
 

Artificial intelligence for satellite communication: A review
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Abstract: Satellite communication offers the prospect of service continuity over uncovered and under-covered areas,

service ubiquity, and service scalability. However, several challenges must first be addressed to realize these benefits,

as the resource management, network control, network security, spectrum management, and energy usage of satellite

networks  are  more  challenging  than  that  of  terrestrial  networks.  Meanwhile,  artificial  intelligence  (AI),  including

machine  learning,  deep  learning,  and  reinforcement  learning,  has  been  steadily  growing  as  a  research  field  and  has

shown successful results in diverse applications, including wireless communication. In particular, the application of AI

to a wide variety of satellite communication aspects has demonstrated excellent potential,  including beam-hopping,

anti-jamming,  network  traffic  forecasting,  channel  modeling,  telemetry  mining,  ionospheric  scintillation  detecting,

interference managing, remote sensing, behavior modeling, space-air-ground integrating, and energy managing. This

work  thus  provides  a  general  overview  of  AI,  its  diverse  sub-fields,  and  its  state-of-the-art  algorithms.  Several

challenges  facing  diverse  aspects  of  satellite  communication  systems  are  then  discussed,  and  their  proposed  and

potential AI-based solutions are presented. Finally, an outlook of field is drawn, and future steps are suggested.
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1    Introduction

The  remarkable  advancement  of  wireless
communication  systems,  quickly  increasing  demand
for  new  services  in  various  fields,  and  rapid
development  of  intelligent  devices  have  led  to  a
growing  demand  for  satellite  communication  systems
to  complement  conventional  terrestrial  networks  to
give  access  over  uncovered  and  under-covered  urban,
rural, and mountainous areas, as well as the seas.

There  are  three  major  types  of  satellites,  including
the  geostationary  earth  orbit,  also  referred  to  as  a
geosynchronous equatorial orbit  (GEO), medium earth
orbit (MEO), and low earth orbit (LEO) satellites. This

classification  depends  on  three  main  features,  i.e.,  the
altitude,  beam  footprint  size,  and  orbit.  GEO,  MEO,
and LEO satellites have an orbit around the earth at an
altitude  of 35 786 ,  7000–25 000,  and  300–1500  km,
respectively.  The  beam  footprint  of  a  GEO  satellite
ranges from 200 to 3500 km; that of an MEO or LEO
beam  footprint  satellite  ranges  from  100  to  1000  km.
The orbital period of a GEO satellite is equal to that of
the  Earth  period,  which  makes  it  appear  fixed  to  the
ground  observers,  whereas  LEO  and  MEO  satellites
have  a  shorter  period,  many  LEO  and  MEO  satellites
are  required  to  offer  continuous  global  coverage.  For
example,  Iridium  NEXT  has  66  LEO  satellites  and  6
spares,  Starlink  by  SpaceX  plans  to  have  4425  LEO
satellites  plus  some  spares,  and  other-three-billion
(O3b)  has  20  MEO  satellites  including  3  on-orbit
spares[1].

Satellite  communication  use  cases  can  also  be  split
into three categories: (1) service continuity, to provide
network  access  over  uncovered  and  under-covered
areas;  (2)  service  ubiquity,  to  ameliorate  the  network
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availability in cases of temporary outage or destruction
of  a  ground  network  due  to  disasters;  and  (3)  service
scalability, to offload traffic from the ground networks.
In  addition,  satellite  communication  systems  could
provide  coverage  to  various  fields,  such  as  the
transportation, energy, agriculture, business, and public
safety fields[2].

Although  satellite  communication  offers  improved
global  coverage and increased communication quality,
it  has  several  challenges.  Satellites,  especially  LEO
satellites,  have  limited  on-board  resources  and  move
quickly, bringing high dynamics to the network access.
Models  for  terrestrial  networks  can  have  a  high
computational  complexity;  as  the  on-board  satellite
computational  resources  are  limited,  terrestrial  models
are not suitable for satellites.  The high mobility of the
space  segments,  and  the  inherent  heterogeneity
between  the  satellite  layers  (GEO,  MEO,  LEO),  the
aerial  layers  (unmanned  aerial  vehicles  (UAVs),
balloons, airships), and the ground layer make network
control,  network  security,  and  spectrum  management
challenging.  The  high  mobility  results  in  frequent
handoffs.  Hence  many  researchers  have  thus  focused
on handoff management for satellite communication. In
addition, the frequent handoff makes safe routing more
difficult  to  realize,  thus  making  it  more  exposed  to
jamming. In addition, achieving high energy efficiency
for  satellite  communication  is  more  challenging  than
for terrestrial networks.

Several  surveys  have  discussed  different  aspects  of
satellite  communication  systems,  such  as  handoff
schemes[3],  mobile  satellite  systems[4],  multiple-input
multiple-output  (MIMO)  over  satellite[5],  satellites  for
the  internet  of  remote  things[6],  inter-satellite
communication  systems[7],  quality  of  service  (QoS)
provisioning[8],  space optical  communication[9],  space-
air-ground  integrated  networks[10],  small  satellite
communication[11], physical space security[12], CubeSat
communications[13], and non-terrestrial networks[2].

Meanwhile,  interest  in  artificial  intelligence  (AI)
increased  in  recent  years.  AI,  including  machine
learning  (ML),  deep  learning  (DL),  and  reinforcement
learning  (RL),  has  shown successful  results  in  diverse
applications  in  science and engineering fields,  such as
electrical  engineering,  software  engineering,

bioengineering,  and  financial  engineering.  Several
researchers have thus turned to AI techniques to solve
various  challenges  in  their  respective  fields  and  have
designed  diverse  successful  AI-based  applications,  to
overcome  several  challenges  in  the  wireless
communication  field.  Being  aware  of  the  potential  of
artificial  intelligence,  being  inspired  from  other
successful  applications  of  AI  in  the  other  fields,  and
giving  the  inherent  difficulties  in  the  satellite
communication, we believe that AI can play a big role
in  the  optimization  of  several  aspects  in  the  field  of
satellite communication.

Some  have  discussed  AI  and  its  applications  to
wireless  communication  in  general[14−17].  Others  have
focused  on  the  application  of  AI  to  one  aspect  of
wireless  communication,  such  as  wireless
communications  in  the  IoT[18],  network
management[19],  wireless  security[20],  emerging
robotics  communication[21],  antenna  design[22],  and
UAV  networks[23, 24].  Vázquez  et  al.[25] briefly
discussed some promising use cases of AI for satellite
communication,  whereas  Kato  et  al.[26] discussed  the
use of AI for space-air-integrated networks. The use of
DL in space applications has also been addressed[27].

Overall,  several  researchers  have  discussed  wireless
and  satellite  communication  systems,  and  some  of
these  have  discussed  the  use  of  AI  for  one  or  a  few
aspects  of  satellite  communication;  however,  an
extensive  survey  of  AI  applications  in  diverse  aspects
of satellite communication has yet to be performed.

This  work therefore  aims to  provide an introduction
to  AI,  a  discussion  of  various  challenges  being  faced
by satellite communication and an extensive survey of
potential  AI-based  applications  to  overcome  these
challenges.  A general  overview of AI,  its  diverse sub-
fields,  and  its  state-of-the-art  algorithms  are  presented
in Section 2. Several challenges being faced by diverse
aspects  of  satellite  communication  systems,  and  then
potential AI-based solutions are discussed in Section 3;
these  applications  are  summarized  in Fig. 1 .  Some  of
these  applications  are  specific  to  satellite
communication such as beam hopping (BH), telemetry
mining,  ionospheric scintillation detecting,  and remote
sensing  (RS).  Space-air-ground  integrated  networks
(SAGINs)  are  another  application  where  satellite  and
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non-satellite  networks  are  integrated  using  AI  to  offer
more-flexible  services.  Although  some  other
applications  are  in  common  with  terrestrial  networks,
they  are  more  challenging  in  the  context  of  satellite
communication,  for  example,  due  to  the  restricted  on-
board  resources  of  satellites,  the  energy  managing  of
satellite  networks  is  more  constrained. Table 1
illustrates  the  application  of  AI  algorithms  to  solve
different satellite communication problems. For ease of
reference, the acronyms and abbreviations used in this
paper are presented in Table 2. 

2    Artificial intelligence

Although  AI  sounds  like  a  novel  approach,  it  can  be
traced  to  the  1950s  and  encompasses  several
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Fig. 1    Applications  of  artificial  intelligence  for  different
satellite communication aspects.
 

 

Table  1    Various  AI  algorithms  with  their  respective
satellite communication applications.

AI
algorithm Satellite communication application

SVM
Network traffic forecasting, channel modeling,

telemetry mining, ionospheric scintillation detecting,
managing interference, and remote sensing

Decision
trees

Channel modeling, ionospheric scintillation
detecting, and remote sensing

CNN
Channel modeling, remote sensing, space-air-ground
integrating, handoff optimization, and carrier signal

detection

RNN Anti-jamming, telemetry mining, behavior modeling,
and handoff optimization

AEs Managing interference

RL
Beam hopping, anti-jamming, managing interference,
behavior modeling, space-air-ground integrating, and

energy managing
 

 

Table 2    Abbreviations and full names.

Abbreviation Full name
AE Autoencoder
AI Artificial intelligence
AJ Anti-jamming

ARIMA Auto regressive integrated moving average
ARMA Auto regressive moving average

BH Beam hopping
CNN Convolutional neural network
DL Deep learning

DNN Deep neural network
DRL Deep reinforcement learning
ELM Extreme learning machine
EMD Empirical mode decomposition

FARIMA Fractional auto regressive integrated moving
average

FCN Fully convolutional network
FDMA Frequency division multiple access

FH Frequency hopping
GA Genetic algorithm

GANs Generative adversarial networks
GNSS Global navigation satellite system

IoS Internet of satellites
kNN k-nearest neighbor
LRD Long-range-dependence

LSTM Long short-term memory
MDP Markov decision process
ML Machine learning

MO-DRL Multi-objective deep reinforcement learning
NNs Neural networks
PCA Principal component analysis
QoS Quality of service
RFs Random forests
RL Reinforcement learning

RNNs Recurrent neural networks
RS Remote sensing

RSRP Reference signal received power
SAGINs Space-air-ground integrated networks

SRD Short range dependence
SVM Support vector machine
SVR Support vector regression

SatIoT Satellite internet of things
UE User equipment

VAEs Variational autoencoders
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approaches  and  paradigms.  ML,  DL,  RL,  and  their
intersections  are  all  parts  of  AI,  as  summarized  in
Fig. 2[28]. Thus, a major part of AI follows the learning
approach,  although  approaches  without  any  learning
aspects  are  also  included.  Overall,  research  into  AI
aims to make the machine smarter, either by following
some  rules  or  by  facilitating  guided  learning.  The
former  refers  to  symbolic  AI;  the  latter  refers  to  ML.
Here  smarter  indicates  the  ability  to  accomplish
complex  intellectual  tasks  normally  necessitating  a
human  such  as  classification,  regression,  clustering,
detection,  recognition,  segmentation,  planning,
scheduling,  or  decision  making.  Although  this
symbolic AI has been suitable for many applications, it
shows various limitations for more advanced problems
that  show  more  complexity,  less  structure,  and  more
hidden features such as computer-vision and language-
processing  tasks.  To  address  these  limitations,
researchers  turned  to  a  learning  approach  known  as
ML. 

2.1    Machine learning

ML, which encompasses DL and RL, is a subset of AI.
In  contrast  to  symbolic  AI,  where  the  machine  is
provided with  all  the  rules  to  solve  a  certain  problem,
in  ML  the  machine  is  provided  with  the  context  to
learn the rules by itself to solve the issue. The learning
process  requires  data  to  extract  patterns  and  hidden
structures;  the  focus  is  on  finding  optimal
representations of the data to get closer to the expected
result  by  searching  within  a  predefined  space  of
possibilities using guidance from a feedback signal. To

achieve  that,  three  things  are  mandatory:  input  data,
samples of the expected output,  and a way to measure
the performance of the algorithm[28].

ML  algorithms  are  commonly  classified  as  either
deep  or  non-deep  learning.  Although  DL  has  gained
higher  popularity  and  attention,  some  classical  non-
deep  ML  algorithms  are  more  useful  in  certain
applications,  especially  when  data  are  lacking.  ML
algorithms  can  also  be  classified  as  supervised,  semi-
supervised, unsupervised, and RL classes, as shown in
Fig. 3.  In  this  subsection,  only  non-RL  and  non-deep
ML  approaches  are  addressed;  DL  and  RL  are
addressed in Sections 2.2 and 2.3, respectively. 

2.1.1    Supervised,  unsupervised,  and  semi-
supervised learning

Supervised,  unsupervised,  and  semi-supervised
learning are all ML approaches that can be employed to
solve a broad variety of problems.

During  supervised  learning,  all  of  the  training  data
are  labeled,  i.e.,  tagged  with  the  correct  answer.  The
algorithm  is  thus  fully  supervised,  as  it  can  check  its
predictions  are  right  or  wrong  at  any  point  in  the
training  process.  The  supervised  model  learns  the
patterns from the training data to then be able to predict
labels  for  non-labeled  data  during  inferencing.
Supervised learning has been applied for classification
and regression tasks.

As  labeling  can  be  impossible  due  to  a  lack  of
information  or  infeasible  due  to  high  costs,
unsupervised  learning  employs  an  unlabeled  dataset
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Fig. 2    Relationship  of  artificial  intelligence,  machine
learning, deep learning, and reinforcement learning.
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Fig. 3    Machine learning sub-fields.
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during  training.  Using  unlabeled  data,  the  model  can
extract  hidden  patterns  or  structures  in  the  data  that
may be  useful  to  understand  a  certain  phenomenon or
its  output  could  be  used  as  an  input  for  other  models.
Unsupervised  learning  has  been  commonly  used  for
clustering,  anomaly  detection,  association,  and
autoencoders (AEs).

As  a  middle  ground  between  supervised  and
unsupervised learning, semi-supervised learning allows
a  mixture  of  non-labeled  and  labeled  portions  of
training  data.  Semi-supervised  learning  is  thus  an
excellent option when only a small part of the data are
labeled and/or the labeling process is either difficult or
expensive.  An  example  of  this  technique  is  pseudo-
labeling,  which  has  been  used  to  improve  supervised
models[29]. 

2.1.2    Probabilistic modeling
Probabilistic  modeling,  involves  models  using
statistical techniques to analyze data and was one of the
earliest  forms  of  ML[30].  A  popular  example  is  the
Naive  Bayes  classifier,  which  uses  Bayes’ theorem
while  assuming  that  all  of  the  input  features  are
independent.  Another  popular  example  is  logistic
regression; as the algorithm for this classifier is simple,
it is commonly used in the data science community. 

2.1.3    Support vector machine
Kernel methods are a popular class of algorithms[28, 30];
where  the  most  well-known  one  of  them is  the  SVM,
which aims to find a decision boundary to classify data
inputs.  The  algorithm  maps  the  data  into  a  high
dimensional  representation  where  the  decision
boundary is expressed as a hyperplane. The hyperplane
is  then  searched  by  trying  to  maximize  the  distance
between  the  hyperplane  and  the  nearest  data  points
from  each  class.  SVMs  have  been  the  state-of-the-art
for classification for a fairly long time and have shown
many  successful  applications  in  several  scientific  and
engineering  areas[31].  However,  SVMs  have  shown
limitations  when  applied  on  large  datasets.
Furthermore,  when  the  SVM  is  applied  to  perceptual
problems,  a  feature  engineering  step  is  required  to
enhance the performance because it is a shallow model.
Although it has been surpassed by DL algorithms, it is
still useful because of its simplicity and interpretability. 

2.1.4    Decision trees
A decision tree is a supervised learning algorithm that
represents  features  of  the  data  as  a  tree  by  defining
conditional  control  statements[30, 32].  Given  its
intelligibility  and  simplicity,  it  is  one  of  the  most
popular  algorithms  in  ML.  Further,  decision  trees  can
be  used  for  both  regression  and  classification,  as
decisions  could  be  either  continuous  values  or
categories.  A  more  robust  version  of  decision  trees,
random forests  (RFs),  combines various decision trees
to bring optimized results. This involves building many
different weak decision trees and then assembling their
outputs  using  bootstrap  aggregating  (bagging)[33, 34].
Another popular version of decision trees, that is often
more  effective  than  RFs,  is  a  gradient  boosting
machine;  gradient  boosting  also  combines  various
decision  tree  models  but  differs  from  RFs  by  using
gradient  boosting[35],  which  is  a  way  to  improve  ML
models by iteratively training new models that focus on
the  mistakes  of  the  previous  models.  The  extreme
gradient  boosting  (XGBoost)[36, 37] library  is  an
excellent  implementation  of  the  gradient  boosting
algorithm. RFs and gradient boosting machines are the
most popular and robust non-deep algorithms that have
been  widely  used  to  win  various  data  science
competitions on the Kaggle website[38]. 

2.1.5    Neural networks
NNs  contain  different  layers  of  interconnected  nodes,
where  each  node  is  a  perceptron  that  feeds  the  signal
produced  by  a  multiple  linear  regression  to  an
activation  function  that  may  be  nonlinear[30, 39].  A
nonlinear activation function is generally chosen to add
more complexity to the model by eliminating linearity.
In NNs, the features of one input (e.g., one image) are
assigned as the input layer. Then, according to a matrix
of  weights  the  next  hidden  layers  are  computed  using
matrix  multiplications  (linear  manipulations)  and  then
non-linear activation functions. The training of NNs is
all  about  finding  the  best  weights.  To  do  so,  a  loss
function  is  designed  to  compare  the  output  of  the
model and the ground truth for each output, to find the
weights  that  minimize  that  loss  function.
Backpropagation  algorithms  have  been  designed  to
train  chains  of  weights  using  optimization  techniques

  Fares Fourati et al.:   Artificial intelligence for satellite communication: A review 217

 



such  as  gradient-descent[40].  NNs  have  been
successfully used for both regression and classification,
although  they  are  most  efficient  when  dealing  with  a
high number of features (input parameters) and hidden
layers.  Deep  NNs  show  greater  learning  ability  and
therefore  display  higher  performance  than  shallow
NNs,  which  has  led  to  the  development  of  more
sophisticated  designs  of  NNs  comprising  more  layers
of  learning and using techniques  such as  convolutions
or recurrence, which has led to the progress of DL. 

2.2    Deep learning

In  contrast  to  shallow  models,  this  sub-field  of  ML
requires  high-computational  resources[28, 41].  Due  to
their relative simplicity, shallow ML algorithms require
human  expertise  and  intervention  to  extract  valuable
features  or  to  transform  the  data  to  make  it  easier  for
the  model  to  learn.  DL  models  minimize  or  eliminate
these steps as these transformations are implicitly done
within the deep networks. 

2.2.1    Convolutional neural networks
CNN[41, 42],  is  a  common  type  of  deep  NNs  (DNNs)
that are composed of convolution layers and have been
commonly  used  in  computer  vision  applications  such
as  image  classification[43],  object  detection[44],  and
object  tracking[45].  They  have  also  shown  success  in
other  fields  including  speech  and  natural  language
processing[46].  CNN  architectures  are  defined  by
choosing  the  sizes,  numbers,  positions  of  filters
(kernels),  and  the  activation  functions.  Learning  then
involves  finding  the  best  set  of  filters  that  can  be
applied  to  the  input  to  extract  useful  information  and
predict the correct output. 

2.2.2    Recurrent neural networks

x(0)

x(1) x(2) x(T )

t

x(t) a(t)

y(t)

RNNs[41] are  another  family  of  NNs  in  which  nodes
form a directed graph along a temporal sequence where
previous  outputs  are  used  as  inputs.  RNNs  are
specialized  for  processing  a  sequence  of  values ,

, , ..., . RNNs use their internal memory to
process variable-length sequences of inputs. In general,
RNNs are designed as in Fig. 4, where for each time ,

 represents  the  input  at  that  time,  is  the
activation, and  is the output. RNN models are most
commonly  used  in  the  fields  of  natural  language

processing and speech recognition. 

2.2.3    Autoencoders
AEs  are  another  type  of  NNs  used  to  learn  efficient
data  representation  in  an  unsupervised  way[41].  AEs
encode the  data  using the  bottleneck technique,  which
comprises dimensionality reduction to ignore the noise
of  the  input  data  and an  initial  data  regeneration  from
the  encoded  data,  as  summarized  in Fig. 5 .  The  initial
input and generated output are then compared to assess
the  quality  of  coding.  AEs  have  been  widely  applied
for  dimensionality  reduction[47] and  anomaly
detection[48]. 

2.2.4    Deep generative models
Deep  generative  models[41] involve  the  automatic
discovering  and  learning  of  regularities  in  the  input
data in such a way that new samples can be generated.
These  models  have  shown  various  applications,
especially  in  the  field  of  computer  vision.  The  most
popular generative models are variational AEs (VAEs)
and generative adversarial networks (GANs).
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Fig. 4    Simplified  architecture  of  a  recurrent  neural
networks.
 

 

Encoder Decoder

Input data Reconstructed data

Encoded data

 
Fig. 5    Autoencoder  which  learns  a  representation  of  data,
by  training  the  network  to  reduce  the  input  dimentionality
and then reconstructs the initial data from the encoded data.
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Of  these,  VAEs  learn  complicated  data  distribution
using unsupervised NNs[49]. Although VAEs are a type
of  AEs,  their  encoding  distribution  is  regularized
during the training to ensure that their latent space (i.e.,
representation of compressed data) has good properties
for generating new data.

GANs  are  composed  of  two  NNs  in  competition,
where a generator network G learns to capture the data
distribution and generate new data and a discriminator
model  D estimates the probability that  a  given sample
came from the generator rather than the initial training
data[50, 51].  The  generator  thus  is  used  to  produce
misleading samples and to verify that the discriminator
can determine whether a given sample is real or fake. 

2.3    Reinforcement learning

This subset of ML involves a different learning method
than  those  using  supervised,  semi-supervised,  or
unsupervised  learning[52].  RL  is  about  learning  what
actions to take in the hope to maximize a reward signal,
which is a numerical reward encoding the success of an
action’s  outcome.  The  agent  must  find  which  actions
bring  the  most  recompense  by  trying  each  action,  as
shown  in Fig. 6 .  These  actions  can  affect  immediate
rewards  as  well  as  subsequent  rewards.  Some  RL
approaches  require  the  introduction  of  DL;  such
approaches are part of deep RL (DRL).

One  of  the  challenges  encountered  during  RL  is
balancing  the  trade-off  between  exploration  and
exploitation. To get a maximum immediate reward, an
RL  agent  must  perform  exploitation,  i.e.,  choose
actions  that  have  explored  previously  and  found to  be
the  best.  To  find  such  actions,  it  must  explore  the
solution space, i.e., try new actions.

All RL agents have explicit goals, are aware of some
aspects  of  their  environment,  can  take  actions  that

impact  their  environments,  and  act  despite  significant
uncertainty  about  their  environment.  Other  than  the
agent and the environment, an RL system has four sub-
elements:  a  policy,  a  reward  signal,  a  value  function,
and, sometimes, a model of the environment.

In  RL,  learning  involves  the  agent  determining  the
best method to map states of the environment to actions
to be taken when in those states. After each action, the
environment sends the RL agent a reward signal, which
is  the  goal  of  the  RL  problem.  Unlike  a  reward  that
brings  immediate  evaluation  of  the  action,  a  value
function  estimates  the  total  amount  of  recompense  an
agent  can  anticipate  to  collect  in  the  longer-term.
Finally,  a  model  of  the  environment  mimics  the
behavior of the environment. These models can be used
for planning by allowing the agent to consider possible
future  situations  before  they  occur.  Methods  for
solving  RL  problems  that  utilize  models  are  called
model-based  methods,  whereas  those  without  models
are  referred  to  as  model-free  methods.  In  fact,  when
constructing a sufficiently accurate environment model
is  quite  challenging,  model-free  methods  can  be  more
advantageous[52]. 

2.4    Discussion
 

2.4.1    Model selection
AI  is  a  broad  field  that  encompasses  various
approaches,  each  of  which  encompasses  several
algorithms.  AI  could  be  based  on  predefined  rules  or
on  ML.  This  learning  can  be  supervised,  semi-
supervised, unsupervised, or reinforcement learning; in
each  of  these  categories  learning  can  be  deep  or
shallow.  As  each  approach  offers  something  different
to  the  world  of  AI,  interest  in  each  should  depend  on
the  given  problem;  a  more-complex  approach  or
algorithm  does  not  necessarily  lead  to  better  results.
For example, a common assumption is that DL is better
than  shallow  learning.  Although  this  holds  in  several
cases,  especially  for  perceptual  problems  such  as
computer  vision  problems,  it  is  not  always  applicable,
as  DL  algorithms  require  greater  computational
resources  and  large  datasets  which  are  not  always
available. Supervised learning is an effective approach
when a fully labeled dataset is available. However, this
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Fig. 6    Reinforcement  learning  scenario:  An  agent  takes
action and receives feedback from the environment.
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is  not  always  the  case,  as  data  can  be  expensive,
difficult  or  even  impossible.  Under  these
circumstances,  semi-supervised  or  unsupervised
learning  or  RL  is  more  applicable.  Whereas
unsupervised learning can find hidden patterns in non-
labeled  data,  RL  learns  the  best  policy  to  achieve  a
certain task. Thus, unsupervised learning is a good tool
to extract  information from data,  whereas RL is  better
suited for decision-making tasks. Therefore, the choice
of an approach or an algorithm should not be based on
its  perceived elegance,  but  by matching the method to
the characteristics of the problem at hand, including the
goal,  the  quality  of  the  data,  the  computational
resources,  the  time  constraints,  and  the  prospective
future  updates.  Solving  a  problem  may  require  a
combination of more than one approach.

After  assessing  the  problem  and  choosing  an
approach, an algorithm must be chosen. Although ML
has  mathematical  foundations,  it  remains  an  empirical
research  field.  To  choose  the  best  algorithm,  data
science and ML researchers  and engineers  empirically
compare  different  algorithms  for  a  given  problem.
Algorithms  are  compared  by  splitting  the  data  into  a
training set and a test set. The training set is then used
to  train  the  model,  whereas  the  test  set  is  to  compare
the output between models.

In  competitive  data  science,  such  as  in  Kaggle[38]

competitions,  where  each  incrementation  matters,
models  are  often  combined  to  improve  their  overall
results,  and  various  ensemble  techniques  such  as
bagging[34],  boosting[35],  and  adaptive  boosting[53] are
used. 

2.4.2    Model regularization
After  the  approach  and  algorithm  have  been  selected,
hyperparameter tuning is generally done to improve the
output of the algorithm. In most cases, ML algorithms
depend  on  many  hyperparameters;  choosing  the  best
hyperparameters  for  a  given  problem  thus  allows  for
higher  accuracy.  This  step  can  be  done  manually  by
intuitively  choosing  better  hyperparameters,  or
automatically  using  various  methods  such  as  grid
search and stochastic methods[54].

A  common  trap  in  ML  is  overfitting,  during  which
the  machine  stops  learning  (generalizing)  and  instead

begins  to  memorize  the  data.  When  this  occurs,  the
model  can  achieve  good  results  on  seen  data  but  fails
when  confronted  with  new  data,  i.e.,  a  decreased
training error and an increasing test error, as shown in
Fig. 7.  Overfitting  can  be  discovered  by  splitting  the
data  into  training,  validation  and  testing  sets,  where
neither  the  validation  nor  the  testing  sets  are  used  to
train  the  model.  The  training  set  is  used  to  train  the
model,  the  validation  set  is  used  to  verify  the  model
predictions  on  unseen  data  and  for  hyperparameter
tuning, and the testing set is used for the final testing of
the model.

A  variety  of  methods  can  be  employed  to  reduce
overfitting. It can be reduced by augmenting the size of
the dataset,  which is commonly performed in the field
of computer vision. For example,  image data could be
augmented by applying transformations to the images,
such as rotating, flipping, adding noise, or cutting parts
of  the  images.  Although  it  is  useful,  this  technique  is
not  always applicable.  Another method involves using
cross-validation  rather  than  splitting  the  data  into  a
training  set  and  a  validation  set.  Early  stopping,  as
shown  in Fig. 7 ,  consists  of  stopping  the  learning
process  before  the  algorithm  begins  to  memorize  the
data. Ensemble learning, which is the process by which
various  models,  are  cleverly  generated  and  merged  to
solve a specific issue, is also commonly used. 

2.4.3    Hype and hope
Rapid  progress  has  been  made  in  AI  research,
including  its  various  subfields,  over  the  last  ten  years
as  a  result  of  exponentially  increasing  investments.
Although  some  people  could  not  foresee  the  true
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Fig. 7    Training  and  test  errors  over  the  training  time.
Early stopping is common technique to reduce overfitting by
stopping the training process at an early stage, i.e., when the
test error starts to remarkably increasing.
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potential, consequences, and pertinence of AI, it would
become  an  integral  part  of  global  technologies.  The
authors  believe  that  the  inevitable  progress  of  AI  is
likely to have long-term impacts and that AI will likely
be  a  major  part  of  diverse  applications  across  all
scientific  fields,  from  mathematics  to  satellite
communication. 

3    Artificial  intelligence  for  satellite
communication

 

3.1    Beam hopping
 

3.1.1    Definition & limitations
Satellite  resources  are  expensive  and  thus  require
efficient  systems  involving  optimizing  and  time-
sharing. In conventional satellite systems the resources
are  fixed  and  uniformly  distributed  across  beams[55].
As  a  result,  conventional  large  multi-beam  satellite
systems  have  shown  a  mismatch  between  the  offered
and  requested  resources;  some  spot  beams  have  a
higher  demand  than  the  offered  capacity,  leaving  the
demand pending (i.e., hot-spots), while others present a
demand  lower  than  the  installed  capacity,  leaving  the
offered  capacity  unused  (i.e.,  cold-spots,  as
summarized  in Fig. 8 ).  Thus,  to  improve  multi-beam
satellite  communication,  the  on-board  flexible
allocation  of  satellite  resources  over  the  service

coverage  area  is  necessary  to  achieve  more  efficient
satellite communication.

BH has emerged as a promising technique to achieve
greater flexibility in managing non-uniform and variant
traffic  requests  throughout  the  day,  year,  and  lifetime
of  the  satellite  over  the  coverage  area[55, 56] .  BH,
involves  dynamically  illuminating  each  cell  with  a
small  number  of  active  beams,  as  summarized  in
Fig. 9,  thus  using  all  available  on-board  satellite
resources  to  offer  service  to  only  a  subset  of  beams.
The selection of this subset is time-variant and depends
on the traffic demand, which is based on the time-space
dependent  BH  illumination  pattern.  The  illuminated
beams  are  only  active  long  enough  to  fill  the  request
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Fig. 8    Demand-capacity  mismatch  among  beams,  which
demonstrates  the  limitation  of  using  fixed  and  uniformly
distributed  resources  across  all  beams  in  a  multi-beam
satellite system.
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Fig. 9    Simplified architecture of beam hopping (BH). TT&C represents telemetry, tracking, and command.
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for  each  beam.  Thus,  the  challenging  task  in  BH
systems is  to  decide  which  beams should  be  activated
and for how long, i.e., the BH illumination pattern; this
responsibility is left to the resource manager who then
forwards  the  selected  pattern  to  the  satellite  via
telemetry, tracking, and command[57].

Of  the  various  methods  that  researchers  have
provided  to  realize  BH,  most  have  been  based  on
classical  optimization  algorithms.  For  example,
Angeletti  et  al.[58] demonstrated  several  advantages  to
the  performance  of  a  system  when  using  BH  and
proposed  the  use  of  genetic  algorithm (GA)  to  design
the  BH  illumination  pattern;  Anzalchi  et  al.[59] also
illustrated  the  merits  of  BH  and  compared  the
performance  between  BH  and  non-hopped  systems.
Alberti et al.[60] proposed a heuristic iterative algorithm
to obtain a solution to the BH illumination design. BH
has  also  been  used  to  decrease  the  number  of
transponder  amplifiers  for  Terabit/s  satellites[61].  An
iterative algorithm has also been proposed to maximize
the overall offered capacity under certain beam demand
and  power  constraints  in  a  joint  BH  design  and
spectrum assignment[62].  Alegre et  al.[63] designed two
heuristics  to  allocate  capacity  resources  basing  on  the
traffic request per-beam, and then further discussed the
long  and  short-term  traffic  variations  and  suggested
techniques to deal with both variations[64]. Liu et al.[65]

studied  techniques  for  controlling  the  rate  of  the
arriving traffic in BH systems. The QoS delay fairness
equilibrium has also been addressed in BH satellites[66].
Joint  BH schemes  were  proposed  by  Shi  et  al.[67] and
Ginesi  et  al.[68] to  further  ameliorate  the  efficiency  of
on-board  resource  allocation.  To  find  the  optimal  BH
illumination  design,  Cocco  et  al.[69] used  a  simulated
annealing algorithm.

Although  employing  optimization  algorithms  has
achieved satisfactory results in terms of flexibility and
delay  reduction  of  BH  systems,  some  difficulties
remain.  As  the  search  space  dramatically  grows  with
the  number  of  beams,  an  inherent  difficulty  in
designing  the  BH  illumination  pattern  is  finding  the
optimal  design  rather  than  one  of  many  local
optima[62]. For satellites with hundreds or thousands of
beams,  classical  optimization  algorithms  may  require

long  computation  time  which  is  impractical  in  many
scenarios.

Additionally,  classical  optimization  algorithms,
including the GAs or  other  heuristics,  require  revision
when the  scenario  changes  moderately;  this  leads  to  a
higher computational complexity,  which is impractical
for on-board resource management. 

3.1.2    AI-based solutions
Seeking to overcome these limitations and enhance the
performance  of  BH,  some  researchers  have  proposed
AI-based solutions. Some of these solutions have been
fully  based  on  the  learning  approach,  i.e.,  end-to-end
learning,  in  which  the  BH  algorithm  is  a  learning
algorithm.  Others  have  tried  to  improve  optimization
algorithms by adding a learning layer,  thus combining
learning and optimization.

To  optimize  the  transmission  delay  and  the  system
throughput in multibeam satellite systems, Hu et al.[70]

formulated an optimization problem and modeled it  as
a Markov decision process (MDP). DRL is then used to
solve  the  BH  illumination  design  and  optimize  the
long-term  accumulated  rewards  of  the  modeled  MDP.
As a result, the proposed DRL-based BH algorithm can
reduce  the  transmission  delay  by  up  to  52.2% and
increased the system throughput by up to 11.4% when
compared with previous algorithms.

To  combine  the  advantages  of  end-to-end  learning
approaches  and  optimization  approaches,  for  a  more
efficient  BH  illumination  pattern  design,  Lei  et  al.[57]

suggested a learning and optimization algorithm to deal
with  the  beam  hopping  pattern  illumination  selection,
in which a learning approach, based on fully connected
NNs, was used to predict non-optimal BH patterns and
thus  address  the  difficulties  faced  when  applying  an
optimization  algorithm  to  a  large  search  space.  The
trained  ML  algorithm  is  used  to  provide  a  predicted
feature  vector,  which  is  then  used  to  delete  a  large
amount  of  non-promising  designs  from  the  original
search  space.  Thus,  the  learning-based  prediction
reduces  the  search  space,  and  the  optimization  can  be
reduced on a smaller set of promising BH patterns.

Researchers  have  also  employed  multi-objective
DRL  (MO-DRL)  for  the  DVB-S2X  satellite.  Under
real  conditions,  Zhang  et  al.[71] demonstrated  that  the
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low-complexity  MO-DRL  algorithm  could  ensure  the
fairness  of  each  cell,  and  ameliorate  the  throughput
better  than  previous  techniques  including  DRL[69] by
0.172%. In contrast, the complexity of GA producing a
similar  result  is  about  110  times  that  of  the  MO-DRL
model.  Hu  et  al.[72] proposed  a  multi-action  selection
technique  based  on  double-loop learning  and  obtained
a  multi-dimensional  state  using  a  DNN.  Their  results
showed  that  the  proposed  technique  can  achieve
different  objectives  simultaneously,  and  can  allocate
resources intelligently by adapting to user requirements
and channel conditions. 

3.2    Anti-jamming
 

3.2.1    Definition & limitations
Satellite  communication systems are  required to  cover
a  wide  area,  and  provide  high-speed,  communication,
and  high-capacity  transmission.  However,  in  tactical
communication systems using satellites,  reliability and
security  are  the  prime  concerns;  therefore,  an  anti-
jamming  (AJ)  capability  is  essential.  Jamming  attacks
could  be  launched  toward  main  locations  and  crucial
devices  in  a  satellite  network  to  reduce  or  even
paralyze the throughput. Several AJ methods have thus
been designed to reduce possible attacks and guarantee
secure satellite communication.

The  frequency-hopping  (FH)  spread  spectrum
method  has  been  preferred  in  many  prior  tactical
communication  systems  using  satellites[73, 74].  Using
the  dehop-rehop  transponder  method  employing  FH-
frequency  division  multiple  access  (FH-FDMA)
scenarios,  Bae  et  al.[75] developed  an  efficient
synchronization method with an AJ capability.

Most  prior  AJ  techniques  are  not  based  on  learning
and  thus  cannot  deal  with  clever  jamming  techniques
that are capable of continuously adjusting the jamming
methodology  by  interaction  and  learning.  Developing
AI  algorithms  offer  advanced  tools  to  achieve  diverse
and  intelligent  jamming  attacks  based  on  learning
approaches and thus present a serious threat to satellite
communication  reliability.  In  two  such  examples,  a
smart  jamming  formulation  automatically  adjusted  the
jamming  channel[76, 77],  whereas  a  smart  jammer
maximized  the  jamming  effect  by  adjusting  both  the

jamming  power  and  channel[78].  In  addition,  attacks
could  be  caused  by  multiple  jammers  simultaneously
implementing  intelligent  jamming  attacks  based  on
learning approaches. Although this may be an unlikely
scenario,  it  has  not  yet  been  seriously  considered.
Further,  most  researchers  have  focused  on  defending
against  AJ  attacks  in  the  frequency-based  domain,
rather  than  spacebased  AJ  techniques,  such  as  routing
AJ. 

3.2.2    AI-based solutions
By using a long short-term memory (LSTM) network,
which  is  a  DL  RNN,  to  learn  the  temporal  trend  of  a
signal, Lee et al.[79] demonstrated a reduction of overall
synchronization  time  in  the  previously  discussed  FH-
FDMA scenario[75].

In  mobile  communication,  mobile  devices  can
achieve,  using  RL,  an  optimal  communication  policy
without necessarily knowing the jamming and the radio
channel  model in a dynamic game framework[77].  Han
et al.[80] proposed the use of a learning approach for AJ
to  block  smart  jamming  in  the  Internet  of  Satellites
(IoS)  using  a  space-based  AJ  method,  AJ  routing,
summarized  in Fig. 10 .  By  combining  game  theory
modeling  with  RL,  and  modeling  the  interactions
between  smart  jammers  and  satellite  users  as  a
Stackelberg  AJ  routing  game,  Han  et  al.[80]

demonstrated  how  to  use  DL  to  deal  with  the  large
decision space caused by the high dynamics of the IoS
and RL to deal with the interplay between the satellites
and the smart jamming environment. DRL, specifically
actor-critic  algorithm,  with  the  source  node  as  a  state,
where the critic network evaluates the expected reward
 

 
Fig. 10    Space-based  anti-jamming  (AJ)  routing.  The  red
line  represents  the  found  jammed  path,  and  the  green  one
represents the suggested path[80].
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for chosen actions, made it possible to solve the routing
selection  issue  for  the  heterogeneous  IoS  while
preserving  an  available  routing  subset  to  simplify  the
decision  space  for  the  Stackelberg  AJ  routing  game.
Based  on  this  routing  subset,  a  popular  RL algorithm,
Q-Learning,  was  then  used  to  respond  rapidly  to
intelligent jamming and adapt AJ strategies.

Han  et  al.[81] later  combined  game  theory  modeling
and RL to obtain AJ policies according to the dynamic
and  unknown  jamming  environment  in  the  satellite-
enabled  army  IoT  (SatIoT).  Here,  a  distributed
dynamic AJ coalition formation game was examined to
decrease  the  energy  use  in  the  jamming  environment,
and a  hierarchical  AJ  Stackelberg  game was  proposed
to  express  the  confrontational  interaction  between
jammers  and  SatIoT  devices.  Finally,  Q-Learning-
based algorithm was utilized to get the sub-optimal AJ
policies according to the jamming environment. 

3.3    Network traffic forecasting
 

3.3.1    Definition & limitations
Network traffic forecasting is a proactive approach that
aims  to  guarantee  reliable  and  high-quality
communication,  as  the  predictability  of  traffic  is
important  in  many  satellite  applications,  such  as
congestion control,  dynamic routing,  dynamic channel
allocation,  network  planning,  and  network  security.
Satellite  network  traffic  is  self-similar  and
demonstrates  long-range-dependence  (LRD)[82].  To
achieve accurate forecasting, it is therefore necessary to
consider  its  self-similarity.  However,  models  for
terrestrial networks based on self-similarity have a high
computational  complexity;  as  the  on-board  satellite
computational  resources  are  limited,  terrestrial  models
are  not  suitable  for  satellites.  An  efficient  traffic
forecasting  design  for  satellite  networks  is  thus
required.

Several  researchers  have  performed  traffic
forecasting  for  both  terrestrial  and  satellite  networks;
these  techniques  have  included  the  Markov[83],
autoregressive  moving  average  (ARMA)[84],
autoregressive  integrated  moving  average
(ARIMA)[85],  and  fractional  ARINA  (FARIMA)[86]

models.  By  using  empirical  mode  decomposition

(EMD)  to  decompose  the  network  traffic  and  then
applying  the  ARMA  forecasting  model,  Gao  et  al.[87]

demonstrated remarkable improvement.
The  two  major  difficulties  facing  satellite  traffic

forecasting  are  the  LRD  of  satellite  networks  and  the
limited  on-board  computational  resources.  Due  to  the
LRD  property  of  satellite  networks,  short-range-
dependence  (SRD)  models  have  failed  to  achieve
accurate  forecasting.  Although  previous  LRD  models
have  achieved  better  results  than  SRD  models,  they
suffer  from  high  complexity.  To  address  these  issues,
researchers have turned to AI techniques. 

3.3.2    AI-based solutions
Katris and Daskalaki[86] combined FARIMA with NNs
for  internet  traffic  forecasting,  whereas  Pan  et  al.[88]

combined  a  differential  evolution  with  NNs  for
network traffic prediction. Due to the high complexity
of  classical  NNs,  a  least-square  SVM,  which  is  an
optimized  version  of  an  SVM,  has  also  been  used  for
forecasting[89].  By  applying  principal  component
analysis  (PCA),  to  reduce  the  input  dimensions  and
then  a  generalized  regression  NN,  Liu  and  Li[90]

achieved higher-accuracy forecasting with less training
time.  Na  et  al.[91] used  traffic  forecasting  as  a  part  of
their  distributed  routing  strategy  for  LEO  satellite
network. An extreme learning machine (ELM) has also
been  employed  for  traffic  load  forecasting  of  satellite
node  before  routing[92].  Bie  et  al.[82] used  EMD  to
decompose  the  traffic  of  the  satellite  with  LRD into  a
series  with  SRD and  at  one  frequency  to  decrease  the
predicting  complexity  and  augment  the  speed.  Their
combined  EMD,  fruit-fly  optimization,  and  ELM
methodology  achieved  more  accurate  forecasting  at  a
higher speed than prior approaches. 

3.4    Channel modeling
 

3.4.1    Definition & limitations
A  channel  model  is  a  mathematical  representation  of
the  effect  of  a  communication  channel  through  which
wireless  signals  are  propagated;  it  is  modeled  as  the
impulse  response  of  the  channel  in  the  frequency  or
time domain.

A  wireless  channel  presents  a  variety  of  challenges
for  reliable  high-speed  communication,  as  it  is
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vulnerable  to  noise,  interference,  and  other  channel
impediments,  including  path  loss  and  shadowing.  Of
these,  path  loss  is  caused  by  the  waste  of  the  power
emitted by the transmitter and the propagation channel
effects,  whereas  shadowing is  caused  by  the  obstacles
between  the  receiver  and  transmitter  that  absorb
power[93].

Precise  channel  models  are  required  to  assess  the
performance  of  mobile  communication  system  and
therefore  to  enhance  coverage  for  existing
deployments.  Channel  models  may  also  be  useful  to
forecast  propagation  in  designed  deployment  outlines,
which  could  allow  for  assessment  before  deployment,
and for optimizing the coverage and capacity of actual
systems.  For  small  number  of  transmitter  possible
positions,  outdoor  extensive  environment  evaluation
could  be  done  to  estimate  the  parameters  of  the
channel[94, 95].  As  more  advanced  technologies  have
been  used  in  wireless  communication,  more  advanced
channel  modelling  was  required.  Therefore  the  use  of
stochastic  models  is  computationally  efficient  while
providing satisfactory results[96].

Ray  tracing  is  used  for  channel  modeling,  which
requires  3D images  that  are  generally  generated  using
computer vision methods including stereo-vision-based
depth estimation[97−100].

A  model  is  proposed  for  an  urban  environment  that
requires  features,  including  road  widths,  street
orientation  angles,  and  height  of  buildings[101].  A
simplified model was then proposed, by Fernandes and
Soares[102] that required only the proportion of building
occupation between the receiver and transmitter, which
could  be  computed  from  segmented  images  manually
or automatically[103].

Despite  the  satisfactory  performance  of  some of  the
listed techniques,  they still  have many limitations.  For
example, the 3D images required by ray tracing are not
generally  available  and  their  generation  is  not
computationally  efficient.  Even  when  the  images  are
available,  ray  tracing  is  computationally  costly  and
data  exhaustive  and  therefore  is  not  appropriate  for
real-time  coverage  area  optimization.  Further,  the
detailed  data  required  for  the  model  presented  by
Cichon and Kümer[101] are often unavailable. 

3.4.2    AI-based solutions
Some early applications of AI for path loss forecasting
have  been  based  on  classical  ML  algorithms  such  as
SVM[104, 105],  NNs[106−111],  and  decision  trees[112].
Interested readers are referred to a survey of ML-based
path loss prediction approaches for further details[113].

However, although previous ML efforts have shown
great  results,  many  require  3D  images.  Researchers
have  recently  thus  shifted  their  attention  to  using  DL
algorithms with 2D satellite/aerial images for path loss
forecasting.  For example,  Ates et  al.[114] approximated
channel parameters, including the standard deviation of
shadowing  and  the  path  loss  exponent,  from  satellite
images using deep CNN without the use of any added
input parameters, as shown in Fig. 11.

≈ 1 ≈ 4.7

By  using  a  DL  model  on  satellite  images  and  other
input  parameters  to  predict  the  reference  signal
received  power  (RSRP)  for  specific  receiver  locations
in  a  specific  scenario/area,  Thrane  et  al.[115]

demonstrated  a  gain  improvement  of  and   at
811  and  2630  MHz  respectively,  over  previous
techniques, including ray tracing. Similarly, Ahmadien
et  al.[116] applied  DL  on  satellite  images  for  path  loss
prediction,  although  they  focused  only  on  satellite
images without any supplemental  features and worked
on  more  generalized  data.  Despite  the  practicality  of
this method, as it only needs satellite images to forecast
the path loss distribution, 2D images will not always be
sufficient  to  characterize  the  3D  structure.  In  these
cases,  more  features  (e.g.,  building  heights)  must  be
input into the model. 

3.5    Telemetry mining
 

3.5.1    Definition & limitations
Telemetry  is  the  process  of  recording  and  transferring
measurements  for  control  and  monitoring.  In  satellite
systems,  on-board  telemetry  helps  mission  control
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Fig. 11    Channel  parameters  prediction.  2D  satellite/aerial
images  used  as  input  to  the  deep  convolutional  neural
network (CNN) to predict channel parameters. The model is
trained separately for each parameter.
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centers track platform’s status, detect abnormal events,
and control various situations.

Satellite failure can be caused by a variety of things;
most  commonly,  failure  is  due  to  the  harsh
environment of space, i.e., heat, vacuum, and radiation.
The  radiation  environment  can  affect  critical
components of a satellite, including the communication
system and power supply.

Telemetry  processing  enables  tracking  of  the
satellite’s behavior to detect and minimize failure risks.
By  processing  several  features  related  to  the  satellite
(e.g.,  temperature,  voltage,  and  current),  finding
correlations, recognizing patterns, detecting anomalies,
classifying,  forecasting,  and  clustering  are  applied  to
the  acquired  data  for  fault  diagnosis  and  reliable
satellite monitoring.

One  of  the  earliest  and  simplest  techniques  used  in
telemetry  analysis  is  limit  checking.  The  method  is
based  on  setting  a  precise  range  for  each  feature,  and
then  monitoring  the  variance  of  each  feature  to  detect
out-of-range  events.  The  main  advantage  of  this
algorithm is its simplicity limits, as can be chosen and
updated easily to control spacecraft operation.

Complicated  spacecraft  with  complex  and  advanced
applications  challenges  current  space  telemetry
systems.  Narrow  wireless  bandwidth  and  fixed-length
frame  telemetry  make  transmitting  the  rapidly
augmenting  telemetry  volumes  difficult.  In  addition,
the  discontinuous  short-term  contacts  between
spacecraft  and  ground  stations  limit  the  data
transmission  capability.  Analyzing,  monitoring,  and
interpreting  huge  telemetry  parameters  could  be
impossible due to the high complexity of data. 

3.5.2    AI-based solutions
In  recent  years,  AI  techniques  have  been  largely
considered  in  space  missions  with  telemetry.  Satellite
health  monitoring  has  been  performed  using
probabilistic  clustering[117],  dimensionality  reduction,
hidden  Markov[118],  and  regression  trees[119],  whereas
others  have  developed  anomaly  detection  methods
using the k-nearest neighbor (kNN), SVM, LSTM, and
testing  on  the  telemetry  of  Centre  National  d’Etudes
Spatiales spacecraft[120−122].

Further,  the  space  functioning  assistant  was  further

developed  in  diverse  space  applications  using  data-
driven[123] and model-based[124] monitoring methods. In
their  study  of  the  use  of  AI  for  fault  diagnosis  in
general  and for space utilization,  Sun et  al.[125] argued
that  the  most  promising  direction  is  the  use  of  DL;
suggested  its  usage  for  fault  diagnosis  for  space
utilization in China.

By  comparing  different  ML  algorithms  using
telemetry data from the Egyptsat-1 satellite, Ibrahim et
al.[126] demonstrated  the  high  prediction  accuracy  of
LSTM,  ARIMA,  and  RNN  models.  They  suggested
simple linear regression for forecasting critical satellite
features for short-lifetime satellites (i.e., 3–5 years) and
NNs for long-lifetime satellites (15–20 years).

Unlike algorithms designed to operate on the ground
in the mission control center, Wan et al.[127] proposed a
self-learning  classification  algorithm  to  achieve  on-
board  telemetry  data  classification  with  low
computational complexity and low time latency. 

3.6    Ionospheric scintillation detecting
 

3.6.1    Definition & limitations
Signals  transmission by satellites  toward the earth can
be  notably  impacted  due  to  their  propagation  through
the atmosphere, especially the ionosphere, which is the
ionized  part  of  the  atmosphere  higher  layer,  and  is
distinguished  by  an  elevated  density  of  free  electrons
(Fig. 12).  The  potential  irregularities  and  gradients  of
ionization can distort the signal phase and amplitude, in
a process known as ionospheric scintillation.

In particular, propagation through the ionosphere can
cause  distortion  of  global  navigation  satellite  system
(GNSS)  signals,  leading  to  significant  errors  in  the
 

Ionosphere

 
Fig. 12    Representation  of  ionospheric  scintillation,  where
distortion occurs during signal propagation. The blue, green,
and  red  lines  show  the  line-of-sight  signal  paths  from  the
satellite to the earth antennas, the signal fluctuation, and the
signal delay, respectively.
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GNSS-based  applications.  GNSSs  are  radio-
communication  satellite  systems  that  allow  a  user  to
compute  the  local  time,  velocity,  and  position  in  any
place  on  the  earth  by  processing  signals  transferred
from  the  satellites  and  conducting  trilateration[128].
GNSSs  can  also  be  used  in  a  wide  variety  of
applications, such as scientific observations.

Because of the low-received power of GNSS waves,
any  errors  significantly  threaten  the  accuracy  and
credibility  of  the  positioning  systems.  GNSS  signals
propagating through the ionosphere face the possibility
of  both  a  temporal  delay  and  scintillation.  Although
delay  compensation  methods  are  applied  to  all  GNSS
receivers[128],  scintillation  is  still  a  considerable  issue,
as  its  quasi-random  nature  makes  it  difficult  to
model[129].  Ionospheric  scintillation  thus  remains  a
major  limitation  to  high-accuracy  applications  of
GNSSs.  The  accurate  detection  of  scintillation  thus
required  to  improve  the  credibility  and  quality  of
GNSSs[130]. To observe the signals, which are a source
of  knowledge  for  interpreting  and  modeling  the
atmosphere higher layers, and to raise caution and take
countermeasures  for  GNSS-based  applications,
networks of GNSS receivers, have been installed, both
at  high  and  low  latitudes,  where  scintillation  is
expected to  occur[131, 132].  Robust  receivers  and proper
algorithms  for  scintillation-detecting  algorithms  are
thus both required[133].

To evaluate the magnitude of scintillation impacting
a signal, many researchers have employed simple event
triggers, based on the comparison of the amplitude and
phase  of  two  signals  over  defined  interval[134].  Other
proposed  alternatives,  have  included  using  wavelet
techniques[135],  decomposing  the  carrier-to-noise
density  power  propostion  via  adaptive  frequency-time
techniques[136],  and  assessing  the  histogram  statistical
properties of collected samples[137].

Using  simple  predefined  thresholds  to  evaluate  the
magnitude  of  scintillation  can  be  deceptive  due  to  its
complexity.  The  loss  of  the  transient  phases  of  events
could  cause  a  delay  in  raising  possible  caution  flags,
and  weak  events  with  high  variance  could  be  missed.
Further, it can be difficult to distinguish between signal
distortions  caused  by  other  phenomena,  including

multi-path.  However,  other  proposed  alternatives
depend  on  complex  and  computationally  costly
operations or on customized receiver architectures. 

3.6.2    AI-based solutions
Recently,  studies  have  proved  that  AI  can  be  utilized
for the detection of scintillation. For example, Rezende
et  al.[138] proposed  a  survey  of  data  mining  methods,
that rely on observing and integrating GNSS receivers.

A  technique  based  on  the  SVM  algorithm  has  been
suggested  for  amplitude  scintillation  detection[139, 140],
and  then  later  expanded  to  phase  scintillation
detection[141, 142].

By  using  decision  trees  and  RF  to  systematically
detect  ionospheric  scintillation  events  impacting  the
amplitude  of  the  GNSS  signals,  the  methodology
proposed by Linty et al.[143] outperformed state-of-the-
art methodologies in terms of accuracy (99.7%) and F-
score  (99.4%),  thus  reaching  the  levels  of  a  manual
human-driven annotation.

More recently, Imam and Dovis[144] proposed the use
of  decision  trees,  to  differentiate  between  ionospheric
scintillation and multi-path in GNSS scintillation data.
Their  model,  which  annotates  the  data  as  scintillated,
multi-path  affected,  or  clean  GNSS  signal,
demonstrated an accuracy of 96% 

3.7    Interference managing
 

3.7.1    Definition & limitations
Interference  managing  is  mandatory  for  satellite
communication  operators,  as  interference  negatively
affects  the  communication  channel,  resulting  in  a
reduced  QoS,  lower  operational  efficiency  and  loss  of
revenue[145]. Moreover, interference is a common event
that is increasing with the increasing congestion of the
satellite  frequency  band  as  more  countries  are
launching satellites and more applications are expected.
With  the  growing  number  of  users  sharing  the  same
frequency band, the possibility of interfering augments,
as does the risk of intentional interference, as discussed
in Section 3.2.

Interference  managing  is  thus  essential  to  preserve
high-quality  and  reliable  communication  systems;
management  includes  detection,  classification,  and
suppression  of  interference,  as  well  as  the  application
of techniques to minimize its occurrence.
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Interference  detection  is  a  well-studied  subject  that
has  been  addressed  in  the  past  few  decades[146, 147],
especially for satellite communication[145, 148].

However,  researchers  have  commonly  relied  on  the
decision theory of hypothesis testing, in which specific
knowledge of the signal characteristics and the channel
model  is  needed.  Due  to  the  contemporary  diverse
wireless  standards,  the  design of  specific  detectors  for
each signal category is fruitless approach. 

3.7.2    AI-based solutions
To  minimize  interference,  Liu  et  al.[149] suggested  the
use of AI for moving terminals and stations in satellite-
terrestrial  networks  by  proposing  a  framework
combining  different  AI  approaches  including  SVM,
unsupervised learning, and DRL for satellite selection,
antenna pointing, and tracking.

Another  AI-based  approach  that  executes  automatic
real-time  interference  detection  is  based  on  the
forecasting  of  the  following  signal  spectrum  to  be
received  in  absence  of  anomaly,  by  using  LSTM
trained on historical anomaly-free spectra[150]. Here the
predicted  spectra  are  then  compared  to  the  received
signal using a designed metric, to detect anomalies.

Henarejos  et  al.[151] proposed  the  use  of  two  AI-
based approaches, DNN AEs and LSTM, for detecting
and  classifying  interference,  respectively.  In  the
former, the AE is trained with interference free signals
and tested against other signals without interference to
obtain  practical  thresholds.  The  difference  in  error  in
signals with and without interference is then exploited
to detect the presence of interference. 

3.8    Remote sensing
 

3.8.1    Definition & limitations
RS  is  the  process  of  extracting  information  about  an
area, object or phenomenon by processing its reflected
and  emitted  radiation  at  a  distance,  generally  from
satellite or aircraft.

RS has a wide range of applications in multiple fields
including land surveying, geography, geology, ecology,
meteorology,  oceanography,  military,  and
communication.  As  RS  offers  the  possibility  of
monitoring  areas  that  are  dangerous,  difficult  or
impossible  to  access,  including  mountains,  forests,
oceans, and glaciers, it is a popular and active research

area. 

3.8.2    AI-based solutions
The  revolution  in  computer  vision  capabilities  caused
by DL has led to the increased development of RS by
adopting  state-of-the-art  DL  algorithms  on  satellite
images,  image  classification  for  RS  has  become  most
popular  task  in  computer  vision.  For  example,  Kussul
et  al.[152] used  DL  to  classify  land  coverage  and  crop
types using RS images from Landsat-8 and Sentinel-1A
over  a  test  site  in  Ukraine.  Zhang  et  al.[153] combined
DNNs  by  using  a  gradient-boosting  random  CNN  for
scene  classification.  More  recently,  Li  et  al.[154]

proposed  the  combination  of  kNN  and  CNN  to  map
coral reef marine habitats worldwide with RS imaging.
RS  and  AI  have  also  been  used  in  communication
theory applications, such as those discussed in Section
3.4[114−116].

Many  object  detection  and  recognition  applications
have  been  developed  using  AI  on  RS  images[155].
Recently,  Zhou  et  al.[156] proposed  the  use  of
YOLOv3[157, 158],  a  CNN-based  object  detection
algorithm,  for  vehicle  detection  in  RS  images.  Others
have proposed the use of DL for other object detection
tasks,  such  as  building[159],  airplane[160],  cloud[161−163],
ship[164, 165],  and  military  target[166] detection.  AI  has
also  been  applied  to  segment  and  restore  RS  images,
e.g., in cloud restorations, during which ground regions
shadowed by clouds are restored.

Recently,  Zheng  et  al.[167] proposed  a  two-stage
cloud  removal  method  in  which  U-Net[168] and  GANs
are  used  to  perform  cloud  segmentation  and  image
restoration, respectively.

AI proposed for on-board scheduling of agile Earth-
observing  satellites,  as  autonomy  improves  their
performance and allows them to acquire more images,
by relying on on-board  scheduling for  quick decision-
making. By comparing the use of RF, NNs, and SVM
to  prior  learning  and  non-learning-based  approaches,
Lu  et  al.[169] demonstrated  that  RF  improved  both  the
solution quality and response time. 

3.9    Behavior modeling
 

3.9.1    Definition & limitations
Owing to the increasing numbers of active and inactive
(debris)  satellites  of  diverse  orbits,  shapes,  sizes,

    228 Intelligent and Converged Networks,  2021, 2(3): 213−244

 



orientations,  and  functions,  it  is  becoming  infeasible
for  analysts  to  simultaneously  monitor  all  satellites.
Therefore,  AI,  especially  ML, could play a  major  role
by helping to automate this process. 

3.9.2    AI-based solutions
Mital  et  al.[170] discussed  the  potential  of  ML
algorithms  to  model  satellite  behavior.  Supervised
models  have  been  used  to  determine  satellite
stability[171],  whereas  unsupervised  models  have  been
used  to  detect  anomalous  behavior  and  a  satellites’
location[172],  and  an  RNN  has  been  used  to  predict
satellite maneuvers over time[173].

Accurate  satellite  pose  estimation,  i.e.,  identifying  a
satellite’s  relative  position  and  attitude,  is  critical  in
several space operations, such as debris removal, inter-
spacecraft  communication,  and  docking.  The  recent
proposal  for  satellite  pose  estimation  from  a  single
image  via  combined  ML  and  geometric  optimization
by  Chen  et  al.[174] won  the  first  place  in  the  recent
Kelvins  pose  estimation  challenge  organized  by  the
European Space Agency[175].

The  amount  of  space  debris  has  augmented
immensely  over  the  last  few years,  which can cause  a
crucial  menace  to  space  missions  due  to  the  high
velocity  of  the  debris.  It  is  thus  essential  to  classify
space objects and apply collision avoidance techniques
to  protect  active  satellites.  As  such,  Jahirabadkar  et
al.[176] presented a survey of diverse AI methodologies,
for  classification  of  space  objects  using  the  curves  of
light as a differentiating property.

Yadava  et  al.[177] employed  NNs  and  RL  for  on-
board attitude determination and control;  their  method
effectively  provided  the  needed  torque  to  stabilize  a
nanosatellite along three axes.

To  avoid  catastrophic  events  because  of  battery
failure,  Ahmed  et  al.[178] developed  an  on-board
remaining battery life estimation system using ML and
a logical analysis of data approaches. 

3.10    Space-air-ground integrating
 

3.10.1    Definition & limitations
Recently, notable advances have been made in ground
communication systems to provide users higher-quality
internet  access.  Nevertheless,  due  to  the  restricted
capacity  and coverage area  of  networks,  such services

are  not  possible  everywhere  at  all  time,  especially  for
users in rural or disaster areas.

Although  terrestrial  networks  have  the  most
resources  and  highest  throughput,  non-terrestrial
communication systems have a much broader coverage
area. However, non-terrestrial networks have their own
limitations; e.g.,  satellite communication systems have
a  long  propagation  latency,  and  air  networks  have  a
narrow capacity and unstable links.

To supply users with better and more-flexible end-to-
end  services  by  taking  advantage  of  the  way  the
networks can complement each other, researchers have
suggested  the  use  of  SAGINs[10],  which  include  the
satellites  in  space,  the balloons,  airships,  UAVs in the
air, and the ground segment, as shown in Fig. 13.

The  multi-layered  satellite  communication  system
which consists of GEO, MEO, and LEO satellites, can
use multi-cast and broadcast methods to ameliorate the
network  capacity,  crucially  easing  the  augmenting
traffic  burden[10, 26].  As  SAGINs  allow  packet
transmission  to  destinations  via  multiple  paths  of
diverse  qualities,  they  can  offer  different  packet
transmissions  methods  to  encounter  diverse  service
demands[26].

However, the design and optimization of SAGINs is
more  challenging  than  that  of  conventional  ground
communication  systems  owing  to  their  inherent  self-
organization,  time-variability,  and  heterogeneity[10].  A
variety  of  factors  that  must  be  considered  when
designing  optimization  techniques  have  thus  been
identified[10, 26].  For  example,  the  diverse  propagation
mediums,  the  sharing  of  frequency  bands  by  different
communication  types,  the  high  mobility  of  the  space
and  air  segments,  and  the  inherent  heterogeneity
between the three segments, make the network control
and  spectrum  management  of  SAGINs  arduous.  The
high  mobility  results  in  frequent  handoffs,  which
makes  safe  routing  more  difficult  to  realize,  thus
making SAGINs more exposed to jamming. Further, as
optimizing  the  energy  efficiency  is  also  more
challenging  than  in  standard  terrestrial  networks,
energy management algorithms are also required. 

3.10.2    AI-based solutions
In their discussion of challenges facing SAGINs, Kato
et  al.[26] proposed  the  use  of  a  CNN  for  the  routing
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problem to optimize the SAGIN’s overall performance
using  traffic  patterns  and  the  remaining  buffer  size  of
GEO and MEO satellites.

Optimizing  the  satellite  selection  and  the  UAV
location  to  optimize  the  end-to-end  data  rate  of  the
source-satellite-UAV-destination  communication  is
challenging  due  to  the  vast  orbiting  satellites  number
and  the  following  time-varying  network  architecture.

To  address  this  problem,  Lee  et  al.[179] jointly
optimized the source-satellite-UAV association and the
location  of  the  UAV  via  DRL.  Their  suggested
technique  achieved  up  to  a  5.74  times  higher  average
data  rate  than  a  direct  communication  baseline  in  the
absence of UAV and satellite.

For  offloading  calculation-intensive  applications,  a
SAGINs  edge/cloud  computing  design  has  been
developed  in  such  a  way  that  satellites  give  access  to
the  cloud  and  UAVs  allow  near-user  edge
computing[180].  Here,  a  joint  resource  allocation  and
task  scheduling  approach  is  used  to  allocate  the
computing  resources  to  virtual  machines  and  schedule
the offloaded tasks for UAV edge servers,  whereas an
RL-based  computing  offloading  approach  handles  the
multidimensional  SAGINs  resources  and  learns  the
dynamic  network  conditions.  Here,  a  joint  resource
allocation  and  task  scheduling  approach  is  used  to
assign the computing resources to virtual machines and
plan  the  offloaded  functions  for  UAV  edge  servers,
whereas  an  RL-based  computing  offloading  approach
handles  the  multidimensional  SAGINs  resources  and
learns the dynamic network characteristics. Simulation
results confirmed the efficiency and convergence of the
suggested technique.

As  the  heterogeneous  multi-layer  network  requires
advanced  capacity-management  techniques,  Jiang  and
Zhu[181] suggested  a  low-complexity  technique  for
computing  the  capacity  among  satellites,  using  a  time
structure based augmenting path searching method, and
suggested  a  long-term  optimal  capacity  assignment
RL-based  model  to  maximize  the  long-term  utility  of
the system.

By  formulating  the  joint  resources  assignment
problem  as  a  joint  optimization  problem  and  using  a
DRL  approach,  Qiu  et  al.[182] proposed  a  software-
defined  satellite-terrestrial  network  to  jointly  manage
caching, networking, and computing resources. 

3.11    Energy managing
 

3.11.1    Definition & limitations
Recent  advances  in  the  connection  between  ground,
aerial,  and  satellite  networks  such  as  SAGINs  have
increased  the  demand  imposed  on  satellite
communication  networks.  This  growing  attention
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Fig. 13    Space-air-ground integrated networks (SAGINs)[26].
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towards  satellites  has  led  to  increased  energy
consumption  requirements.  Satellite  energy
management thus represents a hot research topic for the
further development of satellite communication.

Compared with a GEO satellite, an LEO satellite has
restricted  on-board  resources  and  moves  quickly.
Further, an LEO satellite has a limited energy capacity
owing to its small size[183];  as billions of devices need
to  be  served  around  the  world[184],  current  satellite
resource  capability  can  no  longer  satisfy  demand.  To
address  this  shortage  of  satellite  communication
resources,  an  efficient  resource  scheduling  scheme  to
take full use of the limited resources, must be designed.
As  current  resource  allocation  schemes  have  mostly
been  designed  for  GEO  satellites,  however,  these
schemes do not consider many LEO specific concerns,
such as the constrained energy, movement attribute, or
connection and transmission dynamics. 

3.11.2    AI-based solutions
Some  researchers  have  thus  turned  to  AI-based
solutions  for  power  saving.  For  example,  Kothari  et
al.[27] suggested the usage of DNN compression before
data  transmission  to  improve  latency  and  save  power.
In  the  absence  of  solar  light,  satellites  are  battery
energy  dependent,  which  places  a  heavy  load  on  the
satellite battery and can shorten their lifetime leading to
increased  costs  for  satellite  communication  networks.
To optimize the power allocation in satellite to ground
communication  using  LEO  satellites  and  thus  extend
their  battery  life,  Tsuchida  et  al.[185] employed  RL  to
share  the  workload  of  overworked  satellites  with  near
satellites  with  lower  load.  Similarly,  implementing
DRL  for  energy-efficient  channel  allocation  in  Satlot
allowed for a 67.86% reduction in energy consumption
when compared with previous models[186]. Mobile edge
computing  enhanced  SatIoT  networks  contain  diverse
satellites  and  several  satellite  gateways  that  could  be
jointly  optimized  with  coupled  user  association,
offloading  decisions  computing,  and  communication
resource allocation to minimize the latency and energy
cost.  In  a  recent  example,  a  joint  user-association  and
offloading  decision  with  optimal  resource  allocation
methodology based on DRL proposed by Cui et al.[187]

improved the long-term latency and energy costs. 

3.12    Other applications
 

3.12.1    handoff optimization
Link-layer  handoff  occurs  when  the  change  of  one  or
more  links  is  needed  between  the  communication
endpoints  due  to  the  dynamic  connectivity  patterns  of
LEO  satellites.  The  management  of  handoff  in  LEO
satellites  varies  remarkably  from  that  of  terrestrial
networks,  since  handoffs  happen  more  frequently  due
to the movement of satellites[3]. Many researchers have
thus  focused on handoff  management  in  LEO satellite
networks.

In  general,  user  equipment  (UE)  periodically
measures  the  strength  of  reference  signals  of  different
cells  to  ensure  access  to  a  strong  cell,  as  the  handoff
decision  depends  on  the  signal  strength  or  some other
parameters.  Moreover,  the  historical  RSRP  contains
information to avoid unnecessary handoff.

Thus, Zhang et al.[188] converted the handoff decision
to  a  classification  problem.  Although  the  historical
RSRP  is  a  time  series,  a  CNN  was  employed  rather
than  an  RNN  because  the  feature  map  of  historical
RSRP has a strong local spatial correlation and the use
of an RNN could lead to a series of wrong decisions, as
one  decision  largely  impacts  future  decisions.  In  the
proposed AI-based method, the handoff was decreased
by  more  than  25% for  more  than  70% of  the  UE,
whereas the commonly used “strongest  beam” method
only reduced the average RSRP by 3%. 

3.12.2    Heat source layout design
The  effective  design  of  the  used  heat  sources  can
enhance the thermal performance of the overall system,
and  has  thus  become  a  crucial  aspect  of  several
engineering  areas,  including  integrated  circuit  design
and satellite layout design. With the increasingly small
size  of  components  and  higher  power  intensity,
designing the heat-source layout  has  become a critical
problem[189].  Conventionally,  the  optimal  design  is
acquired  by  exploring  the  design  space  by  repeatedly
running  the  thermal  simulation  to  compare  the
performance  of  each  scheme[190−192].  To  avoid  the
extremely  large  computational  burden  of  traditional
techniques,  Sun  et  al.[193] employed  an  inverse  design
method in  which the layout  of  heat  sources  is  directly
generated  from a  given  expected  thermal  performance
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based  on  a  DL  model  called  Show,  Attend,  and
Read[194].  Their  developed  model  was  capable  of
learning the  underlying physics  of  the  design problem
and  thus  could  efficiently  forecast  the  design  of  heat
sources  under  a  given  condition  without  any
performing  simulations.  Other  DL  algorithms  have
been  used  in  diverse  design  areas,  such  as
mechanics[195], optics[196], fluids[197], and materials[198]. 

3.12.3    Reflectarray analysis and design
ML algorithms have been employed in the analysis and
design  of  antennas[22],  including  the  analysis[199, 200]

and  design[201, 202] of  reflectarrays.  For  example,  NNs
were used by Shan et al.[203] to forecast the phase-shift,
whereas  kriging  was  suggested  to  forecast  the
electromagnetic  response  of  reflectarray
components[204].  Support  vector  regression  (SVR)  has
been  used  to  accelerate  the  examination[205] and  to
directly  optimize  narrowband  reflectarrays[206].  To
hasten  calculations  without  reducing  their  precision,
Prado  et  al.[207] proposed  a  wideband  SVR-based
reflectarray design method, and demonstrated its ability
to obtain wideband, dual-linear polarized,  and shaped-
beam  reflectarrays  for  direct  broadcast  satellite
applications. 

3.12.4    Carrier signal detection
As each signal must be separated before classification,
modulation,  demodulation,  decoding,  and  other  signal
processing, localization and detection of carrier signals
in  the  frequency  domain  are  a  crucial  problem  in
wireless communication.

The algorithms used for carrier signal detection have
been commonly based on threshold values and required
human  intervention[208−213],  although  several
improvements  have  been  made  including  the  use  of  a
double  threshold[214, 215].  Kim  et  al.[216] proposed  the
use  of  a  slope-tracing-based  algorithm  to  separate  the
interval  of  signal  elements  based  on  signal  properties
such as amplitude,  slope,  deflection width,  or  distance
between neighboring deflections.

More recently, DL has been applied to carrier signal
detection;  for  example,  Morozov and Ovchinnikov[217]

applied a fully connected NN for their detection in FSK
signals,  whereas  Yuan  et  al.[218] used  DL  to  morse
signals  blind  detection  in  wideband  spectrum  data.

Huang  er  al.[219] employed  a  fully  convolutional
network  (FCN)  model  to  detect  carrier  signal  in  the
broadband power spectrum. A FCN is a DL method for
semantic  image  segmentation  in  which  the  broadband
power  spectrum  is  regarded  as  a  1D  image  and  each
subcarrier  as  the  target  object  to  transform  the  carrier
detection  problem on  the  broadband to  a  semantic  1D
image  segmentation  problem[220−222].  Here,  a  1D  deep
FCN model was designed to categorize each point on a
broadband  power  spectrum  array  into  two  categories
(i.e.,  subcarrier  or  noise),  and  then  position  the
subcarrier  signals’ location  on  the  broadband  power
spectrum.  After  being  trained  and  validated  using  a
simulated and real satellite broadband power spectrum
dataset,  respectively,  the  proposed  deep  CNN
successfully  detected  the  subcarrier  signal  in  the
broadband  power  spectrum  and  achieved  a  higher
accuracy  than  the  slope  tracing  method. Table 3
matches  the  different  satellite  communication  aspects
with their respective AI-based solutions refrences. 

4    Conclusion

This  review  provided  an  overview  of  AI  and  its
different sub-fields, including ML, DL, and RL. Some
limitations  to  satellite  communication  were  then
presented  and  their  proposed  and  potential  AI-based
solutions  were  discussed.  The  application  of  AI  has
shown  great  results  in  a  wide  variety  of  satellite
communication  aspects,  including  beam-hopping,  AJ,
network  traffic  forecasting,  channel  modeling,
 

Table 3    Various satellite problems with their respective AI-
based solutions references.

Satellite problem AI-based solutions reference
Beam hopping [57, 69−72]
Anti jamming [75, 77, 79−81]

Traffic forecasting [82, 86, 88−92]
Channel modeling [104−111, 113−116]
Telemetry mining [117−127]

Ionospheric scintillation detecting [138−144]
Interference managing [149−151]

Remote sensing [114−116, 152−155, 157−169]
Behaviour modeling [170−178]

Space-air-ground integrating [26, 179−182]
Energy managing [27, 185−187]

Other [188, 193, 203−207, 217−222]
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telemetry  mining,  ionospheric  scintillation  detecting,
interference  managing,  remote  sensing,  behavior
modeling,  space-air-ground  integrating,  and  energy
managing.  Future  work  should  aim  to  apply  AI,  to
achieve  more  efficient,  secure,  reliable,  and  high-
quality  communication  systems.  Although  ML  has
achieved  great  results  in  terms  of  precision  and
accuracy  in  several  applications,  for  more  secure  and
reliable  communication,  there  is  still  more  work  to  be
done on ML interpretability and adversarial ML.
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