
 

Model-based reinforcement learning for router
port queue configurations

Ajay Kattepur*, Sushanth David, and Swarup Kumar Mohalik

Abstract: Fifth-generation (5G) systems have brought about new challenges toward ensuring Quality of Service (QoS)

in  differentiated  services.  This  includes  low  latency  applications,  scalable  machine-to-machine  communication,  and

enhanced mobile broadband connectivity. In order to satisfy these requirements, the concept of network slicing has

been introduced to generate slices of  the network with specific  characteristics.  In order to meet the requirements of

network  slices,  routers  and  switches  must  be  effectively  configured  to  provide  priority  queue  provisioning,  resource

contention management and adaptation. Configuring routers from vendors, such as Ericsson, Cisco, and Juniper, have

traditionally  been  an  expert-driven  process  with  static  rules  for  individual  flows,  which  are  prone  to  sub  optimal

configurations with varying traffic  conditions.  In  this  paper,  we model  the internal  ingress  and egress  queues within

routers via a queuing model. The effects of changing queue configuration with respect to priority, weights, flow limits,

and packet drops are studied in detail.  This is  used to train a model-based Reinforcement Learning (RL) algorithm to

generate optimal policies for flow prioritization, fairness, and congestion control. The efficacy of the RL policy output is

demonstrated over scenarios involving ingress queue traffic policing, egress queue traffic shaping, and one-hop router

coordinated  traffic  conditioning.  This  is  evaluated  over  a  real  application  use  case,  wherein  a  statically  configured

router proved sub optimal toward desired QoS requirements.  Such automated configuration of routers and switches

will be critical for multiple 5G deployments with varying flow requirements and traffic patterns.
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1    Introduction

The  emergence  of  fifth-generation  (5G)  systems[1]

poses  a  new  set  of  challenges  to  telecommunication
networks.  Principally,  Quality  of  Service  (QoS)
requirements  would  vary,  depending  on  the  types  of
flows.  5G  systems  include  various  classes  of  flows,
including  enhanced  Mobile  BroadBand  (eMBB)  for
mobile data and telephony, Ultra Reliable Low Latency
Communications  (URLLC)  for  low-latency  industrial

connectivity,  and  massive  Machine  Type
Communications (mMTC) for Internet of Things (IoT)
applications.  5G  network  slicing[2] is  an  important
technique to meet these diverse requirements. Network
slicing  depends  on  the  accurate  configuration  of
underlay  components,  such  as  routers  and  switches
within large and complex networks.

Vendors  of  routers  and  switches  have  developed
multiple  models  to  perform  traffic  routing,  shaping,
and  aggregation  within  5G  networks[1].  Chief  among
these  are  Ericsson  6000  series[3] and  Juniper  M-
series[4],  which  provide  high-capacity  port  interfaces
for  edge  and  aggregation  routing.  To  provide  QoS  of
various flows, routers must be appropriately configured
for  various  traffic  mixes  and  requirements.  Typically,
multiple  routers  may  be  configured  using
programmable  Software-Defined Networking (SDN)[5]

 
 • Ajay  Kattepur  and  Swarup  Kumar  Mohalik  are  with  the

Artificial  Intelligence  System  Group,  Ericsson  Research,
Bangalore  560093,  India.  E-mail: ajay.kattepur@ericsson.
com; swarup.kumar.mohalik@ericsson.com.

 • Sushanth  David  is with the  Ericsson  Managed  Services  Unit
in Texas, Plano, TX 75025, USA. E-mail: sushahth.s.david@
ericsson.com.

 * To whom correspondence should be addressed.
    Manuscript  received:  2021-08-25;  revised:  2021-09-13;

accepted: 2021-09-29

Intelligent  and  Converged  Networks ISSN  2708-6240
2021, 2(3): 177−197 DOI: 10.23919/ICN.2021.0016

 
©  All articles included in the journal are copyrighted to the ITU and TUP. This work is available under the CC BY-NC-ND 3.0 IGO license:

https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.



frameworks. This is currently an (human) expert driven
process with multiple configuration commit commands
provided  for  each  QoS  flow[4, 6] .  However,  given  the
complexity and scale of networks, this is an inefficient
technique  that  can  quickly  turn  sub  optimal  to  new
traffic  patterns.  Moreover,  it  is  a  trial-and-error
approach  that  depends  on  the  experience  of  the
programmer,  which  may  fail  under  novel  patterns.
Thus,  it  is  necessary  to  explore  more  automated
techniques to manage such routers.

In  this  work,  we  explore  the  use  of  Reinforcement
Learning  (RL)  approaches[7] to  replace  static
configurations  currently  being  used  in  routers.  RL
algorithms  are  applied  to  dynamically  reconfigure
queuing  disciplines  and  weights,  dependent  on  traffic
patterns,  queue  lengths,  and  observed  congestions.
Specifically,  we  make  use  of  the  Partially  Observable
Markov Decision Process (POMDP)[8] to model states,
actions,  observations,  and  rewards  within  router  port
queues.  Through  action  space  exploration,  which
includes queue priority  changes,  weight  changes,  flow
limitation,  drop  rate  modification,  and  queuing
discipline  change,  we  demonstrate  the  generation  of
optimal policies for various traffic patterns.

This  model  is  integrated  with  traffic  shaping  and
policing  algorithms  typically  used  in  router
configuration[9].  This  approach is  demonstrated  over  a
real  use  case,  wherein  a  statically  configured  router  is
shown  to  cause  deteriorated  5G  system  performance.
This  is  specifically  shown  to  be  applicable  in  three
aspects: (i) port ingress queue traffic policing to ensure
fair  allocation  to  all  queues,  (ii)  port  egress  queue
traffic shaping to prevent bottlenecks at the egress port,
and (iii) one-hop routing to perform coordinated traffic
shaping across multiple router ports.

The  principal  questions  targeted  in  this  paper  are  as
follows:

(1)  Can  the  configuration  of  the  ingress  and  egress
queues  within  a  router  be  automated  to  adapt  to
different traffic conditions?

(2) Can policies generated via RL reduce congestions
and packet dropping in router queues?

(3)  What  is  the  process  to  transform queuing model

parameters  to  transition  probabilities  within  model-
based RL techniques?

The  paper  is  organized  as  follows:  The  state-of-the-
art  is  described  in  Section  2.  Details  on  router  queue
modeling  and  associated  protocols  are  studied  in
Section 3.  A real  5G network slicing scenario  and the
need  for  router  configuration  are  presented  in
Section  4.  The  description  of  the  model-based  RL
approach for router queue configuration is presented in
Section 5.  Section 6 provides details  on ingress traffic
shaping,  egress  traffic  policing,  and  one-hop  traffic
conditioning  using  the  output  of  RL  policies.  The
conclusions  and  future  directions  are  discussed  in
Section 7.

2    Related work

In  this  section  we  review  the  related  approaches  in
router  queue  modeling  and  the  use  of  RL  toward
queuing systems.

2.1    Router modeling

To model the ingress and egress queues within routers,
we make use of queuing network models. In Ref. [10],
differentiated service (DiffServ) requirements at router
ports were studied, including queuing types, priorities,
and  packet  drop  policies.  In  Ref.  [11],  early  work  on
programming  computations  on  routers  and  switches
was  introduced.  The  programmability  of  routing
control  has  been  further  developed  via  Software-
Defined  Networking  (SDN)[5],  wherein  control  plane
decisions may be made to route flows to specific router
ports.

A scalable model used to maintain QoS in routers is
DiffServ[12]. With DiffServ, the network tries to deliver
a particular kind of service based on the QoS specified
by each packet. Commonly used marking and policing
mechanisms are single-rate 3-colour marking and dual-
rate  3-colour  marking[9].  The  DiffServ  marking  has
been incorporated with 5G network slicing[2] to provide
guaranteed  QoS  to  customer  flow  types.  Network
slicing builds on DiffServ by providing DiffServ at the
radio  access  level.  To  this  end,  multiple  5G  routers
from  Ericsson[3],  Cisco[6],  and  Juniper[4] have  been
introduced.  While  the  commands  to  configure  routers
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are  typically  expert  driven (trial-and-error),  efforts  are
underway  to  make  use  of  artificial  intelligence
techniques into these systems.

In this paper, we make use of the queuing modeling
techniques and associated simulators to study the effect
of parameter changes. The reconfiguration settings are
then  fed  into  the  RL  model  for  policy  updates.  The
queuing  network  model  is  used  to  model  the  ingress
and egress queuing outputs within the routers. This is a
highly dynamic system that  changes depending on the
packet arrival rate, packet traffic mix, and priorities of
flows.  Continuously optimizing the system using rule-
based  or  linear  programming  solvers  would  be
inefficient.  By  contrast,  RL  algorithms  offer  multiple
advantages:  (i)  the  ability  to  continuously  monitor  the
current  state  of  the  system  and  propose  the  most
rewarding  actions  and  (ii)  learn  about  changes  in  a
traffic mix that can cause deteriorated performance and
suggest alternate configurations.

2.2    RL for queue-based systems

RL  algorithms[7] have  gained  prominence  in  recent
years  due  to  their  ability  to  generate  optimal  actions
within use cases, such as vehicular traffic and scenario-
based gaming. There have also been applications of RL
algorithms  toward  networks.  In  Ref.  [13],  RL
techniques  were  prosed  as  switch  arbitrators  in  high
speed  networks.  However,  the  effects  of  the  queuing
delay  and  traffic  mix  have  not  been  considered.  A
prominent  area  of  work  is  Q-routing[14],  wherein  RL
techniques  are  used  to  provide  an  appropriate  route
considering  link  capacities  and  congestion  effects.
However, these techniques do not deal with the internal
configurations of router ports. In Ref. [15], a survey of
model-free  and  model-based  techniques  used  for
efficient routing over variants of the Q-routing protocol
was  studied.  In Ref.  [16],  a  knowledge  layer  was
proposed  over  SDNs  that  can  provide  autonomous
configurations via analytics, prediction, and tuning.

The  use  of  RL  in  the  automated  configuration  of
complex  systems  has  also  received  significant
attention.  In  Ref.  [17],  the  use  of  RL  for  adaptive
bandwidth  provisioning  for  DiffServ  was  studied.  In
Ref. [18], RL was used to optimize virtual machine job

allocation  and  to  preserve  the  fair  use  of  CPU,
memory,  and  disk  resources.  In  Ref.  [19],  RL
techniques  were  used  to  provide  multi-objective
optimization  of  distributed  stream processing  systems.
In Ref. [20], the process of automatically adjusting the
number  of  concurrently  running  jobs  on  a  grid
workstation  was  formulated  as  an  RL  problem.  The
queue  length  and  the  actions  of  accepting  or  blocking
jobs were performed using hidden Markov models and
Q-learning  formalisms. Table 1  provides  an  overview
of  applying  the  state-of-art  RL  techniques  network
routing,  traffic  engineering,  and  queuing  control.  We
provide  limitations  in  the  approaches  within  these  set
of papers.

To the best of our knowledge, we have seen limited
work in the application of RL algorithms for router port
queue  configurations.  Current  static  rule-based  setup
will  not  scale  and  cannot  guarantee  optimal  changes
with  dynamic  traffic  patterns.  It  also  involves  human
operators  setting  rules  that  may  be  inefficient.  We
propose a detailed analysis of port interface capacities,
flow  classes,  interfaces,  and  scheduling  models  to
generate appropriate policies for reconfiguration.

This  paper  is  an  extended  version  of  the  workshop
paper[33] with the following additions:

(1) Additional background, configuration details, and
protocols involved within router queues.

(2)  Additional  details  on  the  evaluation  of  traffic
policing for ingress queues.

(3)  New  evaluation  results  on  egress  queue  shaping
with detailed analysis.

(4) New addition of one-hop router configuration and
evaluation.

3    Background

In  this  section,  we  present  the  background  material  in
router  queues,  configuration  parameters,  and  traffic
policing/shaping.

3.1    Router queues

A  router  typically  has  two  types  of  network
components with separate processing planes[4]:

(1)  Control  plane:  This  plane  maintains  a  routing
table that  lists  the routes to be taken by a data packet.
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This may be statically defined or learned based on the
traffic  mix.  The  control  plane  builds  the  Forwarding
Information  Base  (FIB)  that  is  fed  to  the  forwarding
plane.

(2)  Forwarding  plane:  The  router  forwards  data
packets  between  incoming  and  outgoing  port
connections.  Using  information  from  the  packet
header,  the  accurate  FIB  is  used  to  map  the  outgoing
packet.

Both  the  switch  and  router  ports  have  ingress
(inbound) queues and egress (outbound) queues.

Figure 1 presents  an  overview  of  the  ingress  and
egress  queuing  operations  that  typically  occur  in
routers[4, 6] .  When  a  packet  arrives  at  the  router,  it
typically  follows  the  following  workflow  steps  (see
Fig. 1):

(1)  Prioritization:  A packet  entering the router  port
is  assigned  an  internal  priority  level  and  internal  drop
precedence.  This  is  determined  based  on  a  class  map
linked to the packet header information.

(2) Ingress policing: As the packet enters the router,
it  is  subjected  to  a  classification  filter.  Packets
belonging to each class can be rate-limited or marked.
The per- class traffic can be treated as follows:

(a)  The  per-class  rate  limits  may  be  set.  By  default,
conforming  traffic  is  marked  green;  exceeding  traffic
yellow; and violating traffic red[9]. Violating traffic can
be  marked  red  (if  the  violate  red  command  is
configured) or dropped immediately (if the violate drop
command is configured).

(b)  Packets  that  are  not  dropped  because  of  rate
limiting  can  have  their  drop  precedence  values

 

Table 1    RL applied to transport network routing and traffic engineering.

Solution space Related work Algorithmic technique Limitation

Intelligent routing

DROM[21],
knowledge
defined
networking[22],
multi-agent
routing[23], graph
based routing[24]

DROM[21] and knowledge defined networking[22] make use of
Deep Deterministic Policy Gradient (DDPG) algorithms to
change the weights of network links in an SDN framework.
Multi-agent routing[23] upgrades Q-routing with multi-agent
RL techniques for coordinated routing. Graph based routing[24]

develops a model-free RL technique that considers the graph
nature of the network topology tailored to the routing problem.

This set of papers makes use of
RL within the routing plane of
the network. There is no
modeling of the internal
router/switch queue
configurations or machine
learning thereof.

Network traffic
control

QFLOW[25],
LEARNET[26],
multi-hop
routing[27], SDN
RL[28], TCP-
DRINC[29]

QFLOW[25] is a platform for RL-based edge network
configuration that uses queuing, learning, and scheduling to
meet the quatily of experience of video streaming applications.
LEARNET[26] makes use of RL for flow control in time-
sensitive deterministic networks. In multi-hop routing[27], a
distributed model-free solution based on stochastic policy
gradient RL was proposed, which aims to minimize the E2E
delay by allowing each router to send a packet to the next-hop
router according to the learned optimal probability. SDN-
based RL techniques[28] exploits the multi-path forwarding of
SDN to increase throughput or reduce latency of packet
transmission. TCP-DRINC[29] uses an RL-based congestion
control to adjust the congestion window size within TCP
networks.

This set of traffic engineering
techniques makes use of overlay
congestion control or SDN-
based flow control to improve
the throughput, latency, and
packet drop of networks. They
do not consider the bottlenecks
that can arise at the port queue
configuration level in underlay
networks.

Queue
configuration

RL-QN[30], Deep
RL[31], queue-
learning[32]

In Ref. [30], model-based RL was used to learn the optimal
control policy of queueing networks, so that the average job
delay is minimized. In Ref. [31], Proximal Policy
Optimization (PPO) algorithm was tested on a parallel-server
system and large-size multi-class queueing networks. The
algorithm consistently generates control policies that
outperform heuristics in a variety of load conditions from light
to heavy traffic. Queue-learning[32] studies an RL-based
service rate control algorithm for providing QoS in tandem
queueing networks. The proposed method is capable of
guaranteeing probabilistic upper-bounds on the end-to-end
delay of the system.

These papers provide a
theoretical foundation on
applying RL within queueing
networks. However, specific
nature of protocols used for
traffic policing and shaping
within routers/switches are not
considered.
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modified.
(3) The router transports the packet to the egress

port.
(4)  Egress  scheduling:  Each  outgoing  packet  is

assigned  to  an  egress  queue  based  on  the  destination
information  from  the  forwarding  table.  Egress  queues
also  have  associated  scheduling  parameters,  such  as
rates, depths, and relative weights.

Note: In this paper, we do not target the routing table
policy  (extensively  surveyed  in  Ref.  [14]),  but
concentrate  on  configuring  the  router  port  queuing
disciplines.

3.2    Queuing models

Both  ingress  and  egress  queues  within  the  router  port
may be configured to operate on different queue types.
Depending  on  the  combination  of  flows  and  QoS
requirements,  the  following  queuing  models  may  be
used[10]:

−First-In  First-Out  (FIFO):  In  FIFO  queues,  the
packets are processed in order of arrival.

−Priority  Queuing  (PQ):  In  this  form  of  queuing,
packets  are  assigned  priorities  with  higher  priority
packets  proceed  before  lower  priority  packets.  The
disadvantage is that the lower priority queues may not
receive any service.

−Fair Queue (FQ):  This  queuing discipline ensures

that all flows have fair access to the queuing resources.
This model prevents bursty traffic from overconsuming
resources.

−Weighted  Fair  Queuing  (WFQ):  This  is  a  fair
queuing  discipline  that  also  provides  priority
scheduling  of  packets.  Higher  priority  packets  are
scheduled  before  a  lower  priority  packet  when  they
arrive at the same time.

−Class-Based  WFQ  (CBWFQ):  This  provides
multiple  use  defined  queues  that  may  be  configured
based on either a fixed bandwidth or shared bandwidth.

−Priority  WFQ  (PWFQ):  This  provides  a  strict
priority of queues as an extension of CBWFQ.

In most  commercial  routers[3, 4,  6],  the PWFQ model
is used. An example configuration is shown below. The
first  step  is  to  create  a  PWFQ  policy  with  the
bandwidth  limits,  congestion  avoidance  map,  and
policy weights:
 
 

1 [ local ]( config )#qos policy policy1 pwfq
2 [ local ]( config -policy -pwfq)#rate pir 100000 burst

10000
3 [ local ]( config -policy -pwfq)#rate cir 50000 burst

30000
4 [ local ]( config -policy -pwfq)#congestion -map ca -map -1
5 [ local ]( config -policy -pwfq)#num -queues 8
6 [ local ]( config -policy -pwfq)#weight 70 

 

This  step  is  followed  by  specifying  queues,  and
assigning port  priorities,  weights,  maximum rates,  and
bursts.
 

 

Network
interface
packets in

Network
interface
packets out

Ingress
packet

forwarding

Routing
engine

forwarding
table

Ingress
queue
marking and
policing

Per port (8) virtual queues, 

Egress
queue
traffic
shaping

Ingress queue Egress queue

Priority,
weight,
queue

assignment

CIR and PIR flow rates, RED drop

 
Fig. 1    Router internal queues.
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1 [ local ]( config -policy - pwfq )# queue 0 prior i ty 0
strict - pr ior i ty 0

2 [ local ]( config -policy - pwfq )# queue 0 rate maximum
5000 burst 30000

3 [ local ]( config -policy - pwfq )# queue 1 prior i ty 0
strict - pr ior i ty 1

4 [ local ]( config -policy - pwfq )# queue 1 rate maximum
10000 burst 30000

5 [ local ]( config -policy - pwfq )# queue 2 prior i ty 0
strict - pr ior i ty 2

6 [ local ]( config -policy - pwfq )# queue 2 rate maximum
10000 burst 30000

7 [ local ]( config -policy - pwfq )# queue 3 prior i ty 0
strict - pr ior i ty 3

8 [ local ]( config -policy - pwfq )# queue 3 rate maximum
10000 burst 100000 

 

We  delve  into  adding  additional  packet  queue
scheduling parameters in the next section.

3.3    Packet scheduling in routers

In  order  to  provide  DiffServ-based  QoS,  network
routers and switches make use of traffic conditioning[4].
Policing  and  shaping  are  two  methods  that  will  help
reduce  congestion  by  continuously  measuring  the  rate
at which data are sent or received.

Policing  applies  a  hard  limit  to  the  rate  at  which
traffic arrives or leaves an interface. Packets are either
dropped (hard policing) or reclassified (soft policing) if
they  do  not  conform  to  the  constraints.  Policing  is
helpful  under  certain  conditions  where  the
neighbouring network could send more traffic than the
contract  specification.  Policing  will  then  enforce  the
contract,  thus  protecting  the  network  from  being
overrun with too much traffic. A policer can be applied
in an inbound or outbound direction.

Shaping  also  defines  a  limit  to  the  rate  at  which
traffic can be transmitted, but unlike policing, it acts on
traffic that has already been granted access to a queue
and  is  awaiting  access  to  transmission  resources.
Shaping  is  useful  when  the  neighbouring  network  is
policing  or  is  slower  in  accepting  traffic.  Under  such
conditions a shaper can delay traffic, thus preventing it
from  getting  dropped.  Therefore,  shaping  can  be  less
aggressive  than  policing  and  can  have  fewer  negative
side effects.

One  well-used  policing  policy  is  the  two-rate  three-
colour marking[9] (see Fig. 2).  It  bases the marking on
the  Committed  Information  Rate  (CIR),  i.e.,  the
average  traffic  rate  that  a  customer  is  allowed to  send
into the network, and the Peak Information Rate (PIR),

i.e.,  the  maximum  average  sending  rate  for  the
customer. Traffic bursts that exceed the CIR but remain
under PIR are allowed in the network,  but are marked
for more aggressive discarding.

Algorithm  1  provides  users  with  three  actions  for
each packet: a conform action, an exceed action, and an
optional violate action. If the tokens in the CIR or PIR
buckets  are  exceeded,  then  tokens  may  be  marked  as
yellow  (exceeding)  or  red  (violating).  Users  can
specify  these  actions.  Exceeding  packets  can  the  sent
with a decreased priority, and violating packets can be
marked for aggressive dropping.

Packet  dropping  policies: The  router  scheduler
maintains  an  average  queue  length  or  each  queue
configured for a Random Early Drop (RED)[34].  When
a  packet  is  enqueued,  the  current  queue  length  is
weighted  into  the  average  queue  length  based  on  the
average-length exponent in the drop profile.  When the
average queue length exceeds the minimum threshold,
RED  begins  randomly  dropping  packets.  While  the
average  queue  length  increases  toward  the  maximum
threshold,  the  RED  drops  packets  with  increasing
frequency, up to the maximum drop probability. When

 

CIR PIR
Tc(0)=CBS Tp(0)=PBS

Marking decision:

Marker

Color blind mode

Packet
size B

Tp(t)−B < 0, red, don't
remove tokens from
Tc or Tp

Tc(t)−B < 0, yellow,
remove tokens from Tp

Tc(t)−B >= 0, green,
remove tokens from
Tc and Tp

else

else

 
Fig. 2    Two-rate  three-color  marking,  where  CBS  is  the
committed burst rate and PBS is the peak burst rate.
 

 

Algorithm 1 Two-rate three-colour marking[9]

1 Input: Input packet of size B; number of tokens in the CIR bucket Tc ;
number of tokens in the PIR bucket Tp .

2 Output: Packet marked with green (conform), yellow (exceed) or red (violate)
colours.

3 When a packet with size of B bytes arrives at the interface, perform the following:
4 if Tp < B then
5 Mark packet with violate colour (red);
6 Do not decrement Tp bucket;

7 else if Tc < B then
8 Mark packet with exceed colour (yellow);
9 Decrement Tc bucket by B ;

10 else
11 Mark packet with conform colour (green);
12 Decrement both Tc and Tp buckets by B
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the  average  queue  length  exceeds  the  maximum  drop
threshold,  all  packets  are  dropped.  This  is  also  shown
in Fig. 3.

In  cases  where  the  queues  are  congested,  packed
dropping strategies may be applied[10]:

−Drop-from-tail:  easy  to  implement;  delayed
packets within the queue may “expire”.

−Drop-from-head: old packets purge first; good for
real time; better for TCP.

−Random  drop:  fair  if  all  sources  behave;
misbehaving sources are more heavily penalized.

An  example  profile  of  dropping  packets  for
congestion avoidance is shown below. The queue depth
is  used  along  with  the  queue  average  packet  size  to
calculate  the  effective  queue  depth.  The  minimum
threshold sets the RED queue occupancy below, whose
packets are not dropped.
 
 

1 [local ](config -congestion -map)#queue 3 depth 200
2 [local ](config -congestion -map)#queue 3 average -packet

-size 256
3 [local ](config -congestion -map)#queue 3 exponential -

weight 9
4 [local ](config -congestion -map)#queue 3 red default

min-threshold 130 max-threshold 200 probability
10

5 [local ](config -congestion -map)#queue 4 depth 400
6 [local ](config -congestion -map)#queue 4 average -packet

-size 512
7 [local ](config -congestion -map)#queue 4 exponential -

weight 9
8 [local ](config -congestion -map)#queue 4 red default

min-threshold 300 max-threshold 400 probability
10 

 

4    5G slicing scenario

Network  slicing  in  radio  access,  transport,  and  core
subsystems  is  necessary  to  provide  DiffServ
performance[2]. The use case that is of interest is when
various  slice  requirements  are  affected  by  the  static
configurations  of  a  router  port.  In  this  case,  the

transport  layer  cannot  meet  service-level  agreement
due to congestion at a particular port (other diagnostic
tools may be used to detect this). The objective of this
work is  to automatically reconfigure the port  queue to
alleviate this bottleneck.

Figure 4 presents  an  actually  observed  scenario  on
Ericsson’s  internal  network.  Due  to  a  statically
configured  edge  router,  the  end-to-end  (E2E)  network
slice is unable to meet the service-level QoS objectives.
Although an alternative would be to re-route the traffic
to  another  port,  this  is  a  pathological  problem  that
would entail repeated changes to the slice.

60 80

The  Ericsson  6675  router  is  deployed  on  a  live
Ericsson testbed network with multiple flows of traffic
as shown in Fig. 5.  UDP users and  TCP users are
used  to  generate  a  range  of  traffic  pattens  over  the
monitored  period.  An  example  of  such  a  port
configuration  on  an  Ericsson  6675  router  is  shown
below:
 
 

1 PORT 10
2 QoS policy PWFQ - 1_8 Gbps pwfq
3 rate PIR 1800000
4 rate CIR 1800000
5 num - queues 8
6 congestion -map WRED
7 queue 0 prior i ty 0 weight 100
8 queue 1 prior i ty 0 weight 100
9 queue 2 prior i ty 0 weight 100

10 queue 3 prior i ty 0 weight 100
11 queue 3 rate maximum 900000 (# motor )
12 queue 4 prior i ty 4 weight 60
13 queue 5 prior i ty 4 weight 25 (# video )
14 queue 6 prior i ty 4 weight 10
15 queue 7 prior i ty 4 weight 5 (# IoT sensor )

 
 

Due to the priority and weight settings, queues 5 and
7  receive  a  bulk  of  the  traffic,  which  results  in
increased  congestion  in  the  respective  queues.  An
example  of  the  traffic  generated  is  shown  in Fig. 6.
Such a misconfiguration is a pathological problem that
requires  expert  root  cause  analysis  and  tuning.  In  the
next section, we study an RL model that can potentially
alleviate this issue.
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Fig. 4    Bottleneck due to statically configured router.
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5    RL model

To dynamically reconfigure the router port queues, we
make  use  of  a  trained  RL  agent  to  take  actions  to
relieve  potential  mis-configurations. Figure 7  presents

the  high  level  model  of  our  proposed  system,  which
consists of the following:

(1)  Queuing  network  model:  Based  on  the  traffic
mix and flows, a queuing network model is developed
for  the  ingress  and egress  queues.  The queuing model
is  used  to  study  the  effects  of  changing  multiple
parameters, such as queuing discipline, drop rates, and
priority.

(2)  RL  agent:  The  effect  of  changes  on  queue
configurations are fed into the RL model for training. It
has  actions  spanning  multiple  queue  configuration
parameters.  Observations  on  throughput,  latency,  and
packet drop changes are used to provide rewards to the
agent.

(3)  Configuration  deployment:  The  policy
generated  by  the  RL  agent  is  then  deployed  on  the
router  port.  This  can  be  directly  run  on  the  router

 

·Size 1400 bytes
UDP

TCPCapacity

·Base (30 users, uplink and downlink):

·Spike (30 users, uplink): 

·Total: 

Calculation:

·Min: 350 packet => 1176 Mbps
·Max: 500 packet => 168 Mbps

·Min: 2800 packet => 9408 Mbps
·Max: 3200 packet => 10 752 Mbps

·Min: 1176 + 1176 = 2352 Mbps
·Max: 168 + 168 + 10 752 = 14 112 Mbps

UDP base min: 1400 bytes × 8 bits × 350 pps × 30 users = 1176 Mbps
TCP spike max: 1400 bytes × 8 bits × 3200 pps × 30 users = 10 752 Mbps

·80 users targeting 320−400 Mbps
    throughput (change every 8 hours)
·Total including TCP: 5552−18 112 Mbps

 
Fig. 5    Statically configured router queues.
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Fig. 6    Observed packet traffic across multiple queues.
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operating system or be configured via SDN controllers.
Based on the observed traffic mix, the agent’s policy is
deployed  for  ingress  traffic  policing  and  egress  traffic
shaping.

(4)  1-hop  neighbor  configuration:  We  further
include  policies  that  can  affect  another  hop  of  the
router.  This  reward  structure  ensures  that  the  egress
output does not cause a bottleneck in the next hop.

We  provide  further  details  on  the  model-based  RL
algorithms  and  the  queuing  simulator  to  train  and
evaluate this model.

5.1    POMDP

Markov  Decision  Processes  (MDPs)  form  the
theoretical  basis  for  RL.  A  generalization  of  MDPs  is
POMDP[8],  where  decisions  are  made  with  partial
observations of the environment. This is a more generic
and scalable approach as (i) there is no assumption on
agents having full observations of the environment, (ii)
the  system  is  resilient  to  faulty  observations,  and  (iii)
heterogeneous  observations  may  be  included.  This
approach is also useful in the case of routers as internal
queues  are  seldom  exposed:  Through  the  coarse-
grained  characteristics  of  the  latency,  throughput,  and
packet  drop  per  flow,  the  underlying  queue
characteristics can be derived.

As the agent does not directly know the exact state, it
has  to  derive  beliefs  based  on  observations.  The
observations  and  rewards  are  inputs  to  the  agents,
which are then used to update current belief states. The
advantage  of  this  process  is  that  uncertainty  in
observations is also included within the model.

⟨S ,A,Ω,T,O,R⟩Definition 1　A POMDP is a tuple :
S−  is a finite set of states,
A−  is a finite set of actions,
Ω−  is a finite set of observations,
T

T : S ×A×S → [0,1]

−  is  a  transition  function  defined  as
,

O

O : S ×A×Ω→ [0,1]

−  is  an  observation  function  defined  as
,

R R : S ×A×S → R−  is a reward function defined as .

S = {s1, . . . , sN} A = {a1, . . . ,aK}

Figure 8 provides an overview of the POMDP agent’s
interaction  with  its  environment.  With  a  set  of  states

 and  a  set  of  actions ,

a s

s′

T (s,a, s′)

R(s,a, s′)

Ω = {o1, . . . ,oM}

O : S ×A×Ω→ [0,1]

when  the  agent  takes  an  action  in  state ,  the
environment  transitions  to  state  according  to  the
transition  function .  The  agent  receives  a
reward  as  a  result  of  this  action.  The  set  of
observations  represent  all  possible
sensor readings the agent can receive. The observation
is dependent on the function , with
an independently tracked probability of observations.

b(s) b

S

b0

The POMDP agent maps observations to states using
the  belief  vector .  The  belief  is  a  probability
distribution  over ,  which  forms  a  Markovian  signal
for  the  planning task.  Each POMDP problem assumes
an  initial  belief ,  which  for  instance  can  be  set  to  a
uniform distribution over all  states (representing equal
probability  of  stating in  any of  the  states).  Every time
the  agent  takes  action a  and  observes o ,  its  belief  is
updated by Bayes’ rule,
 

bao(s′) =
p(o|s′,a)
p(o|b,a)

∑
s∈S

p(s′|s,a)b(s) (1)

p(o|s′,a) p(s′|s,a)

O T
p(o|b,a)

where  and  are defined by parameters
 and  ,  respectively,  and  the  normalizing  constant

 is defined as
 

p(o|b,a) =
∑
s′∈S

p(o|s′,a)
∑
s∈S

p(s′|s,a)b(s) (2)

π∗(b)

S π

Vπ(b)

π b

The goal of the agent is to choose actions that fulfill
its task as well as possible, thus generating an optimal
policy.  In  POMDPs,  an  optimal  policy  maps
beliefs  to  actions  over  a  continuous  set  of  probability
distributions over . A policy  can be characterized by
a  value  function ,  which  is  defined  as  the
expected  future  discounted  reward  that  the  agent  can
gather by following  starting from belief ,
 

Vπ(b) = Eπ

 h∑
t=0

γt
∑
s∈S

R(s,π(bt))bt(s)|b0 = b

 (3)

 

Environment

Agent

π
Action a

State s
Observation o
Reward r 

Fig. 8    POMDP agent.
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π Vπ

π∗ b

γ

V∗

A  policy  that  maximizes  is  called  an  optimal
policy .  It  specifies  for  each  the  optimal  action  to
execute at the current step, assuming that the agent will
also act optimally at future time steps.  is the discount
factor that trades off current rewards to future expected
rewards. The value of the optimal policy is defined by
the  optimal  value  function ,  that  is  generated  using
the Bellman backup operator[8],
 

V∗(b) =max
a∈A

∑
s∈S

R(s,a)b(s)+γ
∑
o∈O

p(o|b,a)V∗(bao)

 (4)

Generating an exact solution for the exhaustive set of
belief  points  is  computationally  expensive.  A  counter
technique  is  to  generate  an  approximate  solution  with
only  a  finite  set  of  belief  points[8].  In  this  work,  we
make use of the SARSOP algorithm[35] that uses point
based approximations to solve POMDPs.

π : B→ A b ∈ B
a ∈ A

π∗

A POMDP policy  maps a belief  to a
prescribed  action .  The  value  function  associated
with  the  optimal  policy  can  be  approximated
arbitrarily  closely  by  a  convex  and  piecewise-linear
function,
 

V(b) =max
α∈Γ

(α ·b) (5)

Γ α b

α ·b
α b α

α

α

where  is a finite set of vectors called -vectors,  is
the discrete vector representation of a belief, and  is
the  inner  product  of  vectors -vector  and .  Each -
vector  is  associated  with  an  action.  The  policy  can  be
executed  by  selecting  the  action  corresponding  to  the
best -vector at the current belief. As provided in Ref.
[35],  the  value  update  function  for  the -vectors  is
given by the following:
 

αa(s)← R(s,a)+γ
∑
o,s′

T (s,a, s′)O(s′,a,o)αa,o(s′) (6)

We  make  use  of  the  POMDP  format  (http://www.
pomdp.org/code/pomdp-file-grammar.html)  to  specify
a  subset  of  states,  actions,  and  observations  that  are
relevant  for  the  router  port  configuration.  The
underlying  states  are  based  on  (unobservable)  queue
depths  and  queue  utilization,  which  can  affect  the
marking of  an incoming packet,  and classified as low,
mid, or high. A subset of this is seen in Table 2.

With  the  changes  in  parameters  via  actions  on  a
particular  queue,  the  rest  of  the  queues  may  be

positively  or  negatively  affected.  These  are  seen  as
system observations used to make further configuration
changes. To evaluate the probabilities of these actions,
we  make  use  of  exhaustive  queuing  network  model
simulations, as described in the next section.

5.2    Queue evaluation parameters

In order to train the POMDP model, we need a robust
ququeing  modeling  tool  to  observe  changes  due  to
configurations.  We  use  the  Java  Modeling  Tools
(JMT)[36] queuing  network  simulator  to  model  the
internals  of  the  router  queue  and  study  configuration
changes as presented in the case study.

N

Figure 9 presents  the  router  port  ingress  and  egress
closed  queuing  models  in  JMT.  Here  we  consider
multiple  classes  of  customer  flows  (UDP,  TCP,  and
VoIP), that must be simulated in the queuing network.
By making use of the workload intensity parameter ,
the  average  number  of  jobs  (customers)  in  the  flow
execution  is  included.  Priorities  for  processing  each
class of flows are specified. The arrival rate of packets

 

Table 2    States, action, and observations in POMDP format.

1 discount: 0 .95
2 values: reward
3
4 states:
5 #0 Q0 -3 _low_Q4_low_Q5_low_Q7_low
6 #1 Q0 -3 _low_Q4_low_Q5_low_Q7_high
7 #2 Q0 -3 _low_Q4_low_Q5_high_Q7_low
8 #3 Q0 -3 _low_Q4_low_Q5_high_Q7_high
9 #4 Q0 -3 _low_Q4_high_Q5_low_Q7_low

10 #5 Q0 -3 _low_Q4_high_Q5_low_Q7_high
11 #6 Q0 -3 _low_Q4_high_Q5_high_Q7_low
12 #7 Q0 -3 _low_Q4_high_Q5_high_Q7_high
13 #8 Q0 -3 _high_Q4_high_Q5_high_Q7_high
14 #9 Q0 -3 _low_Q4_high_Q5_low_BW_Q7_high
15
16 actions:
17 # 0 Q5_weight_increase
18 # 1 Q5_weight_decrease
19 # 2 Q5_bandwidth_l imi t_decrease
20 # 3 Q5_bandwidth_l imi t_ increase
21 # 4 Q5_interface_increase
22 # 5 Q5_interface_decrease
23 # 6 Q5_PFWQ_FIFO
24 # 7 Q5_FIFO_PFWQ
25 # 8 Q5_RED_packet_drop_high
26 # 9 Q5_RED_packet_drop_low
27
28 observations:
29 Q5_residence_t ime_increase
30 Q5_residence_t ime_decrease
31 Q5_throughput_increase
32 Q5_throughput_decrease
33 Q5_queue_drop_increase
34 Q5_queue_drop_decrease
35 Q7_residence_t ime_increase
36 Q7_residence_t ime_decrease
37 Q7_throughput_increase
38 Q7_throughput_decrease
39 Q7_queue_drop_increase
40 Q7_queue_drop_decrease
41 system_residence_t ime_increase
42 system_residence_t ime_decrease
43 system_throughput_increase
44 system_throughput_decrease
45 system_queue_drop_increase
46 system_queue_drop_decrease
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is specified by a Poisson process with the service time
(processing time per visit of a station).

In  order  to  implement  the  routing  priorities  and
PWFQ  specifications,  certain  special  parameters  in
JMT are used:

(1) Queue station: The queue station in JMT allows
users  to  specify  queues,  queue  capacity  (finite  or
infinite), and scheduling policy.

(2) Queue policy: Myltiple ququing policies may be
evaluated, including FIFO, FQ, and PWFQ.

(3)  Routing  section:  Various  routing  algorithms,
such  as  round  robin,  random,  or  probabilistic  models,
may  be  applied  to  route  packets  between  queuing
stations.

We  make  use  of  these  aspects  to  simulate  the  use
case as specified in Section 4.

The  advantage  of  using  the  queuing  network
simulators is the ability to collect various performance
indices:  (i) residence  time: time  spent  by  a  packet
waiting and receiving service at  a  queuing station;  (ii)
drop rate: rate at which packets are dropped from the
system;  (iii) throughput:  the  number  of  packets
processed  in  a  time  unit;  and  (iv) utilization  (of  a
station):  percentage  of  time  that  a  station  is  used
evaluated over all the simulation runs.

5.3    Transforming  queuing  metrics  to  transition
probabilities

As  we  now  have  outputs  from  the  queuing  network
models,  the  output  observations  and  rewards  must  be
effectively  translated  into  the  transition  probabilities.
For  this,  we  make  use  of  some  of  the  fundamental
queuing laws[37].

i Di

Definition  2　 Service  demand  law:  The  total
average service time required by a customer at resource
, denoted by ,

 

Di =
Ui

X
(7)

Ui i Xwhere  is  the  utilization  of  resource  and   is  the
system throughput.

N

Z

X R

Definition 3　Little’s law: It provides the relationship
among  the  number  of  users  in  a  system,  throughput,
and  response  time.  If  there  are  users  in  the  system,
each  with  think  time  (time  waiting  between
interactions  with  the  system),  and  system processes  at
the  throughput  rate  producing  a  response  time ,
then the following relationship applies:
 

N = X · (R+Z) (8)

Ui qi

Definition  4　Queue  length: Given  the  utilization
 at  a  given  station,  the  queue  length  may  be

calculated by
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Fig. 9    Router ingress (left) and egress (right) queueing models within JMT.
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qi =
Ui

1−Ui
(9)

As the  queuing  length  and utilization  of  each  queue
can be related, we make use of the following thresholds
to relate the two-rate three-color marking and the RED
packet drop probabilities for individual queues,
 

Mark(q,U) =


qlow, if U ⩽ 0.5;
qmid, if 0.5 < U ⩽ 0.7;
qhigh, otherwise

(10)

qlow qmid qhigh

qmid qlow

qmid

From  the  observed  changes  in  the  utilization  of  a
queue  (correspondnigly  the  queue  length),  we  would
like  to  derive  the  conditional  probabilities  of  the
change  among , ,  and .  For  instance,  the
probability of change from states  to  given the
action  weight,  the  increase  at  state  must  be
generated.  Note  that  these  thresholds  may  vary
depending  on  the  use  case  and  queue  deterioration
thresholds.

Q1_low
weight_decrease

5%

Algorithm 2 provides this transformation from steady
state  queue  observations  to  state  and  observation
transition probabilities, which are required for POMDP
models.  For  instance,  if  in  state ,  the  action

 produces  an  observed  utilization
increase  of .  Taking  the  thresholds  in  Eq.  (10)
results in the transition probabilities,
 

P(Q1_low|weight_decrease in Q1_low) = 0.9,
 

P(Q1_mid|weight_decrease in Q1_low) = 0.1.

10%

[0,0.5] 0.05

This is because, in only  of cases with utilization
in  the  range ,  a  increase  will  result  in

[0.51,0.7]utilization  in  the  range .  This  may  be
correspondingly  marked  to  queue  lengths  and  packet
color markings.

Algorithm 2 is used in conjunction with the SARSOP
value  update  function  in  Eq.  (6)  to  generate  optimal
policies.

6    Automated configuration evaluation

In  this  section,  we  evaluate  the  efficacy  of  the  model
based RL technique on the traffic policing and shaping
of the ingress/egress router port queues.

6.1    Ingress queue policing

In order  to study the ingress  queue policing,  we make
use  of  the  traffic  setting  configuration  presented  in
Section  4  in  conjunction  with  the  queuing  model  in
Fig. 9.  The  output  of  a  queuing  simulation  over  the
misconfigured router is shown in Fig. 10. As expected,
we  see  increased  utilization,  queue  length,  and
residence times for queue 7, despite quques 0−3 having
only  25% utilization  (Fig.10a).  The  objective  is  to
generate  a  policy  that  would  alleviate  this  load,  while
maintaining the priorities of individual flows within the
system.

The first step is to collect the statistics of changes in
the  observed  metrics  as  a  result  of  configuration
changes.  We make  use  of  the  JMT simulator  to  study
the  improvements/deteriorations  due  to  configuration
changes,  as  shown  in Table 3 .  The  following
configurations are studied:

10(1) Queue 5 weight increases by ;
10(2) Queue 5 weight decreases by ;

50%(3) Queue 5 bandwidth increases by ;
50%(4) Queue 5 bandwidth decreases by ;

1(5) Queues 5 and 7 virtual interfaces increase by ;
(6) Queue changes from PWFQ to FCFS;
(7) Queue RED packet drop increases.
While  we  have  primarily  concentrated  on  changing

the  configuration  of  one  queue,  this  can  similarly  be
extended  to  combinations  of  various  ingress  queue
configurations.

Once  we  have  the  steady-state  metrics  for
configuration  changes,  they  can  be  inputted  as
transition and observation probabilities as described in

 

Algorithm 2 State transition and observation
probabilities elicitation

1 Input: Queuing  network  with a set of states S, configuration change

2 Output: State and observation transition probabilities.
3 for each state s ∈S that covers all joint queues states (green,

yellow, red) do
4 for each action a ∈A do
5 Perform action a in state s;
6 Determine the change in utilization ΔU for each q ∈Q

in state s;
7 Determine the conditional probability for each state s:

P (state change |ΔU );
8 Record state transition probabilities after normalization;

9 for each action a ∈ A do
10 Perform action a in state s;
11 for each for each observation category, i = 1, . . . , k, do
12 Determine the change in observation ΔOi for each

q ∈ Q in state s;
13 Determine the conditional probability for each observation

change: P (observation change|ΔOi);14
Record observation transition probabilities after normalization;

actions A, corresponding utilization change ΔU, and corresponding
observation vector (residence time, throughput, drop packets)
change ΔOi, i  = 1, . . . , k.

 
 

    188 Intelligent and Converged Networks,  2021, 2(3): 177−197

 



Algorithm  2.  A  snippet  of  the  POMDP  file  format  is
shown  in Table 4 .  Note  that  we  map  the  same
observation  to  multiple  possible  underlying  states
(green, yellow, and red) of the individual queues. This
method is  realistic  as  routers  do not  expose individual
queue utilization rather than the global metrics, such as
throughput, packet drop rates, and latencies. The expert
or  RL  model  must  make  use  of  these  observations  to

infer  the  appropriate  configurations  that  would
alleviate  the  bottleneck  queue.  We  make  use  of  the
POMDP  model,  which  has  uncertainty  built  in  to
estimate  the  appropriate  configuration.  In  a  simpler
case,  this can be converted to a conventional MDP by
mapping  each  observation  to  a  particular  state  of  the
router/queue.

The  SARSOP solver[36] is  used  to  generate  a  policy
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(c) Ingress queue residence time with increasing load
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(d) Ingress queue throughput with increasing load
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Fig. 10    Ingress queue with misconfigured router.
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Table 3    Observed metrics with ingress queue configuration changes.

Configuration Queue
Metric

Throughput (jobs/s) Queue length Residence time (s) Utilization ratio

Baseline

Q0 124.3 0.33 0.000 70 0.240
Q1 124.3 0.33 0.000 70 0.240
Q2 124.3 0.33 0.000 70 0.240
Q3 124.3 0.14 0.000 34 0.120
Q4 281.0 1.28 0.003 00 0.560
Q5 419.0 5.00 0.012 00 0.830
Q6 477.0 19.40 0.046 00 0.950
Q7 497.0 98.90 0.230 00 0.990

UDP-base 353.0 2.22 0.100 00 0.700
UDP-spike 379.8 0.13 0.000 32 0.110

TCP 445.0 44.00 0.140 00 0.990
Misc 995.0 66.90 0.160 00 0.990

1

Q0 124.3 0.33 0.000 86 0.240
Q1 124.3 0.33 0.000 86 0.240
Q2 124.3 0.33 0.000 86 0.240
Q3 124.3 0.14 0.000 37 0.120
Q4 281.0 1.28 0.003 00 0.560
Q5 379.0 3.11 0.008 20 0.750
Q6 477.0 19.40 0.050 00 0.950
Q7 497.0 103.90 0.270 00 0.990

UDP-base 336.0 1.90 0.005 10 0.670
UDP-spike 358.0 0.13 0.000 33 0.110

TCP 445.0 42.70 0.110 00 0.990
Misc 995.0 66.90 0.160 00 0.990

2

Q0 124.3 0.330 0.000 72 0.240
Q1 124.3 0.33 0.000 72 0.240
Q2 124.3 0.33 0.000 72 0.240
Q3 124.3 0.14 0.000 31 0.120
Q4 281.0 1.28 0.002 80 0.560
Q5 457.0 10.30 0.022 50 0.910
Q6 477.0 19.10 0.040 00 0.950
Q7 497.0 91.00 0.190 00 0.990

UDP-base 368.0 2.60 0.005 10 0.730
UDP-spike 401.0 0.14 0.000 31 0.120

TCP 445.0 46.60 0.100 00 0.990
Misc 995.0 67.60 0.140 00 0.990

3

Q0 101.6 0.25 0.001 20 0.200
Q1 101.6 0.25 0.001 20 0.200
Q2 101.6 0.25 0.001 20 0.200
Q3 101.6 0.11 0.000 51 0.100
Q4 164.0 0.48 0.002 00 0.320
Q5 218.0 0.27 0.001 30 0.210
Q6 242.0 0.93 0.004 30 0.480
Q7 249.0 231.00 1.000 00 0.990

UDP-base 100.0 0.25 0.100 00 0.200
UDP-spike 101.0 0.03 0.000 15 0.030

TCP 266.0 1.40 0.006 50 0.590
Misc 812.0 4.16 0.001 90 0.820

(To be continued)
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Table 3    Observed metrics with ingress queue configuration changes. (Continued)

Configuration Queue
Metric

Throughput (jobs/s) Queue length Residence time (s) Utilization ratio

4

Q0 101.6 0.25 0.001 20 0.200
Q1 101.6 0.25 0.001 20 0.200
Q2 101.6 0.25 0.001 20 0.200
Q3 101.6 0.11 0.000 46 0.100
Q4 181.0 0.56 0.002 30 0.360
Q5 249.0 229.00 0.920 00 0.990
Q6 279.0 1.26 0.005 00 0.560
Q7 289.0 0.40 0.001 60 0.290

UDP-base 128.0 0.34 0.001 40 0.260
UDP-spike 129.0 0.04 0.000 17 0.040

TCP 333.0 2.75 0.011 00 0.740
Misc 818.0 4.30 0.017 20 0.820

5

Q0 124.3 0.33 0.006 00 0.240
Q1 124.3 0.33 0.006 00 0.240
Q2 124.3 0.33 0.006 00 0.240
Q3 124.3 0.14 0.002 60 0.120
Q4 290.0 1.37 0.018 00 0.580
Q5 436.0 1.20 0.014 00 0.870
Q6 498.0 114.00 1.310 00 0.990
Q7 519.0 1.50 0.018 00 1.000

UDP-base 380.0 2.88 0.026 50 0.700
UDP-spike 419.0 0.13 0.001 40 0.110

TCP 445.0 48.00 0.440 00 0.990
Misc 995.0 66.90 1.262 50 0.990

6

Q0 452.0 8.80 0.195 00 0.900
Q1 452.0 8.80 0.195 00 0.900
Q2 452.0 8.80 0.195 00 0.900
Q3 452.0 0.82 0.001 80 0.450
Q4 452.0 8.80 0.195 00 0.900
Q5 452.0 8.80 0.195 00 0.900
Q6 452.0 8.80 0.195 00 0.900
Q7 452.0 8.80 0.195 00 0.900

UDP-base 493.0 21.42 0.047 30 0.980
UDP-spike 1 681.0 1.00 0.002 00 0.520

TCP 449.0 72.00 0.160 00 0.990
Misc 995.0 82.00 0.180 00 0.990

7

Q0 224.0 0.800 0.003 60 0.450
Q1 224.0 0.800 0.003 60 0.450
Q2 224.0 0.80 0.003 60 0.450
Q3 224.0 0.28 0.001 30 0.220
Q4 224.0 0.81 0.003 60 0.450
Q5 224.0 0.81 0.003 60 0.450
Q6 224.0 0.81 0.003 60 0.450
Q7 224.0 0.81 0.003 60 0.450

UDP-base 449.0 8.60 0.030 00 0.890
UDP-spike 449.0 16.00 0.990 00 0.140

TCP 449.0 224.00 0.000 73 0.990
Misc 449.0 0.81 0.030 00 0.450
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1000

that  can  appropriately  reconfigure  the  system.  Our
rewards are configured to reward improvements in the
observed throughput, residence times, and packet drop
rates.  The  policy  graph  generated  is  shown  in Fig. 11
(initialized  to  a  statically  configured  state)  with  a
simulation output of  Monte Carlo runs, as shown
in Table 5.

The last  step is  to  input  this  policy into the queuing
network  model  to  observe  improvements.  The  output
of  the  RL  algorithm  is  encoded  in  the  configuration
commit.  Observations  are  tried  out  every  10  minutes

70%

until  a  steady  state  is  reached.  The  outputs  of  the
estimated  queue  utilization  are  presented  in Fig. 12.
The  initial  configuration  has  two  queues  in  the  red
packet  marking  zone.  After  successive  policy  actions,
all the queue utilization is brought below the  level.
This finding demonstrates the efficacy of the RL model
in ingress traffic policing.

6.2    Egress queue traffic shaping

It is also important to perform the effective shaping of
egress queues to prevent  packet  drops at  the output  of
routers  (Fig. 9). Figure 13  provides  the  output  of  the
queuing model with an initialized queue configuration.

 

Table  4    Transitions,  observations,  and  rewards  in
POMDP.      

1 # Transit ion Probabi l i t ies
2 T: Q5_bandwidth_l imi t_ increase
3 0 .77 0 .0 0 .23 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
4 1 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
5 0 .0 0 .0 1 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
6 0 .0 0 .0 1 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
7 0 .66 0 .0 0 .0 0 .0 0 .34 0 .0 0 .0 0 .0 0 .0 0 .0
8 1 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
9 0 .0 0 .0 0 .66 0 .0 0 .0 0 .0 0 .34 0 .0 0 .0 0 .0

10 1 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
11 1 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
12 0 .74 0 .0 0 .26 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
13
14
15 T: Q5_interface_increase
16 0 .95 0 .0 0 .05 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
17 0 .0 1 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
18 0 .0 0 .0 1 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
19 0 .0 0 .0 0 .0 1 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
20 0 .0 0 .0 0 .0 0 .0 1 .0 0 .0 0 .0 0 .0 0 .0 0 .0
21 0 .0 0 .0 0 .0 0 .0 0 .0 1 .0 0 .0 0 .0 0 .0 0 .0
22 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .95 0 .0 0 .05 0 .0
23 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 1 .0 0 .0 0 .0
24 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 1 .0 0 .0
25 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 1 .0
26
27 # Observat ions
28 O: Q5_weight_decrease : * :

Q5_residence_t ime_increase 0 .125
29 O: Q5_weight_decrease : * :

Q5_residence_t ime_decrease 0 .0
30 O: Q5_weight_decrease : * : Q5_throughput_increase 0

.125
31 O: Q5_weight_decrease : * : Q5_throughput_decrease 0

.0
32 O: Q5_weight_decrease : * : Q5_queue_drop_increase 0

.125
33 O: Q5_weight_decrease : * : Q5_queue_drop_decrease 0

.0
34 O: Q5_weight_decrease : * :

system_residence_t ime_increase 0 .0
35 O: Q5_weight_decrease : * :

system_residence_t ime_decrease 0 .125
36 O: Q5_weight_decrease : * :

system_throughput_increase 0 .125
37 O: Q5_weight_decrease : * :

system_throughput_decrease 0 .0
38 O: Q5_weight_decrease : * :

system_queue_drop_increase 0 .125
39 O: Q5_weight_decrease : * :

system_queue_drop_decrease 0 .0
40
41 # Rewards
42 R: Q5_bandwidth_l imi t_decrease : Q0 -3

_green_Q4_red_Q5_green_Q7_green : * : * -20
43 R: Q5_bandwidth_l imi t_decrease : Q0 -3

_green_Q4_red_Q5_green_Q7_red : * : * -20
44 R: Q5_bandwidth_l imi t_decrease : Q0 -3

_green_Q4_red_Q5_red_Q7_green : * : * -20
45 R: Q5_bandwidth_l imi t_decrease : Q0 -3

_green_Q4_red_Q5_red_Q7_red : * : * -20
46 R: Q5_bandwidth_l imi t_decrease : Q0 -3

_red_Q4_red_Q5_red_Q7_red : * : * -20
47 R: Q5_bandwidth_l imi t_decrease : Q0 -3

_green_Q4_red_Q5_green_BW_Q7_red : * : * -100
 

 

B:  Q0-3_low_Q4_high_Q5_high_Q7_high
 A: Q5_weight_increase

B: Q0-3_high_Q4_high_Q5_high_Q7_high
 A: Q5_PFWQ_FCFS

O: system_residence_time_decrease

B: Q0-3_high_Q4_high_Q5_high_Q7_high
 A: Q5_RED_packet_drop_high

O: system_residence_time_increase

B: Q0-3_low_Q4_low_Q5_low_Q7_low
 A: Q5_FIFO_PWFQ

O: Q5_residence_time_decrease

B: Q0-3_low_Q4_low_Q5_low_Q7_low
 A: Q5_RED_packet_drop_low

O: system_residence_time_decrease

B:  Q0-3_low_Q4_low_Q5_low_Q7_high
 A: Q5_weight_decrease 

O: system_residence_time_increase

B:  Q0-3_low_Q4_low_Q5_high_Q7_high
 A: Q5_weight_increase 

O: Q5_residence_time_increase O: Q5_residence_time_decrease

 
Fig. 11    Ingress queue configuration policy graph.

 

 

Table  5    Simulation  run  and  rewards  for  ingress  queue
policy.

1 -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -- - - -
2 Time |# Trial |# Backup |LBound |UBound
3 |Precision |# Alphas |# Bel iefs
4 -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -- - - -
5 204 .1 311 23369 146 .172 146 .999
6 0 .8266 275 9044
7 -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -- - - -
8 -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - -- -
9 # Simulat ions | Exp Total Reward

10 -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - -- -
11 10 154 .573
12 20 140 .178
13 30 137 .111
14 40 137 .309
15 50 134 .383
16 60 130 .251
17 70 136 .91
18 80 139 .373
19 90 135 .104
20 100 138 .198
21 -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - -- -
22 -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -- - - -
23 # Simulat ions | Exp Total Reward | 95\%
24 Confidence Interval
25 -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -- - - -
26 100 138 .198 (124 .735, 151 .661 )
27 -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -- - - -
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The  results  show  that  the  egress  queue  reaches
bottleneck  capacity,  whereas  queues  0−7  still  have
capacity.

In  order  to  reconfigure  the  system,  we  once  again
study  the  effect  of  configuration  changes  on  the
observed  metrics. Table 6  reflects  the  observed
changes  due  to  the  following  egress  queue  scheduling
configurations:

20%

(1)  Egress  queue  input  routing  percentage  decreases
by ;

20%

(2)  Egress  queue  input  routing  percentage  decreases
by ;

50%(3) Egress queue bandwidth limit increases by ;
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Fig. 12    Observed  improvements  due  to  automated
configuration.
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Fig. 13    Statically configured egress queue.
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50%(4) Egress queue bandwidth limit decreases by .
This model is once again translated into the POMDP

format  with  transition  and  observation  probabilities.
Using  the  SARSOP  solver,  the  optimal  policy  is
generated,  as  shown  in Fig. 14 ,  with  the  Monte  Carlo
runs shown in Table 7.

Figure 15 demonstrates  the  effectiveness  of  the
egress  traffic  shaping  process.  We  notice  that  through
repeated  configuration  changes,  the  utilization  of  both
queues drops to the “green” states.

In Fig. 15 ,  we  also  provide  a  result  with  reward
changes  for  the  one-hop  router  configuration.  This
method is needed in cases where the egress queue from
one  router  can  potentially  cause  bottlenecks  in
subsequent routers by deploying excessive traffic to the
network.  We weave into this  model  the rewards when

 

Table 6    Configuration changes for egress queues.

Configuration Queue
Metric

Throughput (jobs/s) Queue length Residence time (s) Utilization ratio

Baseline
Q0−Q7 249 1.00 0.004 0.50
Egress 999 232.00 0.928 1.00

1
Q0−Q7 485 29.50 0.060 0.97
Egress 786 3.43 0.007 0.77

2
Q0−Q7 416 4.80 0.010 0.83
Egress 999 201.00 0.480 0.99

3
Q0−Q7 97 30.00 0.300 0.97
Egress 388 0.60 0.006 0.38

4
Q0−Q7 249 0.33 0.001 0.25
Egress 999 237.00 0.950 1.00

 

 

Table 7    Simulation rewards for egress.

1 -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -- - - --
2 Time |# Trial |# Backup |LBound |UBound

|Precision |# Alphas |# Bel iefs
3 -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -- - - --
4 0 .21 82 3491 208 .902 208 .902

0.000816354 13 602
5 -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -- - - --
6 -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - --
7 # Simulat ions | Exp Total Reward
8 -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - --
9 10 196 .246

10 20 201 .31
11 30 204 .546
12 40 202 .937
13 50 205 .736
14 60 204 .843
15 70 204 .305
16 80 205 .793
17 90 206 .368
18 100 206 .478
19 -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
20 -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -- - - --
21 # Simulat ions | Exp Total Reward | 95\% Confidence

Interval
22 -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -- - - --
23 100 206 .478 (203 .317, 209 .64 )
24 -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -- - - --
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Fig. 14    Egress queue configuration policy graph.
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Fig. 15    Egress  queue  configurations  with  (a)  single  router
and (b) one-hop considered.
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there  can  be  deterioration  of  the  next-hop  router
policies  and  can  effectively  configure  the  router  to
mitigate this action.

6.3    Effect of traffic change

Another  factor  to  estimate  is  the  robustness  of  the
system with  network traffic  changes.  We make use  of
the same POMDP model  with  a  new traffic  pattern as
shown  in Fig. 16 .  Keeping  the  same  transition  and
observation  probabilities  as  the  initial  model,  the
POMDP  policy  is  generated  with  this  new  initial
condition.  The  sequence  of  configuration  changes  is
shown  in Fig. 17 .  The  findings  demonstrate  that  the
system is  robust  enough to  handle  variations  in  traffic
patterns  and  ensures  proper  configuration  of
ingress/egress queues.

7    Conclusion

The  emergence  of  5G  network  slicing  has  mandated
the  need  for  accurate  configuration  of  routers  and

switches  to  deliver  optimal  performance.  Currently,
routers  and  switches  have  static  configurations,  which
are applied to multiple traffic mixes. This characteristic
can  quickly  turn  suboptimal,  requiring  trial-and-error
changes  by  an  expert.  In  this  paper,  we  explore
alternative RL-based models to automate configuration
changes  in  router  ports.  This  method  is  shown  to  be
effective  in  traffic  policing,  traffic  shaping  and
coordinated  configuration  changes  within  routers.  Its
performance  is  demonstrated  over  a  realistic  use  case
involving routers for 5G network slicing.

In this work, we have made use of queuing network
models  to  train  the  RL  model.  However  it  would  be
more realistic to train it on logged network datasets that
stem  from  Ericsson,  Juniper,  and  Cisco  router
deployments.  In  addition,  there  are  plans  to  include
transfer learning to re-use policies across a sequence of
routers for effective 5G slicing. This initiative may also
include  multi-agent  RL  techniques  to  coordinate
multiple configuration agents across large networks.
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