
 

An intelligent wireless transmission toward 6G
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Abstract: With the deployment and commercial application of 5G, researchers start to think of 6G, which could meet

more diversified and deeper intelligent communication requirements. In this paper, a four physical elements, i.e., man,

machine, object,  and genie,  featured 6G concept is  introduced. Genie is  explained as a new element toward 6G. This

paper focuses on the genie realization as an intelligent wireless transmission toward 6G, including sematic information

theory, end-to-end artificial intelligence (AI) joint transceiver design, intelligent wireless transmission block design, and

user-centric  intelligent  access.  A  comprehensive  state-of-the-art  of  each  key  technology  is  presented  and  main

questions as well as some novel suggestions are given. Genie will work comprehensively in 6G wireless communication

and  other  major  industrial  vertical,  while  its  realization  is  concrete  and  step  by  step.  It  is  realized  that  genie-based

wireless communication link works with high intelligence and performs better than that controlled manually.
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1    Introduction

With the 5G standardization Release 16 frozen in July
2020,  5G  wireless  communication  enters  the  fully
implementation  and  commercial  application  era
worldwide,  which  empowered  many  major  industry
vertical  development.  Although  the  3rd  Generation
Partner  Project  (3GPP)  is  now  studying  5G
enhancement  Release  17,  research  on  systems  and
techniques beyond 5G had been started early in 2017[1].
Along  with  5G  commercial  application,  vision  of  6G
and  emerging  technologies  draw  more  and  more
attentions from then on.

The newest publication of Tataria et al.[2] studies the

vision of 6G systems and its use cases by summarizing
and  analyzing  some  previous  research  on  6G[3−7].  It
shows  the  6G  vision  from  eight  key  performance
metrics[2] as  (1)  peak  rate  (≥1  Tbps);  (2)  user
experience  rate  (1  Gbps);  (3)  latency (25 μs  to  1  ms);
(4)  mobility  (1 000 km/h);  (5)  area  capacity  (1
Gbps/m2);  (6)  connectivity  (107 devices/km2 );  (7)
reliability  (99.999 999%);  (8)  network  energy
efficiency  (100−1000×).  The  use  cases  and
techniques[2, 4,  6]  cover  holographic  communications,
tactile  and  haptic  internet  application,  network  and
computing  convergence,  extremely  high  rate
information showers, connectivity for everything, chip-
to-chip  communications,  and  space-terrestrial
integrated  networks.  References  [8−10]  introduces  6G
oriented  techniques  from  network  to  physical  layer
(PHY)  aspect.  One  common  feature  from  key
techniques  point  of  view  is  that  artificial  intelligence
(AI)  would  empower  wireless  communication  system
from  network  as  mobile  computing  and  resource
management  to  wireless  access,  and  radio
transmission[11−14],  while  analyzes  big  data  features  in
wireless networks and action in wireless AI to enhance
intelligence.  Therefore  the  main  feature  of  6G
compared  to  5G  is  that  6G  is  more  intelligent  as  it
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could  study  new  cases  by  data  analysis  and  change
mechanisms  accordingly.  We  call  that  6G  is
empowered  by  an  intelligent  element  genie[15],  and  is
constructed  by  four  physical  elements  as  man,
machine,  object,  and  genie,  which  could  work
coordinately  to  reach  6G  key  performance  indicators
(KPIs).  This  concept  of  6G is  from the  top-level  as  it
reveals  the  feature  for  all  kinds  6G  senarios  and  use
cases,  however  the  concrete  techniques  may  be
different  for  different  deploy  systems  to  meet  the
requirements of 6G KPIs. For instance, to realize peak
rate  larger  than  1  Tbps,  THz  communication  and
visible  light  communication  could  be  candidate  key
techniques. While to realize network energy efficiency
enhanced  by  100−1000×,  green  communication
techniques draw more attention as intelligent reflecting
surface (IRS), and energy harvesting. On the top of the
different scenarios and techniques, genie element could
make  the  system  work  more  efficient  by  empowered
them with intelligence.

This  paper  presents  6G  concept  as  whatever  the
scenario  is,  the  system  would  be  constructed  by  four
physical  elements,  i.e.,  man,  machine,  object,  and
genie.  By  collaboration  of  man,  machine,  object,  and
genie,  the  system,  such  as  mobile  communication,
Internet of Things (IoT), Internet of Vehicle (IoV), etc.
would  work  with  high  intelligence,  security,  and
performance.

The  rest  of  the  paper  is  organized  as  follows.  In
Section  2,  the  genie  element  in  6G  is  explained.
Section  3  introduces  how  to  realize  genie  from
information  theory  transmission  aspect  as  Sematic
Information  Theory.  Sections  4  and  5  show  the  genie
exploitation  in  PHY  techniques.  In  Section  4,  a  joint
intelligent  transceiver  design  is  deployed  with  its
challenges,  which  seems  a  long  way  from  current  5G
radio transmission systems. Section 5 reviews the state-
of-the-art  enhancement  techniques  by  AI  to  realize
genie feature to different PHY modules, which is more
prospective to improve the current 5G PHY techniques.
A conclusion is shown in Section 6. 

2    Genie: New element in 6G

The  deployment  and  implementation  of  5G  have

bought  remarkable  changes  to  modern  wireless
communication  systems.  6G  will  be  further  expanded
and  upgraded  to  meet  more  diversified  and  deeper
intelligent  communication  demands.  Trends  on  the
horizon —such  as  the  broad  application  of  AI  in
6G —call  for  a  radical  rethink  about  the  design  of
future  wireless  architectures.  To  empower  AI  as  a
super  oracle,  services  in  6G  will  evolve  into  two
setups:  the  real  world  and  the  virtual  world.  The  real
world  is  compatible  with  current  communication
scenarios  and  infrastructures  in  5G,  while  the  virtual
world  extends  the  real-world  services,  dealing  with
novel  virtual-world  requirements.  Accordingly,  in
addition  to  the  three  physical  elements,  i.e.,  man,
machine,  and  object,  6G  should  also  embrace  a  new
element—genie[14].  Genie belongs to the virtual world
and  allows  communication  and  decision-making
without  human  intervention.  Relying  on  a  large  real-
time  collection  of  data  and  state-of-the-art  machine
learning techniques, genie is able to capture the user’s
intentions  and  make  decisions.  Genie  overrides  the
cohesive  integration  of  man,  machine,  and  object  and
can  cover  any  physical  entities  that  act  as
communicating  and  computing  nodes.  Through  the
harmonious  collaboration  with  man,  machine,  and
object,  genie can provide users with immersive virtual
scenes  and  be  granted  to  make  decisions  on  behalf  of
users.  Real-virtual  combination,  real-time  interaction,
and  other  features  of  the  virtual  world  have  brought
severe  challenges  to  5G.  To  support  those  pressing
demands of 6G, novel basic theories and techniques are
eagerly  anticipated.  Genie  is  a  concept  related
comprehensively  to  every  corner  of  wireless
communication  systems.  Semantic  communication,
which is expected to be the genie for 6G, is just such a
worthwhile research direction and an untapped treasure
relating  information  communication  theory.  AI
empowered  wireless  transmission  or  end-to-end  AI
design  mechanics  of  transmission  is  another  concrete
directions  driven  by  the  concept  of  genie.  In  general,
genie  is  a  combination  result  of  optimization  theory,
automatic  control,  machine learning,  and data science.
Genie  is  realized  by  different  mechanics  in  different
protocol aspects in wireless communications. 
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3    Sematic information theory

From  the  viewpoint  of  epistemology,  information  is
embodied  through  the  perception  of  the  cognitive
subject (man, machine, and object) and comprises three
levels,  i.e.,  syntactic,  semantic,  and  pragmatic,  as
shown  in Fig. 1 ,  where  syntactic  information  is  the
most underlying level and pragmatic information is the
most  complicated  one.  It  is  essentially  consistent  with
the three levels of communication problems mentioned
by  Weaver  in  1949[16].  Classical  Shannon’s
information  theory[17] only  investigates  syntactic
information,  or  more  specifically,  probabilistic
information  in  syntactic  information,  excluding
semantic  and  pragmatic.  According  to  Weaver[16],
Shannon’s information theory only solves the technical
problem of how accurately the communication symbols
can be transmitted. 

3.1    Semantic concept exploration

In  recent  years,  the  research  on  semantic  information
has  aroused  an  academic  upsurge.  Semantic
information  reflects  the  inherent  meaning  of  the
moving  and  changing  states  of  an  object.  It  can  be
comprehended  and  interpreted  with  natural  language,
thus  highly  subjective.  From  syntactic  information  to
semantic information, it will provide a new perspective
for communication system optimization and have great
revolutionary  significance.  In  fact,  the  exploration  of
semantic  information  theory  has  been  a  long-standing
topic.  With  Weaver  as  the  pioneer,  many  researchers
have  devoted  themselves  to  lay  the  foundation  of
semantic  information  theory.  Carnap  and  Bar-
Hillel[18, 19]  put  forward  the  conceptual  framework  of
semantic information theory, attempting to supplement
the  traditional  communication  theory.  They  believed
that  the  semantic  information  contained  in  a  sentence

should  be  defined  based  on  the  logical  probability  of
the content. Barwise and Perry[20] further proposed the
situation  logic  principle  to  describe  semantic
information. In Ref. [21], Floridi proposed the strongly
semantic  information  theory  and  pointed  out  the  Bar-
Hillel  and  Carnap  paradox  that  a  self-contradictory
sentence  carries  more  semantic  content.  In  2011,  D’
Alfonso[22] introduced  the  notion  of  truth  likeness  to
quantify  semantic  information.  Although  it  has  been
ardently discussed, semantic information theory is still
in  its  infancy,  and  there  is  no  universal  agreement  on
the  corresponding  definition  and  measurement.  In
recent  decades,  fruitful  advances  in  cognitive
neuroscience  have  greatly  influenced  neural  networks
and deep learning theory. How to measure, extract, and
represent  semantic  information has  attracted more and
more attention from academia and industry. 

3.2    Semantic measurement

X= {xi: i= 1,2, . . . ,N}

PX

As  aforementioned,  semantic  information  not  only
depends  on  the  sender,  but  the  receiver’s
understanding,  so  it  is  both  random  and  fuzzy.
Shannon’s information theory puts a great emphasis on
probability,  regardless  of  the  specific  content  and
meaning of information. It describes the randomness of
information  by  the  notion  of  probabilistic  entropy
whereas  natural  language  descriptions,  i.e.,  semantics,
are typically fuzzy in reality. Therefore, to characterize
and analyze semantic descriptions, such as heavy, light,
probably,  nearly,  etc.,  we  should  resort  to  fuzzy  set
theory.  De  Luca  and  Termini[23, 24]  first  studied  the
indefiniteness  arising  from  pure  fuzziness  and
introduced  the  definition  of  entropy  of  a  fuzzy  set,
formally  similar  to  the  Shannon  entropy  although
different conceptually. On this foundation, Wu[25] went
a  step  further  and  put  forward  the  concepts  of
generalized  joint  entropy,  generalized  conditional
entropy,  and  generalized  mutual  information,
establishing  a  primary  semantic  measurement  scheme.
Let  denote  a  discrete  probabilistic
random source,  the  Shannon  entropy  is  defined  as  the
average self-information on the probability measure 
and is given by 

 

Pragmatic information

Semantic information

Syntactic informatioin External form of the moving
and changing states of an object

Inherent meaning of the moving
and changing states of an object

Utility value of the moving and
changing states of an object

 
Fig. 1    Three levels of information.
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H (X) =
N∑

i=1

P (xi) log2P (xi) (1)

X̃ = (X̃1, . . . , X̃K) ∑
kµX̃k

(xi) ⩽ 1

Given  a  complete  fuzzy  set  ensemble
, let the membership function μ measure

the  degree  of  fuzziness  and ,  the
generalized source entropy is defined as
 

H̃
(
X̃
)
∆
= −

N∑
i=1

K∑
k=1

µX̃k
(xi)P (xi) log2µX̃k

(xi)P (xi) =

H (X)+
N∑

i=1

P(xi)hX̃(xi) =

H (X)+H
(
X̃
)

(2)

hX̃(xi) =
∑K

k=1 µX̃k
(xi) log 2µX̃k

(xi)

xi

where  denotes the pure
fuzzy  entropy  when  the  event  occurs.  According  to
Eq. (2), the generalized source entropy consists of two
parts,  the  probabilistic  entropy  and  the  fuzzy  entropy.
The former measures the probabilistic incertitude while
the  latter  represents  the  uncertainty  of  intrinsic
ambiguity, i.e., semantic uncertainty.

Ideally,  given  a  source  and  its  probability  measure,
the  above  generalized  entropy  can  be  calculated  by
carefully selecting a membership function μ. However,
since  semantic  information  is  always  contained  in
syntactic  information,  and μ  is  usually  nonlinear  and
intractable  and  may  vary  dynamically,  the  theoretical
result  in  Eq.  (2)  cannot  offer  practical  guidance  for
semantic  communications.  Thanks  to  the  rapid
development  of  deep  learning,  Niu  et  al.[26] proposed
the  idea  of  semantic  base,  which  extracts  semantic
features  of  the  source  with  the  aid  of  neural  networks
for semantic information measurement. In this way, the
difficulty of selecting μ is avoided. Actually, there have
been  some  early  studies  on  practical  semantic
communications.  A  deep  learning  enabled  semantic
communication system was established in Ref. [27] for
text  sources.  Farsad  et  al.[28] designed  a  bidirectional
long  and  short  term memory  (Bi-LSTM) model  based
semantic coding scheme. As for image sources, several
analog  semantic  coding  schemes  using  convolutional
neural networks (CNN) were presented in Ref. [29−31]
and  were  proved  capable  of  compressing  images
efficiently  and  resisting  wireless  errors.  For  diverse
communication  scenarios  in  6G,  since  various
individuals  (man-machine-creature-genie)  deliver

massive  heterogeneous  types  of  data,  comprehensible
semantic  communications  will  play  a  critical  role  by
virtue of its intelligence and become a promising trend.
Even  so,  the  modeling  and  evaluation  of  semantic
entropy,  channel  capacity,  and  rate  distortion  function
is  still  an  open  problem,  and  research  on  semantic
information theory still has a long way to go. 

4    End-to-end AI joint transceiver design

Communication  is  a  complex  and  mature  engineering
field  with  many  distinct  areas  of  investigation  which
have  all  seen  diminishing  returns  with  regards  to
performance  improvements,  in  particular  on  the
physical  layer[32].  In  addition,  in  domains  such  as
computer vision and natural language processing, deep
learning  (DL)  shines  because  it  is  difficult  to
characterize  real  world  images  or  language  with  rigid
mathematical  models.  From  the  information  point  of
view,  which comes from language,  image,  video,  etc.,
it also employs the same features and obstacles as those
of  natural  language  processing  (NLP)  and  computer
vision (CV). Therefore, in recent years, research on the
joint  transceiver  design  based  on  deep  learning  has
attracted considerable attention.

DL was first introduced to the physical layer in Ref.
[32].  By  interpreting  a  communications  system  as  an
auto-encoder (AE), Ref. [32] developed a fundamental
new way to think about communications system design
as  an  end-to-end  reconstruction  task  that  seeks  to
jointly optimize transmitter and receiver components in
a single process and extended the networks of multiple
transmitters  and  receivers.  The  neural  networks  in
Refs. [32, 33] only used linear fully connected layers to
achieve competitive accuracy with respect to traditional
schemes relying on expert features. Soon afterwards, a
novel CNN-based auto-encoder communication system
is  proposed  in  Refs.  [34, 35 ],  which  can  work
intelligently  with  arbitrary  block  length  according  to
different  channel  environments.  A DL auto-encoder  is
presented  in  Ref.  [36]  where  both  the  transmitter  and
receiver  employ  the  bi-directional  gated  recurrent  unit
(Bi-GRU)  layers  for  end-to-end  physical  layer
communications,  in  the  presence  of  inter  symbol
interference (ISI). GRU is a variant of long short-term
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memory  (LSTM)  in  order  to  reduce  neural  networks
parameters.  LSTM has been widely applied in various
physical layer cases, such as the joint deign of source-
channel  coding[28].  The  above  DL  is  mainly  used  in
point-to-point  communication  systems.  Of  course,  DL
can also be extended to multiple-input multiple-output
(MIMO) and multi-user scenarios. References [37−39]
presented  a  novel  physical  layer  scheme  for  MIMO
communication  systems  based  on  unsupervised  DL
using  an  auto-encoder  in  an  interference  channel  (IC)
environment.  The  study  in  Ref.  [32]  proposed  a
solution  for  the  interference  of  a  two-user  link  when
AE is applied. However, only two users are considered,
and  offline  training  is  used.  Reference  [40]  addressed
the  dynamic  interference  in  a  multi-user  Gaussian
interference channel and proposed a novel adaptive DL
based AE to learn and predict dynamic interference and
update the leaning processing for the decoder.

In wireless communication systems, the receiver has
to work with noise and interference corrupted versions
of  transmit  symbols.  The  auto-encoders  discussed
above  are  not  designed  to  work  with  latent  codes
corrupted with noise. Therefore, Refs. [41, 42] provide
a  framework  called  variational  auto-encoder  to  design
end-to-end communication systems which accounts for
the existence of noise corrupted transmit symbols. The
objective  function  for  optimizing  these  models  was
derived based on the concepts of variational inference.

The  implement  of  the  end-to-end  auto-encoders
discussed  above  is  in  the  case  where  the  channel
parameters  are  known  in  advance  and  the  channel  is
assumed  to  be  differentiable.  When  the  channel
parameters  are  unknown  in  advance,  the  gradients
cannot back propagated through the unknown channel,
which  forestalls  the  learning  of  the  end-to-end
networks[43]. We will introduce two methods to address
the  issue.  In  Ref.  [44],  a  reinforcement  learning  (RL)
based  approach  has  been  proposed  to  circumvent  the
problem  of  missing  gradients  from  channels  when
optimizing the transmitter. In order to solve the missing
gradient  problem and lower  the  demands for  the  large
amount  of  training  data,  a  generative  approach  based
on  conditional  generative  adversarial  net  (CGAN)  has
been proposed in Ref. [45].

Existing  work  has  shown  the  power  of  data-driven
models  in  the  joint  transceiver  design.  Even  though  a
universal  transmitter/receiver  can  be  optimized  in  the
end-to-end  learning-based  communication  design,  the
training  process  takes  very  long  as  all  the
communication  blocks  are  merged[43].  In  order  to
improve  the  training  efficiency  and  achieve  good
system performance, part of the communication blocks
can  be  kept  and  model-drive  DL  methods  can  be
considered[46, 47]. 

5    Intelligent  wireless  transmission  model
design

 

5.1    Channel estimation

In recent years, the rapid development of AI has led to
breakthroughs  and  innovations  in  many  technical
fields.  The  combination  of  DL  and  wireless
communication  is  considered  to  be  an  important
cornerstone for 6G intelligent communication. Channel
estimation  is  an  important  part  of  wireless
communication  system.  Some  traditional  channel
estimation  algorithms,  such  as  least  square  (LS),
minimum  mean  square  error  (MMSE),  have  been
widely  used  in  the  field  of  channel  estimation.  AI
empowered  channel  estimation  technology  aims  to
introduce  deep  neural  network  (DNN)  into  the
traditional  channel  estimation  algorithm,  which  can
effectively improve the accuracy of channel estimation,
especially in the situation of limited pilot resources.

For  the  channel  estimation  with  DL,  most  of  the
researches  in  recent  years  are  based  on  CNN  to  build
neural  network  model[48−53].  The  reason  can  be
attributed to that in massive MIMO system, the channel
response  matrix  can  be  regarded  as  two-dimensional
image,  and  the  process  of  channel  estimation  can  be
compared with the process of image reconstruction and
denoising  using  CNN.  Among  them,  Ref.  [48]
proposed a CNN channel estimation network based on
image  super-resolution,  which  takes  the  channel
estimated  by  traditional  LS  algorithm  as  the  input  of
the network and makes the output of the network close
to the real channel response, which could be interpreted
as  the  high-resolution  image.  To  eliminate  the
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influence of noise on channel estimation, Refs. [49, 50]
use  convolutional  non-blind  denoising  network.  To
further  reduce  the  overhead  of  pilot  based  channel
estimation,  a  convolution  generative  adversarial
network  (C-GAN)  is  proposed,  which  achieves  good
results  in  the  scenario  of  receiving  pilot  one-bit
quantization  with  analog-to-digital  converters  (one-bit
ADCs)[51]. To improve the efficiency of neural network
training,  attention  mechanism  and  complex  neural
network  model  are  introduced  on  the  basis  of
convolutional residual network[52]. On the other aspect,
according  to  the  time-varying  characteristics  of
wireless  channel,  some  researches  build  network
models based on recurrent neural network (RNN)[54, 55].
A  network  combining  LSTM  with  multi-layer
perceptron (MLP) is proposed[54], which achieves good
results  in  high-speed  mobile  scenarios.  The  RNN
network model  is  optimized in  Ref.  [55]  to  get  higher
channel  estimation  accuracy  than  the  traditional  linear
minimum mean square error (LMMSE) algorithm.

It is worth noting that most of the current researches
on  channel  estimation  empowered  by  deep  learning
considers  the  friendliest  scenarios  with  few  antenna
ports (less than 8) and rich pilot resources, which is not
in accordance with 5G NR reference signal as channel
state  information–reference  signal  (CSI-RS)[56] with
massive  MIMO  (more  than  64  antenna  ports).  For
example,  a  2×2  MIMO  scenario  with  a  simple  comb
pilot  structure  is  used  for  channel  estimation  in  Ref.
[57].  After  interpolation,  a  three-layer  fully  connected
neural  network  is  used  for  optimal  fitting.  The
simulation  results  show  that  the  neural  network  has  a
certain  performance  improvement  compared  with  the
traditional scheme. For large-scale MIMO antenna with
more than 64 ports in 5G NR, according to the resource
allocation rule of CSI-RS in resource blocks (RBs)[56],
the  frequency  band  resource  occupied  by  each  port
pilot  decreases  with  the  increase  of  the  number  of
ports.  Therefore, for all  subcarriers in the whole band,
the  placement  of  each  antenna  port  pilot  is  extremely
sparse,  which  greatly  deteriorate  dramatically  the
performance  of  traditional  channel  estimation.  AI  is
expected  to  improve  the  channel  estimation  results.
However  more  studies  are  needed  to  design  effective

and  lightweight  neural  network  to  tackle  the  channel
estimation problems with very sparse pilot  assignment
in massive MIMO cases. Figure 2 is a summary of the
DL-based  channel  estimation  algorithms  introduced
above. 

5.2    Signal detection

s
y = Hs+ n H

n

In  this  section,  we  discuss  the  application  of  AI
techniques  to  improve  signal  detection.  In  MIMO
systems, the goal of signal detection is to determine the
transmitted  signal  vector  from  the  received  vector

.  represents  the  channel  matrix  between
the  transmitter  and  the  receiver  and  is  a  Gaussian
noise  vector.  This  can  be  achieved  by  classical  signal
detection  algorithms  such  as  the  optimal  maximum
likelihood (ML), near-optimal spherical decoding (SD),
and  suboptimal  linear  zero-forcing  (ZF)  and  MMSE.
They are mathematical model based algorithms, which
have  many  disadvantages,  including  high  complexity
and  poor  scalability.  In  recent  years,  signal  detection
algorithms  based  on  DL  are  widely  concerned.
Research  shows  that  DL  technology  can  significantly
improve the performance of signal detection compared
with the classical detector[33].

Existing  literature  research  shows  that  signal
detection  can  be  divided  into  two  categories:  data
driven and model driven, as shown in Table 1. The data
 

Estimated channel
H′ used

traditional
algorithms, such

as LS.
(Less pilot resources

and poor performance)

Input
Output

(Better performance)

Optimized
channel H′′.

Neural network
(3 main categories)

·CNN: [48−53]
·RNN: [54, 55]

·FC: [56]

 
Fig. 2    DL-based channel estimation.

 

 

Table 1    Classification of existing DL algorithms.

DL group Detector Reference DL models
Data driven DL model [33, 58, 59] DNN, CNN, RNN

Model driven

PGD-based [60, 61] DetNet

Iterative algorithm
[62, 63] OAMP-Net

[64] MMNet
SD [65] FS-Net
TS [66] FS-Net
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driven  AI  signal  detector  is  constructed  by  neural
network  totally,  such  as  DNN[33],  CNN[58],  and
RNN[59].  Relying  on  the  data  of  wireless
communication  systems,  through  training,  the  output
result  is  the  estimated  value  of  the  transmitted  signal.
Reference  [33]  used  DNN  to  solve  the  problem  of
signal  detection  in  orthogonal  frequency  division
multiplexing  (OFDM)  system.  It  regards  channel
estimation  and  signal  detection  as  a  whole  and  is
directly  realized  by  DNN.  Reference  [58]  proposed  a
deep  fully  CNN,  which  combines  the  channel
estimation  and  signal  detection  modules  in  a  5G-
compliant  fashion  and  using  3GPP-defined  channel
models. Reference [59] utilized a RNN with Bi-LSTM
architecture  to  achieve  signal  detection  in  uplink
OFDM systems over time-varying channels.

The  model  driven  AI  signal  detector  combines
classical  signal  detection  model  and  deep  leaning
algorithms.  In  most  cases,  classical  iterative  signal
detection  algorithms  are  reconstructed  and  expanded
into the form of network,  and parameters are dynamic
and could be trained by communication data. Therefore
the  detector  is  optimized.  References  [60, 61]
considered  the  application  of  DL  in  MIMO  system.
Based  on  the  ML  detection  algorithm,  the  projection
gradient  descent  (PGD)  method  is  expanded  to  obtain
the  detection  network  (DetNet).  DetNet  can  achieve
high  accuracy  with  significantly  lower  complexity.
Based  on  orthogonal  approximate  message  passing
(OAMP)  iterative  algorithm  and  combined  with  deep
learning network, OAMP-Net is proposed in Refs. [62,
63].  The  network  solves  the  problem  of  signal
detection performance degradation of OAMP algorithm
in  complex  MIMO  systems.  On  real-world  channels
with  spatial  correlation,  Ref.  [64]  proposed  Mehrdad-
Mohammad  network  (MMNet),  which  builds  on  the
theory  of  iterative  soft-thresholding  algorithms.  That
algorithm  utilizes  temporal  and  spectral  correlation  in
real channels to accelerate training. Reference [65] was
the application of  DL to  SD detection in  large MIMO
systems. Different from the idea of developing iterative
network based on detection algorithm in Refs. [62−64],
Ref.  [65]  used  a  fast-convergence  sparsely  connected
detection  network  (FS-Net)  to  generate  the  initial

solution  of  detection  algorithm.  The  results  show  that
compared  with  the  detection  network  executing  SD
algorithm in the training phase, the algorithm proposed
in  Ref.  [65]  has  lower  complexity  without  any
performance  loss.  Reference  [66]  was  the  application
of  DL  to  tabu  search  (TS)  detection  in  large  MIMO
systems. Reference [66] used the FS-Net to generate an
initial  solution  and  then  executed  TS  algorithm.  The
DL-aided TS algorithm reduces the complexity by 90%
and maintains  the  same performance  as  the  traditional
TS  algorithm.  The  suboptimal  initial  solution  can
accelerate  the  search  process  of  the  traditional
detection algorithm without affecting the final  optimal
solution,  and  does  not  need  to  train  the  algorithm
parameters.  They  perform  better  in  algorithm
complexity and performance.

Data  driven  AI  signal  detector  has  obvious
advantages when CSI is  not  available.  However,  there
are  some  problems  in  this  kind  of  detector.  They  rely
heavily  on  network  construction  and  experience
parameter  adjustment  by  training.  Although  they  are
better  than  classical  detectors  in  some  cases,  their
performance  is  far  from  optimal,  especially  in  more
complex  communication  scenarios.  Model  driven  AI
signal detectors are proposed in order to overcome the
above  problems.  The  combination  of  neural  network
and  classical  iterative  detection  algorithm  can
significantly  reduce  the  complexity  of  the  algorithm
while  ensuring  the  performance  of  the  detector.  The
network  setting,  parameter  training,  and  subsequent
optimization expansion of the detector are interpretable
due  to  mathematical  optimization  based  on
communication model. Therefore, signal detector based
on model driven neural network gains more feasibility.
However,  the  complexity  and  lightweight  design  with
better  detection  performance  is  still  hard  to  resolve
especially  for  variant  mobile  terminals. Table 1 shows
the  classification  of  the  existing  DL-based  signal
detection algorithms. 

5.3    AMC and automatic modulation detection

Adaptive  modulation  and  coding  (AMC)  technology
can  timely  adjust  the  modulation  and  channel  coding
rate  of  wireless  link  transmission  according  to  the
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change  of  communication  environment[67],  so  as  to
balance  the  quality  and  efficiency  of  wireless
transmission.  The  traditional  AMC  technology  is  to
establish a modulation and coding scheme (MCS) look-
up  table  by  feedback  signal-to-noise  ratio  information
under  the  condition  that  the  system  block  error  rate
(BLER) is lower than a specific value, and then select
the  appropriate  MCS  for  the  next  transmission  time
interval  (TTI)  according  to  the  corresponding  look-up
table  of  the  current  CSI  in  the  actual  communication
system.  However,  the  relationship  between  channel
quality  and  system performance  is  not  a  simple  linear
correspondence, and the transmission effect is poor[68].
With  the  advent  of  AI  era,  machine  learning  is
exploited to make AMC more accuracy and efficiency.
The  simple  mapping  operation  of  channel  quality
indication (CQI) and MCS is improved by introducing
AI  algorithms  to  improve  the  mapping  accuracy  of
current  channel  state  and  CQI[69],  so  as  to  gain  lower
BLER  and  higher  spectrum  efficiency.  Machine
learning  and  AI  are  potential  to  automatically
recognize  different  modulation  signals  without
signaling  assistance,  which  can  reduce  the  signaling
overhead of AMC technology to a certain extent[70].

The  throughput  performance  of  AMC  based  on  the
traditional  look-up  table  method  and  four  machine
learning solutions are shown in Fig. 3[71]. It can be seen
that  the  performance  of  the  traditional  look-up  table
method is the worst because signal to interference plus
noise  ratio  (SINR)  estimation  algorithms  can  only
violently  project  multiple  SINRs  in  a  communication

link  to  a  single  value  while  this  process  is  bound  to
ignore  or  weaken  the  relationship  between  multiple
SINRs.  The  introduction  of  machine  learning  has
greatly  improved  this  disadvantage.  The  machine
learning method uses multiple SINRs as input features,
uses  different  algorithms  to  determine  the  CQI  label,
and uses the input  features  as  the overall  input,  which
results in better throughput performance.

To  sum  up,  machine  learning  and  AI  could  make
AMC  smarter.  Inspired  by  this,  wireless  transmission
link  parameters  could  be  adjusted  dynamically  and
efficiently  by  AI.  However  it  is  still  an  open  research
issue due to de complexity of effects of parameters. 

6    User centric intelligent access
 

6.1    User centric cell free concept

Integrated  massive  MIMO  seems  to  foresee  its
performance  increasing  ceiling  by  enlarging  antennas
arrays.  Network  densification  with  the  deployment  of
large number of  access  points  (APs)  per  unit  area is  a
way  to  improve  the  network  coverage  and  capacity,
which  implies  more  potential  in  quality  of  experience
(QoE)  increasing  for  6G.  To  further  alleviate  the
increased signal interference and outage problem of the
cell-edge users, a promising concept has been recently
termed as the so-called Cell-free (CF) massive MIMO
systems, which comprise a large number of distributed,
low cost,  and low power  AP antennas,  connected  to  a
network  controller[76].  The  number  of  antennas  is
significantly  larger  than  the  number  of  users.  The
system  is  not  partitioned  into  cells  and  each  user  is
served  by  all  AP  antennas  simultaneously,  which  can
provide a more uniform service level to the users than a
conventional  cellular  topology.  A  user-centric  (UC)
approach  to  CF  massive  MIMO  is  recently
proposed[77],  wherein  each  user  is  served  only  by  a
limited number of APs. In other words, the active APs
within the same cooperation set serve a specific subset
of  user  equipment  (UE),  which  provide  rewarding
connectivity  patterns,  while  the  other  APs  without
served  UE  will  run  in  sleep  mode  for  reduced  power
consumption. The UC approach requires less backhaul
overhead  than  the  conventional  CF  approach,  and
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Fig. 3    Throughput  performance  of  multi  AMC  scheme
model.
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outperforms  the  latter  in  terms  of  achievable  rate  and
energy  efficiency  for  some  cases.  The  expressions  for
the  downlink  (marked d  in  the  upper  right  corner)
feasible  rate  per  user  unit  bandwidth,  spectrum
efficiency  per  user,  sum  spectrum  efficiency,  and
energy efficiency are given respectively below:
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where K  represents  the  number  of  users, pmk≥0  is  the
transmit  data  power  that  AP m -th  allocates  to  user k,
γmk is the channel estimate variance,  represents the
user set using the same pilot sequence as user k, 
denotes  the  user  set  using  the  same  pilot  sequence  as
user k except user k, βmk denotes the large-scale fading
coefficient,  is the length of coherence time,  is the
length  of  uplink  training, B  is  the  system  bandwidth,
Δm ≥ 1  determines  the  inefficiency  of  the  power
amplifiers, Pm  models  the  power  consumption  of  the
transceiver  chain  connected  to  active  APs  and  the
traffic-independent power of the front haul connections
and baseband processing, P tb,  m (measured in Watt  per
bit/s)  is  the  traffic-varying  power  consumption  of  the
front haul and baseband processing, Ak denotes the APs
selected by the k-th user, A denotes all the active APs,
Um is  the  UEs  served  by  the m -th  AP,  and is  the
variance of the additive Gaussian noise of the downlink
channel. 

6.2    Intelligent access point selection

One  of  the  main  issues  of  UC-CF  system  is  the  AP
selection (or initial access), since a fraction of the APs
can  beneficially  communicate  to  a  specific  UE[78].

Specifically, we consider a CF massive MIMO system
where M APs serve K users in the same time-frequency
resource  under  time-division  duplex  (TDD)  operation.
Each AP is equipped with N antennas, while each user
has a single antenna. We further assume that M  >> K.
Herein,  for  a  specific user k ,  how to choose a suitable
service  AP  set  is  the  key  to  improve  the  system
performance.  This  is  a  meaningful  research  topic,  and
many  scholars  have  done  some  research  in  this  area.
For  example,  with  an  unconstrained  sub-
parameterization  method  based  on  large-scale  fading
coefficients[79],  the k -th  user  is  associated  with  only
|Ak|≤M APs  corresponding  to  the  |Ak|  largest  large-
scale fading coefficients. Naturally, we can choose |Ak|
APs which satisfy
 

|Ak |∑
m=1

β̄mk∑M
m′=1 βm′k

⩾ δ% (7)

{β̄1k, β̄2k, ..., β̄Mk}
{β1k,β2k, ...,βMk}

δ

where  is  the  sorted  (in  descending
order) set of the large-scale fading set ,
and  is a scale threshold. Another type of AP selection
scheme  is  the  so-called  received-power-based
selection[80].  The  goal  of  this  method  can  be  the
optimization  of  sum  rate  or  energy  efficiency.  After
obtaining the power allocation coefficients, we can set
a  threshold  to  disconnect  the  connections  between  the
UE and AP whose power is lower than the threshold, or
we  can  select  the  AP  according  to  the  following
formula[81]:
 

|Ak |∑
m=1

p̄mk∑M
m′=1 pm′k

⩾ δ% (8)

{ p̄1k, p̄2k, ..., p̄Mk}
{p1k, p2k, ..., pMk}

where  is  the  sorted  (in  descending
order)  set  of  the  power  set .  We  can
adopt some sub-automation tools, such as Matlab CVX
toolkit  to  obtain  the  power  allocation  coefficients.
Reference [82] proposed a dormant strategy to turn off
some  APs  to  improve  energy  efficiency.  They  solved
the  joint  optimization  problem  of  AP  selection  and
power  allocation  in  a  given  downlink  service  demand
scenario, and obtained a global optimal solution of AP
selection  strategy  and  transmit  power  by  solving  the
mixed-  integer  second-order  cone program,  which can
greatly  improve  the  energy  efficiency  of  the  system.
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They  further  gave  a  simplified  algorithm  based  on
binary search to reduce the computational  complexity.
The  effect  of  these  algorithms  in  improving  energy
efficiency  is  shown  in Fig. 4  by  simulation.  We  use
“AAO” to  indicate  all  APs  on  method,  use “OPT”  to
represent  the  optimal  algorithm  with  high
computational complexity, and use “SIM” to represent
the simplified algorithm with low complexity. It can be
observed that the energy efficiency of the CF network
used  by  these  optimum  algorithms  (fewer  APs  but
favorable connections) can be increased compared with
that all APs always keep active.

It is worth noting that the selection of AP is affected
by  many  factors,  such  as  the  channel  model  with
disparate  physical  coefficients,  location  distribution  of
UEs and APs, number of network devices,  etc.,  and is
also depended on the system optimization objects (sum
rate  or  energy  efficiency).  Since  intelligent  machine
learning,  such  as  deep  learning  methods  in  Refs.  [81,
83, 84 ],  deep  reinforcement  learning  in  Ref.  [85],  is
good  at  dealing  with  complex  problems  containing
large  amounts  of  data  and  multiple  variables
(coefficients in the system),  it  is  expected to solve the
problem of AP selection in CF massive MIMO systems
more  effectively.  The  brief  framework  is  shown  in
Fig. 5. 

7    Conclusion

This  paper  presents  a  major  characteristic  of  genie  in
6G in addition to the three physical elements from 5G,
i.e.,  man, machine, and object, to reduce manual work
and increase machine intelligence. Although genie is a

new  element  from  virtual  world  view,  it  acts  as
intelligence  mechanism  by  different  techniques  for
wireless  communication  systems.  This  paper  focuses
on  the  genie  realization  aspect  on  physical  layer  of
wireless  communications,  which  makes  a  radio
transmission  link  working  automatically  with  high
intelligence  and  efficiency.  For  information
transmission, sematic information theory is expected to
break  the  limitations  from  normal  Shannon  theory  to
improve  spectrum  efficiency  by  intelligent  sematic
information  processing.  For  wireless  signal
transmission,  AI  is  embraced  by  transmitter  and
receiver  design  with  different  granularities,  from  total
end-to-end  AI  transceiver  design  to  parameter
optimization  by  deep  learning  in  channel  estimation,
signal  detection,  AMC,  etc.  The  6G  research  is  just
beginning and there are many open questions presented
in  each  sections  related  to  intelligent  wireless
transmission  technologies.  From  MAC  layer,  RRM
layer,  network  layer,  and  application  layer,  Genie
introduces different novel mechanisms, which is out of
the scope of this paper. In general, genie makes a great
and  systematic  concept  for  6G  systems  to  work  with
high  intelligence  and  performs  better  than  that
controlled  manually.  Genie  works  comprehensively  in
6G wireless communication and other major industrial
vertical,  while  its  realization  is  concrete  and  step  by
step. 
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BUPT  contribute  ideas  and  information  in  Sections  5
and 6.1.
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