct empirical studies to
evaluate the performance of our proposed algorithms.
We evaluate the algorithms on 4 real-world graphs, as
shown in Table 1. All programs were implemented in
Java language and compiled with IntelliJ IDEA, and all
experiments were performed on a machine with Intel
Core i5-7 500 3.41 GHz and 8 GB DDR3-RAM in
Windows 10.

Datasets. All the real graphs we used are
downloaded from KONECT§. These datasets are all
undirected and unweighted graphs representing
different social network structures, where vertices
represent users and edges represent relationships

SearchVertex

ø
ø

ø

≥

and not

; ;

Table 1 Real-world graph datasets.

Dataset |V | |Epublic | |Eprivate | degmax cmax pcmax

HF (hamster friend) 1858 12 534 1525 89 17 17
AC (as-caida) 26 475 50 842 2539 2400 14 14

HE (HR-edges) 54 572 451 382 46 820 372 18 18
DB (douban) 154 908 308 182 18 980 287 13 13

§http://konect.cc/networks/

 314 Intelligent and Converged Networks, 2021, 2(4): 306−319

G

between users. We did a little bit of processing to turn
the downloaded datasets into pp-graphs by setting
some edges as private. The specific approach is: for
each vertex, we randomly select one of its adjacent
edges, if the other end vertex of the edge has no less
than 8 neighbors and the number of private edges is
less than one eighth of all adjacent edges associated
with this end vertex, then we make the edge private. By
traversing all vertices of the graph, we get a pp-graph

. Table 1 provides the details about each used pp-
graph, including the size of their vertex |V| and edge set
|Epublic|, maximum degree of all vertices degmax, the
maximum public-core value cmax, and the maximum
pp-core number pcmax. In addition, we used four pp-
graphs of PP-DBLP-2013† by randomly selecting
different numbers of vertices, respectively. All graphs
are undirected.

Figure 3 shows the cumulative distribution of public-
core and pp-core number for all graphs in Table 1.
Here HE-k is the cumulative public-core number
distribution in pp-graph HE, while HE-pp is the
cumulative pp-core number distribution in pp-graph.
Figure 3 shows that the curve representing pp-core
number is roughly below the curve representing public-
core number, and the line representing pp-core number
first drops and then rises compared with the line
representing the public-core number. This means that
for the smaller value, the number of vertices whose pp-
core number is equal to this value is less than the
number of vertices whose public-core number is equal

k

to this value. Instead, for the larger value, the number
of vertices whose pp-core number is equal to this value
is more than the number of vertices whose public-core
number is equal to this value. It demonstrates that the
number of vertices that have their pp-core number
larger than their core number in a middle value is more
than those in a smaller value and a bigger value. In
addition, Fig. 3 also shows that the max pp-core
number is equal to the max public-core number for all
pp-graphs. The higher the ratio of private edges is, The
larger the differences between the two lines (pp and)
in the same graph are. For example, the two lines in
AC almost coincide, while there are some significant
differences between the two lines in HE. We can find
in Table 1 that the ratio of private edges to private
edges in AC is about 0.05 and 0.10 in HE.

5.1 Performance evaluation

We first evaluate the experimental results of the core
number and pp-core number computation algorithms,
then we evaluate the impact of the size of
inserted/deleted edges on core maintenance algorithms.

The time of core decomposition on real graphs is
given in Fig. 4. In general, the time of computing
public-core and pp-core number increases as the size of
the graph grows. Figure 4 also shows that the vast
majority of time is spent in calculating the public-core
values when calculating pp-core number values of a
pp-graph.

Next we evaluate the impact of the size of
inserted/deleted edges on core maintenance algorithms
after changing an edge, i.e., private edge
insertion/deletion (Algorithm 2), public edge insertion

0
0

20

40

60

80

100

5 10 15 20
Core number of vertex

P
ro

po
rti

on
 o

f c
um

ul
at

iv
e

ve
rti

ce
s

(%
)

HE-k
HE-pp

HF-pp
HF-k

DB-k
DB-pp
AC-k
AC-pp

Fig. 3 Cumulative public core number and pp-core
number distribution of real-world graphs.

Dataset

Ti
m

e
(m

s)

HF

105

public core
pp-core

104

103

AC HE DB

Fig. 4 Time for public core number and pp-core number
computation in different real-world datasets.

†https://github.com/samjjx/pp-data

 Dongxiao Yu et al.: Public-private-core maintenance in public-private-graphs 315

Ei = 10i

i = 0,1,2,3,4

MCD PCD

(Algorithm 3), and public edge deletion (Algorithm 6).
The evaluation is conducted on the four pp-graphs. In
each pp graph, public edges are selected
randomly, where . These edges are first
deleted from the original public graph to evaluate the
deletion algorithm, and then are inserted back to
evaluate the insertion algorithm. The processing time
per edge for the edge insertion and deletion cases are
shown in Figs. 5a and 5b, from which, we can see that
there is a downward trend in the processing time per
edge as the number of edges inserted/deleted increases.
At the same time, there are some special cases where
the time increases for individual graphs. In theory, the
execution time of each edge should be about the same
no matter how many public edges are added or
removed. In fact, because of caching and other factors,
the execution time per edge will have a downward
trend when we continuously invoke pp-core number
computation algorithms. For example, the time to
compute the and values while executing the
Traversal algorithm can decrease when the second edge
is inserted/deleted. Comparing to recomputing pp-core
numbers, it can be seen that core maintenance
algorithms are more efficient when inserting/deleting a
public edge. The reason is that only a few vertices
whose pp-core numbers are changed when the graph
changes only one edge, which is shown in Lemma 5.

Pi = 10i

i = 0,1,2,3

The case of private edge insertion/deletion is easier
than the public edge, since only two vertexes may
change their pp-core number values when a private
edge is inserted. Similar to public edge
insertion/deletion, private edges are selected
randomly in each pp graph, where . These
private edges are first deleted from the original graphs
to evaluate the deletion algorithm, and then are inserted
back to evaluate the insertion algorithm. The
processing time per edge for the deletion and insertion
cases are shown in Figs. 5c and 5d, similarly, the trend
is also generally downward as the number of edges
inserted/deleted increases. The difference is that it
takes less time than changing a public edge.

SSN

SSN

Next, we compare the time after public edges
insertion of updating pp-core number only using
Traversal algorithm and using number
additionally. In order to complete the comparison more
accurately, we compare the time taken after traversal
algorithm, one of which directly calculates the pp-core
number, and the other optimizes the algorithm to
further filter to calculate the pp-core number by using
SSN. In Fig. 6, HF_original represents the original
algorithm calculating the pp-core number directly and
HF_optimization represents the optimized algorithm
with SSN. From Fig. 6, it is obviously that pp-core
number maintenance using number can reduce

100 101 102 103

100 101 102 103 104

Number of edges

(a) Public edge insertion (b) Public edge deletion

(c) Private edge insertion (d) Private edge deletion

Number of edges

100 101 102 103

100 101 102 103 104

Number of edges

Number of edges

Ti
m

e
pe

r e
dg

e
(m

s)
Ti

m
e

pe
r e

dg
e

(m
s)

Ti
m

e
pe

r e
dg

e
(m

s)
Ti

m
e

pe
r e

dg
e

(m
s)

0.175

500
400
300
200
100

0

0.10

80

60

40

20

0

0.08

0.06

0.04

0.02

0.150
0.125
0.100
0.075
0.050
0.025

HF
AC
HE
DB

HF
AC
HE
DB

HF
AC
HE
DB HF

AC
HE
DB

Fig. 5 Impact of the size of inserted/deleted edges on the
private edge and public edge insertion/deletion algorithms.

100

3

2

1

3

4

5

2.5
2.0
1.5
1.0
0.5

0

2

10

3

2

1

0

101 102 103 104

Number of edges
100 101 102 103 104

Number of edges

100 101 102 103 104

Number of edges
100 101 102 103 104

Number of edges

Ti
m

e
pe

r e
dg

e
(×

10
5
ns

)
Ti

m
e

pe
r e

dg
e

(×
10

5
ns

)

Ti
m

e
pe

r e
dg

e
(×

10
5
ns

)
Ti

m
e

pe
r e

dg
e

(×
10

5
ns

)

AC_original
AC_optimization

HF_original
HF_optimization

DB_original
DB_optimization

HE_original
HE_optimization

(a) Comparison on HF (b) Comparison on AC

(c) Comparison on HE (d) Comparison on DB

SSN
Fig. 6 Comparison of processing time per public edge with
and without .

 316 Intelligent and Converged Networks, 2021, 2(4): 306−319

time, and as the insertion edges increased, the
processing time per edge decreases.

5.2 Scalability evaluation

213 216

We finally evaluate the scalability of our algorithms in
four subgraphs of the pp-graph named PP-DBLP, by
letting the number of vertices scale from to . The
results are shown in Fig. 7. For each graph, we
randomly select 100 edges to delete, and then insert
them back. Figure 7 shows that as the size of the pp-
graph increases exponentially, the average processing
time to maintain the pp-core number increases when
adding 100 public or private edges, and the increase
tends to level off. At the same time, the time required
for pp-core number is much larger when adding 100
public edges than adding 100 private edges. Whether
adding public/private edges or removing public/private
edges, the average processing time per edge tends to be
stable when the graph size is large enough, which also
demonstrates that our algorithm works well even when
the pp-graphs have an extremely large size.

6 Related work

In previous studies of public graphs, there are various
metrics to measure the importance of a node, such as
degree, centrality, proximity, pageRank, katz,
permeability, cross-centrality[15−18], k-core[7, 8], and k-
truss[9, 19].

Some studies on pp-graphs have been investigated
recently. In Ref. [20], the authors proposed a new
model of attributed publicprivate networks and
generated the corresponding PP-DBLP datasets with
attributes from the rich keywords of paper titles on
DBLP records. The public-private model of data
summarization has been investigated and solved by a

PPKWS

fast distributed algorithm[21]. The problem of
reachability indexing for pp-graphs was considered in
Ref. [22], which aims to identify a set of additional
visible seed nodes for each user. Moreover, the authors
in Ref. [23] proposed a new keyword search
framework on public-private networks.

k

Batagelj

k

In addition, there are many relevant state-of-the-art
developments in the field of core decomposition. The
standard algorithm for computing -core
decomposition is the one originally proposed by

 and Zaveršnik[13], which is based on the
recursive deletion of vertices (and edges incident to
them) of degree less than . Cheng et al.[24] proposed a
disk oriented algorithm in massive graphs, which can
achieve comparable performances as the in-memory
algorithm when the memory is large enough to hold the
graph. Besides, core decomposition in the distributed
setting was studied in Ref. [25], and the core number of
the vertices is updated based on the core number of
their neighbors. In Ref. [26], a parallel algorithm called
Park was proposed to compute core numbers of
vertices on multicore processors. Moreover, in Ref. [27],
the authors propose a distributed algorithm for core
decomposition on probabilistic graphs.

k

The problem of core maintenance has been studied
extensively in recent years. Li et al.[25] published a
report on incremental algorithms for core
decomposition, and Saríyüce et al.[14] proposed a
traversal algorithm with linear complexity, by which
the speedup results achieved performed better.
Moreover, Bai et al.[28] proposed a novel solution to
tackle -core maintenance of dynamic graphs, which
provides an effective solution to maintain the core
number of vertices affected by multiple inserted
(removed) edges simultaneously. Yu et al.[29] presented
fast algorithms for core maintenance in dynamic
algorithms by processing multiple edges concurrently
to improve core maintenance efficiency.

7 Conclusion

In this paper, we first propose a new definition of pp-
core number of each vertex in a pp-graph, and give the
algorithm of core computation with linear time and
space complexity. In order to get the pp-core number
of each vertex quickly when the pp-graph changes, we
give core maintenance algorithms for public edge

213 214

Public edge
Private edge

Public edge
Private edge

215 216

Number of vertices
(a) Edge insertion (b) Edge deletion

213 214 215 216

Number of vertices

Ti
m

e
pe

r e
dg

e
(m

s)

Ti
m

e
pe

r e
dg

e
(m

s)

101

100

10−1

101

102

100

10−1

Fig. 7 Impact of the graph size on the private edge and
public edge insertion/deletion algorithms.

 Dongxiao Yu et al.: Public-private-core maintenance in public-private-graphs 317

insertion/deletion and private edge insertion/deletion,
respectively. Experiments on real-world graphs
illustrate the efficiency and scalability of our
algorithms. Future work is expected to further propose
the core maintenance algorithms for multiple edges
insertion/deletion.

References

 R. Dey, Z. Jelveh, and K. Ross, Facebook users have
become much more private: A large-scale study, in Proc.
2012 IEEE Int. Conf. on Pervasive Computing and
Communications Workshops, Lugano, Switzerland, 2012,
pp. 346−352.

[1]

 F. Chierichetti, A. Epasto, R. Kumar, S. Lattanzi, and V.
Mirrokni, Efficient algorithms for public-private social
networks, in Proc. 21th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, Sydney,
Australia, 2015, pp. 139−148.

[2]

 A. D. Sarma, S. Gollapudi, M. Najork, and R. Panigrahy,
A sketch-based distance oracle for web-scale graphs, in
Proc. 3rd ACM Int. Conf. on Web Search and Data
Mining, New York, NY, USA, 2010, pp. 401−410.

[3]

 T. H. Haveliwala, Topic-sensitive PageRank, in Proc. 11th

Int. Conf. on World Wide Web, Honolulu, HI, USA, 2002,
pp. 517−526.

[4]

 N. Bansal, A. Blum, and S. Chawla, Correlation
clustering, Mach. Learn., vol. 56, nos. 1–3, pp. 89–113,
2004.

[5]

 K. Bhawalkar, J. Kleinberg, K. Lewi, T. Roughgarden,
and A. Sharma, Preventing unraveling in social networks:
The anchored k-core problem, SIAM J. Discrete Math.,
vol. 29, no. 3, pp. 1452–1475, 2015.

[6]

 F. Zhang, W. J. Zhang, Y. Zhang, L. Qin, and X. M. Lin,
OLAK: An efficient algorithm to prevent unraveling in
social networks, Proc. VLDB Endow., vol. 10, no. 6,
pp. 649–660, 2017.

[7]

 F. Zhang, Y. Zhang, L. Qin, W. J. Zhang, and X. M. Lin,
Finding critical users for social network engagement: The
collapsed k-core problem, in Proc. 31st AAAI Conf. on
Artificial Intelligence, San Francisco, CA, USA, 2017, pp.
245−251.

[8]

 F. Zhang, C. G. Li, Y. Zhang, L. Qin, and W. J. Zhang,
Finding critical users in social communities: The collapsed
core and truss problems, IEEE Trans. Knowl. Data Eng.,
vol. 32, no. 1, pp. 78–91, 2020.

[9]

 S. B. Seidman, Network structure and minimum degree,
Soc. Netw. , vol. 5, no. 3, pp. 269−287, 1983.

[10]

 Q. S. Hua, Y. L. Shi, D. X. Yu, H. Jin, J. G. Yu, Z. P. Cai,
X. Z. Cheng, and H. H. Chen, Faster parallel core
maintenance algorithms in dynamic graphs, IEEE Trans.
Parallel Distrib. Syst., vol. 31, no. 6, pp. 1287–1300,

[11]

2020.
 V. Batagelj and M. Zaversnik, An O(m) algorithm for
cores decomposition of networks, arXiv preprint arXiv:
cs/0310049, 2003.

[12]

 V. Batagelj and M. Zaveršnik, Fast algorithms for
determining (generalized) core groups in social networks,
Adv. Data Anal. Classi. , vol. 5, no. 2, pp. 129−145, 2011.

[13]

 A. E. Saríyüce, B. Gedik, G. Jacques-Silva, K. L. Wu, and
Ü. V. Çatalyürek, Streaming algorithms for k-core
decomposition, Proc. VLDB Endow., vol. 6, no. 6,
pp. 433–444, 2013.

[14]

 M. A. Beauchamp, An improved index of centrality,
Behav. Sci., vol. 10, no. 2, pp. 161–163, 1965.

[15]

 P. Bonacich, Power and centrality: A family of measures,
Am. J. Sociol., vol. 92, no. 5, pp. 1170–1182, 1987.

[16]

 U. Brandes, A faster algorithm for betweenness centrality,
J. Math. Sociol. , vol. 25, no. 2, pp. 163−177, 2001.

[17]

 L. C. Freeman, A set of measures of centrality based on
betweenness, Sociometry, vol. 40, no. 1, pp. 35−41, 1977.

[18]

 Q. Luo, D. X. Yu, H. Sheng, J. G. Yu, and X. Z. Cheng,
Distributed algorithm for truss maintenance in dynamic
graphs, in Proc. 21st Int. Conf. on Parallel and Distributed
Computing, Applications and Technologies, Shenzhen,
China, 2021, pp. 104−115.

[19]

 X. Huang, J. Jiang, B. Choi, J. Xu, Z. Zhang, and Y. Song,
PP-DBLP: Modeling and generating attributed public-
private networks with DBLP, in 2018 IEEE International
Conference on Data Mining Workshops (ICDMW), doi:
10.1109/ICDMW.2018.00142.

[20]

 B. Mirzasoleiman, M. Zadimoghaddam, and A. Karbasi,
Fast distributed submodular cover: Public-private data
summarization, in Proc. 30th Int. Conf. on Neural
Information Processing Systems, Barcelona, Spain, 2016,
pp. 3601−3609.

[21]

 A. Archer, S. Lattanzi, P. Likarish, and S. Vassilvitskii,
Indexing public-private graphs, in Proc. 26th Int. Conf. on
World Wide Web, Perth, Australia, 2017, pp. 1461−1470.

[22]

 J. X. Jiang, X. Huang, B. Choi, J. L. Xu, S. S. Bhowmick,
and L. Xu, PPKWS: An efficient framework for keyword
search on public-private networks, in Proc. 36th Int. Conf.
on Data Engineering (ICDE), Dallas, TX, USA, 2020, pp.
457−468.

[23]

 J. Cheng, Y. P. Ke, S. M. Chu, and M. T. Özsu, Efficient
core decomposition in massive networks, in Proc. 27th Int.
Conf. on Data Engineering, Hannover, Germany, 2011,
pp. 51−62.

[24]

 R. H. Li, J. X. Yu, and R. Mao, Efficient core maintenance
in large dynamic graphs, IEEE Trans. Knowl. Data Eng.,
vol. 26, no. 10, pp. 2453–2465, 2014.

[25]

 N. Dasari, D. Ranjan, and M. Zubair, ParK: An efficient
algorithm for k-core decomposition on multicore
processors, in Proc. 2014 IEEE Int. Conf. on Big Data

[26]

 318 Intelligent and Converged Networks, 2021, 2(4): 306−319

(Big Data), Washington, DC, USA, 2014, pp. 9−16.
 Q. Luo, D. X. Yu, F. Li, Z. H. Dou, Z. P. Cai, J. G. Yu,
and X. Z. Cheng, Distributed core decomposition in
probabilistic graphs, in Proc. 8th Int. Conf. on
Computational Data and Social Networks, Ho Chi Minh
City, Vietnam, 2019, pp. 16−32.

[27]

 W. Bai, Y. X. Zhang, X. Z. Liu, M. Chen, and D. Wu,[28]

Efficient core maintenance of dynamic graphs, in Proc.
25th Int. Conf. on Database Systems for Advanced
Applications, Jeju, Republic of Korea, 2020, pp. 658−665.
 D. X. Yu, N. Wang, Q. Luo, F. Li, J. G. Yu, X. Z. Cheng,
and Z. P. Cai, Fast core maintenance in dynamic graphs,
IEEE Trans. Comput. Soc. Syst., doi: 10.1109/TCSS.
2021.3064836.

[29]

Dongxiao Yu received the BS degree from
Shandong University in 2006 and the PhD
degree from the University of Hong Kong,
China in 2014. He became an associate
professor at the School of Computer
Science and Technology, Huazhong
University of Science and Technology in
2016. He is currently a professor at the

School of Computer Science and Technology, Shandong
University. His research interests include wireless networks,
distributed computing, and graph algorithms.

Xilian Zhang received the BEng degree
from Shandong University at Weihai,
China in 2019. She is currently a master
student at Shandong University. Her
research interests include graph analysis
and data mining.

Qi Luo received the BEng degree in
computer science from Northeastern
University at Qinhuangdao, China in 2015,
and the MEng degree from Shandong
University, China in 2018. He is currently
a PhD candidate at the School of Computer
Science and Technology, Shandong
University. His research interests include

graph mining and analysis.

Lifang Zhang received the BEng degree
from Shandong University in 2019. She is
currently a master student at Shandong
University. Her research interests include
graph analysis and data mining.

Zhenzhen Xie received the MEng degree
in computer science from Jilin University,
China in 2014, she is currently a PhD
candidate at the School of Computer
Science and Technology, Shandong
University. Her research areas are
reinforcement learning, IoTs, and
representation learning.

Zhipeng Cai is currently an associate
professor at the Department of Computer
Science, Georgia State University, USA.
He received the PhD and MEng degrees
from University of Alberta, USA in 2008
and 2004, respectively, and the BEng
degree from Beijing Institute of
Technology, China in 2001. His research

areas focus on wireless networking, IoTs, machine learning,
cyber-security, and big data. He is the recipient of an NSF
CAREER Award. He served as a steering committee co-chair
and a steering committee member for WASA and IPCCC. He
also served as a technical program committee member for more
than 20 conferences, including INFOCOM, MOBIHOC, ICDE,
and ICDCS. He has been serving as an associate editor-in-chief
for Elsevier High-Confidence Computing Journal (HCC), and an
associate editor for several international journals, such as IEEE
Internet of Things Journal (IoT-J), IEEE Transactions on
Knowledge and Data Engineering (TKDE), and IEEE
Transactions on Vehicular Technology (TVT). He has published
more than 70 papers in prestigious journals with more than 40
papers published in IEEE/ACM Transactions.

 Dongxiao Yu et al.: Public-private-core maintenance in public-private-graphs 319

