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Distributed reinforcement learning based framework for
energy-efficient UAV relay against jamming

Weihang Wang, Zefang Ly, Xiaozhen Lu, Yi Zhang*, and Liang Xiao

Abstract: Unmanned aerial vehicle (UAV) network is vulnerable to jamming attacks, which may cause severe damage
like communication outages. Due to the energy constraint, the source UAV cannot blindly enlarge the transmit
power, along with the complex network topology with high mobility, which makes the destination UAV unable to
evade the jammer by flying at will. To maintain communication with a limited battery capacity in the UAV networks
in the presence of a greedy jammer, in this paper, we propose a distributed reinforcement learning (RL) based
energy-efficient framework for the UAV networks with constrained energy under jamming attacks to improve the
communication quality while minimizing the total energy consumption of the network. This framework enables each
relay UAV to independently select its transmit power based on historical state-related information without knowing
the moving trajectory of other UAVs as well as the jammer. The location and battery level of each UAV need not be
shared with other UAVs. We also propose a deep RL based anti-jamming relay approach for UAVs with portable
computation equipment like Raspberry Pi to achieve higher and faster performance. We study the Nash equilibrium
(NE) and the performance bounds based on the formulated power control game. Simulation results show that

the proposed schemes can reduce the bit error rate (BER) and reduce energy consumption of the UAV network
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compared with the benchmark method.
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1 Introduction

With the fast development and increasing functionality,
unmanned aerial vehicles (UAVs) have become the
enablers of more and more advanced applications, such
as traffic monitoring and remote sensing!!-?. Different
from mobile ad hoc networks (MANETS) and vehicular
ad hoc networks (VANETS), UAV networks are more
vulnerable to jamming attacks due to the limited battery
capacity, time-varying link quality, higher mobility,
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and dynamic network topology?®. A jammer may
send fake or replayed signals to block ongoing UAV
communications and therefore results in transmission
outages™*!. The jamming attack also exhausts the battery
capacity of the UAVs for retransmissions. Moreover, a
UAV may be cheated to land in an unintended spot when
its communication link to the operators is blocked by
jamming!®!.

To overcome possible jamming attacks, power control
has been applied as an effective technique, which
adjusts the transmit power of the device so that the
received signal-to-interference-plus-noise ratio (SINR)
can be greater or equal to a minimum acceptable
threshold. However, most existing solutions!®-8! are
not applicable to UAV networks due to the high
mobility of the UAVs. Besides, the rapid variant channel
conditions and the unknown jamming model lead to
great challenges to the premodeling of the channel for
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power control against jamming.

In the UAV-aided communication network, the
UAV acts as a relay to help forward messages to
the target device suffering from jamming attacks.
Under the unknown network and jamming model,
the UAV selects its relay power by adopting smart
strategies. Reinforcement learning (RL), which has
been widely used in UAV-aided VANETSs"! and mobile
communications'?, enables a UAV to optimize the relay
power via trial-and-error without knowing the network
topology and jamming model. The RL-based UAV relay
system can not only reduce the bit error rate (BER) but
also save the energy consumption of message relays.
Note that a single UAV may be seriously jammed or
possess a limited battery, UAVs deployed as swarms
provide great potentials to mitigate the damage of
jamming by cooperative message relays. It fully exploits
the line-of-sight links between the UAVs and the target
device to improve the communication performance!!l.

However, most previous works have adopted the
centralized framework in the UAV networks, in which
a learning center is operated to send control signals
to other UAVs. The learning center must deal with
huge state spaces when the UAV network expands. To
the best of our knowledge, the distributed framework
learned individually by each relay UAV is rarely
discussed. Compared with the centralized framework,
the distributed framework is more robust for a large-scale
UAV network. Besides, the UAV under the distributed
framework need not share state-related information, i.e.,
received jamming power and the current battery level,
with the learning center, which may cause the leak of
privacy and require additional communication overhead.

In this paper, we propose a distributed framework
for multi-relay UAV networks against jamming attacks,
where each relay UAV independently determines
the optimal transmit power for message relays
from the source UAV to the destination UAV. The
system objective is to maximize the communication
performance and meanwhile minimize the overall energy
consumption. To handle the external jamming attacks,
two RL-based approaches, i.e., the RL-based energy-
efficient anti-jamming UAV relay (REAR) approach
and the enhanced deep REAR (DREAR) approach, are

provided to maximize the expected long-term utility of
each relay UAV in terms of Q-value, which depends on
the communication performance as well as the energy
consumption. The REAR approach exploits historical
state-related information to construct a distributed RL
model for each relay UAV without knowing the moving
trajectory of other UAVs as well as the jammer. In
each time slot, each relay UAV selects its optimal
transmit power based on the relay policy derived using
the proposed RL model and then updates the model
parameters after receiving the acknowledgment (ACK)
frame from the destination UAV. In particular, to share
the UAV relay experiences with other similar UAV-aided
communication networks, a transfer learning technique,
i.e., hotbooting, is employed to initialize the Q-values
in order to accelerate the initial relay exploration. To
further enhance the efficiency of the anti-jamming UAV
relay, the DREAR approach utilizes two deep neural
networks (DNNs), i.e., E-network and T-network, to
compress the state space and estimate the Q-value for
each UAV relay policy. The E-network outputs the
estimated Q-values and the T-network outputs the target
Q-values so as to mitigate over-estimation.

Our main contributions are summarized as follows.

(1) We propose a distributed framework for multi-
relay UAV networks against jamming attacks. Different
from the centralized learning framework, the state
space of the proposed distributed approach does not
increase with the number of relay UAVs in the network.
Moreover, the UAV need not share its location and
battery level with a learning center or other UAVs.

(2) An RL-based REAR is provided to enable
each relay UAV to independently select its transmit
power in a dynamically variant environment without
knowing the network topology and jamming strategy. We
also propose a DREAR approach to further improve
the performance of the UAV network, which adopts
the DNN technique to compress the state space and
estimate the Q-values for each relay policy. The DREAR
approach is suitable for portable computation equipment
like Raspberry Pi.

(3) Interaction between the relay UAVs and the
jammer is formulated as an anti-jamming power control
game. We study the Nash equilibrium (NE) and also
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provide the performance bound in terms of the BER,
energy consumption, and utility of the overall network.
Simulation results show that the proposed schemes can
improve energy efficiency and reduce BER compared
with the benchmark schemef®!.

The rest of this paper is organized as follows. We
review related literature in Section 2 and present the
system model in Section 3. We propose two RL-based
anti-jamming relay approaches for energy-efficient UAV
networks in Section 4. We formulate the anti-jamming
relay game in Section 5 and provide the simulation
results in Section 6. Finally, the conclusion is drawn

in Section 7.

2 Related work

Recently, UAV-aided relay networks have been widely
-4 A two-hop UAV
relay network uses a genetic algorithm to determine

used in many areas recently

the data volume and design the trajectory of mobile
relays to improve the data downloading rate and
reduce the latency!'!l. Another cooperative UAV relay
scheme for wireless sensor networks!'?! optimizes the
packet load scheduling strategy via solving a min-
max problem to reduce energy consumption with the
while guaranteeing BER. A UAV-aided communication
system!'®! uses a numerical approach to derive the
optimal location for UAVs under both static and mobile
air-to-ground communication scenario to maximize
the communication efficiency in terms of energy
consumption and outage probability. A multiple UAV
relay network!'"¥ optimizes the UAV placement to
increase the transmission quality and compares the
performance of a single multi-hop link with that of a
multiple dual-hop links in terms of the outage probability
and BER.

The jamming attack in UAV network degrades
the communication performance and has drawn great
research attention on the countermeasures of jamming
attacks[®-8 131, A cooperative anti-jamming scheme!” uses
a pricing-mechanism-based best-response algorithm to
optimize the channel utilization of different users to
improve the network throughput. A joint power control

and user scheduling scheme against jamming!®
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uses dynamic programming to sequentially obtain
the optimal power allocation and user scheduling
strategy at each slot to improve data rate of the
wireless network. A robust anti-jamming beamforming
scheme!™ uses linearly constrained optimization
to improve the jamming resistance and signal-to-
interference-plus-noise ratio (SINR) of navigation signal
with a minimum computation load. A cooperative relay
scheme against radio-frequency jamming attacks for
vehicular networks™ firstly employs a heuristic selection
algorithm to select vehicles outside the jammed area as
relays and then exploits the spatial diversity of selected
relays to improve the SINR of the messages that the
jammed vehicles receive by combining signals from all
relays.

Without the stringent requirement of knowing the
RL-based methods
applied in

channel or jamming model,
have been widely anti-jamming
communications'% 16181 A power control anti-jamming
scheme for massive multiple-input multiple-output
(MIMO) systems!'® uses a policy hill-climbing (PHC)
algorithm to select the transmit power of the base station
based on the previous SINR and received jamming
power to improve the average SINR and the sum data
rate of all user equipments in the system. A deep
Q-network-based anti-jamming scheme!!”! formulates
a Stackelberg dynamic game between an intelligent
jammer UAV and mobile users on the ground. It then
optimizes user mobility to reduce the received jamming
power of the users. A Q-learning-based power control
scheme!® formulates the UAV to the ground channel
model and optimizes the UAV transmit power to the base
station under the presence of a jammer to improve the
SINR. A deep Q-learning-based anti-jamming scheme!'®!
enables the UAVs to allocate the transmit power over
multiple frequency channels based on the received
jamming power to improve the secrecy capacity of the
UAV system against a smart jammer. A UAV-aided
anti-jamming relay scheme in VANETSsP! employs the
PHC algorithm to help the UAV relay determine whether
to relay the message according to its radio channel
condition and previous transmission quality to reduces
the BER of the forwarded messages.
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3 System model

As shown in Fig. 1, a UAV network mainly consists of a
source UAV, which intermittently broadcasts messages
to its intended destination UAV with multiple UAVs as
relays. In particular, a malicious jammer located near
the destination tries to send jamming signals at the same
spectrum to interfere with the communication. To cope
with the external jamming attacks, a total N relay UAVs
located between the source and destination can act as
relay nodes to help maintain the communication quality
of the source-destination link without extra flying.

In the proposed time-slotted system, for simplicity, the
source UAV is assumed to only broadcast one message
in each time slot. At a time slot k, the source UAV
broadcasts a message with the transmit power p®)_ Tt
should be noted that both the destination UAV and the
relay UAVs may receive this message. For an arbitrary
relay UAV, it decodes the message received from the
source UAV, which enables the measurement of the
received signal strength indicator (RSSI) r*) and BER
»®) Note that the battery power equipped at the UAV is
usually limited and crucial. Additionally, the relay UAV
must decide its transmit power x*) for the message
relay, which has an upper limit denoted by X. To
lower the BER of the target messages, each relay UAV
independently determines its relay power with a power
constraint. In particular, the relay UAV must ensure
whether the remaining energy is sufficient to relay the

message or not by observing its current battery level
b,

@)
RSSI A p UAV N
BER ¢ (D Relay
. © UAV i power x® Jammer
Jamming power
Jamming
power ¥
(@)
UAV 1
Channel
gain g
Channel Channel
i gain h®
Message
) @)
UAV 0 Transmit ACK UAV N+1

(Source) power p® (Destination)

Fig.1 RL-based UAV-aided wireless relay networks against
jamming attacks.

Due to the broadcast nature, the destination UAV may
receive multiple copies of the target message at a time
slot k, each of which is either directly sent from the
source UAV or relayed by some relay UAVs. For each
received message, the address of the sender and the
corresponding BER p(k) can be estimated and further
assembled together into one ACK frame. The destination
UAV broadcasts this ACK frame as feedback. Successful
message delivery to the destination UAV requires at
least one message with a BER less than the maximum
BER ¢. In some cases, the target message may not be
successfully received by the destination UAV even with
the assistance of those relay UAVs. We introduce a
flag denoted by 0™ to indicate the message state: if
the target message is successfully received, w® = 0;
otherwise, w®) = 1. The failure of the message delivery
is regarded as a punishment in the utility of the relay
UAV for learning and decision.

The jammer of the proposed scheme is more smart and
detrimental compared with the static jammer with fixed
or random jamming power. A greedy jammer selects
its moving strategy and the transmit power y(k) within
the range of [0, Y], to degrade the UAV communication
with less jamming cost. Sending jamming signals for
a random period may reduce the energy consumption
of the jammer, making the attacks last longer. In the
proposed system, each relay UAV aims to optimize the
transmit power to achieve higher energy efficiency when
providing message relay against the greedy jammer. The
key notations of this paper are listed in Table 1.

4 RL-based energy-efficient UAV relay
against jamming

In this section, we propose the REAR approach, which
is independently implemented by each relay UAV, to
determine the optimal relay power to mitigate jamming
attacks. The proposed REAR approach decreases
the BER of the target message and reduces the
overall network energy consumption thereby improving
communication reliability. The hotbooting method
is used in REAR to exploit the UAV relay power
control experiences in the similar network model and
anti-jamming scenarios to initialize the Q-values for
each relay policy, consequently accelerating the initial
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Table 1 List of key notations.
Symbol Description

N Number of relay UAVs

x® €0, X] Relay power of UAV i at a time slot k

y&) €[0,Y]  Jamming power

p® €]0,P] Transmit power of the source

r® RSSI of the message received by UAV i

7 Channel gain from the source to UAV i

h Channel gain from UAV i to the destination

500 g6 Channel gain from jammer to the
{destination UAV, UAV i}

b k) {Measured, estimated} battery level of a
relay UAV

v Battery threshold
Minimum SINR for successful transmission

€ Maximum BER for successful transmission

NG BER of the message received by UAV i
from the source

p; ) BEI% of 'the message re.ceived by the
destination from UAV i

160 Jamming power received by UAV i

E® Energy consumption of UAV i

exploration. It should be noted that the proposed REAR
approach is efficient for those UAVs with limited
computing resources. With the development of single-
board computers, such as portable Raspberry Pi, some
UAVs can learn and optimize its relay policy in more
complex environments with higher dimensional states.
To enhance the efficiency of the anti-jamming UAV relay,
we further propose a DREAR approach by using the
DNN technique.

4.1 REAR approach for UAV relay

In the proposed REAR approach, we define a state vector
s at a time slot k for each UAV relay as follows:

sOI=[®) 0y 0) p®) O i kD) =), (k=D))
0<i<N

P

ey
The BER of the message ¢(k) and the RSSI of its signal
r% are the key metrics measured using the relay UAV
to reflect the transmission quality of the UAV network.
The channel gain of the relay-destination link h®) can
be estimated based on the preambles of the messages.
The current received jamming power is calculated using

10 = y(k) g(k). From the ACK frame delivered by the

Intelligent and Converged Networks, 2021, 2(2): 150-162

destination UAV, the BER p(k_l) and the message
state w®* =1 of the relay message at the previous time
slot k — 1 are known. Specifically, the minimum BER

1))

min pfk_ is recorded. The measurements in the state

0<i<N
metric are quantized into limited discrete levels, in which

the BER ¢® and min ,o(k_l)
<IN

1

are quantized by the
]I

exponential region and others are quantized uniformly
in the range of possible values. The granularity of
quantization will influence the size of the state space.
Therefore, when it becomes finer, the algorithm needs
more exploration steps before convergence. However,
the algorithm is more likely to obtain the theoretical
optimal value. Basing on the current state vector s®),
the relay UAV selects its transmit power x® according
to the Q-function table, which is quantized in the range
[0, X] with a total of M + 1 discrete levels, i.e., x®) €
{mX/M :me€{0,...,M}}.

If arelay UAV determines to help forward the message,
x® =~ 0 should be guaranteed; otherwise, x® = 0.
The relay UAV uses e-greedy method to select the
action, i.e., relay power, with € probability for randomly
choosing to avoid stopping at a local optimal policy
during the learning process. To ensure the feasibility
of the selected relay power x%® it should be satisfied
that the remaining battery level after this message
relay should be greater or equal to a minimum battery
threshold 9, i.e., b® — x® > 9 If the remaining
battery level is not sufficient, the relay power should
then be set to zero, that is, the relay UAV denies this
message relay.

When an ACK frame of the current message is

received, the minimum BER min pfk) will be
0<i<N

calculated and recorded. If min pl(k) < e, the flag

0<i<

of the message state is set as 0® = 0 to indicate a
successful transmission, else, set the flag w® =1.In
this case, if the corresponding BER is not contained
in the ACK frame, e.g., the relay UAV i has denied
forwarding the message or the relay message fails to
reach the destination UAV due to the jamming, the

minimum BER minN pfk) and the maximum BER

0<i<

max pl(k) should be recorded, where the maximum
0<i<N

BER is regarded as a conservative estimation of the
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actual BER for this message. If no ACK frame is
received, the flag is set as ® = 1. It should be noted
that the flag »® is utilized as a punishment in the utility
of the relay UAV to represent the transmission outages.

Furthermore, the utility of the relay UAV denoted by
u® is evaluated upon receiving the ACK frame from
the destination UAV:

u® = _g® _ €1 min ,ol(k) — czw(k) 2)
0<i<N

where ¢ and ¢, are the weights of the minimum BER
received by the destination and transmission outage
punishment, respectively, and ¢, is determined to be
an empirically large number. The energy consumption
E® is measured to evaluate the energy efficiency by
observing the battery level b*+1) at the end of the relay,
ie, E® = p®_pk+D The Q-function is exploited to
obtain the optimal transmit power for the relay UAV and
is updated using the Bellman iterative equation based on
the current relay experience and the utility with learning
rate o and the discount factor y.

The pseudocode for the proposed REAR approach
is presented in Algorithm 1. We can observe that a
transfer-learning-based hotbooting method is used to
improve the efficiency of exploration at the beginning
of the learning process. This method initializes the
Q-values for each relay policy with the anti-jamming
UAV relay experiences randomly selected from several
similar UAV relay scenarios.

4.2 Enhanced DREAR approach for UAV relay

In the enhanced DREAR approach, two isomorphic fully
connected DNNss are used to compress the state space
of the UAV relays, i.e., E-network and a T-network. As
shown in Fig. 2, each network consists of an input layer,
two hidden layers with f1 and f> units, and an output
layer with M + 1 units. All of them use a leaky rectified
linear unit as the activation function. The two networks
decouple the action selection and the computation of
target Q-value!®. In particular, the E-network outputs
the maximum estimated Q-value of each state with
weights 6 ](Ek) while the T-network outputs the target Q-
value with weights O%k).

When a relay UAV receives the message from the
source at a time slot k, it measures the BER of the
message ¢&), the RSSI of its signal r®), the current

Algorithm 1 REAR approach for UAV relay

1: Initialize parameters: min ,01(0) and »©
O<i<N

2: Obtain @ from similar scenarios based on hotbooting

3: Initialize Q-function as Q = Q

4: fork =1,2,... do

5:  Relay UAV receives a message from the source UAV

6:  Measure qb(k), r® &) [ K and observe b &)

7. Formulate s X by (1)

& Select xK) € {mX/M :m € {0,..., M}} via e-greedy

method
9. it b — x®) > 9 then
10: Relay the message with power x %)
11:  else
12: Set xK) = 0 (insufficient power, mute relaying)
13:  end if
14:  if Receive the ACK frame then
15: if p® is contained then
16: Calculate the minimum BER min ,o}k)
O0<IiKN
17: else
18: Calculate max pl(k) and min ;k)
0<i<N O<i<N
k
19: Set p) = Og}agx[v ,oE )
20: end if
21: if min pgk) < ¢ then
O<i<N
22: Set w®) = 0 (successful transmission)
23: else
24: Set w®) = 1 (failed transmission)
25: end if
26 else
27: Set w®) = 1 (failed transmission)
28:  end if

29:  Calculate u‘®) by Eq. (2)
3. Update Q (s, x®)) by the Bellman iterative equation
31: end for

battery level b®) and the received jamming power [ %),
These parameters formulate the current state s® ag
Eq. (1), which is treat as the input of the E-network.
The transmit power is the output of the E-network to
maximize the Q-value. The estimated long-term utility

is expressed as
x$(s®,01) = argmax 0(s®, ;1) (3)
X

based on which the relay UAV selects its transmit power
x® e mX/M :mel{0,... M}}

method at the current time slot k, on the other hand,

using e-greedy

the output transmit power is further used as the input
of the T-network for Q-value calculation. Similar to
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Fig. 2 Illustration of DREAR for UAV networks.

Algorithm 1, the relay UAV estimates the battery power
after relaying the message and then calculates the utility
u® using Eq. (2) based on the received ACK frame.

Specifically, there is a memory pool D to store the
experiences of the relay UAV at a time slot £ denoted by
e®) = {s(k), x® u(k),s(k+1)}. In this way, the UAV
can randomly and uniformly sample total G experiences
from D to formulate a minibatch .

Here, g(j);je[1,6) represents the serial number of
selected experiences, i.e., g(-) ~ U(1, k). Furthermore,
the weights of E-network 9](5k+1) are updated using
Eq. (4) in order to minimize the mean squared error
(MSE) between the target and the estimated Q values.
The weights of the E-network 9](5k+1)
to update the weights of the T-network O%kﬂ) of each

are also utilized

C time slot. The overall description of the proposed
DREAR approach is summarized in Algorithm 2.

k+1 i
Oé ) argrginEe(g””EB :

E

[(u(g(j))+ ),Q(s<g<j>+1)7 arg maxQ(s(g(f)ﬂ), ¥ 0;);
x/

0 — 0 (s60), 460, 9;))2} @)

5 Equilibrium analysis for anti-jamming
power control game

So far, we have introduced the proposed REAR and
DREAR approaches for optimal relay power control
against jamming attacks. Note that the jammer expects
to degrade the UAV communication by selecting its
jamming power while the relay UAVs must optimize
the transmit power for successful message relay and
improved energy efficiency. In this section, we model
the interactions between the relay UAVs and the jammer
as an anti-jamming power control game and study its
NE.

5.1 Power control game

There are two sides to the proposed power control game:
one side is the N relay UAVs, the other side is the greedy
jammer. To against the jamming attack, each relay UAV
optimizes its relay power in the range [0, X]. Therefore,
the power control strategy of the total N relay UAVs

is represented by a vector x®) = {[xl-(k)
<
1

li<ign|0 <
< X}. On the contrary, the greedy jammer adjusts

its transmit power y®) € [0, Y] to minimize the utility
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Algorithm 2 DREAR approach for UAV relay

1: Initialize min pgo), 0©®, Ol(ak) = 65, and 0%1) = 01(3”
2. for k = 1,\21:. .,do

3. Relay UAV receives a message from the source UAV
Measure and observe ¢%), &) 5 [ apg p k)
Formulate s X) by Eq. (1)

Input % to the E-network

E-network outputs x &) (s Bék) )

&  Select x®¥) € {mX/M :m € {0,..., M}} by e-greedy

A

method
9. ifb® — x® > 9 then
10: Relay the message with power x %)
1. else
12: Set x(®) = 0 (insufficient power, mute relaying)
13 endif
14:  if Receive the feedback for message then
15: Calculate the minimum BER min plgk)
0<i<N
16: if min p,fk) < ¢ then
0<Ii<N
17: Set w® = 0 (successful transmission)
18: else
19: Set w®) = 1 (failed transmission)
20: end if
21: if p® is contained in the feedback then
22: Calculate max pl(k) and min p;k)
S SIS
k
23: Set p) = Og}agx[v pE )
24: end if
25 else
26: Set w®) = 1 (failed transmission)
27. end if

28:  Calculate u‘® by Eq. (2)

29:  Formulate s+ by Eq. (1)

300 D« DU{s® x& y® gk+Dy

3. forj =1,2,...,G do

32 e®U) =D (g(j))

33 end for

34 Update 0](3k+1) via Eq. (2)

35:  Update 0(Tk+1) with Ogﬂ_l) every C time slots
36: end for

of the relay UAVs and reduce its energy, where Y is the
maximum transmit power of the jammer.

In the multi-relay-enabled UAV network, there are
a total of N possible paths from the source UAV to
the destination UAV. The SINR of the i-th path is
constrained by the lower one between the source-to-
relay-i link and relay-i-to-destination link®. As we
have discussed, the destination UAV only selects the

message with the minimum BER, namely, the message

with the maximum SINR. When the direct channel from
the source to the destination experiences an outage,
the SINR of the UAV network is determined by the
maximum SINR of those possible paths:

. O
&sp= max { min PZi X h &)
SPT G 02+y®g; 024 y®g
Considering the quadrature phase-shift keying

modulation, the corresponding minimum BER of the
UAV network can be represented by

€sp
Voo (6)

where erfc(-) represents the complementary error

. 1
min p; = —erfc
1<iKN 2

function.

The objective of the UAV network is to improve the
network utility, which depends on the minimum BER of
the target message and the total energy consumption.
Similar to the utility function Eq. (4), we use the
maximum SINR from the source UAV to the destination

UAV Sé’g instead of the minimum BER : £n1<nN ,ol(k) for
> \l ~

simplicity. Further, the maximum BER for successful
transmission ¢ is also converted to the minimum SINR
¢. Besides, to omit the transmission outage punishment
™ in the theoretical analysis, we have to consider a
successful transmission constrain, i.e., gé’g > ¢. In this
way, the utility of the UAV network is calculated as

k k k
uy) =csgsp— ), B @
1IN
k
s.t. éD) =< (8)
where cj3 represents the weight of the maximum SINR

s({g- Accordingly, the utility of the greedy jammer,

which aims to interrupt the message transmission of
the UAV network, is expressed as the negative of the
UAV network utility ug minus the jamming power
consumption,

k
wy = —uf) — cgy® ©)
where ¢4 1s an invariable cost coefficient.

5.2 Equilibrium analysis

To study NE, we assume that all channel gains are fixed
in the rest of this section, i.e., g;, &, h;, z;. We also
assume that the transmit power of the source UAV p and
the transmission delay 7" are constant.

Theorem 1 Given a fixed jamming power y, the
optimal solution to the relay power control is
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¥ =[0...,0.x7.0,....0] (10)
N—— N——
i'—1 N-i’

where x7; is the optimal relay power determined by

the relay UAV i’, which is expressed as follows.
‘ e
i’ = arg max {min PZi , i - (11)
1<i<N o2+ ygi 0*+yg

The utility achieved by the UAV network could be
reduced to

Pziv xirhis
0%+ ygir 02 +y§

Proof. We denote the index of the relay UAV with
maximum SINR by i’ according to Eq. (11). It should be

UR = c3min % } —Tx;r (12)

noted that the destination UAV only selects the message
with the minimum BER, namely, the message forwarded
by the relay UAV i’. The best strategy of the other
relay UAVs except UAV i’ is to keep silent in order to
avoid unnecessary energy consumption. In this way,
the optimal solution to the relay power control can be
represented by x* = [O, ...,0,x5,0, ... ,0], where
—— N——
i'—1 N-i’
x/, is the optimal relay power determined by the relay
UAV i’. According to the definition in Eq. (7), we have

Zil _X'/h'/
zpl -, 21 zA}_ZTxi<
0°+ygir 0°+yg 1<i<N

UR = C3 min%

pzi x,'fhi/
02+ygir 02+y§
Therefore, ur can be reduced to #ig when the UAV

c3 min% } —Tx;» = tg (13)

network tries to maximize its utility. |
Accordingly, given the optimal power control in Eq.
(10), the utility function of the jammer can be reduced to
Zjr xjrh;
s ] 09
We observe that different network environments may
lead to different NEs basing on Eqgs. (12) and (14).
Hence, we divide the power control game into two cases:

ty=Tx;s—c3 min {

Case 1. The SINR of the source-relay-i’ link is greater
than the relay-i’-destination link, that is,
pzi’ Xirhir
o+ ygr 0>+
In this way, the transmit power of the relay UAV i’

5)

should satisfy the following condition:
pzin(0® + y&)
Xpp < ———2~

" hi(0? + yar) (1o
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Basing on Eq. (15), we have

. c3hiv
URr = Xj’ (m — T) (17)
mz—m«}ﬁﬁ;—T)—my (18)
02+ yg
The first- and second-order derivative of #; with respect
to y will be
ou c3xirhirg
B O
3272] 263xi/hi/§2

TR .
Obviously, 1 is a concave function of y because its
second derivative is always negative when x;» # 0.
Because y should be within the range [0, Y], the optimal

jamming power will be

*

y, 0<y<Y;
y = 07

y <0; (21)
Y, otherwise

where y is derived from 9dii;/dy = 0 and is expressed

as follows:
o hir 2
p=, 2 T 22)
C48 g
Besides, the first derivative of g of x;s is
ou 3hyr
JUR _ _C3M (23)

8)6,'/ n o2+ yé B

When the condition c3h;s > T(0? + y*g) is satisfied,

tir will be an increasing function of x;/. Note that x;/

should be ranged within [0, X ], the optimal relay power

xl.*, is X. Combining with Egs. (8) and (16), we achieve
) T@2458) < (07 +y8) pzir(0%+yg)
s X X(o2+ygir)

(24)

Otherwise, tig become an decreasing function of

<hi<

x;» with the constrain in Eq. (8). Moreover, x/, =
(s (6% + y&)) / his is the optimal relay power if the
following condition is guaranteed:
0 <hyy < O +28) (25)
c3
Case 2. The SINR of the source-relay-i’ link is lower
or equal to the relay-i’-destination link:
pzir Xjrhis
o2 +ygir 02+ yg

(26)



Weihang Wang et al.:  Distributed reinforcement learning based framework for energy-efficient UAV relay against jamming 159

Similar to Case 1, the optimal jamming power will be
y, 0<y<Y;
V<0 27

*

y = 0’
Y, otherwise
capzir 02

N 28)
C48i’ &i’

Specifically, the first derivative of 1 of x;- is
JuR

8xi/

which means that #ig monotonically decreases with x;/ €

[0, X]. Basing on Eq. (26), the optimal relay power
should be ) A

= pzir(0” +y8)

hir(0? + ygi’)

We utilize the derived conditions above and have the

(30)

following theorem:

Theorem 2 The power control solution (x*, y*) =
([0....,0,x}% = X,0,...,0],0) is an NE of the anti-
jamming power control game when

To2 o2 ., 4
max | —— T2 < py o <omin { 220 254 L 3y
cz X X c3Xg
The performance bound under this NE is given by
Xhj
Esp=— (32)
o
> Ei=XT (33)
ISi<N
in ;= Lerfc [ 2 (34)
e T 2\ Y 202
Xhj
ug = 2 X (35)
o

That is, only the relay UAV i’ with the best channel
condition selects to relay the message with the maximum
transmit power X and the others keep silent. The jammer
selects to stop jamming to save energy.

6 Simulation result

In the performance evaluation, we consider one source
UAV, one destination UAV, three relay UAVs, and a
jammer on the ground, as shown in Fig. 3. The first
simulation is conducted under the static theoretical
analysis scenario in Section 5 with N = 3 relays and
a mute jammer which satisfies the condition given by
Eq. (31), as shown in Fig. 3a. The simulation results
in Fig. 4 show that the proposed DREAR approach can

Az (m)
UAV 3
@ (0,10,50)
UAV 2
(lSJAV 0) @ (20,10,50) ® UAV 4 )
ource UAV 1 estination
40,0,50) @ »@ (401050 »O (40,40,50)
Transmit power: 0.1 W | Relay power set: [0, 0.03, 0.06, 0.09] W

v (m)
Jammer
@ (50,20,0)
T (m) Jamming power: 0 W

(a) Static scenario for NE analysis
Az (m)

Relay power set:
[0, 0.03, 0.06, 0.09] W

UAV 0 UAV 4
(Source) Destination)
Transmit power: 0.1 W f /
ZW ¥ (m)
Jammgr QO : Hovering UAVs
% (m) Jamming power: 0-0.1 W A : Moving UAVs

(b) Initial topology for dynamic UAV realy network

Fig. 3 Simulation settings for performance evaluations.

converge to the optimal relay strategy after around 2500
time steps. For example, the BER, the SINR, the total
network energy consumption, and the overall utility
almost converge to the performance bound given by
Eqgs. (32)—(35).

Another simulation is conducted using a dynamic
network model with a moving jammer (Fig. 3b). The
transmit power of the source is 0.1 W. The relay UAVs
select the relay power among the set, which is discretized
uniformly among [0,0.9] W with total 4 levels. The
jamming power received by the destination changes
among 9.0dBm, 9.5 dBm, and 10.0 dBm. Relays are also
influenced by the jammer, the jamming power received
by each relay is different and changes from 3.0 dBm,
6.0dBm, and 7.0dBm.

The system performance is evaluated using the
minimum BER of the received relay messages by
the destination, total energy consumption of 3 relays,
and utility of the network is calculated based on the
minimum BER and the total energy consumption. We
use the optimal power control against jamming (OPAJ)
algorithm!® with fixed optimal relay power as the
benchmark algorithm. To control that the relay power
is the only variable in the comparison between the
proposed algorithm and the benchmark, the BER used
to represent the performance of the overall system is
selected from the relay message of the same relay in the
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B Eq. (35)
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1
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Time slot

(d) Utility of the UAV network

Fig. 4 Performance of the deep RL-based energy-efficient
UAV relay scheme averaged over 50 episodes for the UAV
network with 3 relays in the theoretical analysis scenario
compared with the performance bound.

two algorithms at every time slot.
Figure 5 shows the performance of the proposed
schemes in the dynamic UAV relay network against

jamming with a learning rate o of 0.5 and a discount
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Fig. 5 Performance of the RL-based energy-efficient UAV
relay schemes averaged over 50 episodes for the UAV network
with 3 relays against a greedy jammer.

factor y of 0.7. Due to the fixed relay power of the
benchmark schemel®), the energy consumption of it
remains unchanged, but the BER of it decreases a little
because that it is selected from the relay message of the
same relay as in the proposed algorithm. Results show
that both the REAR and the DREAR approaches improve
the UAV communication performance and reduce the
relay energy consumption compared with the benchmark
scheme. For instance, the REAR approach decreases
the BER by an order of magnitude and reduces energy
consumption by 17.3% compared with OPAJ after 3500
time slots. The DREAR approach further decreases the
BER by three orders of magnitude, i.e., to 1.5 x10~7
and minimizes energy consumption by 22.8%, i.e., to
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0.625 mlJ.

7 Conclusion

In this paper, we propose a distributed framework for
energy-efficient UAV relay networks, which aims at
maintaining the transmission quality in the presence
of a jammer. The relay UAVs can help relay messages
cooperatively without sharing their real-time location
and battery level with each other. The proposed RL-
based approaches enable each relay UAV to select the
optimal relay strategies derived based on the game theory
without knowing the moving trajectory of other UAVs as
well as the jammer. The performance bounds including
the BER, and total network energy consumption and
utility, are obtained by equilibrium analysis and are also
verified via simulations in a static scenario. Simulation
results show that the proposed approaches can improve
the transmission quality of the UAV relay network in
terms of the transmission BER while reducing the total
energy consumption. For instance, the DREAR approach
reduces energy consumption by 22.8% and decreases the
BER by three orders of magnitude compared with the
benchmark scheme.
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