

Model-based reinforcement learning for router
port queue configurations

Ajay Kattepur*, Sushanth David, and Swarup Kumar Mohalik

Abstract: Fifth-generation (5G) systems have brought about new challenges toward ensuring Quality of Service (QoS)

in differentiated services. This includes low latency applications, scalable machine-to-machine communication, and

enhanced mobile broadband connectivity. In order to satisfy these requirements, the concept of network slicing has

been introduced to generate slices of the network with specific characteristics. In order to meet the requirements of

network slices, routers and switches must be effectively configured to provide priority queue provisioning, resource

contention management and adaptation. Configuring routers from vendors, such as Ericsson, Cisco, and Juniper, have

traditionally been an expert-driven process with static rules for individual flows, which are prone to sub optimal

configurations with varying traffic conditions. In this paper, we model the internal ingress and egress queues within

routers via a queuing model. The effects of changing queue configuration with respect to priority, weights, flow limits,

and packet drops are studied in detail. This is used to train a model-based Reinforcement Learning (RL) algorithm to

generate optimal policies for flow prioritization, fairness, and congestion control. The efficacy of the RL policy output is

demonstrated over scenarios involving ingress queue traffic policing, egress queue traffic shaping, and one-hop router

coordinated traffic conditioning. This is evaluated over a real application use case, wherein a statically configured

router proved sub optimal toward desired QoS requirements. Such automated configuration of routers and switches

will be critical for multiple 5G deployments with varying flow requirements and traffic patterns.

Key words: router port queues; model-based Reinforcement Learning (RL); network slicing

1 Introduction

The emergence of fifth-generation (5G) systems[1]

poses a new set of challenges to telecommunication
networks. Principally, Quality of Service (QoS)
requirements would vary, depending on the types of
flows. 5G systems include various classes of flows,
including enhanced Mobile BroadBand (eMBB) for
mobile data and telephony, Ultra Reliable Low Latency
Communications (URLLC) for low-latency industrial

connectivity, and massive Machine Type
Communications (mMTC) for Internet of Things (IoT)
applications. 5G network slicing[2] is an important
technique to meet these diverse requirements. Network
slicing depends on the accurate configuration of
underlay components, such as routers and switches
within large and complex networks.

Vendors of routers and switches have developed
multiple models to perform traffic routing, shaping,
and aggregation within 5G networks[1]. Chief among
these are Ericsson 6000 series[3] and Juniper M-
series[4], which provide high-capacity port interfaces
for edge and aggregation routing. To provide QoS of
various flows, routers must be appropriately configured
for various traffic mixes and requirements. Typically,
multiple routers may be configured using
programmable Software-Defined Networking (SDN)[5]

 • Ajay Kattepur and Swarup Kumar Mohalik are with the

Artificial Intelligence System Group, Ericsson Research,
Bangalore 560093, India. E-mail: ajay.kattepur@ericsson.
com; swarup.kumar.mohalik@ericsson.com.

 • Sushanth David is with the Ericsson Managed Services Unit
in Texas, Plano, TX 75025, USA. E-mail: sushahth.s.david@
ericsson.com.

 * To whom correspondence should be addressed.
 Manuscript received: 2021-08-25; revised: 2021-09-13;

accepted: 2021-09-29

Intelligent and Converged Networks ISSN 2708-6240
2021, 2(3): 177−197 DOI: 10.23919/ICN.2021.0016

© All articles included in the journal are copyrighted to the ITU and TUP. This work is available under the CC BY-NC-ND 3.0 IGO license:

https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.

frameworks. This is currently an (human) expert driven
process with multiple configuration commit commands
provided for each QoS flow[4, 6] . However, given the
complexity and scale of networks, this is an inefficient
technique that can quickly turn sub optimal to new
traffic patterns. Moreover, it is a trial-and-error
approach that depends on the experience of the
programmer, which may fail under novel patterns.
Thus, it is necessary to explore more automated
techniques to manage such routers.

In this work, we explore the use of Reinforcement
Learning (RL) approaches[7] to replace static
configurations currently being used in routers. RL
algorithms are applied to dynamically reconfigure
queuing disciplines and weights, dependent on traffic
patterns, queue lengths, and observed congestions.
Specifically, we make use of the Partially Observable
Markov Decision Process (POMDP)[8] to model states,
actions, observations, and rewards within router port
queues. Through action space exploration, which
includes queue priority changes, weight changes, flow
limitation, drop rate modification, and queuing
discipline change, we demonstrate the generation of
optimal policies for various traffic patterns.

This model is integrated with traffic shaping and
policing algorithms typically used in router
configuration[9]. This approach is demonstrated over a
real use case, wherein a statically configured router is
shown to cause deteriorated 5G system performance.
This is specifically shown to be applicable in three
aspects: (i) port ingress queue traffic policing to ensure
fair allocation to all queues, (ii) port egress queue
traffic shaping to prevent bottlenecks at the egress port,
and (iii) one-hop routing to perform coordinated traffic
shaping across multiple router ports.

The principal questions targeted in this paper are as
follows:

(1) Can the configuration of the ingress and egress
queues within a router be automated to adapt to
different traffic conditions?

(2) Can policies generated via RL reduce congestions
and packet dropping in router queues?

(3) What is the process to transform queuing model

parameters to transition probabilities within model-
based RL techniques?

The paper is organized as follows: The state-of-the-
art is described in Section 2. Details on router queue
modeling and associated protocols are studied in
Section 3. A real 5G network slicing scenario and the
need for router configuration are presented in
Section 4. The description of the model-based RL
approach for router queue configuration is presented in
Section 5. Section 6 provides details on ingress traffic
shaping, egress traffic policing, and one-hop traffic
conditioning using the output of RL policies. The
conclusions and future directions are discussed in
Section 7.

2 Related work

In this section we review the related approaches in
router queue modeling and the use of RL toward
queuing systems.

2.1 Router modeling

To model the ingress and egress queues within routers,
we make use of queuing network models. In Ref. [10],
differentiated service (DiffServ) requirements at router
ports were studied, including queuing types, priorities,
and packet drop policies. In Ref. [11], early work on
programming computations on routers and switches
was introduced. The programmability of routing
control has been further developed via Software-
Defined Networking (SDN)[5], wherein control plane
decisions may be made to route flows to specific router
ports.

A scalable model used to maintain QoS in routers is
DiffServ[12]. With DiffServ, the network tries to deliver
a particular kind of service based on the QoS specified
by each packet. Commonly used marking and policing
mechanisms are single-rate 3-colour marking and dual-
rate 3-colour marking[9]. The DiffServ marking has
been incorporated with 5G network slicing[2] to provide
guaranteed QoS to customer flow types. Network
slicing builds on DiffServ by providing DiffServ at the
radio access level. To this end, multiple 5G routers
from Ericsson[3], Cisco[6], and Juniper[4] have been
introduced. While the commands to configure routers

 178 Intelligent and Converged Networks, 2021, 2(3): 177−197

are typically expert driven (trial-and-error), efforts are
underway to make use of artificial intelligence
techniques into these systems.

In this paper, we make use of the queuing modeling
techniques and associated simulators to study the effect
of parameter changes. The reconfiguration settings are
then fed into the RL model for policy updates. The
queuing network model is used to model the ingress
and egress queuing outputs within the routers. This is a
highly dynamic system that changes depending on the
packet arrival rate, packet traffic mix, and priorities of
flows. Continuously optimizing the system using rule-
based or linear programming solvers would be
inefficient. By contrast, RL algorithms offer multiple
advantages: (i) the ability to continuously monitor the
current state of the system and propose the most
rewarding actions and (ii) learn about changes in a
traffic mix that can cause deteriorated performance and
suggest alternate configurations.

2.2 RL for queue-based systems

RL algorithms[7] have gained prominence in recent
years due to their ability to generate optimal actions
within use cases, such as vehicular traffic and scenario-
based gaming. There have also been applications of RL
algorithms toward networks. In Ref. [13], RL
techniques were prosed as switch arbitrators in high
speed networks. However, the effects of the queuing
delay and traffic mix have not been considered. A
prominent area of work is Q-routing[14], wherein RL
techniques are used to provide an appropriate route
considering link capacities and congestion effects.
However, these techniques do not deal with the internal
configurations of router ports. In Ref. [15], a survey of
model-free and model-based techniques used for
efficient routing over variants of the Q-routing protocol
was studied. In Ref. [16], a knowledge layer was
proposed over SDNs that can provide autonomous
configurations via analytics, prediction, and tuning.

The use of RL in the automated configuration of
complex systems has also received significant
attention. In Ref. [17], the use of RL for adaptive
bandwidth provisioning for DiffServ was studied. In
Ref. [18], RL was used to optimize virtual machine job

allocation and to preserve the fair use of CPU,
memory, and disk resources. In Ref. [19], RL
techniques were used to provide multi-objective
optimization of distributed stream processing systems.
In Ref. [20], the process of automatically adjusting the
number of concurrently running jobs on a grid
workstation was formulated as an RL problem. The
queue length and the actions of accepting or blocking
jobs were performed using hidden Markov models and
Q-learning formalisms. Table 1 provides an overview
of applying the state-of-art RL techniques network
routing, traffic engineering, and queuing control. We
provide limitations in the approaches within these set
of papers.

To the best of our knowledge, we have seen limited
work in the application of RL algorithms for router port
queue configurations. Current static rule-based setup
will not scale and cannot guarantee optimal changes
with dynamic traffic patterns. It also involves human
operators setting rules that may be inefficient. We
propose a detailed analysis of port interface capacities,
flow classes, interfaces, and scheduling models to
generate appropriate policies for reconfiguration.

This paper is an extended version of the workshop
paper[33] with the following additions:

(1) Additional background, configuration details, and
protocols involved within router queues.

(2) Additional details on the evaluation of traffic
policing for ingress queues.

(3) New evaluation results on egress queue shaping
with detailed analysis.

(4) New addition of one-hop router configuration and
evaluation.

3 Background

In this section, we present the background material in
router queues, configuration parameters, and traffic
policing/shaping.

3.1 Router queues

A router typically has two types of network
components with separate processing planes[4]:

(1) Control plane: This plane maintains a routing
table that lists the routes to be taken by a data packet.

 Ajay Kattepur et al.: Model-based reinforcement learning for router port queue configurations 179

This may be statically defined or learned based on the
traffic mix. The control plane builds the Forwarding
Information Base (FIB) that is fed to the forwarding
plane.

(2) Forwarding plane: The router forwards data
packets between incoming and outgoing port
connections. Using information from the packet
header, the accurate FIB is used to map the outgoing
packet.

Both the switch and router ports have ingress
(inbound) queues and egress (outbound) queues.

Figure 1 presents an overview of the ingress and
egress queuing operations that typically occur in
routers[4, 6] . When a packet arrives at the router, it
typically follows the following workflow steps (see
Fig. 1):

(1) Prioritization: A packet entering the router port
is assigned an internal priority level and internal drop
precedence. This is determined based on a class map
linked to the packet header information.

(2) Ingress policing: As the packet enters the router,
it is subjected to a classification filter. Packets
belonging to each class can be rate-limited or marked.
The per- class traffic can be treated as follows:

(a) The per-class rate limits may be set. By default,
conforming traffic is marked green; exceeding traffic
yellow; and violating traffic red[9]. Violating traffic can
be marked red (if the violate red command is
configured) or dropped immediately (if the violate drop
command is configured).

(b) Packets that are not dropped because of rate
limiting can have their drop precedence values

Table 1 RL applied to transport network routing and traffic engineering.

Solution space Related work Algorithmic technique Limitation

Intelligent routing

DROM[21],
knowledge
defined
networking[22],
multi-agent
routing[23], graph
based routing[24]

DROM[21] and knowledge defined networking[22] make use of
Deep Deterministic Policy Gradient (DDPG) algorithms to
change the weights of network links in an SDN framework.
Multi-agent routing[23] upgrades Q-routing with multi-agent
RL techniques for coordinated routing. Graph based routing[24]

develops a model-free RL technique that considers the graph
nature of the network topology tailored to the routing problem.

This set of papers makes use of
RL within the routing plane of
the network. There is no
modeling of the internal
router/switch queue
configurations or machine
learning thereof.

Network traffic
control

QFLOW[25],
LEARNET[26],
multi-hop
routing[27], SDN
RL[28], TCP-
DRINC[29]

QFLOW[25] is a platform for RL-based edge network
configuration that uses queuing, learning, and scheduling to
meet the quatily of experience of video streaming applications.
LEARNET[26] makes use of RL for flow control in time-
sensitive deterministic networks. In multi-hop routing[27], a
distributed model-free solution based on stochastic policy
gradient RL was proposed, which aims to minimize the E2E
delay by allowing each router to send a packet to the next-hop
router according to the learned optimal probability. SDN-
based RL techniques[28] exploits the multi-path forwarding of
SDN to increase throughput or reduce latency of packet
transmission. TCP-DRINC[29] uses an RL-based congestion
control to adjust the congestion window size within TCP
networks.

This set of traffic engineering
techniques makes use of overlay
congestion control or SDN-
based flow control to improve
the throughput, latency, and
packet drop of networks. They
do not consider the bottlenecks
that can arise at the port queue
configuration level in underlay
networks.

Queue
configuration

RL-QN[30], Deep
RL[31], queue-
learning[32]

In Ref. [30], model-based RL was used to learn the optimal
control policy of queueing networks, so that the average job
delay is minimized. In Ref. [31], Proximal Policy
Optimization (PPO) algorithm was tested on a parallel-server
system and large-size multi-class queueing networks. The
algorithm consistently generates control policies that
outperform heuristics in a variety of load conditions from light
to heavy traffic. Queue-learning[32] studies an RL-based
service rate control algorithm for providing QoS in tandem
queueing networks. The proposed method is capable of
guaranteeing probabilistic upper-bounds on the end-to-end
delay of the system.

These papers provide a
theoretical foundation on
applying RL within queueing
networks. However, specific
nature of protocols used for
traffic policing and shaping
within routers/switches are not
considered.

 180 Intelligent and Converged Networks, 2021, 2(3): 177−197

modified.
(3) The router transports the packet to the egress

port.
(4) Egress scheduling: Each outgoing packet is

assigned to an egress queue based on the destination
information from the forwarding table. Egress queues
also have associated scheduling parameters, such as
rates, depths, and relative weights.

Note: In this paper, we do not target the routing table
policy (extensively surveyed in Ref. [14]), but
concentrate on configuring the router port queuing
disciplines.

3.2 Queuing models

Both ingress and egress queues within the router port
may be configured to operate on different queue types.
Depending on the combination of flows and QoS
requirements, the following queuing models may be
used[10]:

−First-In First-Out (FIFO): In FIFO queues, the
packets are processed in order of arrival.

−Priority Queuing (PQ): In this form of queuing,
packets are assigned priorities with higher priority
packets proceed before lower priority packets. The
disadvantage is that the lower priority queues may not
receive any service.

−Fair Queue (FQ): This queuing discipline ensures

that all flows have fair access to the queuing resources.
This model prevents bursty traffic from overconsuming
resources.

−Weighted Fair Queuing (WFQ): This is a fair
queuing discipline that also provides priority
scheduling of packets. Higher priority packets are
scheduled before a lower priority packet when they
arrive at the same time.

−Class-Based WFQ (CBWFQ): This provides
multiple use defined queues that may be configured
based on either a fixed bandwidth or shared bandwidth.

−Priority WFQ (PWFQ): This provides a strict
priority of queues as an extension of CBWFQ.

In most commercial routers[3, 4, 6], the PWFQ model
is used. An example configuration is shown below. The
first step is to create a PWFQ policy with the
bandwidth limits, congestion avoidance map, and
policy weights:

1 [local](config)#qos policy policy1 pwfq
2 [local](config -policy -pwfq)#rate pir 100000 burst

10000
3 [local](config -policy -pwfq)#rate cir 50000 burst

30000
4 [local](config -policy -pwfq)#congestion -map ca -map -1
5 [local](config -policy -pwfq)#num -queues 8
6 [local](config -policy -pwfq)#weight 70

This step is followed by specifying queues, and
assigning port priorities, weights, maximum rates, and
bursts.

Network
interface
packets in

Network
interface
packets out

Ingress
packet

forwarding

Routing
engine

forwarding
table

Ingress
queue
marking and
policing

Per port (8) virtual queues,

Egress
queue
traffic
shaping

Ingress queue Egress queue

Priority,
weight,
queue

assignment

CIR and PIR flow rates, RED drop

Fig. 1 Router internal queues.

 Ajay Kattepur et al.: Model-based reinforcement learning for router port queue configurations 181

1 [local](config -policy - pwfq)# queue 0 prior i ty 0
strict - pr ior i ty 0

2 [local](config -policy - pwfq)# queue 0 rate maximum
5000 burst 30000

3 [local](config -policy - pwfq)# queue 1 prior i ty 0
strict - pr ior i ty 1

4 [local](config -policy - pwfq)# queue 1 rate maximum
10000 burst 30000

5 [local](config -policy - pwfq)# queue 2 prior i ty 0
strict - pr ior i ty 2

6 [local](config -policy - pwfq)# queue 2 rate maximum
10000 burst 30000

7 [local](config -policy - pwfq)# queue 3 prior i ty 0
strict - pr ior i ty 3

8 [local](config -policy - pwfq)# queue 3 rate maximum
10000 burst 100000

We delve into adding additional packet queue
scheduling parameters in the next section.

3.3 Packet scheduling in routers

In order to provide DiffServ-based QoS, network
routers and switches make use of traffic conditioning[4].
Policing and shaping are two methods that will help
reduce congestion by continuously measuring the rate
at which data are sent or received.

Policing applies a hard limit to the rate at which
traffic arrives or leaves an interface. Packets are either
dropped (hard policing) or reclassified (soft policing) if
they do not conform to the constraints. Policing is
helpful under certain conditions where the
neighbouring network could send more traffic than the
contract specification. Policing will then enforce the
contract, thus protecting the network from being
overrun with too much traffic. A policer can be applied
in an inbound or outbound direction.

Shaping also defines a limit to the rate at which
traffic can be transmitted, but unlike policing, it acts on
traffic that has already been granted access to a queue
and is awaiting access to transmission resources.
Shaping is useful when the neighbouring network is
policing or is slower in accepting traffic. Under such
conditions a shaper can delay traffic, thus preventing it
from getting dropped. Therefore, shaping can be less
aggressive than policing and can have fewer negative
side effects.

One well-used policing policy is the two-rate three-
colour marking[9] (see Fig. 2). It bases the marking on
the Committed Information Rate (CIR), i.e., the
average traffic rate that a customer is allowed to send
into the network, and the Peak Information Rate (PIR),

i.e., the maximum average sending rate for the
customer. Traffic bursts that exceed the CIR but remain
under PIR are allowed in the network, but are marked
for more aggressive discarding.

Algorithm 1 provides users with three actions for
each packet: a conform action, an exceed action, and an
optional violate action. If the tokens in the CIR or PIR
buckets are exceeded, then tokens may be marked as
yellow (exceeding) or red (violating). Users can
specify these actions. Exceeding packets can the sent
with a decreased priority, and violating packets can be
marked for aggressive dropping.

Packet dropping policies: The router scheduler
maintains an average queue length or each queue
configured for a Random Early Drop (RED)[34]. When
a packet is enqueued, the current queue length is
weighted into the average queue length based on the
average-length exponent in the drop profile. When the
average queue length exceeds the minimum threshold,
RED begins randomly dropping packets. While the
average queue length increases toward the maximum
threshold, the RED drops packets with increasing
frequency, up to the maximum drop probability. When

CIR PIR
Tc(0)=CBS Tp(0)=PBS

Marking decision:

Marker

Color blind mode

Packet
size B

Tp(t)−B < 0, red, don't
remove tokens from
Tc or Tp

Tc(t)−B < 0, yellow,
remove tokens from Tp

Tc(t)−B >= 0, green,
remove tokens from
Tc and Tp

else

else

Fig. 2 Two-rate three-color marking, where CBS is the
committed burst rate and PBS is the peak burst rate.

Algorithm 1 Two-rate three-colour marking[9]

1 Input: Input packet of size B; number of tokens in the CIR bucket Tc ;
number of tokens in the PIR bucket Tp .

2 Output: Packet marked with green (conform), yellow (exceed) or red (violate)
colours.

3 When a packet with size of B bytes arrives at the interface, perform the following:
4 if Tp < B then
5 Mark packet with violate colour (red);
6 Do not decrement Tp bucket;

7 else if Tc < B then
8 Mark packet with exceed colour (yellow);
9 Decrement Tc bucket by B ;

10 else
11 Mark packet with conform colour (green);
12 Decrement both Tc and Tp buckets by B

 182 Intelligent and Converged Networks, 2021, 2(3): 177−197

the average queue length exceeds the maximum drop
threshold, all packets are dropped. This is also shown
in Fig. 3.

In cases where the queues are congested, packed
dropping strategies may be applied[10]:

−Drop-from-tail: easy to implement; delayed
packets within the queue may “expire”.

−Drop-from-head: old packets purge first; good for
real time; better for TCP.

−Random drop: fair if all sources behave;
misbehaving sources are more heavily penalized.

An example profile of dropping packets for
congestion avoidance is shown below. The queue depth
is used along with the queue average packet size to
calculate the effective queue depth. The minimum
threshold sets the RED queue occupancy below, whose
packets are not dropped.

1 [local](config -congestion -map)#queue 3 depth 200
2 [local](config -congestion -map)#queue 3 average -packet

-size 256
3 [local](config -congestion -map)#queue 3 exponential -

weight 9
4 [local](config -congestion -map)#queue 3 red default

min-threshold 130 max-threshold 200 probability
10

5 [local](config -congestion -map)#queue 4 depth 400
6 [local](config -congestion -map)#queue 4 average -packet

-size 512
7 [local](config -congestion -map)#queue 4 exponential -

weight 9
8 [local](config -congestion -map)#queue 4 red default

min-threshold 300 max-threshold 400 probability
10

4 5G slicing scenario

Network slicing in radio access, transport, and core
subsystems is necessary to provide DiffServ
performance[2]. The use case that is of interest is when
various slice requirements are affected by the static
configurations of a router port. In this case, the

transport layer cannot meet service-level agreement
due to congestion at a particular port (other diagnostic
tools may be used to detect this). The objective of this
work is to automatically reconfigure the port queue to
alleviate this bottleneck.

Figure 4 presents an actually observed scenario on
Ericsson’s internal network. Due to a statically
configured edge router, the end-to-end (E2E) network
slice is unable to meet the service-level QoS objectives.
Although an alternative would be to re-route the traffic
to another port, this is a pathological problem that
would entail repeated changes to the slice.

60 80

The Ericsson 6675 router is deployed on a live
Ericsson testbed network with multiple flows of traffic
as shown in Fig. 5. UDP users and TCP users are
used to generate a range of traffic pattens over the
monitored period. An example of such a port
configuration on an Ericsson 6675 router is shown
below:

1 PORT 10
2 QoS policy PWFQ - 1_8 Gbps pwfq
3 rate PIR 1800000
4 rate CIR 1800000
5 num - queues 8
6 congestion -map WRED
7 queue 0 prior i ty 0 weight 100
8 queue 1 prior i ty 0 weight 100
9 queue 2 prior i ty 0 weight 100

10 queue 3 prior i ty 0 weight 100
11 queue 3 rate maximum 900000 (# motor)
12 queue 4 prior i ty 4 weight 60
13 queue 5 prior i ty 4 weight 25 (# video)
14 queue 6 prior i ty 4 weight 10
15 queue 7 prior i ty 4 weight 5 (# IoT sensor)

Due to the priority and weight settings, queues 5 and
7 receive a bulk of the traffic, which results in
increased congestion in the respective queues. An
example of the traffic generated is shown in Fig. 6.
Such a misconfiguration is a pathological problem that
requires expert root cause analysis and tuning. In the
next section, we study an RL model that can potentially
alleviate this issue.

Adjustable slope

All packets
are dropped

No packets
are dropped

1

0

Pr
ob

ab
ilit

y
of

 b
ei

ng
dr

op
pe

d

Minimum
threshold

Maximum
threshold

Average queue length
Fig. 3 RED drop probability.

Customer

Edge router

Cell site router Data center
gateway
routerStatic configured

port congestion

Network slice

Fig. 4 Bottleneck due to statically configured router.

 Ajay Kattepur et al.: Model-based reinforcement learning for router port queue configurations 183

5 RL model

To dynamically reconfigure the router port queues, we
make use of a trained RL agent to take actions to
relieve potential mis-configurations. Figure 7 presents

the high level model of our proposed system, which
consists of the following:

(1) Queuing network model: Based on the traffic
mix and flows, a queuing network model is developed
for the ingress and egress queues. The queuing model
is used to study the effects of changing multiple
parameters, such as queuing discipline, drop rates, and
priority.

(2) RL agent: The effect of changes on queue
configurations are fed into the RL model for training. It
has actions spanning multiple queue configuration
parameters. Observations on throughput, latency, and
packet drop changes are used to provide rewards to the
agent.

(3) Configuration deployment: The policy
generated by the RL agent is then deployed on the
router port. This can be directly run on the router

·Size 1400 bytes
UDP

TCPCapacity

·Base (30 users, uplink and downlink):

·Spike (30 users, uplink):

·Total:

Calculation:

·Min: 350 packet => 1176 Mbps
·Max: 500 packet => 168 Mbps

·Min: 2800 packet => 9408 Mbps
·Max: 3200 packet => 10 752 Mbps

·Min: 1176 + 1176 = 2352 Mbps
·Max: 168 + 168 + 10 752 = 14 112 Mbps

UDP base min: 1400 bytes × 8 bits × 350 pps × 30 users = 1176 Mbps
TCP spike max: 1400 bytes × 8 bits × 3200 pps × 30 users = 10 752 Mbps

·80 users targeting 320−400 Mbps
 throughput (change every 8 hours)
·Total including TCP: 5552−18 112 Mbps

Fig. 5 Statically configured router queues.

1.8

1.5

1.2

0.9

N
um

be
r o

f p
ac

ke
ts

 (×
10

7)

0.6

0.3

0 1000 2001 3001 4002
Number of samples

5002 6003 7003 8003

QCMTLENQ1SR1_if26_queue1_tx_green_packets

QCMTLENQ1SR1_if26_queue4_tx_green_packets

QCMTLENQ1SR1_if26_queue7_tx_green_packets

QCMTLENQ1SR1_if26_queue2_tx_green_packets

QCMTLENQ1SR1_if26_queue5_tx_green_packets

Fig. 6 Observed packet traffic across multiple queues.

Queueing
model

simulator

Traffic data

Actions

Rewards

Environment

Observation

Model
policy

Router
port
action
sequence

Optimal
configuration
deployment

Egress queue
shaping

I-hop
neighour
actions

- Ingress/egress
- Queue selection
- Priorites/weights
- Drop policies
- QoS classes

Port configuration RL
agent training

1
0.3

0.7

2

3

Fig. 7 RL model for port configuration.

 184 Intelligent and Converged Networks, 2021, 2(3): 177−197

operating system or be configured via SDN controllers.
Based on the observed traffic mix, the agent’s policy is
deployed for ingress traffic policing and egress traffic
shaping.

(4) 1-hop neighbor configuration: We further
include policies that can affect another hop of the
router. This reward structure ensures that the egress
output does not cause a bottleneck in the next hop.

We provide further details on the model-based RL
algorithms and the queuing simulator to train and
evaluate this model.

5.1 POMDP

Markov Decision Processes (MDPs) form the
theoretical basis for RL. A generalization of MDPs is
POMDP[8], where decisions are made with partial
observations of the environment. This is a more generic
and scalable approach as (i) there is no assumption on
agents having full observations of the environment, (ii)
the system is resilient to faulty observations, and (iii)
heterogeneous observations may be included. This
approach is also useful in the case of routers as internal
queues are seldom exposed: Through the coarse-
grained characteristics of the latency, throughput, and
packet drop per flow, the underlying queue
characteristics can be derived.

As the agent does not directly know the exact state, it
has to derive beliefs based on observations. The
observations and rewards are inputs to the agents,
which are then used to update current belief states. The
advantage of this process is that uncertainty in
observations is also included within the model.

⟨S ,A,Ω,T,O,R⟩Definition 1　A POMDP is a tuple :
S− is a finite set of states,
A− is a finite set of actions,
Ω− is a finite set of observations,
T

T : S ×A×S → [0,1]

− is a transition function defined as
,

O

O : S ×A×Ω→ [0,1]

− is an observation function defined as
,

R R : S ×A×S → R− is a reward function defined as .

S = {s1, . . . , sN} A = {a1, . . . ,aK}

Figure 8 provides an overview of the POMDP agent’s
interaction with its environment. With a set of states

 and a set of actions ,

a s

s′

T (s,a, s′)

R(s,a, s′)

Ω = {o1, . . . ,oM}

O : S ×A×Ω→ [0,1]

when the agent takes an action in state , the
environment transitions to state according to the
transition function . The agent receives a
reward as a result of this action. The set of
observations represent all possible
sensor readings the agent can receive. The observation
is dependent on the function , with
an independently tracked probability of observations.

b(s) b

S

b0

The POMDP agent maps observations to states using
the belief vector . The belief is a probability
distribution over , which forms a Markovian signal
for the planning task. Each POMDP problem assumes
an initial belief , which for instance can be set to a
uniform distribution over all states (representing equal
probability of stating in any of the states). Every time
the agent takes action a and observes o , its belief is
updated by Bayes’ rule,

bao(s′) =
p(o|s′,a)
p(o|b,a)

∑
s∈S

p(s′|s,a)b(s) (1)

p(o|s′,a) p(s′|s,a)

O T
p(o|b,a)

where and are defined by parameters
 and , respectively, and the normalizing constant

 is defined as

p(o|b,a) =
∑
s′∈S

p(o|s′,a)
∑
s∈S

p(s′|s,a)b(s) (2)

π∗(b)

S π

Vπ(b)

π b

The goal of the agent is to choose actions that fulfill
its task as well as possible, thus generating an optimal
policy. In POMDPs, an optimal policy maps
beliefs to actions over a continuous set of probability
distributions over . A policy can be characterized by
a value function , which is defined as the
expected future discounted reward that the agent can
gather by following starting from belief ,

Vπ(b) = Eπ

 h∑
t=0

γt
∑
s∈S

R(s,π(bt))bt(s)|b0 = b

 (3)

Environment

Agent

π
Action a

State s
Observation o
Reward r

Fig. 8 POMDP agent.

 Ajay Kattepur et al.: Model-based reinforcement learning for router port queue configurations 185

π Vπ

π∗ b

γ

V∗

A policy that maximizes is called an optimal
policy . It specifies for each the optimal action to
execute at the current step, assuming that the agent will
also act optimally at future time steps. is the discount
factor that trades off current rewards to future expected
rewards. The value of the optimal policy is defined by
the optimal value function , that is generated using
the Bellman backup operator[8],

V∗(b) =max
a∈A

∑
s∈S

R(s,a)b(s)+γ
∑
o∈O

p(o|b,a)V∗(bao)

 (4)

Generating an exact solution for the exhaustive set of
belief points is computationally expensive. A counter
technique is to generate an approximate solution with
only a finite set of belief points[8]. In this work, we
make use of the SARSOP algorithm[35] that uses point
based approximations to solve POMDPs.

π : B→ A b ∈ B
a ∈ A

π∗

A POMDP policy maps a belief to a
prescribed action . The value function associated
with the optimal policy can be approximated
arbitrarily closely by a convex and piecewise-linear
function,

V(b) =max
α∈Γ

(α ·b) (5)

Γ α b

α ·b
α b α

α

α

where is a finite set of vectors called -vectors, is
the discrete vector representation of a belief, and is
the inner product of vectors -vector and . Each -
vector is associated with an action. The policy can be
executed by selecting the action corresponding to the
best -vector at the current belief. As provided in Ref.
[35], the value update function for the -vectors is
given by the following:

αa(s)← R(s,a)+γ
∑
o,s′

T (s,a, s′)O(s′,a,o)αa,o(s′) (6)

We make use of the POMDP format (http://www.
pomdp.org/code/pomdp-file-grammar.html) to specify
a subset of states, actions, and observations that are
relevant for the router port configuration. The
underlying states are based on (unobservable) queue
depths and queue utilization, which can affect the
marking of an incoming packet, and classified as low,
mid, or high. A subset of this is seen in Table 2.

With the changes in parameters via actions on a
particular queue, the rest of the queues may be

positively or negatively affected. These are seen as
system observations used to make further configuration
changes. To evaluate the probabilities of these actions,
we make use of exhaustive queuing network model
simulations, as described in the next section.

5.2 Queue evaluation parameters

In order to train the POMDP model, we need a robust
ququeing modeling tool to observe changes due to
configurations. We use the Java Modeling Tools
(JMT)[36] queuing network simulator to model the
internals of the router queue and study configuration
changes as presented in the case study.

N

Figure 9 presents the router port ingress and egress
closed queuing models in JMT. Here we consider
multiple classes of customer flows (UDP, TCP, and
VoIP), that must be simulated in the queuing network.
By making use of the workload intensity parameter ,
the average number of jobs (customers) in the flow
execution is included. Priorities for processing each
class of flows are specified. The arrival rate of packets

Table 2 States, action, and observations in POMDP format.

1 discount: 0 .95
2 values: reward
3
4 states:
5 #0 Q0 -3 _low_Q4_low_Q5_low_Q7_low
6 #1 Q0 -3 _low_Q4_low_Q5_low_Q7_high
7 #2 Q0 -3 _low_Q4_low_Q5_high_Q7_low
8 #3 Q0 -3 _low_Q4_low_Q5_high_Q7_high
9 #4 Q0 -3 _low_Q4_high_Q5_low_Q7_low

10 #5 Q0 -3 _low_Q4_high_Q5_low_Q7_high
11 #6 Q0 -3 _low_Q4_high_Q5_high_Q7_low
12 #7 Q0 -3 _low_Q4_high_Q5_high_Q7_high
13 #8 Q0 -3 _high_Q4_high_Q5_high_Q7_high
14 #9 Q0 -3 _low_Q4_high_Q5_low_BW_Q7_high
15
16 actions:
17 # 0 Q5_weight_increase
18 # 1 Q5_weight_decrease
19 # 2 Q5_bandwidth_l imi t_decrease
20 # 3 Q5_bandwidth_l imi t_ increase
21 # 4 Q5_interface_increase
22 # 5 Q5_interface_decrease
23 # 6 Q5_PFWQ_FIFO
24 # 7 Q5_FIFO_PFWQ
25 # 8 Q5_RED_packet_drop_high
26 # 9 Q5_RED_packet_drop_low
27
28 observations:
29 Q5_residence_t ime_increase
30 Q5_residence_t ime_decrease
31 Q5_throughput_increase
32 Q5_throughput_decrease
33 Q5_queue_drop_increase
34 Q5_queue_drop_decrease
35 Q7_residence_t ime_increase
36 Q7_residence_t ime_decrease
37 Q7_throughput_increase
38 Q7_throughput_decrease
39 Q7_queue_drop_increase
40 Q7_queue_drop_decrease
41 system_residence_t ime_increase
42 system_residence_t ime_decrease
43 system_throughput_increase
44 system_throughput_decrease
45 system_queue_drop_increase
46 system_queue_drop_decrease

 186 Intelligent and Converged Networks, 2021, 2(3): 177−197

is specified by a Poisson process with the service time
(processing time per visit of a station).

In order to implement the routing priorities and
PWFQ specifications, certain special parameters in
JMT are used:

(1) Queue station: The queue station in JMT allows
users to specify queues, queue capacity (finite or
infinite), and scheduling policy.

(2) Queue policy: Myltiple ququing policies may be
evaluated, including FIFO, FQ, and PWFQ.

(3) Routing section: Various routing algorithms,
such as round robin, random, or probabilistic models,
may be applied to route packets between queuing
stations.

We make use of these aspects to simulate the use
case as specified in Section 4.

The advantage of using the queuing network
simulators is the ability to collect various performance
indices: (i) residence time: time spent by a packet
waiting and receiving service at a queuing station; (ii)
drop rate: rate at which packets are dropped from the
system; (iii) throughput: the number of packets
processed in a time unit; and (iv) utilization (of a
station): percentage of time that a station is used
evaluated over all the simulation runs.

5.3 Transforming queuing metrics to transition
probabilities

As we now have outputs from the queuing network
models, the output observations and rewards must be
effectively translated into the transition probabilities.
For this, we make use of some of the fundamental
queuing laws[37].

i Di

Definition 2　 Service demand law: The total
average service time required by a customer at resource
, denoted by ,

Di =
Ui

X
(7)

Ui i Xwhere is the utilization of resource and is the
system throughput.

N

Z

X R

Definition 3　Little’s law: It provides the relationship
among the number of users in a system, throughput,
and response time. If there are users in the system,
each with think time (time waiting between
interactions with the system), and system processes at
the throughput rate producing a response time ,
then the following relationship applies:

N = X · (R+Z) (8)

Ui qi

Definition 4　Queue length: Given the utilization
 at a given station, the queue length may be

calculated by

Routing_Section_1 TCP

UDP_base

UDP_spike

Misc

Routing_Section_2 Queue 2

Queue 7

Queue 3

Queue 6

Queue 5

Queue 1

Queue 4

Queue 0

Queue 0

Queue 5

Queue 1

Queue 2

Queue 7

Queue 3

Queue 4

Queue 6

Routing_Section_1

Routing_Section_2

egress_network_interface

Fig. 9 Router ingress (left) and egress (right) queueing models within JMT.

 Ajay Kattepur et al.: Model-based reinforcement learning for router port queue configurations 187

qi =
Ui

1−Ui
(9)

As the queuing length and utilization of each queue
can be related, we make use of the following thresholds
to relate the two-rate three-color marking and the RED
packet drop probabilities for individual queues,

Mark(q,U) =


qlow, if U ⩽ 0.5;
qmid, if 0.5 < U ⩽ 0.7;
qhigh, otherwise

(10)

qlow qmid qhigh

qmid qlow

qmid

From the observed changes in the utilization of a
queue (correspondnigly the queue length), we would
like to derive the conditional probabilities of the
change among , , and . For instance, the
probability of change from states to given the
action weight, the increase at state must be
generated. Note that these thresholds may vary
depending on the use case and queue deterioration
thresholds.

Q1_low
weight_decrease

5%

Algorithm 2 provides this transformation from steady
state queue observations to state and observation
transition probabilities, which are required for POMDP
models. For instance, if in state , the action

 produces an observed utilization
increase of . Taking the thresholds in Eq. (10)
results in the transition probabilities,

P(Q1_low|weight_decrease in Q1_low) = 0.9,

P(Q1_mid|weight_decrease in Q1_low) = 0.1.

10%

[0,0.5] 0.05

This is because, in only of cases with utilization
in the range , a increase will result in

[0.51,0.7]utilization in the range . This may be
correspondingly marked to queue lengths and packet
color markings.

Algorithm 2 is used in conjunction with the SARSOP
value update function in Eq. (6) to generate optimal
policies.

6 Automated configuration evaluation

In this section, we evaluate the efficacy of the model
based RL technique on the traffic policing and shaping
of the ingress/egress router port queues.

6.1 Ingress queue policing

In order to study the ingress queue policing, we make
use of the traffic setting configuration presented in
Section 4 in conjunction with the queuing model in
Fig. 9. The output of a queuing simulation over the
misconfigured router is shown in Fig. 10. As expected,
we see increased utilization, queue length, and
residence times for queue 7, despite quques 0−3 having
only 25% utilization (Fig.10a). The objective is to
generate a policy that would alleviate this load, while
maintaining the priorities of individual flows within the
system.

The first step is to collect the statistics of changes in
the observed metrics as a result of configuration
changes. We make use of the JMT simulator to study
the improvements/deteriorations due to configuration
changes, as shown in Table 3 . The following
configurations are studied:

10(1) Queue 5 weight increases by ;
10(2) Queue 5 weight decreases by ;

50%(3) Queue 5 bandwidth increases by ;
50%(4) Queue 5 bandwidth decreases by ;

1(5) Queues 5 and 7 virtual interfaces increase by ;
(6) Queue changes from PWFQ to FCFS;
(7) Queue RED packet drop increases.
While we have primarily concentrated on changing

the configuration of one queue, this can similarly be
extended to combinations of various ingress queue
configurations.

Once we have the steady-state metrics for
configuration changes, they can be inputted as
transition and observation probabilities as described in

Algorithm 2 State transition and observation
probabilities elicitation

1 Input: Queuing network with a set of states S, configuration change

2 Output: State and observation transition probabilities.
3 for each state s ∈S that covers all joint queues states (green,

yellow, red) do
4 for each action a ∈A do
5 Perform action a in state s;
6 Determine the change in utilization ΔU for each q ∈Q

in state s;
7 Determine the conditional probability for each state s:

P (state change |ΔU);
8 Record state transition probabilities after normalization;

9 for each action a ∈ A do
10 Perform action a in state s;
11 for each for each observation category, i = 1, . . . , k, do
12 Determine the change in observation ΔOi for each

q ∈ Q in state s;
13 Determine the conditional probability for each observation

change: P (observation change|ΔOi);14
Record observation transition probabilities after normalization;

actions A, corresponding utilization change ΔU, and corresponding
observation vector (residence time, throughput, drop packets)
change ΔOi, i = 1, . . . , k.

 188 Intelligent and Converged Networks, 2021, 2(3): 177−197

Algorithm 2. A snippet of the POMDP file format is
shown in Table 4 . Note that we map the same
observation to multiple possible underlying states
(green, yellow, and red) of the individual queues. This
method is realistic as routers do not expose individual
queue utilization rather than the global metrics, such as
throughput, packet drop rates, and latencies. The expert
or RL model must make use of these observations to

infer the appropriate configurations that would
alleviate the bottleneck queue. We make use of the
POMDP model, which has uncertainty built in to
estimate the appropriate configuration. In a simpler
case, this can be converted to a conventional MDP by
mapping each observation to a particular state of the
router/queue.

The SARSOP solver[36] is used to generate a policy

0.260

0.256

0.252

0.248

0.244

0.240
0.2 0.4 0.6 0.8 1.0 1.2 1.4

N (×102)
1.6 1.8 2.0 2.2 2.4

Q
ue

ue
 1

_U
til

iz
at

io
n

0.2 0.4 0.6 0.8 1.0 1.2 1.4
N (×102)

1.81.6 2.0 2.2 2.4

Q
ue

ue
 1

_N
um

be
r o

f
cu

st
om

er
s

0.350
0.345
0.340
0.335
0.330
0.325
0.320

0.2 0.4 0.6 0.8 1.0 1.2 1.4
N (×102)

1.6 1.8 2.0 2.2 2.4

Q
ue

ue
 7

_U
til

iz
at

io
n

1.00
0.98
0.96
0.94
0.92
0.90
0.88
0.86
0.84

(a) Ingress queue utilization with increasing load

0.2 0.4 0.6 0.8 1.0 1.2 1.4
N (×102)

1.6 1.8 2.0 2.2 2.4

Q
ue

ue
 7

_N
um

be
r o

f
cu

st
om

er
s

14
13
12
11
10
9
8
7
6
5
4

(b) Ingress queue length (number of jobs)
with increasing load

0.2 0.4 0.6 0.8 1.0 1.2 1.4
N (×102)

1.6 1.8 2.0 2.2 2.4

Q
ue

ue
 1

_R
es

id
en

ce
tim

e
(×

10
−4

 s
)

1.70

1.66

1.62

1.58

1.54

1.50
0.2 0.4 0.6 0.8 1.0 1.2 1.4

N (×102)
1.6 1.8 2.0 2.2 2.4

Q
ue

ue
 1

_T
hr

ou
gh

pu
t

(×
10

2 j
ob

s/
s)

1.30
1.29
1.28
1.27
1.26
1.25
1.24
1.23
1.22
1.21

0.2 0.4 0.6 0.8 1.0 1.2 1.4
N (×102)

1.6 1.8 2.0 2.2 2.4

Q
ue

ue
 7

_R
es

id
en

ce
tim

e
(×

10
−3

 s
)

(c) Ingress queue residence time with increasing load

6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4
N (×102)

1.6 1.8 2.0 2.2 2.4

Q
ue

ue
 7

_T
hr

ou
gh

pu
t

(×
10

2 j
ob

s/
s)

(d) Ingress queue throughput with increasing load

5.0
4.9
4.8
4.7
4.6
4.5
4.4
4.3
4.2

Fig. 10 Ingress queue with misconfigured router.

 Ajay Kattepur et al.: Model-based reinforcement learning for router port queue configurations 189

Table 3 Observed metrics with ingress queue configuration changes.

Configuration Queue
Metric

Throughput (jobs/s) Queue length Residence time (s) Utilization ratio

Baseline

Q0 124.3 0.33 0.000 70 0.240
Q1 124.3 0.33 0.000 70 0.240
Q2 124.3 0.33 0.000 70 0.240
Q3 124.3 0.14 0.000 34 0.120
Q4 281.0 1.28 0.003 00 0.560
Q5 419.0 5.00 0.012 00 0.830
Q6 477.0 19.40 0.046 00 0.950
Q7 497.0 98.90 0.230 00 0.990

UDP-base 353.0 2.22 0.100 00 0.700
UDP-spike 379.8 0.13 0.000 32 0.110

TCP 445.0 44.00 0.140 00 0.990
Misc 995.0 66.90 0.160 00 0.990

1

Q0 124.3 0.33 0.000 86 0.240
Q1 124.3 0.33 0.000 86 0.240
Q2 124.3 0.33 0.000 86 0.240
Q3 124.3 0.14 0.000 37 0.120
Q4 281.0 1.28 0.003 00 0.560
Q5 379.0 3.11 0.008 20 0.750
Q6 477.0 19.40 0.050 00 0.950
Q7 497.0 103.90 0.270 00 0.990

UDP-base 336.0 1.90 0.005 10 0.670
UDP-spike 358.0 0.13 0.000 33 0.110

TCP 445.0 42.70 0.110 00 0.990
Misc 995.0 66.90 0.160 00 0.990

2

Q0 124.3 0.330 0.000 72 0.240
Q1 124.3 0.33 0.000 72 0.240
Q2 124.3 0.33 0.000 72 0.240
Q3 124.3 0.14 0.000 31 0.120
Q4 281.0 1.28 0.002 80 0.560
Q5 457.0 10.30 0.022 50 0.910
Q6 477.0 19.10 0.040 00 0.950
Q7 497.0 91.00 0.190 00 0.990

UDP-base 368.0 2.60 0.005 10 0.730
UDP-spike 401.0 0.14 0.000 31 0.120

TCP 445.0 46.60 0.100 00 0.990
Misc 995.0 67.60 0.140 00 0.990

3

Q0 101.6 0.25 0.001 20 0.200
Q1 101.6 0.25 0.001 20 0.200
Q2 101.6 0.25 0.001 20 0.200
Q3 101.6 0.11 0.000 51 0.100
Q4 164.0 0.48 0.002 00 0.320
Q5 218.0 0.27 0.001 30 0.210
Q6 242.0 0.93 0.004 30 0.480
Q7 249.0 231.00 1.000 00 0.990

UDP-base 100.0 0.25 0.100 00 0.200
UDP-spike 101.0 0.03 0.000 15 0.030

TCP 266.0 1.40 0.006 50 0.590
Misc 812.0 4.16 0.001 90 0.820

(To be continued)

 190 Intelligent and Converged Networks, 2021, 2(3): 177−197

Table 3 Observed metrics with ingress queue configuration changes. (Continued)

Configuration Queue
Metric

Throughput (jobs/s) Queue length Residence time (s) Utilization ratio

4

Q0 101.6 0.25 0.001 20 0.200
Q1 101.6 0.25 0.001 20 0.200
Q2 101.6 0.25 0.001 20 0.200
Q3 101.6 0.11 0.000 46 0.100
Q4 181.0 0.56 0.002 30 0.360
Q5 249.0 229.00 0.920 00 0.990
Q6 279.0 1.26 0.005 00 0.560
Q7 289.0 0.40 0.001 60 0.290

UDP-base 128.0 0.34 0.001 40 0.260
UDP-spike 129.0 0.04 0.000 17 0.040

TCP 333.0 2.75 0.011 00 0.740
Misc 818.0 4.30 0.017 20 0.820

5

Q0 124.3 0.33 0.006 00 0.240
Q1 124.3 0.33 0.006 00 0.240
Q2 124.3 0.33 0.006 00 0.240
Q3 124.3 0.14 0.002 60 0.120
Q4 290.0 1.37 0.018 00 0.580
Q5 436.0 1.20 0.014 00 0.870
Q6 498.0 114.00 1.310 00 0.990
Q7 519.0 1.50 0.018 00 1.000

UDP-base 380.0 2.88 0.026 50 0.700
UDP-spike 419.0 0.13 0.001 40 0.110

TCP 445.0 48.00 0.440 00 0.990
Misc 995.0 66.90 1.262 50 0.990

6

Q0 452.0 8.80 0.195 00 0.900
Q1 452.0 8.80 0.195 00 0.900
Q2 452.0 8.80 0.195 00 0.900
Q3 452.0 0.82 0.001 80 0.450
Q4 452.0 8.80 0.195 00 0.900
Q5 452.0 8.80 0.195 00 0.900
Q6 452.0 8.80 0.195 00 0.900
Q7 452.0 8.80 0.195 00 0.900

UDP-base 493.0 21.42 0.047 30 0.980
UDP-spike 1 681.0 1.00 0.002 00 0.520

TCP 449.0 72.00 0.160 00 0.990
Misc 995.0 82.00 0.180 00 0.990

7

Q0 224.0 0.800 0.003 60 0.450
Q1 224.0 0.800 0.003 60 0.450
Q2 224.0 0.80 0.003 60 0.450
Q3 224.0 0.28 0.001 30 0.220
Q4 224.0 0.81 0.003 60 0.450
Q5 224.0 0.81 0.003 60 0.450
Q6 224.0 0.81 0.003 60 0.450
Q7 224.0 0.81 0.003 60 0.450

UDP-base 449.0 8.60 0.030 00 0.890
UDP-spike 449.0 16.00 0.990 00 0.140

TCP 449.0 224.00 0.000 73 0.990
Misc 449.0 0.81 0.030 00 0.450

 Ajay Kattepur et al.: Model-based reinforcement learning for router port queue configurations 191

1000

that can appropriately reconfigure the system. Our
rewards are configured to reward improvements in the
observed throughput, residence times, and packet drop
rates. The policy graph generated is shown in Fig. 11
(initialized to a statically configured state) with a
simulation output of Monte Carlo runs, as shown
in Table 5.

The last step is to input this policy into the queuing
network model to observe improvements. The output
of the RL algorithm is encoded in the configuration
commit. Observations are tried out every 10 minutes

70%

until a steady state is reached. The outputs of the
estimated queue utilization are presented in Fig. 12.
The initial configuration has two queues in the red
packet marking zone. After successive policy actions,
all the queue utilization is brought below the level.
This finding demonstrates the efficacy of the RL model
in ingress traffic policing.

6.2 Egress queue traffic shaping

It is also important to perform the effective shaping of
egress queues to prevent packet drops at the output of
routers (Fig. 9). Figure 13 provides the output of the
queuing model with an initialized queue configuration.

Table 4 Transitions, observations, and rewards in
POMDP.

1 # Transit ion Probabi l i t ies
2 T: Q5_bandwidth_l imi t_ increase
3 0 .77 0 .0 0 .23 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
4 1 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
5 0 .0 0 .0 1 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
6 0 .0 0 .0 1 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
7 0 .66 0 .0 0 .0 0 .0 0 .34 0 .0 0 .0 0 .0 0 .0 0 .0
8 1 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
9 0 .0 0 .0 0 .66 0 .0 0 .0 0 .0 0 .34 0 .0 0 .0 0 .0

10 1 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
11 1 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
12 0 .74 0 .0 0 .26 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
13
14
15 T: Q5_interface_increase
16 0 .95 0 .0 0 .05 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
17 0 .0 1 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
18 0 .0 0 .0 1 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
19 0 .0 0 .0 0 .0 1 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
20 0 .0 0 .0 0 .0 0 .0 1 .0 0 .0 0 .0 0 .0 0 .0 0 .0
21 0 .0 0 .0 0 .0 0 .0 0 .0 1 .0 0 .0 0 .0 0 .0 0 .0
22 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .95 0 .0 0 .05 0 .0
23 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 1 .0 0 .0 0 .0
24 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 1 .0 0 .0
25 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 1 .0
26
27 # Observat ions
28 O: Q5_weight_decrease : * :

Q5_residence_t ime_increase 0 .125
29 O: Q5_weight_decrease : * :

Q5_residence_t ime_decrease 0 .0
30 O: Q5_weight_decrease : * : Q5_throughput_increase 0

.125
31 O: Q5_weight_decrease : * : Q5_throughput_decrease 0

.0
32 O: Q5_weight_decrease : * : Q5_queue_drop_increase 0

.125
33 O: Q5_weight_decrease : * : Q5_queue_drop_decrease 0

.0
34 O: Q5_weight_decrease : * :

system_residence_t ime_increase 0 .0
35 O: Q5_weight_decrease : * :

system_residence_t ime_decrease 0 .125
36 O: Q5_weight_decrease : * :

system_throughput_increase 0 .125
37 O: Q5_weight_decrease : * :

system_throughput_decrease 0 .0
38 O: Q5_weight_decrease : * :

system_queue_drop_increase 0 .125
39 O: Q5_weight_decrease : * :

system_queue_drop_decrease 0 .0
40
41 # Rewards
42 R: Q5_bandwidth_l imi t_decrease : Q0 -3

_green_Q4_red_Q5_green_Q7_green : * : * -20
43 R: Q5_bandwidth_l imi t_decrease : Q0 -3

_green_Q4_red_Q5_green_Q7_red : * : * -20
44 R: Q5_bandwidth_l imi t_decrease : Q0 -3

_green_Q4_red_Q5_red_Q7_green : * : * -20
45 R: Q5_bandwidth_l imi t_decrease : Q0 -3

_green_Q4_red_Q5_red_Q7_red : * : * -20
46 R: Q5_bandwidth_l imi t_decrease : Q0 -3

_red_Q4_red_Q5_red_Q7_red : * : * -20
47 R: Q5_bandwidth_l imi t_decrease : Q0 -3

_green_Q4_red_Q5_green_BW_Q7_red : * : * -100

B: Q0-3_low_Q4_high_Q5_high_Q7_high
 A: Q5_weight_increase

B: Q0-3_high_Q4_high_Q5_high_Q7_high
 A: Q5_PFWQ_FCFS

O: system_residence_time_decrease

B: Q0-3_high_Q4_high_Q5_high_Q7_high
 A: Q5_RED_packet_drop_high

O: system_residence_time_increase

B: Q0-3_low_Q4_low_Q5_low_Q7_low
 A: Q5_FIFO_PWFQ

O: Q5_residence_time_decrease

B: Q0-3_low_Q4_low_Q5_low_Q7_low
 A: Q5_RED_packet_drop_low

O: system_residence_time_decrease

B: Q0-3_low_Q4_low_Q5_low_Q7_high
 A: Q5_weight_decrease

O: system_residence_time_increase

B: Q0-3_low_Q4_low_Q5_high_Q7_high
 A: Q5_weight_increase

O: Q5_residence_time_increase O: Q5_residence_time_decrease

Fig. 11 Ingress queue configuration policy graph.

Table 5 Simulation run and rewards for ingress queue
policy.

1 -- -- - - - - - - - - - - - - - - - - -- - - -
2 Time |# Trial |# Backup |LBound |UBound
3 |Precision |# Alphas |# Bel iefs
4 -- -- - - - - - - - - - - - - - - - - -- - - -
5 204 .1 311 23369 146 .172 146 .999
6 0 .8266 275 9044
7 -- -- - - - - - - - - - - - - - - - - -- - - -
8 -- -- - - - - - - - - - - -- -
9 # Simulat ions | Exp Total Reward

10 -- -- - - - - - - - - - - -- -
11 10 154 .573
12 20 140 .178
13 30 137 .111
14 40 137 .309
15 50 134 .383
16 60 130 .251
17 70 136 .91
18 80 139 .373
19 90 135 .104
20 100 138 .198
21 -- -- - - - - - - - - - - -- -
22 -- -- - - - - - - - - - - - - - - - - -- - - -
23 # Simulat ions | Exp Total Reward | 95\%
24 Confidence Interval
25 -- -- - - - - - - - - - - - - - - - - -- - - -
26 100 138 .198 (124 .735, 151 .661)
27 -- -- - - - - - - - - - - - - - - - - -- - - -

 192 Intelligent and Converged Networks, 2021, 2(3): 177−197

The results show that the egress queue reaches
bottleneck capacity, whereas queues 0−7 still have
capacity.

In order to reconfigure the system, we once again
study the effect of configuration changes on the
observed metrics. Table 6 reflects the observed
changes due to the following egress queue scheduling
configurations:

20%

(1) Egress queue input routing percentage decreases
by ;

20%

(2) Egress queue input routing percentage decreases
by ;

50%(3) Egress queue bandwidth limit increases by ;

100

90

80

70

60

50

40

30

20

10

1 2 3 4
Configuration

Q0
Q4
Q5
Q7

5 6 7
0

U
til

iz
at

io
n

(%
)

Fig. 12 Observed improvements due to automated
configuration.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
N (×102)

1.6 1.8 2.0 2.2 2.4

0.2 0.4 0.6 0.8 1.0 1.2 1.4
N (×102)

1.6 1.8 2.0 2.2 2.4 0.2 0.4 0.6 0.8 1.0 1.2 1.4
N (×102)

1.6 1.8 2.0 2.2 2.4

0.2 0.4 0.6 0.8 1.0 1.2 1.4
N (×102)

1.6 1.8 2.0 2.2 2.4 0.2 0.4 0.6 0.8 1.0 1.2 1.4
N (×102)

1.6 1.8 2.0 2.2 2.4

0.2 0.4 0.6 0.8 1.0 1.2 1.4
N (×102)

1.6 1.8 2.0 2.2 2.4 0.2 0.4 0.6 0.8 1.0 1.2 1.4
N (×102)

1.6 1.8 2.0 2.2 2.4

0.2 0.4 0.6 0.8 1.0 1.2 1.4
N (×102)

1.6 1.8 2.0 2.2 2.4

Q
ue

ue
 0

_U
til

iz
at

io
n

Q
ue

ue
 0

_T
hr

ou
gh

pu
t

(×
10

2 j
ob

s/
s)

Q

ue
ue

 0
_N

um
be

r o
f

C
us

to
m

et
s

eg
re

ss
_n

et
w

or
k_

in
te

rfa
ce

_
N

um
be

r o
f C

us
to

m
et

s
(×

10
2)

eg
re

ss
_n

et
w

or
k_

in
te

rfa
ce

Th
ro

ug
hp

ut
 (×

10
3 j

ob
s/

s)

Q
ue

ue
 0

_R
es

id
en

ce
 T

im
e

(×
10

−2
 s

)
eg

re
ss

_n
et

w
or

k_
in

te
rfa

ce
_

U
til

iz
at

io
n

eg
re

ss
_n

et
w

or
k_

in
te

rfa
ce

_
R

es
id

en
ce

 T
im

e
(s

)

0.74

0.73

0.72

0.71

0.70

0.69

1.03
1.02
1.01
1.00
0.99
0.98
0.97
0.96

1.03
1.02
1.01
1.00
0.99
0.98
0.97
0.96
0.95

1.45

1.40

1.35

1.30

1.25

1.20

1.2

1.0

0.8

0.6

0.4

0.2

0

1.84
1.82
1.80
1.78
1.76
1.74
1.72

2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2

0

2.6

2.5

2.4

2.3

2.2

2.1

2.0

(a) Egress queue utilization with increasing load

(c) Egress queue residence time with increasing load (d) Egress queue throughput with increasing load

(b) Egress queue length (number of jobs)
with increasing load

Fig. 13 Statically configured egress queue.

 Ajay Kattepur et al.: Model-based reinforcement learning for router port queue configurations 193

50%(4) Egress queue bandwidth limit decreases by .
This model is once again translated into the POMDP

format with transition and observation probabilities.
Using the SARSOP solver, the optimal policy is
generated, as shown in Fig. 14 , with the Monte Carlo
runs shown in Table 7.

Figure 15 demonstrates the effectiveness of the
egress traffic shaping process. We notice that through
repeated configuration changes, the utilization of both
queues drops to the “green” states.

In Fig. 15 , we also provide a result with reward
changes for the one-hop router configuration. This
method is needed in cases where the egress queue from
one router can potentially cause bottlenecks in
subsequent routers by deploying excessive traffic to the
network. We weave into this model the rewards when

Table 6 Configuration changes for egress queues.

Configuration Queue
Metric

Throughput (jobs/s) Queue length Residence time (s) Utilization ratio

Baseline
Q0−Q7 249 1.00 0.004 0.50
Egress 999 232.00 0.928 1.00

1
Q0−Q7 485 29.50 0.060 0.97
Egress 786 3.43 0.007 0.77

2
Q0−Q7 416 4.80 0.010 0.83
Egress 999 201.00 0.480 0.99

3
Q0−Q7 97 30.00 0.300 0.97
Egress 388 0.60 0.006 0.38

4
Q0−Q7 249 0.33 0.001 0.25
Egress 999 237.00 0.950 1.00

Table 7 Simulation rewards for egress.

1 -- -- - - - - - - - - - - - - - - - - -- - - --
2 Time |# Trial |# Backup |LBound |UBound

|Precision |# Alphas |# Bel iefs
3 -- -- - - - - - - - - - - - - - - - - -- - - --
4 0 .21 82 3491 208 .902 208 .902

0.000816354 13 602
5 -- -- - - - - - - - - - - - - - - - - -- - - --
6 -- -- - - - - -- - - - - --
7 # Simulat ions | Exp Total Reward
8 -- -- - - - - -- - - - - --
9 10 196 .246

10 20 201 .31
11 30 204 .546
12 40 202 .937
13 50 205 .736
14 60 204 .843
15 70 204 .305
16 80 205 .793
17 90 206 .368
18 100 206 .478
19 -- -
20 -- -- - - - - - - - - - - - - - - - - -- - - --
21 # Simulat ions | Exp Total Reward | 95\% Confidence

Interval
22 -- -- - - - - - - - - - - - - - - - - -- - - --
23 100 206 .478 (203 .317, 209 .64)
24 -- -- - - - - - - - - - - - - - - - - -- - - --

B: Q0-7_high_egress_high
A: Egress_weight_decrease

B: Q0-7_mid_egress_high
A: Egress_bandwight_limit_decrease

O: Q0-7_residence_time_decrease

B: Q0-7_low_egress_high
A: Egress_weight_decrease

O: Egress_residence_time_decrease

B: Q0-7_high_egress_low
 A: Egress_bandwith_limit_increase

O: Egress_residence_time_increase

B: Q0-7_egress_high
A: Egress_weight_increase

O: Egress_residence_time_increas

B: Q0-7_low_egress
A: Egress_weight_decrease

O: Egress_residence_time_decrease O: Egress_residence
 _time_increase

Fig. 14 Egress queue configuration policy graph.

100
80
60
40
20

1 2 3
Configuration

(a)

(b)

4

1 2 3
Configuration

4

5 6
0

U
til

iz
at

io
n

(%
)

100
80
60
40
20
0

U
til

iz
at

io
n

(%
)

Q0
Egress

Q0
Egress

Fig. 15 Egress queue configurations with (a) single router
and (b) one-hop considered.

 194 Intelligent and Converged Networks, 2021, 2(3): 177−197

there can be deterioration of the next-hop router
policies and can effectively configure the router to
mitigate this action.

6.3 Effect of traffic change

Another factor to estimate is the robustness of the
system with network traffic changes. We make use of
the same POMDP model with a new traffic pattern as
shown in Fig. 16 . Keeping the same transition and
observation probabilities as the initial model, the
POMDP policy is generated with this new initial
condition. The sequence of configuration changes is
shown in Fig. 17 . The findings demonstrate that the
system is robust enough to handle variations in traffic
patterns and ensures proper configuration of
ingress/egress queues.

7 Conclusion

The emergence of 5G network slicing has mandated
the need for accurate configuration of routers and

switches to deliver optimal performance. Currently,
routers and switches have static configurations, which
are applied to multiple traffic mixes. This characteristic
can quickly turn suboptimal, requiring trial-and-error
changes by an expert. In this paper, we explore
alternative RL-based models to automate configuration
changes in router ports. This method is shown to be
effective in traffic policing, traffic shaping and
coordinated configuration changes within routers. Its
performance is demonstrated over a realistic use case
involving routers for 5G network slicing.

In this work, we have made use of queuing network
models to train the RL model. However it would be
more realistic to train it on logged network datasets that
stem from Ericsson, Juniper, and Cisco router
deployments. In addition, there are plans to include
transfer learning to re-use policies across a sequence of
routers for effective 5G slicing. This initiative may also
include multi-agent RL techniques to coordinate
multiple configuration agents across large networks.

References

 ETSI, System architecture for the 5G system, 3GPP TS
23.501, version 15.3. 0, 2018.

[1]

 X. Foukas, G. Patounas, A. Elmokashfi, and M. K.
Marina, Network slicing in 5G: Survey and challenges,
IEEE Commun. Mag., vol. 55, no. 5, pp. 94–100, 2017.

[2]

 Ericsson AB, Router 6675, Technical specifications, 2019.[3]
 D. R. Hanks Jr. and H. Reynolds, Juniper MX Series.
Sebastopol, CA, USA: O’Reilly Media, 2012.

[4]

 D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E.
Rothenberg, S. Azodolmolky, and S. Uhlig, Software-
defined networking: A comprehensive survey, Proc. IEEE,

[5]

1.40

1.05

0.70

N
um

be
r o

f p
ac

ke
ts

 (×
10

5)

0.35

0
Sample

(a)

(b)

ONTOR004SR1_if25_queue1_tx_green_packets
ONTOR004SR1_if25_queue2_tx_green_packets
ONTOR004SR1_if25_queue4_tx_green_packets
ONTOR004SR1_if25_queue3_tx_green_packets

N
um

be
r o

f p
ac

ke
ts

 (×
10

6)

8

6

4

2

0
Sample

ONTOR004SR1_if25_queue5_tx_green_packets
ONTOR004SR1_if25_queue7_tx_green_packets

Fig. 16 Router queue processing traffic.

100
90
80
70
60
50
40
30
20
10
0

U
til

iz
at

io
n

(%
)

1 2 3 4
Configuration

5

Q0
Q4
Q5
Q7

Fig. 17 Ingress queue reconfiguration.

 Ajay Kattepur et al.: Model-based reinforcement learning for router port queue configurations 195

vol. 103, no. 1, pp. 14–76, 2015.
 Cisco Systems, Quality of Service (QoS) configuration
guide, Cisco IOS, 2018.

[6]

 R. S. Sutton and A. G. Barto, Reinforcement Learning - An
Introduction. 2nd ed. Cambridge, MA, USA: MIT Press,
2018.

[7]

 L. P. Kaelbling, M. L. Littman, and A. R. Cassandra,
Planning and acting in partially observable stochastic
domains, Artif. Intell. , vol. 101, nos. 1&2, pp. 99–134,
1998.

[8]

 Cisco Systems, QoS: Color-aware policer, Cisco IOS
documentation, 2005.

[9]

 C. Semeria, Supporting differentiated service classes:
Queue scheduling disciplines, Juniper Networks
Whitepaper, 2001.

[10]

 H. Zhang, Service disciplines for guaranteed performance
service in packet-switching networks, Proc. IEEE, vol. 83,
no. 10, pp. 1374–1396, 1995.

[11]

 Cisco Systems, DiffServ – the scalable end-to-end QoS
model, WhitePaper, 2005.

[12]

 T. X. Brown, Switch packet arbitration via queue-learning,
in Proc. 14th Int. Conf. Neural Information Processing
Systems: Natural and Synthetic, Vancouver, Canada,
2001, pp. 1337–1344.

[13]

 J. A. Boyan and M. L. Littman, Packet routing in
dynamically changing networks: A reinforcement learning
approach, in Proc. 6th Int. Conf. Neural Information
Processing Systems, Denver, CO, USA, 1993, pp.
671–678.

[14]

 Z. Mammeri, Reinforcement learning based routing in
networks: Review and classification of approaches, IEEE
Access, vol. 7, pp. 55916–55950, 2019.

[15]

 A. Mestres, A. Rodriguez-Natal, J. Carner, P. Barlet-Ros,
E. Alarcón, M. Solé, V. Muntés-Mulero, D. Meyer, S.
Barkai, M. J. Hibbett, et al., Knowledge-defined
networking, SIGCOMM Comput. Commun. Rev. , vol. 47,
no. 3, pp. 2–10, 2017.

[16]

 T. C. K. Hui and C. K. Tham, Adaptive provisioning of
differentiated services networks based on reinforcement
learning, IEEE Trans. Syst. Man Cybern. C (Appl. Rev.),
vol. 33, no. 4, pp. 492–501, 2003.

[17]

 J. Rao, X. P. Bu, C. Z. Xu, L. Y. Wang, and G. Yin,
VCONF: A reinforcement learning approach to virtual
machines auto-configuration, in Proc. 6th Int. Conf.
Autonomic Computing, Barcelona, Spain, 2009, pp.
137–146.

[18]

 A. da Silva Veith, F. R. de Souza, M. D. de Assunção, L.
Lefèvre, and J. C. S. dos Anjos, Multi-objective
reinforcement learning for reconfiguring data stream
analytics on edge computing, in Proc. 48th Int. Conf.
Parallel Processing, Kyoto, Japan, 2019, p.106.

[19]

 A. Bar-Hillel, A. Di-Nur, L. Ein-Dor, R. Gilad-Bachrach,
and Y. Ittach, Workstation capacity tuning using
reinforcement learning, in Proc. ACM/IEEE Conf.
Supercomputing, Reno, NV, USA, 2007, p. 32.

[20]

 C. H. Yu, J. L. Lan, Z. H. Guo, and Y. X. Hu, DROM:
Optimizing the routing in software-defined networks with
deep reinforcement learning, IEEE Access , vol. 6,
pp. 64533–64539, 2018.

[21]

 T. A. Q. Pham, Y. Hadjadj-Aoul, and A. Outtagarts, Deep
reinforcement learning based QoS-aware routing in
knowledge-defined networking, in Proc. 14th EAI Int.
Conf. Heterogeneous Networking for Quality, Reliability,
Security and Robustness, Ho Chi Minh City, Vietnam,
2019, pp. 14–26.

[22]

 X. Y. You, X. J. Li, Y. D. Xu, H. Feng, and J. Zhao,
Toward packet routing with fully-distributed multi-agent
deep reinforcement learning, in Proc. of 2019 Int. Symp.
Modeling and Optimization in Mobile, Ad Hoc, and
Wireless Networks (WiOPT), Avignon, France, 2019, doi:
10.23919/WiOPT47501.2019.9144110.

[23]

 X. Mai, Q. Z. Fu, and Y. Chen, Packet routing with graph
attention multi-agent reinforcement learning, arXiv
preprint arXiv: 2107.13181, 2021.

[24]

 R. Bhattacharyya, A. Bura, D. Rengarajan, M. Rumuly, S.
Shakkottai, D. Kalathil, R. K. P. Mok, and A. Dhamdhere,
QFlow: A reinforcement learning approach to high QoE
video streaming over wireless networks, in Proc. 20th

ACM Int. Symp. Mobile Ad Hoc Networking and
Computing, Catania, Italy, 2019, pp. 251–260.

[25]

 J. Prados-Garzon, T. Taleb, and M. Bagaa, LEARNET:
Reinforcement learning based flow scheduling for
asynchronous deterministic networks, in Proc. of 2020
IEEE Int. Conf. Communications, Dublin, Ireland, 2020,
doi: 10.1109/ICC40277.2020.9149092.

[26]

 P. Pinyoanuntapong, M. Lee, and P. Wang, Distributed
multi-hop traffic engineering via stochastic policy gradient
reinforcement learning, in Proc. of 2019 IEEE Global
Communications Conf. (GLOBECOM), Waikoloa, HI,
USA, https://webpages.uncc.edu/pwang13/pub/routing.
pdf, 2019.

[27]

 J. Chavula, M. Densmore, and H. Suleman, Using SDN
and reinforcement learning for traffic engineering in
UbuntuNet Alliance, in Proc. of 2016 Int. Conf. Advances
in Computing and Communication Engineering
(ICACCE), Durban, South Africa, 2016, pp. 349–355.

[28]

 K. F. Xiao, S. W. Mao, and J. K. Tugnait, TCP-Drinc:
Smart congestion control based on deep reinforcement
learning, IEEE Access, vol. 7, pp. 11892–11904, 2019.

[29]

 B. Liu, Q. M. Xie, and E. Modiano, Reinforcement
learning for optimal control of Queueing systems, in Proc.

[30]

 196 Intelligent and Converged Networks, 2021, 2(3): 177−197

of the 57th Annu. Allerton Conf. Communication, Control,
and Computing (Allerton), Monticello, IL, USA, 2019, pp.
663–670.
 J. G. Dai and M. Gluzman, Queueing network controls via
deep reinforcement learning, arXiv preprint arXiv:
2008.01644, 2021.

[31]

 M. Raeis, A. Tizghadam, and A. Leon-Garcia, Queue-
learning: A reinforcement learning approach for providing
quality of service, Proc. AAAI Conf. Artif. Intell., vol. 35,
no. 1, pp. 461–468, 2021.

[32]

 A. Kattepur, S. David, and S. Mohalik, Automated
configuration of router port queues via model-based
reinforcement learning, in Proc. of 2021 IEEE Int. Conf.
Communications Workshops, Montreal, Canada, 2021, pp.
1–6.

[33]

 S. Floyd and V. Jacobson, Random early detection[34]

gateways for congestion avoidance, IEEE/ACM Trans.
Netw., vol. 1, no. 4, pp. 397–413, 1993.
 M. Bertoli, G. Casale, and G. Serazzi, JMT: Performance
engineering tools for system modeling, ACM
SIGMETRICS Perform. Eval. Rev., vol. 36, no. 4, pp. 10–
15, 2009.

[35]

 H. Kurniawati, D. Hsu, and W. S. Lee, SARSOP: Efficient
point-based POMDP planning by approximating optimally
reachable belief spaces, in Proc. Robotics: Science and
Systems IV, Zurich, Switzerland, doi: 10.15607/RSS.
2008.IV.0092008.

[36]

 E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C.
Sevcik, Quantitative System Performance, Computer
System Analysis Using Queueing Network Models. Upper
Saddle River, NJ, USA: Prentice-Hall, 1984.

[37]

Ajay Kattepur received the BEng and
MEng degrees in electrical and electronic
engineering from Nanyang Technological
University (NTU), Singapore, and the PhD
degree in computer science from Inria,
France. He is currently working at the
Artificial Intelligent System Group,
Ericsson Research. Prior to joining

Ericsson Research, he was with the Tata Consultancy Services
(TCS) Research & Innovation Labs in India. He was previously
a postdoctoral researcher at the French National Institute for
Computer Science and Control (Inria), Paris, France. His
research interests include automated planning, reinforcement
learning, and verification techniques.

Sushanth David received the BEng degree
in electronics and communication from VT
University, India, and the MEng degree in
computer science from University of
Pennsylvania, USA. He is currently at the
Managed Services Unit in Ericsson with
focus on design and construction of
reusable frameworks, packages, and

components, with emphasis on applying AI-based theories and
techniques to the fulfilment and assurance across all domains of
the 5G network. He has served on the Linux Foundation
Networking Board and contributed to ONOS and CORD
initiatives. His research interests include SDN/NFVi and O-
RAN, time sensitive communications, and high performance
distributed compute.

Swarup Kumar Mohalik received the
BEng and MEng degrees in computer
science from the Indian Institute of
Technology, Kanpur, India, and the PhD
degree in computer science from the
Institute of Mathematical Sciences,
Chennai, India. He has expertise in
artificial intelligence and formal methods,

and he has worked on application of Internet-of-Things and
service automatization within Ericsson Research. He has worked
as a postdoctoral researcher at LABRI, University of Bordeaux,
France. Prior to joining Ericsson, He worked at Intel, General
Motors, and Hewlett-Packard. He has research experience in the
areas of formal specification and verification of real-time
embedded software, model-based testing, and AI planning
techniques.

 Ajay Kattepur et al.: Model-based reinforcement learning for router port queue configurations 197

