
 

Public-private-core maintenance in public-private-graphs

Dongxiao Yu, Xilian Zhang, Qi Luo*, Lifang Zhang, Zhenzhen Xie, and Zhipeng Cai

Abstract: A public-private-graph (pp-graph)  is  developed to model  social  networks with hidden relationships,  and it

consists of one public graph in which edges are visible to all users, and multiple private graphs in which edges are only

visible to its endpoint users. In contrast with conventional graphs where the edges can be visible to all  users, it  lacks

accurate indexes to evaluate the importance of a vertex in a pp-graph. In this paper, we first propose a novel concept,

public-private-core (pp-core)  number based on the k-core number,  which integrally  considers both the public  graph

and private  graphs of  vertices,  to  measure  how critical  a  user  is.  We then give  an efficient  algorithm for  the pp-core

number computation, which takes only linear time and space. Considering that the graphs can be always evolving over

time,  we also present effective algorithms for  pp-core maintenance after  the graph changes,  avoiding redundant re-

computation  of  pp-core  number.  Extension  experiments  conducted  on  real-world  social  networks  show  that  our

algorithms achieve  good efficiency  and stability.  Compared to  recalculating the  pp-core  numbers  of  all  vertices,  our

maintenance algorithms can reduce the computation time by about 6–8 orders of magnitude.
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In social networks, due to privacy concerns, users tend
to  hide  their  social  connections,  making  the  relations
between  two  users  not  visible  to  other  users  in  public
but  only  to  themselves.  For  example,  Dey  et  al.[1]

crawled  a  snapshot  of  1.4  million  New  York  City
Facebook  users  and  reported  that  52.6  of  them  hid
their friends list. A model of public-private-graphs (pp-
graph)  is  developed  to  represent  this  kind  of  social
network[2]. For a pp-graph , it contains a public graph

,  which  is  visible  to  all  users,  and  each  user  has  a
private  graph ,  which  is  only  visible  to  itself.
Therefore, the pp-graph  can be regarded as the union
of  the  public  graph  and  the  private  graphs  of  all

vertices.  Recently,  many  graph  analytic  tasks  have
been  investigated  on  pp-graphs,  such  as  all-pairs
shortest  path  distances[3],  pairwise  node  similarities[4],
and  correlation  clustering[5].  However,  there  are  few
researches  on  user  engagement  on  public-private
graphs.
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User  engagement  on  social  networks  has  attracted
significant  interest  over  recent  years[6].  It  can  be  used
as a measure of how critical a user is, such as -core[6−8]

and -truss[9]. -core  is  a  simple  and  popular  model
based  on  degree  constraint  that  the  degree  of  each
vertex in a -core is no less than , and the core number
of  a  vertex  can  be  used  to  measure  its  importance/
influence. But the definition of core number cannot be
used in pp graphs directly,  since there are some edges
private  so  that  a  vertex  cannot  know  the  number  of
neighbors the other vertices have. For example, though
vertex  in Fig. 1a does not have any neighbor in the
public graph, its core number in the whole pp-graph is
3,  indicating  that  the  vertex  is  relatively  important.
Therefore,  simply considering the public  graph cannot
do a good job of capturing the importance of vertices.
To  solve  this  problem,  adapting  the  concept  of  core
number  in  general  graphs[10],  we  propose  the  concept
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of  public-private-core  (pp-core)  number  in  the  pp
graph,  which  considers  both  the  public  graph  and  the
private graph for each vertex.

Our contributions are summarized as follows.

u

● We first propose the concept of pp-core number of
a  vertex ,  which  integrally  considers  both  the  public
graph and the private graphs of vertices. We also give
an  algorithm that  can  compute  the  pp-core  number  of
vertices in linear time and linear space.

●  We  further  propose  efficient  algorithms  for  the
core  maintenance  problem,  i.e.,  updating  the  pp-core
number  of  vertices  after  the  graph  is  changed.  We
focus on the scenario of edge change, since the vertex
change  can  also  be  seen  as  edge  change[11].
Specifically,  the  core  maintenance  algorithm  will  be
divided  into  four  cases,  i.e.,  public  edge
insertion/deletion  and  private  edge  insertion/deletion.
We first show the pp-core number of each vertex in the
pp-graph  changes  by  at  most  1  after  the  insertion  or
deletion  of  an  edge  (public  or  private),  and  then  give
sufficient conditions for identifying the vertices whose
pp-core number will change for each case. In addition,
we  propose  an  optimization  algorithm  by  giving  a
definition named Super Support vertex Number (SSN)
in  the  case  of  a  public  edge  insertion,  where  SSN
indicates  a  more  accurate  condition  for  the  change  of
pp-core number of a vertex.

●  Finally,  we  perform  extensive  experiments  to
evaluate  our  algorithms  over  four  real-world  datasets,
and  the  results  demonstrate  the  good  efficiency  and
scalability  of  the  algorithms.  The  proposed  dynamic
maintenance  algorithm  can  reduce  the  computation

SSN

time  by  about  6–8  orders  of  magnitude  compared  to
recomputing  the  pp-core  number  of  all  vertices.  In
addition,  the  algorithm  based  on  traversal  algorithm
and  is  five or six times better than the one based
on traversal only.

The  rest  of  this  paper  is  organized  as  follows.  We
first present some basic concepts in Section 2, and we
give the method and algorithm of pp-core computation
in  Section  3.  Then,  the  theoretical  findings  that
facilitate  incremental  pp-core  maintenance  are
proposed  in  Section  4.  In  Section  5,  the  experimental
results  are  reported,  and  Section  6  reviews  the  related
work. At last, the paper is concluded in Section 7.

2    Problem definition

G = (V,E) V(G) E(G)
n = |V(G)| m = |E(G)|

H = (V(H),E(H)) G
H ⊆G V(H) ⊆ V(G) E(H) ⊆ E(G)

V′ ⊆ V G
V′ G(V′) (V′,E′) E′

{(u,v) ∈ E | u,v ∈ V′} NH(u) = {u ∈ V |
(u,v) ∈ E(H)} dH(u) = |NH(u)|

u H
H ∆(H)

δ(H)

We consider a simple undirected and unweighted graph
, where  and  are the vertex set and

the edge set, respectively. Let  and .
We  say  a  graph  is  a  subgraph  of ,
denoted  as ,  if  and .
Given  a  vertex  set ,  the  subgraph  of  induced
by ,  is  defined  as  =  where  =

.  We  define 
 and  as the set of neighbors

and the  degree  of  a  vertex  in .  The maximum and
minimum degrees of vertices in  are denoted as 
and ,  respectively.  We  next  give  some  useful
formal definitions.

k G = (V,E)

k G H G

H k

δ(H) ⩾ k u

c(u) k u

k G

Definition  1  ( -core)  Given  a  graph ,  the
-core of  is  a  maximal connected subgraph  of ,

such that each vertex in  has at least  neighbors, i.e.,
.  The  core  number  of  a  vertex ,  denoted  by

, is defined as the largest , such that  is contained
in a -core of .

(u,v) G
(u,v) w ∈G

(u,v) u
v

u
u

For  an  edge  in  graph ,  it  is  called  a  public
edge if  is visible to each vertex , while it is
called a private edge if  is only visible to vertex 
and .  A  graph  is  a  public  one  where  each  edge  is  a
public edge, and a private one of vertex  if each edge
in the graph is only visible to .

G = (V,E)

Definition  2  (pp-graph[2])  Given  a  graph
,  it  is  called  a  pp-graph  if  it  contains  both

public and private edges.
G = (V,E)

G = (V,E) V =V E

Given  a  pp-graph ,  it  constains  a  public
graph  as  a  subgraph,  where  and 
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(a) pp-graph G

u8

u1

u2

u3

u9

u5

u4

u6u7

(b) Personalized pp-graph
of vertex u9 

Fig. 1    Examples  of  pp-graph  and  personalized  pp-graph.
Public  edges  are  represented  by  solid  lines  and  privated
edges  are  represented  by  dashed  lines.  The  first  number
denotes  the  public-core  of  the  corresponding  vertex,  while
the second number denotes the pp-core number.
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Gu = (Vu,Eu) Vu ⊆V Eu ⊆ E\E

G Gu

u
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consists  of  all  public  edges  in .  Besides,  for  each
vertex ,  has  an  associated  private  graph

, where  and . The public
graph  is visible to everyone, but the private graph 
is  only  visible  to  vertex .  Hence,  in  the  view  of  the
vertex ,  the  entire  graph  it  can  see  and  access  is  the
one  composed  by  the  public  graph  and  its  own
private  graph .  For  the  sake  of  simplicity,  we  will
use  a  pp-graph  to  represent  a  pp-graph  directly  in  the
rest of this paper.

G = (V,E) u ∈ V G = (V,E)

Gu = (Vu,Eu)

u u

Gu = (Vu,Eu) Vu =V Eu = E∪Eu

Definition  3  (personalized  pp-graph)  Given  a  pp-
graph  and  a  vertex ,  let  be
the public graph and  the private graph of
vertex . The personalized pp-graph of  is denoted by

, where  and .
G c(u)In a pp-graph , each vertex has a core number ,

which  is  public,  to  represent  its  cohesiveness  in  the
public  graph.  However,  it  does  not  represent  the
cohesiveness  of  vertices  in  the  pp-graph  well,  where
each vertex not only has public neighbors, but also has
private neighbors. So we propose a new concept of pp-
core number to solve this problem.

G = (V,E) u Gu

pc(u)

Definition  4  (pp-core  number)  Given  a  pp-graph
,  the pp-core number of  in ,  denoted by

, is computed by the following formula.
 

argmax
pc⩾0
{|{v ∈ N (u) |c (v) ⩾ pc}| ⩾ pc} (1)

G = (V,E)

G = (V,E)

G
(u2,u9)

u2 u9

Gu9 = (Vu9 ,Eu9 ) u9 G
Vu9 Vu9 {u9,u2,u3}

u9 Gu9 = (V,E∪Eu9 )

u5

Example  1  Consider  the  pp-graph  in
Fig. 1a,  the  public  edges  and  private  edges  are
represented  by  solid  lines  and  dashed  lines,
respectively.  The  public  graph  is  the
subgraph of  that is represented by all vertices and the
solid  lines.  Given  a  private  edge ,  it  is  only
visible  to  vertices  and .  The  private  graph

 of  is  the  subgraph  of  induced  by
,  where  =  and  the  personalized  pp-

graph  of  is ,  which  is  shown  in
Fig. 1b.  The  core  number  and  the  pp-core  number  of
each vertex are illustrated using numbers of black and
red,  respectively.  From Fig. 1b,  it  can be seen that  the
core  number  and  the  pp-core  number  can  be
significantly different. For example, the core number of

 is 0, while its pp-core number is 3. Clearly, the pp-
core number can better  illustrate  the real  cohesiveness

of vertices when private edges exist.
In  subsequent  sections,  we  will  present  efficient

algorithms  for  computing  the  pp-core  number  of
vertices and maintaining the pp-core number when the
graph  changes  (with  public/private  edge  insertion/
deletion).

3    pp-core number computation

We  present  an  efficient  algorithm  in  this  section  for
computing  the  pp-core  number  of  vertices  in  a  pp-
graph.  Some  useful  theretical  results  that  support  the
correctness of our algorithm will be first given.

3.1    Theoretical basis

G = (V,E)

G

Different from core decomposition in a general graph [12],
where  the  core  number  can  be  computed globally,  the
pp-core  number  of  a  vertex  in  a  pp-graph  has  to  be
computed  locally,  based  on  the  core  numbers  of  its
neighbors,  as  shown  in  Definition  4,  due  to  the
existence  of  the  private  edges.  Hence,  given  a  public-
private  graph ,  we  first  conduct  core
decomposition in the public graph of  to calculate the
core numbers of all vertices, and then compute the pp-
core of each vertex.

u pc pc

pc

ulist u

Based on Formula 1, the pp-core number of a vertex
 is the largest integer , such that there are at least 

neighbors  with  core  number  at  least .  We  here  let
 be  a  list  containing  the  core  numbers  of ’s

neighbors in a descending order. Then we can get that
 

k (u) = max
1⩽i⩽len(ulist)

(min (i,ulist[i−1])) (2)

k(u) i

1 ⩽ i ⩽ len(list) u i

i

ulist ulist

u i

k(u)

u pc(u)

k(u) k(u) > pc(u) u

pc(u)+1

pc(u)+1

According to the above equation,  is the largest 
in  to  guarantee  that  has  at  least 
neighbors  with  core  number  not  less  than  the  ( –1)-th
value in . Because the values in  are stored in a
decreasing order, for each , it has at least  neighbors
whose core numbers are at least . By the definition
of pp-core number of a vertex ,  is not less than

.  However,  if ,  then  has  at  least
 neighbors  whose  core  numbers  are  not  less

than  according  to  Eq.  2,  which  will  conflict
with Definition 4. Based on these analysis, we give the
following lemma.

G = (V,E)Lemma 1  Given a pp-graph ,  the pp-core
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pc(u) u ∈ V pc(u) = k(u)number  of vertex  satisfies that .

u

pc(u) k(u) pc(u)

ulist(i−1)

i ulist(i−1) i

ulist(i−1)

i

ulist(i−1) i

In  the  following  sections,  we  will  use  the  above
formula  to  calculate  the  pp-core  number  of  a  vertex 
and directly use  to represent . Note that 
is the maximum value of the smaller of  and
, then we can regard  and  as two functions

for  ease  of  understanding,  where  is  a
monotonous  non-increasing  and  is  monotonically
increasing.  From  a  geometric  perspective,  the
maximum of their minimums occurs at the intersection
of the curve  and , which is shown in Fig. 2.

G = (V,E)

pc(u) pc(u) ⩾ c(u)

u G

Lemma 2  Given a pp-graph ,  the pp-core
number  satisfies that  for each vertex
 in .

u ∈ V pc(u) < c(u)
u c(u)−1

c(u)−1
pc(u)

u c(u) u
c(u)
c(u)

pc(u) ⩾ c(u)
u G

Proof. We  prove  the  lemma  by  contradiction.
Suppose  there  exists  a  vertex  and .
This means  has at most  neighbors whose core
numbers  are  not  less  than ,  according  to  the
definition  of  pp-core  number.  Otherwise,  is  not
the maximum value that satisfies Formula 1. However,
the core number of  is . This means  has at least

 neighbors  whose  core  numbers  are  not  less  than
 according  to  Definition  1.  Therefore,  our

hypothesis  is  impossible,  i.e.,  for  each
vertex  in .                                                               ■

u9

u2,u3 u4

ulist

u9

ulist = {3,3,2}
i ulist[i−1] ⩾ i

u9

Example  2  In Fig. 1a,  has  three  vertices,  i.e.,
,  and ,  and  their  core  numbers  are  2,  3,  and  3,

respectively.  Let  be  the  list  containing  the  core
numbers  of  neighbors  of  vertex  in  a  descending
order, then . Because the maximum value
of  that  satisfied  is  equals  to  2,  we  can
know  that  has  at  least  2  neighbors  whose  core

pc(u9) = 2number is not less than 2, i.e., ,  which is the
same as the result calculated by Formula 1.

3.2    Algorithm

G

In  this  section,  we  will  introduce  the  algorithm  to
compute the pp-core number of  vertices in a  pp-graph

, as shown in Algorithm 1.

u ∈ V
u Gu

u ulist
u

i 1 ⩽ i ⩽ len(ulist) u
i ulist i−1

In Algorithm 1,  according  to  the  definition  of  pp-
core number, we need first compute the core number of
each vertex , then compute the pp-core number of
each  vertex  in  its  personalized  pp-graph  (Lines
1–3). In Procedure ComputePC, the pp-core number of
vertex  is  computed  based  on  Eq.  2,  and  stores
the core numbers of all  neighbors of  in a decreasing
order  (Lines  4–8).  The  algorithm  next  computes  the
largest  in  to  guarantee  that  has  at
least  neighbors  with  core  number  at  least [ ]
(Lines 9–13).

G

∆(G)

O(∆ log∆)
|V |

O(|V |∆ log∆) O(|E| log∆)

O(|E|+ |E| log∆)

Algorithm  complexity.    For  each  vertex  in  graph
,  we compute  their  pp-core  numbers  by sorting  their

neighbors  based  on  the  core  number,  thus  the  worst
case happens when the vertex’s degree is equal to ,
which  is  the  max  degree  of  the  pp-graph.  The  time
complexity of the sorting process is .  For the
whole  graph  with  vertices,  the  complexity  is

,  which  is  simplified  to .  In
addition,  we  should  first  compute  the  core  number  of
vertices  before  we  compute  their  pp-core  number.
According  to  the  linear  time  complexity  of  the
traditional core decomposition algorithm[13],  the whole
time complexity is .

 

pc(u)

i

ulist(i)

i (index of ulist)

ul
is

t

 
pc(u) yFig. 2     is the -value at intersection of two functions.
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4    pp-core number maintenance

In  this  section,  we  first  give  some  lemmas  to  explain
how  to  maintain  pp-core  numbers  in  Section  4.1,  and
we  propose  pp-core  maintenance  algorithms  in  the
scenario  of  single  edge  insertion/deletion.  When
multiple  edges  are  inserted/deleted,  it  can  be  handled
by  executing  our  maintenance  algorithms  for  multiple
times. The maintenance algorithms consider four cases:
(i) private edge insertion; (ii) private edge deletion; (iii)
public edge insertion; and (iv) public edge deletion.

4.1    Theoretical basis

In  this  section,  we  will  give  theoretical  basis  of  our
core maintenance algorithms when an edge is  inserted
or  deleted.  Previous  work  has  proved  that  the  core
number of each vertex in a simple graph changes by at
most  1  when  an  edge  is  inserted/deleted[14],  and  this
also holds true for pp-core number in a pp-graph.

e = (u,v)

G
G′

Lemma  3  If  an  edge  is  inserted  to  or
removed from a  pp-graph ,  then the  pp-core  number
of each vertex in  can change by at most 1.

Proof.    We  first  analyze  the  case  of  insertion.
According  to  the  type  of  inserted  edge,  it  can  be
divided into two cases, i.e., a public edge and a private
edge.

e

G
u v

u v

If  is a private edge, the core numbers of all vertices
will not increase because the public graph of  has not
changed. The only change in the graph is that  and 
add  a  new  neighbor,  so  the  pp-core  number  of  or 
may increase by at most 1 and the pp-core numbers of
others cannot change, which can be easily obtained by
Formula 1.

e

w p

p+ x x > 1

w p+ x

p+ x

p+ x−1 w

p+ x−1

(u,v)

pc(w) p+ x−1 G

On the other hand, if  is a public edge, assume there
is a vertex  whose pp-core number changes from  to

,  where .  That  is  to  say,  after  inserting  an
edge,  has at least  neighbors whose core values
are  not  less  than .  Because  the  core  number  of
each vertex can change by at most 1 after inserting one
edge, so there must be at least  neighbors of 
whose  core  numbers  are  not  less  than  after
deleting  the  edge .  According  to  Definition  4,

 is  at  least  in ,  which  contradicts  our
assumption.

For  the  deletion  case,  assume  the  pp-core  number

pc(w) w x

(u,v) x > 1 (u,v)

pc(w) x

 of  vertex  is  decreased  by  after  deleting  an
edge , where . Adding  back to the graph
will  increase  by ,  which  contradicts  with  the
result proved above.                                                      ■

G = (V,E)

(u,v) G G
G′ pc(u) u

c(v) ⩽ pc(u) c(u) ⩽ pc(v)

pc(v) v

Lemma  4  Given  a  pp-graph ,  if  we
insert/delete  a  private  edge  into/from  and 
becomes , then the pp-core number  of  cannot
change  if .  Similarly,  when ,
then the pp-core number  of  cannot change.

u

c(v) ⩽ pc(u) = p pc(u) p+1

(u,v) G
G

pc(u)

v

u p p+1

u p G
p+1 p+1 G′

p+1

v u c(v) ⩾ p+1

Proof. For the case of insertion, we take the vertex 
as  an  example  for  analysis.  Assume  that

 and  becomes  after a private
edge  is  inserted  into .  Note  that  the  core
numbers of all vertices in the public graph of  are not
changed, so the increase of  can only be due to the
support of the new neighbor . The pp-core number of
 changes from  to  after insertion, which means
 has at most  neighbors in  whose core number is at

least ,  but  it  has  at  least  neighbors  in 
whose core number is at least . In other words, the
only new neighbor  of  must satisfy that ,
which contradicts with our assumption.

pc(u) u c(v) ⩽ pc(u)

(u,v) pc(u)

For  the  deletion  case,  assume  that  the  pp-core
number  of  vertex  decreases  when .
Adding  back  to  the  graph  will  increase ,
which  contradicts  with  the  result  above.         ■

G = (V,E)

w ∈ V pc(w) w

w

w

Lemma 5  Given a pp-graph  and a vertex
,  the  pp-core  number  of  changes  only

when there exists a neighbor of  whose core number
changes or the number of 's neighbors changes.

pc(w) w

pc(w)

Proof.    According  to  Definition  4,  because  the  pp-
core  number  of  is  determined  by  the  core
numbers of its neighbors, so  cannot change if the
core numbers of its all neighbors do not change.         ■

Next,  we  will  give  a  lemma  to  find  the  vertices
whose  core  number  might  change  after  inserting  or
deleting an edge.

G = (V,E)

(u,v) k = c(u) ⩽ c(v)

G G′ w ∈ V\ {u}
pc(w) = k

Lemma  6  Given  a  pp-graph ,  if  a  public
edge  is inserted/deleted, where , and

 becomes ,  then  only  the  vertices 
satisfying  may  have  their  pp-core  numbers
changed.

w c(w) = k

Proof.    We first analyze the case of insertion, it can
be  known  that  only  the  vertices  that  have 
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G
pc(w) < k pc(w) > k

may have  their  core  numbers  changed.  As  for  the  pp-
core  numbers  of  the  vertices  in ,  we  consider  two
cases:  and .

pc(w) < k pc(w)

p p+1 p+1 ⩽ k

w v v

k w

pc(w)

p p+1 w p

p+1

G p+1

p+1 G′

w

p p+1

w c(w) = k

(1) When , assume that  changes from
 to , where  (Lemma 3 claims the pp-core

number of each vertex changes by at most 1). Note that
 cannot be , since the pp-core number of  is not less

than  according  to  Lemma 2,  which  means  has  no
new  neighbors  after  insertion.  If  can  become
from  to ,  then  it  means  has  at  most 
neighbors whose core numbers are not less than  in

, and has at least  neighbors whose core numbers
are not less than  in . In other words, there exists
the core number of a neighbor of  that changes from

 to ,  which  contradicts  the  previous  conclusion,
since  only  the  vertices  that  have  may have
their core numbers changes.

pc(w) > k pc(w)

p p+1 p > k

w p p+1

w

p+1 w = v

k c(u) = k < p+1

(2) When , assume that  changes from
 to ,  where ,  then  there  must  be  the  core

number of a neighbor of  that changes from  to 
or  adds  a  new  neighbor  whose  core  number  is  not
less  than  (i.e., ).  However,  neither  case  is
true,  because  only  the  core  number  of  the  vertex  with
value  can change and .

In the case of deletion, we can use a method similar
to that of insertion. Up to now, we have proved Lemma
6  is  correct.                                                                   ■

u

u

We next give a definition to explain which neighbors
of a vertex  in a pp-graph can support the increase in
the pp-core number of .

G = (V,E) u ∈ V w u G
c(w) > pc(u) w

u

u SSN(u)

Definition  5 (Superr  SSN)  Given  a  pp-graph
 and ,  if  the  neighbor  of  in 

satisfies  that ,  then  is  called  a  super
support  vertex  of  and  the  number  of  super  support
vertices of  is denoted by .

u pc(u)

According  to  Definition  4,  only  the  super  support
vertex  of  can  support  its  pp-core  number 
increase.  Based  on  this  observation,  we  will  give  a
more  specific  lemma  to  illustrate  the  pp-core  number
maintenance  after  inserting  an  edge  to  the  public-
private graph.

G = (V,E)

(u,v) G G G′

k = c(u) ⩽ c(v) w ∈ V\ {u}

Lemma 7  Given a pp-graph ,  if  we insert
a public edge  into  and  becomes . Suppose
that ,  then  only  the  vertex 

SSN(w) G′ k

pc(w)

whose  value  in  is  larger  than ,  may  have
 increased.

w ∈ V u pc(w) = k

w k k+1

k+1

k+1 G′ SSN(w) w G′

k

Proof.  According to Lemma 6, it can be known that
only  the  vertices  except  satisfying 
may have their pp-core numbers changed. For a vertex

,  if  its  pp-core  number  can  increase  from  to ,
then it has at least  neighbors whose core numbers
are not less than  in , i.e., the  of  in 
is  larger  than .                                                            ■

4.2    Private edge insertion/deletion

Here  we  give  the  pp-core  number  maintenance
algorithm after inserting/deleting a private edge.

(u,v) G
u v

(u,v) pc(u) pc(v)

pc(u) u

c(v) > pc(u)

pc(u)

v

c(v)

pc(u)

pc(u) c(v) > pc(u) ComputePC

pc(u)

v

After inserting a private edge  into ,  this edge
is  only  visible  to  its  endpoint  vertexes  and ,  so  the
insertion  of  can  only  impact  and .  In
addition,  we know that  the  pp-core  number  of 
increases only when  according to Lemma 4
and we then recalculate the  in this case. A similar
process  is  done  for  the  vertex .  The  detailed  pp-core
number maintenance algorithm after inserting a private
edge is given in Algorithm 2. We first compare  and

 to  make  sure  whether  it  is  necessary  to  update
. If , the algorithm calls  to

recompute  (Lines  1  and  2).  The  similar
operations are done for vertex  (Lines 3 and 4).

(u,v)

O(∆ log∆)

Algorithm complexity. When a private edge  is
inserted  or  deleted,  there  are  only  two  vertices  whose
pp-core number changes. Thus, the time complexity is

.

4.3    Public edge insertion

G
pc(w) w

w

In  this  section,  we  discuss  public  edge  insertion  in  a
pp-graph .  According  to  Lemma  5,  the  pp-core
number  of  a  vertex  changes  only  when  there
exists  a  neighbor  of  whose  core  number  changes.
 

set of and
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C

G
NC

C

NC

Thus,  if  we  have  found  a  vertex  set,  denoted  by  in
which  each  vertex  changes  its  core  number,  then  we
can  reduce  the  range  of  vertices  in  whose  pp-core
number  changes.  Let  represent  the  vertex  set  in
which  each  vertex  has  at  least  a  neighbor  in .  Then
we  only  need  to  update  the  pp-core  number  of  the
vertices in .

MCD PCD MCD(u)

w u c(w) ⩾ c(u)

PCD(u) w u

c(w) = c(u) c(w) > c(u)

MCD(w) > c(u) PCD u

c(u)

To find the vertices whose core number changes, we
adopt an algorithm called Traversal, which is proposed
in  Ref.  [14].  In  Traversal  algorithm,  there  are  two
definitions,  and .  represents  the
number  of  neighbors  of ,  such  that ;

 is  defined  as  the  number  of  neighbor  of ,
such  that  either  or  and

.  The  value  of  a  vertex 
represents  its  potential  number  of  neighbors  that
support  the  increase  of .  We  give  two  useful
lemmas  as  follows  and  more  details  can  be  found  in
Ref. [14].

(u,v)

G c(u) < c(v) c(v)

Lemma  8  If  a  public  edge  is  inserted  to  or
removed from a pp-graph , where , then 
cannot change.

G = (V,E)

(u,v) G
c(u) ⩽ c(v) w ∈ V
c(w) = c(u) MCD(w) > c(u)

u

c(u) MCD c(u)

Lemma  9  Given  a  pp-graph ,  if  a  public
edge  is  inserted  to  or  removed  from  and

,  then  only  the  vertices  that  have
 and , and are reachable from

 via a path that consists of vertices with core number
equal  to  and  values  greater  than ,  may
have their core numbers incremented.

G = (V,E)

V
C

C

Given  a  pp-graph ,  the  algorithm  for
updating  the  pp-core  numbers  of  all  vertices  in 
requires two steps. First, it computes the set  based on
the  Traversal  algorithm,  which  is  a  set  of  vertices
having their core numbers updated. The second step is
to compute the pp-core number of all vertices that have
neighbors in  according to Lemma 5.

(u,v)

u v (u,v) E
S

r S

V visited cd

removed

The detailed pp-core number maintenance algorithm
after inserting a public edge  is given in Algorithm 3.
We first set the root vertex as the vertex with a smaller
core  number  between  and ,  then  add  into 
(Lines 1–4).  Let  be the vertex set  in  which the core
number is possible to increase and add  to  (Line 5).
For each vertex in , we set the flags  and  to
0, and set  to 1 (Lines 6 and 7). As mentioned

w ∈ V\ {u}
pc(w) = k

k = c(r) cd(r)

PCD(r) r visited [r] = 1

w ∈ S

cd(w) k

t

S

w

C

in  Lemma  6,  only  the  vertices  satisfying
 may  have  their  pp-core  numbers  changed,

where  (Line 8). We use the  to record the
value  of  and  set  (Lines  9  and
10).  For  a  vertex ,  we  check  if  it  is  possible  to
increase  its  core  numbers  by  compare  and 
(Lines  11–13).  If  yes,  then  we  check  its  neighbors 
according to Lemma 9 and add the vertices whose core
numbers  may  increase  into .  (Lines  11–18).
Otherwise,  we  call Algorithm 4 to  remove  and
update the information of its neighbors (Lines 19–21).
After  processing  all  vertices  whose  core  number  may
increase, then we add the core number of a vertex that
is  visited  but  not  removed  by  1  and  we  add  it  to 

 

ø

ø

and and

and

;; ;
;;
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(Lines 22–25).
C

NC

ComputePC

In the second step, we put all neighbors of  into the
set  and  recompute  their  pp-core  numbers  by
invoking  (Lines 26–30).

InsertWithS S N
w ∈C

pc(v) v w k
pc(v) = k SSN(v)

v w

k v

By using  the  SSN value  and  Lemma 7,  we  propose
an  optimized  algorithm  named  in
Algorithm 5.  For  each  vertex ,  we  will  compare
the pp-core number  of the neighbor  of  with 
(Lines 1 and 2). If ,  then  will increase
by 1, since  has the neighbor  to support its pp-core
number  increase  (Lines  3  and  4).  When  SSN value  is
increased to  be  more  than ,  the  vertex  can have its
pp-core number increased by 1 (Lines 5 and 6).

cd k

O(|E|)
C

NC

C

O(|C|)

Algorithm  complexity. Traversal  algorithm  in
Algorithm 3 basically  does  a  depth-first  traversal  on
vertices whose  values are greater than the  value of
root vertex. In the worst case, the whole graph will be
traversed, i.e., each edge in the graph will be visited at
least  once.  Thus,  the  time  complexity  for  Traversal
algorithm is  at the worst. After we find vertices
set  whose  core  number  was  changed  by  Traversal
algorithm,  we  need  to  find  the  neighbor  set  of
vertices  in  and  recompute  their  pp-core  number,
which  will  take  in  the  worst  case.  In  total,  the
time complexity for  public  edge insertion algorithm is

O(|C|+ |E|+ |NC|∆ log∆)

NC

. Algorithm 5 introduces  a
method  to  facilitate  incremental  pp-core  maintenance
by  filtrating  vertices  from  which  can  surely
increase their pp-core number.

4.4    Public edge deletion

u v

(u,v) G c(u)

c(v)

c(u) = c(v) u v

S earchVertex

S earchVertex V′

The detailed algorithm to maintain the pp-core number
of each vertex when a public edge is deleted is given in
Algorithm 6. We first set the root as the vertex between
 and  as  the  one  with  the  smaller  core  number,  and

remove  from  (Lines  1–5).  By  comparing 
and , the algorithm will be analyzed in two cases. If

,  then  we  traverse  and  respectively  by
invoking  Procedure  (Lines  6–8).

 helps  us  find the  vertex set  in  which
each vertex has its core number changed and computes

 

and

1
2
3
4
5
6

 
 

 

SSN ;;
;;

SSN

SSN

SSN
SSN

having

 
 

 

-

ø

cd
in order

S

break;

;
;

; ;
;
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cd V′

c(u) , c(v)

S earchVertex

k c(r)

cd

w

cd V′

cd(w) k

cd(w) k w k

c(w) ⩾ k u

c(w) = k

k−1 c(w)

S

cd t w

cd(w)

w k

cd

cd(w) ⩾ k

V′ k

w S ComputePC

the  value for vertices in  (Lines 9 and 10). In the
case  of ,  we  only  invoke  Procedure

 to  traverse  from  root  vertex  (Lines  11
and  12).  Let  be  the  core  number  of  root  vertex 
and sort  values in an increasing order (Lines 13 and
14).  In  the  next  step,  we  select  a  vertex  with  the
minimum  value  in  the  set ,  then  judge  whether

 value  is  smaller  than  (Lines  15  and  16).  If
 is less than , then it means  has no more than 

neighbors such that , i.e.,  can no longer keep
. In consequence, its core number decreases to

 (Line  17).  The  decrease  in  may  lead  to  the
decrease of the pp-core numbers of its neighbors, then
we  put  all  its  neighbors  into  the  set  (Lines  18–20).
Meanwhile,  the  value of the neighbor  of  which
is larger than  will also decrease, as it decreases a
neighbor  whose  core  number  is  larger  than .  Then
we reorder  the  values  accordingly  (Line  21–23).  If

,  the  algorithm  will  exit  the  loop  because  all
remaining vertices in  are still  in a -core (Lines 24
and 25). For each vertex  in , we call  to
recalculate their pp-core numbers (Lines 26 and 27).

Q

v

V′ w

v w c(w) ⩾ k

cd v

k Q

visited

In Algorithm 7,  it  first  initializes  some  parameters
like  Algorithm  3  (Lines  1–5).  While  is  not  empty,
the algorithm will pop the vertex  one by one and put
it into  (Lines 6–8). We next check each neighbor 
of , if the vertex  satisfies the condition that ,
then we increase the  value of  by 1  (Lines  9–11).
Finally,  we  put  all  vertices  whose  core  numbers  are
equal  to  and  are  not  visited  into ,  and  set  their

 value to be 1 (Lines 12–14).
S earchVertex

S earchVertex

O(|E|) V′

O(|V′|) S

Algorithm  complexity. Procedure 
does  a  depth-first  traversal  from  the  root  vertex,  the
worst  case happens when all  vertices are be traversed,
thus the time complexity of procedure  is

.  After  the  vertex  set  is  found,  it  will  take
 time to search ,  which is the vertex set of the

V′

ComputePC

S O(|S |∆ log∆)

O(|V′|+ |E|+ |S |∆ log∆)

neighbors  of  vertices  in .  According  to  the  time
complexity of , the computation of the pp-
core  number  in  will  take .  In  total,  the
time  complexity  for  public  edge  deletion  algorithm  is

.

5    Experiment

In  this  section,  we  conduct  empirical  studies  to
evaluate  the  performance  of  our  proposed  algorithms.
We evaluate the algorithms on 4 real-world graphs, as
shown  in Table 1.  All  programs  were  implemented  in
Java language and compiled with IntelliJ IDEA, and all
experiments  were  performed  on  a  machine  with  Intel
Core  i5-7 500 3.41  GHz  and  8  GB  DDR3-RAM  in
Windows 10.

Datasets. All  the  real  graphs  we  used  are
downloaded  from  KONECT§.  These  datasets  are  all
undirected  and  unweighted  graphs  representing
different  social  network  structures,  where  vertices
represent  users  and  edges  represent  relationships

 

SearchVertex

ø
ø

ø

≥

and not

; ;

 
 

 

Table 1    Real-world graph datasets.

Dataset |V | |Epublic | |Eprivate | degmax cmax pcmax

HF (hamster friend) 1858 12 534 1525 89 17 17
AC (as-caida) 26 475 50 842 2539 2400 14 14

HE (HR-edges) 54 572 451 382 46 820 372 18 18
DB (douban) 154 908 308 182 18 980 287 13 13

 

§http://konect.cc/networks/
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G

between users. We did a little bit of processing to turn
the  downloaded  datasets  into  pp-graphs  by  setting
some  edges  as  private.  The  specific  approach  is:  for
each  vertex,  we  randomly  select  one  of  its  adjacent
edges,  if  the  other  end  vertex  of  the  edge  has  no  less
than  8  neighbors  and  the  number  of  private  edges  is
less  than  one  eighth  of  all  adjacent  edges  associated
with this end vertex, then we make the edge private. By
traversing all  vertices  of  the  graph,  we get  a  pp-graph

. Table 1 provides  the  details  about  each  used  pp-
graph, including the size of their vertex |V| and edge set
|Epublic|,  maximum  degree  of  all  vertices degmax,  the
maximum  public-core  value cmax,  and  the  maximum
pp-core  number pcmax.  In  addition,  we  used  four  pp-
graphs  of  PP-DBLP-2013† by  randomly  selecting
different  numbers  of  vertices,  respectively.  All  graphs
are undirected.

Figure 3 shows the cumulative distribution of public-
core  and  pp-core  number  for  all  graphs  in Table 1.
Here  HE-k is  the  cumulative  public-core  number
distribution  in  pp-graph  HE,  while  HE-pp  is  the
cumulative  pp-core  number  distribution  in  pp-graph.
Figure 3 shows  that  the  curve  representing  pp-core
number is roughly below the curve representing public-
core number, and the line representing pp-core number
first  drops  and  then  rises  compared  with  the  line
representing  the  public-core  number.  This  means  that
for the smaller value, the number of vertices whose pp-
core  number  is  equal  to  this  value  is  less  than  the
number of vertices whose public-core number is equal

k

to  this  value.  Instead,  for  the larger  value,  the number
of vertices whose pp-core number is equal to this value
is more than the number of vertices whose public-core
number  is  equal  to  this  value.  It  demonstrates  that  the
number  of  vertices  that  have  their  pp-core  number
larger than their core number in a middle value is more
than  those  in  a  smaller  value  and  a  bigger  value.  In
addition, Fig. 3 also  shows  that  the  max  pp-core
number is equal to the max public-core number for all
pp-graphs. The higher the ratio of private edges is, The
larger the differences between the two lines (pp and )
in  the  same  graph  are.  For  example,  the  two  lines  in
AC  almost  coincide,  while  there  are  some  significant
differences  between the  two lines  in  HE.  We can find
in Table 1 that  the  ratio  of  private  edges  to  private
edges in AC is about 0.05 and 0.10 in HE.

5.1    Performance evaluation

We  first  evaluate  the  experimental  results  of  the  core
number  and  pp-core  number  computation  algorithms,
then  we  evaluate  the  impact  of  the  size  of
inserted/deleted edges on core maintenance algorithms.

The  time  of  core  decomposition  on  real  graphs  is
given  in Fig. 4.  In  general,  the  time  of  computing
public-core and pp-core number increases as the size of
the  graph  grows. Figure 4 also  shows  that  the  vast
majority of time is spent in calculating the public-core
values  when  calculating  pp-core  number  values  of  a
pp-graph.

Next  we  evaluate  the  impact  of  the  size  of
inserted/deleted edges on core maintenance algorithms
after  changing  an  edge,  i.e.,  private  edge
insertion/deletion  (Algorithm 2),  public  edge  insertion
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Fig. 3    Cumulative  public  core  number  and  pp-core
number distribution of real-world graphs.
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Fig. 4    Time  for  public  core  number  and  pp-core  number
computation in different real-world datasets.
 

†https://github.com/samjjx/pp-data
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Ei = 10i

i = 0,1,2,3,4

MCD PCD

(Algorithm 3), and public edge deletion (Algorithm 6).
The evaluation  is  conducted  on the  four  pp-graphs.  In
each  pp  graph,  public  edges  are  selected
randomly,  where .  These  edges  are  first
deleted  from  the  original  public  graph  to  evaluate  the
deletion  algorithm,  and  then  are  inserted  back  to
evaluate  the  insertion  algorithm.  The  processing  time
per  edge  for  the  edge  insertion  and  deletion  cases  are
shown in Figs. 5a and 5b, from which, we can see that
there  is  a  downward  trend  in  the  processing  time  per
edge as the number of edges inserted/deleted increases.
At  the  same  time,  there  are  some  special  cases  where
the time increases for individual graphs. In theory, the
execution time of each edge should be about the same
no  matter  how  many  public  edges  are  added  or
removed. In fact, because of caching and other factors,
the  execution  time  per  edge  will  have  a  downward
trend  when  we  continuously  invoke  pp-core  number
computation  algorithms.  For  example,  the  time  to
compute the  and  values while executing the
Traversal algorithm can decrease when the second edge
is inserted/deleted. Comparing to recomputing pp-core
numbers,  it  can  be  seen  that  core  maintenance
algorithms are more efficient when inserting/deleting a
public  edge.  The  reason  is  that  only  a  few  vertices
whose  pp-core  numbers  are  changed  when  the  graph
changes only one edge, which is shown in Lemma 5.

Pi = 10i

i = 0,1,2,3

The  case  of  private  edge  insertion/deletion  is  easier
than  the  public  edge,  since  only  two  vertexes  may
change  their  pp-core  number  values  when  a  private
edge  is  inserted.  Similar  to  public  edge
insertion/deletion,  private  edges  are  selected
randomly  in  each  pp  graph,  where .  These
private edges are first deleted from the original graphs
to evaluate the deletion algorithm, and then are inserted
back  to  evaluate  the  insertion  algorithm.  The
processing time per edge for the deletion and insertion
cases are shown in Figs. 5c and 5d, similarly, the trend
is  also  generally  downward  as  the  number  of  edges
inserted/deleted  increases.  The  difference  is  that  it
takes less time than changing a public edge.

SSN

SSN

Next,  we  compare  the  time  after  public  edges
insertion  of  updating  pp-core  number  only  using
Traversal  algorithm  and  using  number
additionally. In order to complete the comparison more
accurately,  we  compare  the  time  taken  after  traversal
algorithm, one of which directly calculates the pp-core
number,  and  the  other  optimizes  the  algorithm  to
further  filter  to  calculate  the  pp-core  number  by using
SSN.  In Fig. 6,  HF_original  represents  the  original
algorithm calculating  the  pp-core  number  directly  and
HF_optimization  represents  the  optimized  algorithm
with  SSN.  From Fig. 6,  it  is  obviously  that  pp-core
number  maintenance  using  number  can  reduce
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Fig. 5    Impact  of  the  size  of  inserted/deleted  edges  on  the
private edge and public edge insertion/deletion algorithms.
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time,  and  as  the  insertion  edges  increased,  the
processing time per edge decreases.

5.2    Scalability evaluation

213 216

We finally evaluate the scalability of our algorithms in
four  subgraphs  of  the  pp-graph  named  PP-DBLP,  by
letting the number of vertices scale from  to . The
results  are  shown  in Fig. 7.  For  each  graph,  we
randomly  select  100  edges  to  delete,  and  then  insert
them  back. Figure 7 shows  that  as  the  size  of  the  pp-
graph  increases  exponentially,  the  average  processing
time  to  maintain  the  pp-core  number  increases  when
adding  100  public  or  private  edges,  and  the  increase
tends to level  off.  At the same time,  the time required
for  pp-core  number  is  much  larger  when  adding  100
public  edges  than  adding  100  private  edges.  Whether
adding public/private edges or removing public/private
edges, the average processing time per edge tends to be
stable when the graph size is large enough, which also
demonstrates that our algorithm works well even when
the pp-graphs have an extremely large size.

6    Related work

In  previous  studies  of  public  graphs,  there  are  various
metrics  to  measure  the  importance  of  a  node,  such  as
degree,  centrality,  proximity,  pageRank,  katz,
permeability,  cross-centrality[15−18], k-core[7, 8],  and k-
truss[9, 19].

Some  studies  on  pp-graphs  have  been  investigated
recently.  In  Ref.  [20],  the  authors  proposed  a  new
model  of  attributed  publicprivate  networks  and
generated  the  corresponding  PP-DBLP  datasets  with
attributes  from  the  rich  keywords  of  paper  titles  on
DBLP  records.  The  public-private  model  of  data
summarization  has  been  investigated  and  solved  by  a

PPKWS

fast  distributed  algorithm[21].  The  problem  of
reachability  indexing  for  pp-graphs  was  considered  in
Ref.  [22],  which  aims  to  identify  a  set  of  additional
visible seed nodes for each user. Moreover, the authors
in  Ref.  [23]  proposed  a  new  keyword  search
framework  on public-private networks.

k

Batagelj

k

In  addition,  there  are  many  relevant  state-of-the-art
developments  in  the  field  of  core  decomposition.  The
standard  algorithm  for  computing -core
decomposition  is  the  one  originally  proposed  by

 and  Zaveršnik[13],  which  is  based  on  the
recursive  deletion  of  vertices  (and  edges  incident  to
them) of degree less than . Cheng et al.[24] proposed a
disk  oriented  algorithm  in  massive  graphs,  which  can
achieve  comparable  performances  as  the  in-memory
algorithm when the memory is large enough to hold the
graph.  Besides,  core  decomposition  in  the  distributed
setting was studied in Ref. [25], and the core number of
the  vertices  is  updated  based  on  the  core  number  of
their neighbors. In Ref. [26], a parallel algorithm called
Park  was  proposed  to  compute  core  numbers  of
vertices on multicore processors. Moreover, in Ref. [27],
the  authors  propose  a  distributed  algorithm  for  core
decomposition on probabilistic graphs.

k

The  problem  of  core  maintenance  has  been  studied
extensively  in  recent  years.  Li  et  al.[25] published  a
report  on  incremental  algorithms  for  core
decomposition,  and  Saríyüce  et  al.[14] proposed  a
traversal  algorithm  with  linear  complexity,  by  which
the  speedup  results  achieved  performed  better.
Moreover,  Bai  et  al.[28] proposed  a  novel  solution  to
tackle -core  maintenance  of  dynamic  graphs,  which
provides  an  effective  solution  to  maintain  the  core
number  of  vertices  affected  by  multiple  inserted
(removed) edges simultaneously. Yu et al.[29] presented
fast  algorithms  for  core  maintenance  in  dynamic
algorithms  by  processing  multiple  edges  concurrently
to improve core maintenance efficiency.

7    Conclusion

In this  paper,  we first  propose a new definition of  pp-
core number of each vertex in a pp-graph, and give the
algorithm  of  core  computation  with  linear  time  and
space  complexity.  In  order  to  get  the  pp-core  number
of each vertex quickly when the pp-graph changes, we
give  core  maintenance  algorithms  for  public  edge
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Fig. 7    Impact  of  the  graph  size  on  the  private  edge  and
public edge insertion/deletion algorithms.
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insertion/deletion  and  private  edge  insertion/deletion,
respectively.  Experiments  on  real-world  graphs
illustrate  the  efficiency  and  scalability  of  our
algorithms. Future work is expected to further propose
the  core  maintenance  algorithms  for  multiple  edges
insertion/deletion.
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