
Intelligent and Converged Networks ISSN 2708-6240
2021, 2(1): 66–82 0?/0? pp???–??? DOI: 10.23919/ICN.2020.0023

C All articles included in the journal are copyrighted to the ITU and TUP. This work is available under the CC BY-NC-ND 3.0 IGO license:
https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.

A flexible scheduling algorithm for the 5th-generation networks

CNN and MLP neural network ensembles for packet
classification and adversary defense

Deep reinforcement learning based worker selection for
distributed machine learning enhanced edge intelligence

in internet of vehicle
Backscatter Technologies and the Future of Internet of Things:

Challenges and Opportunities
Research and application of wireless sensor network technology

in power transmission and distribution system

Reinforcement learning based energy-efficient
internet-of-things video transmission

Deep reinforcement learning-based computation offloading and
resource allocation for low-latency fog radio access networks

Interference management in 6G space and terrestrial integrated
networks: Challenges and approaches

1

Bruce Hartpence� and Andres Kwasinski

Abstract: Machine learning techniques such as artificial neural networks are seeing increased use in the examination

of communication network research questions. Central to many of these research questions is the need to classify

packets and improve visibility. Multi-Layer Perceptron (MLP) neural networks and Convolutional Neural Networks

(CNNs) have been used to successfully identify individual packets. However, some datasets create instability in

neural network models. Machine learning can also be subject to data injection and misclassification problems. In

addition, when attempting to address complex communication network challenges, extremely high classification

accuracy is required. Neural network ensembles can work towards minimizing or even eliminating some of these

problems by comparing results from multiple models. After ensembles tuning, training time can be reduced, and a

viable and effective architecture can be obtained. Because of their effectiveness, ensembles can be utilized to defend

against data poisoning attacks attempting to create classification errors. In this work, ensemble tuning and several

voting strategies are explored that consistently result in classification accuracy above 99%. In addition, ensembles

are shown to be effective against these types of attack by maintaining accuracy above 98%.

Key words: Convolutional Neural Network (CNN); Multi-Layer Perception (MLP); ensemble; classification; adversary

1 Introduction

Accurately identifying packets as they enter or pass a
particular point in a network is critical to most operations,
including security applications, quality of service, and
management. Traditionally this task has fallen to parsers
examining header data or rule based systems checking
traffic against lists that permit or deny traffic. With
the advent of greater processing power and increased
memory, machine learning techniques are receiving
much more attention by researchers and industry alike.
Among them, neural networks show great promise,

�Bruce Hartpence is with the GCCIS i-School at the Rochester
Institute of Technology, Rochester, New York, NY 14623, USA.
E-mail: bhhics@rit.edu.

�Andres Kwasinski is with the Department of Computer
Engineering, KGCOE at the Rochester Institute of Technology,
Rochester, New York, NY 14623, USA. E-mail: axkeec@rit.edu.

�To whom correspondence should be addressed.

Manuscript received: 2020-09-03; revised: 2020-10-12;
accepted: 2020-12-08

and several types have been investigated for these
applications. In preludes to this work, both Multi-Layer
Perceptron (MLP) and Convolutional Neural Network
(CNN) models were found to be extremely effective for
the base task of packet classification[1, 2].

However, a single neural network (or any machine
learning based classifier) may fall short of accuracy
targets and thus may be of limited use for more advanced
tasks such as attack recognition or quality of service
problem identification. In these cases, it is beneficial
to deploy a collection of machine learning classifiers
in the form of an ensemble so that their results might
be compared and a more accurate classification can
be made. An ensemble or committee is a collection
of redundant machine learning models of the same or
different types. They are considered redundant because
each of them present a solution to the same task[3]. One
goal in creating ensembles is to ensure some level of
diversity such that the models do not arrive at the same
errors or misclassification problems. In this way, voting



Bruce Hartpence et al.: CNN and MLP neural network ensembles for packet classification and adversary defense 67

on independent model results can arrive at the correct
label for the sample[4].

Neural network ensembles have been utilized in many
fields, including image recognition and health sciences[5].
They have also been used for food recognition and
tree classification[6, 7]. In these cases, ensembles have
been shown to improve results, but their efficacy
for problems in communication networks is poorly
understood. The ensemble investigated here utilizes
several stages to classify packets in general categories
and then moves on to User Datagram Protocol (UDP)
and Transmission Control Protocol (TCP) specific
classes. When leveraging ensembles, researchers may
choose to deploy a variety of techniques. For example,
the ensemble might be made up of decision trees,
neural networks, and support vector machines. Another
approach is to use similar classifiers but modify their
operation and behavior in order to examine the features
from slightly different perspectives. It is the latter
methodology that was adopted for the results described
here.

The MLP and CNN models that form this ensemble
redundant yet distinct so that they can successfully
vote on the resultant high probability class labels. The
models are differentiated by the number of input features,
optimizers, and the internal structure of the various
neural networks.

The output of an ensemble is a collection of labels of
a particular sample. In this case, each member of the
ensemble attempts to classify each packet in the dataset.
Ensemble members rarely agree on the correct label.
As such, a technique for combining these answers
must be used. This voting can be accomplished in a
variety of ways and several are explored in this article.
What is important to note is that the ensemble and
the voting methodology can be application specific.
Simple majority voting can be successful, but a weight
vote may be more effective. Majority voting is often
considered a special case of weighted voting where
the weight of a vote from each model is 1[5, 8]. In this
work, model dropout, majority voting, validation set
weighting, and overall performance based weighting are
investigated.

Neural network ensembles can also be used to defend

machine learning systems against adversarial attacks or
perturbations. The adversary injects a type of noise
during system input which causes misclassification
errors[9]. These errors can have serious ramifications
in systems such as self-driving cars or network security
systems. Ensembles have been shown to be effective
against small perturbations. Larger changes to input data
can require a modification to the training process which
must now include perturbations similar to the attach
profile[10].

The following contributions are provided in this
study:
� An effective structure and tuning methodology for

packet classification ensembles;
� An investigation on effective voting strategies; and
� Exploration on ensemble effectiveness against

several adversarial attacks.
In the following sections, the architecture of the

system is described along with the datasets and the
processing necessary before datasets as input into the
system described. The tuning process and ensemble
voting are also covered in detail. Lastly the performance
data for the adversarial attacks are discussed.

2 Related work

Machine learning models and the ensembles built
from their combination have been effective for many
applications. In the tree classification problem[6], aerial
images of trees are input into an ensemble of CNNs
and random forests, as a results, accuracy significant
increases in through a weighted voting strategy. For
food recognition[7], a collection of established models,
including ResNet[11] and VGGNet, are used[12]. In this
case, a variety of voting strategies compared with
promising results.

The use of weighted voting can also be found in
Ref. [13] in which the ensemble examined hyper-spectral
images from a variety of feature sets. This approach
is shown to be effective on available datasets. The
effect of protein mutations is studied in Ref. [14]. The
results show that the ensemble approach and voting
yield a 4% increase in accuracy for these challenging
datasets. In a very timely example, Bitcoin trading was
predicted[15] using single model, trend following, and



68 Intelligent and Converged Networks, 2021, 2(1): 66–82

ensemble approaches. The ensemble outperformed the
others with prediction accuracy of 58%–63% and a profit
of 85%.

Many of these works do not provide performance
improvement values owing to the works being in
progress or because measurements used are in terms
of loss or error. However, all of these researcher agree
that the ensemble approach improves performance and
is an important part of the strategy going forward. The
best voting methodology is not always clear either.
Majority voting certainly features prominently, but the
weighting strategy efficacy is more difficult to evaluate
because there are a variety of choices upon which to
build the weighting strategy. For example, Ref. [7]
includes six variations: minimum probability, average of
probabilities, median, maximum probability, product of
probabilities, and weighted probabilities. In Ref. [8]
voting uses a weight vector that is created from the
accuracies on each class. Their approach ranks highest
in a majority of tests and reaches 88% accuracy.

While CNNs and MLPs have been applied to
communication network challenges, there are fewer
instances of ensembles created using neural networks.
One example can be found in Ref. [16]. For example,
neural networks are utilized to classify network traffic.
They employ a weighted voting scheme and report
an accuracy above 96%. Forthermore, an exploratory
study[17] has attempted to address the class imbalance
problem using neural network ensembles.

Other works utilize decision trees and more traditional
algorithms in their ensembles. In Ref. [18], a collection
of decision trees was evaluated. The authors noted that
while the problem of increased performance time with
multiple models may make ensembles impractical, there
is little question that all of the ensembles tested out-
perform single model systems. Reference [19] used an
ensembles with separate classifiers to determine if the
correct protocol is utilizing a particular port though it
is not clear what the individual classifiers are. Markov
chains are used in an weighted ensemble to classify
encrypted web traffic. Many of these use available
datasets such as CAIDA[20] for their research. These
datasets can be somewhat dated and application specific.
For these reasons, the work reflected in this article

utilizes contemporary traffic captured on an operating
testbed.

As noted earlier, attacks against machine learning
architectures often use perturbations or modifications
in dataset samples in order to create misclassification
problems. It has been found that these perturbations
extend across models[21]. As a result, defenses against
these types of attack have been explored. In Ref. [22],
a case is made for both adversarial samples being
introduced into the training data and several models
being trained independently. The authors[22] reported
advancement on a variety of attacks including simple
manipulation of the data and more complex attacks
designed to disrupt the model loss function calculation.
It should be noted that most of the adversarial studies
have been done on image classification and specific
attacks aim at modifying simple (such as might be seen
with the human eye) and complex image properties.

In Ref. [10], we see a listing of the attacks and the
argument for attack independent training as a system is
only effective on known attacks. The authors[10] created
several input transformations on ImageNet to create their
ensemble. In the course of defending against several
attacks, success rates are as high as 92%.

But what of attacks against communication traffic
classifier? There are several traditional attacks against
communication systems and many of them involve
a modification of the data. Some attacks attempt to
penetrate firewalls by passing themselves off as benign
traffic types. Others attempt to hobble network defense
by sending small, under-sized packets. Others also seek
to pass traffic via some sort of covert channel or by
pretending to have a different source or destination.
In addition, encrypted data can create problems for
legitimate systems and attackers. In Ref. [23], the authors
showed that like models used for image processing,
deep neural networks for communication systems are
susceptible to adversarial samples. Most studies being
done to combat this trend have only been published
in the last one to two years. For these reasons, this
work explores the idea of image modification and packet
modification by making several changes to the packet
headers, altering the protocol identification fields, and
either zeroing or modifying other header data.



Bruce Hartpence et al.: CNN and MLP neural network ensembles for packet classification and adversary defense 69

3 Architecture

The architecture was eventually comprised of six neural
networks with differing configurations. In addition, there
are several stages that focus on the differing categories
of traffic. However, arriving at the final build and
formulating the input data for use by the system represent
the majority of the work.

Each stage has its own parser for the datasets to
be used at that point. This includes data manipulation
for all models and establishing the ground truth labels.
This stage is followed by the models themselves, which
have unique builds. This also means that the input
data must be formulated based on a particular model’s
requirements. Each stage also has its own training data.
Subsequently the models vote on the best class choice
for each sample and make the predictions. An overview
of the system is shown in Fig. 1.

Portions of each stage are now described in detail,
beginning with the datasets.

3.1 Datasets

The datasets are constructed from network traffic seen
in a local testbed as using external, non-contemporary
traffic datasets is problematic. Laying the initial
groundwork was 28 of the most common general
protocols by percentage. These included categories such
as spanning tree and many variations of IPv4-based
traffic. While a high level of accuracy was achieved
using MLP models for classification, subsequent work
made it clear that a single model might have difficulty
with the variations in traffic. It is also challenging to
collect the necessary training samples for each possible

Fig. 1 Architecture overview.

class. For example, when addressing the problem of
port scans, categorization of either TCP or UDP is not
sufficient. Clearly there are the variations in target ports
and IP addressing. In the case of TCP, there are the
various flags and their combinations to be considered.
This realization was the genesis of the sequential neural
network models used here. The number of general
categories is reduced and in the first stages, TCP and
UDP are separated out so that dedicated models can
be applied to them individually. Due to the significant
difference in the headers, IPv6 was removed from the
current testing. Models would be trained to recognize
packets of a particular type only to be fooled into
misclassification because the IPv6 data were encoded
differently.

There are seven datasets presented here: one training,
one validation, and five test datasets. The training dataset
is also used later in the process as the UDP and TCP
trainers are derived from this population. Each class has
5000 samples for training. For practicality, this number
is limited to eighteen classes. There are 10 general
classes, two of which are TCP and UDP. Once the TCP
and UDP packets are separated, they are further divided
into the 3 TCP classes and 8 UDP classes. There is
overlap in the totals because the general classes include
TCP, UDP, and an empty class. Thus the general training
datasets contains 90 000 samples. The validation set
has 500 samples of each class pulled from the same
population of packets used for the training sets. The test
datasets are random collections of packets, though they
have the same set of classes. These test datasets vary in
size from 3.3�103 to 105 packets. Larger datasets of up
to 2 � 105 packets were tested, however, their creation
and testing are time consuming and provide similar
results. Thus, these datasets were not included due to
the sheer number of tests that would be run. Table 1
provides the breakdown of the class structure where the
protocols included are Spanning Tree Protocol (STP),
Cisco Discovery Protocol (CDP), Address Resolution
Protocol (ARP), Internet Control Message Protocol
(ICMP), Internet Group Management Protocol (IGMP),
and Real Time Transport Protocol (RTP).

With a parser or analyzer such as Wireshark, classes
are distinguished by fields values found at layer two,



70 Intelligent and Converged Networks, 2021, 2(1): 66–82

Table 1 Breakdown of the class structure.

General TCP UDP
Empty Port 443 DNS
STP Port 80 DHCP
CDP Port 8080 SSDP

Loopback – NBNS
ARP – RTP 1

ICMP Echo Req – RTP 2
ICMP Echo Reply – RTP 3

IGMP – RTP 4
UDP – –
TCP – –

three, and four. For example, ARP and IPv4 traffic vary
in the Ethernet type code with ARP using 0x0806 and
IPv4 using 0x0800. At layer 3, IPv4 traffic is further
broken down by the protocol ID field value found in the
IP header: ICMP is identified by a value of 1, IGMP is 2,
TCP is 6, and UDP is 17. The custom parser built for this
work utilizes the same technique to establish the ground
truth. However, it is not applied to the neural network.
Instead, the artificial neural network learns to identify
these important features via the error calculation and
weight update. In the case of the convolutional neural
network, these features are re-imagined as part of an
image and recognized as such. The UDP and training
sets are actually part of the general trainer although the
non-UDP and non-TCP packets are removed. They are
structured in the same way with the UDP trainer having
40 000 samples (8 � 5000) and the TCP trainer having
15 000 samples. The UDP and TCP stages also have
validation sets.

Previous work[1, 2] has shown that both MLP and CNN
models can be effectively used for classification efforts
and serve as a basis for a variety of applications. What
was discovered here is that for various stages of the
architecture, models of a particular type perform better
than others. For example, the MLP models work well in
the general classification task; however, the CNN models
tend to out-perform them for UDP classification.

3.2 Preprocessing

Preprocessing is a part of most machine learning
research. Incoming data is in a very raw form and often
has artifacts that are of little or no use. In this case,
Wireshark captures are obtained from the testbed and

converted into “clean” datasets. An example of a raw
packet and several cleaned packets is shown in Fig. 2.

After the unusable items are removed from the packet,
all that remains are the hexadecimal representations of
the binary encoded data from the Ethernet transmission.
While the data is now cleaned, it is still not ready for
input into the various neural networks. Ground truth
labels for each sample must be established and final
formatting must be completed. The ground truth labels
are assigned by a parser built for the purpose. Each stage
of the architecture has its own. The formatting of the
data is model specific.

To begin, each model input layer has a specific
number of desired features. The cleaned samples are
either truncated to the appropriate size or padded with
zeros. For example, the MLP neural networks take
in differing packet sizes. This was done in order to
take advantage of different feature combinations while
keeping training times low. Previous experimentation
revealed that feature counts ranging from 125–160
hexadecimal characters (62.5–80 bytes) worked best
for network traffic classification tasks. The three MLP
model input packet (feature) sizes are 128, 144, and 156
hexadecimal characters. These sizes serve to include the
significant packet headers (Ethernet, IPv4, ICMP, IGMP,
UDP, and TCP) without requiring the entire packet which
can reach 3028 characters or 1514 bytes after capture.

While the MLP models can now begin to process the
data, the CNNs cannot do so. This is because the CNN
processes 2-D packet arrays that emulate image data.
CNNs are included because much of the contemporary
data processing techniques have CNNs at their core.
Thus, the packets must now be converted to an image
style matrix. Like the MLPs, previous experimentation
revealed that converting 196 hexadecimal features (98
bytes) into a square matrix of 14 � 14 works well.
Each of the CNNs makes use of the same converted

Fig. 2 Raw packet vs. Cleaned packets.



Bruce Hartpence et al.: CNN and MLP neural network ensembles for packet classification and adversary defense 71

14 � 14 packet images. A gray scale representation of a
converted packet image is depicted in Fig. 3.

In this case, the image shows a TCP datagram. The
beginning of the IPv4 and TCP headers are indicated.
Once this is complete, the CNN can now process the
data.

When all the processes are completed, there are four
dataset collections: one for each of the three MLP
configurations and one for the CNN configuration. The
CNN models use the same feature sets but like the MLP
models, differ internally.

Another important part of the preprocessing stage is
to create the training datasets. Dataset 0 is the training
dataset but it is 9�104 samples are for general training.
Included are 4�104 UDP and 1.5�104 TCP packets.
During the parsing and labeling, these two categories are
copied into other training files so that later stages can
utilize them.

Lastly, the entire preprocessing runs whenever the
architecture is instantiated. However, it can be run
offline.

3.3 Neural networks

The system makes use of both CNNs and MLP neural
networks. Both have been shown to be accurate when
deployed in packet classification tasks and for a variety
of applications. The CNNs are comprised of a pair of
convolutional and max pooling layers followed by three
fully connected layers. The base structure is shown in
Fig. 4.

The CNNs differ in the number of filters and size of
the fully-connected layers used internally.

The MLPs are comprised of a variable input layer and

Fig. 3 Packet image.

Fig. 4 Base structure of convolutional neural network.

a pair hidden layers and like the CNNs, an output layer
sized to the number of output classes. This configuration
is shown in Fig. 5.

The MLPs differ mainly in the size of the hidden
layers. However, all of the neural networks can be
configured with varying input sizes.

4 Operation

The architecture is comprised of a command module
that controls communication between the various
components; six neural networks (three CNNs and three
MLPs), a series of category specific (general, UDP, and
TCP) parsers, recommenders, and a single splitter. The
first is represented in Fig. 6. Raw capture packets are
supplied to the general wireshark parser which creates
the training datasets (features and labels) at all stages
and the general test datasets used previeusly.

The recommender completes the task of evaluating
all of the results and accuracy values from each of the

Fig. 5 MLP neural network.

Fig. 6 General stage.



72 Intelligent and Converged Networks, 2021, 2(1): 66–82

six models. Based on the voting from the recommender,
final predictions are made for the general classes. An
important last step in this stage is for the splitter to
separate of the test datasets into the main categories
used later on. For this work, the UDP and TCP samples
are separated and new test datasets created. These
samples are a subset of the general samples. For example,
dataset 6 has 18 610 samples at the beginning of general
classification. If the early stage classification was 100%
accurate, 14 357 TCP packets would be placed in TCP
dataset 6, and 1522 UDP packets would be placed in
UDP dataset 6. Thus, it is critical for the accuracy of the
general stage to be as accurate as possible.

The next stage to run is for the UDP traffic. This
portion of the architecture is shown in Fig. 7.

The UDP training dataset was already created and now
the models are trained using this dataset. A goal of this
work was to create reusable code, so the models trained
are the same ones used earlier as in the recommender.

The parser seen here makes use of the cleaned datasets
from the general parser but the labels and features must
be recreated because the initial classes were not solely
UDP. In addition, it is possible to change the desired
features between stages. Once again the recommender
evaluates the output from all six models and determines
the correct predictions for the results. The UDP process
is repeated by the TCP stage.

5 Voting methodology

The whole point of an ensemble is to present a better
answer or solution to a problem, typically in the area of
classification. In this case, classification accuracy is a
precursor to applications that will make use of the class
categories downstream which places further weight on
the importance on the labeling process. Ensembles can
make use of several different voting strategies in order

Fig. 7 UDP stage.

to reach the best possible answer. For this work, several
are tested and compared.

The first technique is a simple majority vote. Each
model calculates the correct label for each sample and
the ensemble models compare these labels for the final
decision. As the recommender function processes the
prediction results for each model, predictions are placed
in a vector: P D Œp0; p1; : : : ; pn�. The list is then
evaluated for the value with the greatest number of
occurrences giving the updated prediction. This code
snippet is seen in Eq. (1).

pred D int.max.set.P /; key D P.count// (1)

This approach met with success for the task of traffic
classification; however, as described later, this runs into
the problem of a split vote because there was an even
number of models. Using the argmax function creates an
indeterminate result in the event of a tie. For this reason,
the lowest performing model is eliminated from the
final comparison and the argmax function is run on the
remaining three models. In addition, models occasionally
experience instability with a given model configuration
or a particular dataset. This instability results in model
performance well outside of the expected accuracy.
Eliminating the lowest performer helps address these
occasional instability issues.

A simple majority vote is equivalent to applying a
weight of one to each vote. Thus, a next step is to modify
the weights of each vote based on some criteria, which
is often the prior performance of the individual models.
Each of the predictions made by ensemble models must
be summed, and then a maximum is determined. To this
end a vector of weights W D Œw0; w1; : : : ; wn� is used
to calculate a vector populated with these vote products.

Vote D vi D

nX
iD0

viwi (2)

The index of the maximum value in the vector
containing the vote summations V D Œv0; v1; : : : ; vn� is
the final vote for that particular sample.

Finalvote D max.V / (3)

Two weight values are used for these ensembles. The
first is a weight based on the validation set accuracy. The
justification is that this set contains all of the possible
classes for a particular stage. A second weighting
strategy based on the overall performance of each model



Bruce Hartpence et al.: CNN and MLP neural network ensembles for packet classification and adversary defense 73

is also explored. This approach offers a broader, average
view of a model’s behavior.

The majority and the weighted voting strategies are
carried forward when the ensemble is converted from
four models to six.

6 Ensemble tuning

Tuning a single model can be a time consuming task
simply due to the number of variables. Not only can the
number of desired input features vary, but the structure
and optimizers can change. For example, MLPs are
typically described by the number of layers and the width
of those layers. Thus, the three MLPs built for this
ensemble differ in their input sizes (128, 144, and 156)
and in the number of hidden nodes (MLP 1 D 20; MLP
2 D 30; and MLP 3 D 20/: All of them are two layer
models. Another difference between the models is the
batch size used in min-batch gradient descent. In this
case MLP 1 D 128; MLP 2 D 64; and MLP 3 D 128:

The choice of optimizer is also an important aspect to
consider. Currently the ensemble choice is for Adam, but
this decision was only made after considerable testing
with other optimizers. The configurations having the
best performance are shown in Table 2.

While the CNNs use the same number of input
features, they are distinctive in the number of layers
used, filter configuration, size of the fully connected
layers, and even the type of pooling used. For this work,
all of the CNN models have two convolutional layers,
three fully connected layers, and a max pooling. They
differ in the number of filters and the size of the fully
connected layers. An example of these are summarized
in Table 3.

Table 2 MLP model configuration.
Input Layers Hidden node Batch size Optimizer

128 2 20 128 Adam

144 2 30 64 Adam

156 2 20 128 Adam

Table 3 CNN model configuration.

Input Filter 1 Filter 2 Fully-connected layers Optimizer

196 8 20 80-40-20 AdaDelta

196 12 24 96-48-24 AdaDelta

196 8 20 80-40-20 Adam

Column 4 shows the fully connected layer
configurations. All three CNN models use a batch size
of 128. It should be noted that all of the configurations
seen in Tables 2 and 3 are final configurations that were
judged to perform well enough to move to the next stage
of research. Even with this small number of variables,
both MLP and CNN models have an exhausting number
of combinations that might be tried. As mentioned
earlier, these configurations were strongly influenced by
previous studies on individual models. However, tuning
an ensemble can be quite different.

As will be shown later in this article, a model can
behave and perform differently depending on the task.
All of these variable might be re-tuned for the next
stage. For example, learning rates started at 1e-6 and
ended up at 1e-3. But later stages were found to have
improved performance with a learning rate of 1e-4. What
is more, a model performs well at a particular stage, but
its performance decreases at a later stage.

Lastly there is the important question regarding the
number and type of models to be included in the
ensemble. As the next section will indicate, the original
ensemble started with four models (2 MLPs and 2 CNNs)
and this was later modified to include two more. The
type of voting used can also make a difference. In the
end, the goal was to achieve high accuracy rates (greater
than 99%) in the first stage and reduce training times.
After this is accomplished, the model can be further
tuned to desired accuracy rates.

7 General result

Initially there were four models used in the ensemble:
two CNNs an two MLPs. As stated previously, the
models had different architectures with changes made
to the structure, the number of filters (CNNs), and the
optimizers. The escape loss condition was 1e-6 and the
initial learning rate was 1e-6 as well. All of the models
used the Adam optimizer. Initially the performance was
determined by simple majority vote. Recall that after
several hundred iterations, each of the individual models
has an accuracy of 98%–99%. If three of the four models
determine that a particular sample belongs to a general
class based on the greatest probability, the sample is
assigned to that class. Experiments were run over 100,



74 Intelligent and Converged Networks, 2021, 2(1): 66–82

200, 400, 500, 800, and 1000 iterations and the results
from all seven datasets are compared. Table 4 contains
the results from a 200-iteration experiment.

Table 4 serves to illustrate a number of problems
with simple majority voting. The first is that a poorly
performing model can bring the performance of the
entire ensemble down. This can be seen in two ways.
The first is that the average performance of the ensemble
lags behind two of the models. In addition, the best
performing model is not predictable making it difficult
to determine a single model to use for all datasets.
Only in the case of dataset 3 did the ensemble succeed.
This behavior is consistent regardless of the number of
iterations.

Another problem encountered was not as obvious as
the reduced performance. The models and the supporting
architecture are all written in Python. The class with the
greatest number of occurrences (max) for each sample
determines the final label. However, what is to be done
when two classes have an equal number of votes? The
Python 3 documentation states that in the event of a
tie, the max function selects the first one encountered.
This may not be the correct class for the sample making
this an issue for any research project dependent on the
decision.

7.1 Model removal

There are essentially three goals at this point: to improve
the performance of individual models, to improve the
ensemble performance per data set and most importantly,
and to improve overall ensemble performance. To this
end, the lowest accuracy model was removed from the
voting. In this way, the accuracy is improved and there
is no longer any need to contend with the possibly

Table 4 Early model comparison.
Data CNN 1 CNN 2 MLP 1 MLP 2 Ensemble
0 0.9949 0.9976 1.0000 1.0000 0.9984

1 0.9610 0.9759 0.9798 0.9983 0.9734

2 0.9862 0.9898 0.9892 0.9959 0.9913

3 0.9838 0.9835 0.9782 0.9976 0.9974

4 0.9882 0.9865 0.9923 0.9983 0.9956

5 0.9744 0.9689 0.9941 0.9896 0.9687

6 0.9459 0.9711 0.9894 0.9983 0.9846

Ave. 0.9763 0.9819 0.9890 0.9969 0.9871

uncertain output of the max function. Table 5 depicts the
impact of the model eliminating ensemble. For ease of
comparison, this is also for 200 iterations.

There are several details that draw attention as the
data is analyzed. The first is that the ensemble has
either the highest accuracy per dataset or is within 5e-4
of the highest. More importantly is that on average,
the ensemble is the best performer (99.42%) with only
a single MLP model approaching the same success.
Clearly, the elimination of the worst performer is an
effective technique in the classification of data packets.
Another detail is less obvious, i.e., the CNN models
regularly under-perform the MLP models with this low
number of iterations.

Table 6 shows the same architecture but after 1000
iterations. As can be seen by the average performance
numbers, the ensemble not only reaches the level of
accuracy but also increases to 99.6% accuracy.

The CNNs show slight improvements and
occasionally attain the highest accuracy. However, the
accuracy can be improved and the training time averages
1.5 hours for the two CNN models while the average
training time of the MLPs is 13 minutes.

Table 5 Elimination model comparison.
Data CNN 1 CNN 2 MLP 1 MLP 2 Ensemble

0 0.9982 0.9977 1.0000 1.0000 1.0000

1 0.9857 0.974 0.9883 0.9911 0.9926

2 0.9923 0.9867 0.9915 0.9926 0.9931

3 0.9685 0.9818 0.9822 0.9911 0.9911

4 0.9772 0.9901 0.9942 0.9958 0.9953

5 0.9929 0.9728 0.9931 0.9925 0.9930

6 0.9909 0.9684 0.9912 0.9934 0.9945

Ave. 0.9865 0.9816 0.9915 0.9938 0.9942

Table 6 Elimination model—1000 iterations.
Data CNN 1 CNN 2 MLP 1 MLP 2 Ensemble

0 0.9998 0.9999 1.0000 1.0000 1.0000

1 0.9798 0.9774 0.9983 0.9989 0.9989

2 0.9894 0.994 0.9938 0.9896 0.9948

3 0.9801 0.9608 0.9878 0.9966 0.9981

4 0.9908 0.9941 0.9925 0.9958 0.9963

5 0.9940 0.9858 0.9922 0.9926 0.9933

6 0.9703 0.9710 0.9909 0.9983 0.9909

Ave. 0.9863 0.9833 0.9936 0.9960 0.9960



Bruce Hartpence et al.: CNN and MLP neural network ensembles for packet classification and adversary defense 75

7.2 Improving performance

Improving the performance of the individual models
will make them more competitive with each other and
thus improve the overall performance of the ensemble.
For example, by increasing the number of filters at the
convolutional layers in the two models to 12 and 16,
respectively, the increase in accuracy is demonstrable.
Table 7 reports these results for 1000 iterations.

What can be seen is that modifying the models
can result in not only an increase in classification
identification rates for each model but also an ensemble
recognition rate of 99.77%. However, the cost in training
is considerable with the total time for the two CNNs
exceeds 5 hours. In addition, the architecture will
eventually run two more stages.

7.3 Adding models

What can be done to both improve performance and
reduce training time? One choice is to simply add more
models so that there are a higher number of votes cast for
each sample. However, the additional models must have
a corresponding increase in training time. The results
from a 500-iteration test are shown in Table 8.

Table 7 Modified models—1000 iterations.
Data CNN 1 CNN 2 MLP 1 MLP 2 Ensemble

0 0.9998 0.9999 1.0000 1.0000 1.0000

1 0.9864 0.9911 0.9989 0.9981 0.9994

2 0.9973 0.9975 0.9954 0.9966 0.9969

3 0.9749 0.9972 0.995 0.9942 0.9974

4 0.9959 0.9951 0.9958 0.9963 0.9974

5 0.9916 0.9991 0.9914 0.9959 0.9935

6 0.9806 0.9979 0.9982 0.9983 0.9995

Ave. 0.9895 0.9968 0.9964 0.9971 0.9977

Table 8 Adding a model—500 iterations.

Data
CNN MLP

Ensemble
1 2 3 1 2 3

0 0.9989 0.9998 0.9993 1.0000 1.0000 1.0000 1.0000

1 0.9800 0.9900 0.9887 0.9918 0.9886 0.9978 0.9913

2 0.9848 0.9971 0.9933 0.9955 0.9952 0.9952 0.9965

3 0.9915 0.9871 0.9697 0.9925 0.9975 0.9981 0.9969

4 0.9929 0.9929 0.9953 0.9988 0.9988 0.9986 0.9993

5 0.9935 0.9967 0.9935 0.9949 0.9952 0.9967 0.9959

6 0.9587 0.9967 0.9852 0.998 0.9969 0.9958 0.9991

Ave. 0.9858 0.9943 0.9893 0.9959 0.9960 0.9975 0.9970

What is immediately apparent is that all of the models
perform reasonably well and that the average ensemble
performance matches that of the previous results but
after only 500 iterations. These results do come with the
anticipated cost of 5 hours in training for all 6 models.

Some of the best techniques to reduce training time
are to examine optimizers and learning rates. To this
end, learning rates ranging from 1e-3 to 1e-6 were
tested along with changes to the optimizers and model
structural changes. For space, only the final configuration
results are shown in Table 9.

A few additional details are included in Table 9.
Datasets 7 and 8 are two datasets comprised of Real-time
Transport Protocol (RTP) traffic only. It is clear that the
models easily determine the correct classes. It is also
clear that the ensemble boasts an average accuracy of
99.91%. This includes the results from the RTP datasets.
For comparison, if the models in Table 8 had similar
values, the accuracy would increase to 99.73%. It would
appear that MLP 2 outperforms the ensemble. This is
only true in this particular run. It is often the case that
a model may compete with an ensemble. Overall, the
average of the ensemble is high.

Table 9 also includes the number of iterations run
before reaching the escape loss value of 1e-8 which
is a more stringent target. Thus, these results show a
significant improvement over simply adding additional
models to the ensemble, and total training time is just
under 8 minutes as compared to the previous time of 5
hours.

Table 9 Final ensemble.

Dataset
CNN MLP

Ensemble
1 2 3 1 2 3

0 0.9999 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000

1 0.9858 0.9854 0.9954 0.9971 0.9992 0.9981 0.9991

2 0.9960 0.9968 0.9963 0.9918 0.999 0.9946 0.9974

3 0.9992 0.9992 0.9978 0.999 0.9998 0.9971 0.9998

4 0.9924 0.9955 0.9962 0.9989 0.9986 0.9983 0.9989

5 0.9938 0.9943 0.9967 0.9947 0.9992 0.9949 0.9976

6 0.9801 0.9803 0.9817 0.9969 0.998 0.9972 0.9990

7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Ave. 0.9941 0.9946 0.9960 0.9976 0.9993 0.9978 0.9991

Iteration 8 7 11 23 14 19 –



76 Intelligent and Converged Networks, 2021, 2(1): 66–82

8 TCP and UDP results

This section presents the results for the subsequent UDP
and TCP stages achieved after the general stage is run
and after the results shown in Table 9 are received.

The UDP results in Table 10 are among the most
interesting for a number of reasons. The first is that the
ensemble is able to correctly distinguish between packets
of the same type. There are four different RTP streams
and the ensemble (and the models) does not have any
difficulty in identification. Second, the models often do
not perform as well as they did in the previous stage. For
example, MLP 2 was the best performer in the general
stage but in the same run, it is among the worst in this
stage. Third, some of the models have abysmal accuracy
for a particular dataset but the model dropout and voting
still allow the ensemble to perform above 98% with
about 10 minutes of training time. The TCP ensemble
results are shown in Table 11.

Once again, we see good results for very little training
time. The TCP trainer is smaller, so the total time is 5
minutes. Like the UDP ensemble, several of the models
have poor performance, however, the model dropout and
voting keep the ensemble accuracy above 94%. Datasets
7 and 8 do not have values because they are comprised
entirely of RTP UDP traffic.

Because this work has additional goals, it was decided
that the remainder of the ensemble tuning could be
part of future work. However, a reasonable concern
might be whether or not the ensemble truly outperforms
the various models at all stages. Table 12 provides an

Table 10 Final UDP ensemble.

Dataset
CNN MLP

Ensemble
1 2 3 1 2 3

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 0.9872 0.9587 0.9900 0.9221 0.8945 0.8895 0.9890

2 0.9935 0.9581 0.9852 0.5247 0.5467 0.5443 0.9808

3 0.9758 0.9931 1.0000 0.7232 0.8131 0.7889 0.9931

4 0.989 0.9217 0.9871 0.4742 0.5074 0.419 0.9494

5 0.9985 0.9766 0.9968 0.8894 0.8747 0.8794 0.9895

6 0.9927 0.9350 0.9861 0.6350 0.4957 0.4904 0.9569

7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Ave. 0.9930 0.9715 0.9939 0.7965 0.7925 0.7791 0.9843

Iteration 22 41 34 65 25 62 –

Table 11 Final TCP ensemble.

Dataset
CNN MLP

Ensemble
1 2 3 1 2 3

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 0.7580 0.7321 0.8210 0.8972 0.9058 0.8893 0.9251

2 0.8033 0.6988 0.8692 0.8431 0.8954 0.8979 0.9218

3 0.9084 0.9327 0.9402 0.9718 0.9821 0.9764 0.9861

4 0.7510 0.5159 0.6403 0.8686 0.8625 0.6403 0.8695

5 0.3051 0.9322 0.9492 1.0000 0.7797 1.0000 1.0000

6 0.5811 0.6349 0.5769 0.9101 0.9320 0.8379 0.9041

7 – – – – – – –

8 – – – – – – –

Ave. 0.7296 0.7781 0.8281 0.9273 0.9082 0.8917 0.9438

Iteration 22 11 8 83 53 117 –

Table 12 Overall performance.

Stage
CNN MLP

Ensemble
1 2 3 1 2 3

Gen 0.9941 0.9946 0.9960 0.9976 0.9993 0.9978 0.9991

UDP 0.9930 0.9715 0.9939 0.7965 0.7925 0.7791 0.9843

TCP 0.7296 0.7781 0.8281 0.9273 0.9082 0.8917 0.9438

Ave. 0.9056 0.9147 0.9393 0.9071 0.9000 0.8895 0.9757

“average of averages” for overall performance.
It is challenging to develop a model that performs well

for all applications and in all conditions. These results
show that an ensemble constructed in this way can reach
high recognition rates for a various of packet traffic type
and conditions.

9 Weighted voting

In this section, two different approaches to weighted
voting are explored. The first is a strategy based on the
performance seen on the validation set. This is done to
ensure adequate coverage for the various classes while
attempting to minimize the risk of over-fitting. The
second strategy looks at overall performance of the
models across the validation set and the other test sets.
In each case, an update cycle is allowed to run three
times with the weights updated at each iteration. The
weights are an average of the results seen up to that point.
The initial weights for both experiments come from the
best performance after tuning the ensemble.

Table 13 provides the initial weights from the
validation set results. These values correspond to the
performance of various models in the validation set in



Bruce Hartpence et al.: CNN and MLP neural network ensembles for packet classification and adversary defense 77

Table 13 Initial validation based weights.

Stage
CNN MLP

1 2 3 1 2 3

General 0.9858 0.9854 0.9954 0.9971 0.9992 0.9981

UDP 0.9872 0.9587 0.9900 0.9221 0.8945 0.8895

TCP 0.7580 0.7321 0.8210 0.8972 0.9058 0.8893

the highlight performing run but not an indication of
ensemble performance.

Table 14 provides the final weights used in the
validation series. These are the average of three updates
and show the result of the validation set performance.

The changes seen in these weights are small with
only CNN 2 changing by more than 0.05%. What is
of interest is the impact of the weights on the ensemble
performance. Table 15 shows what happens after several
weight updates.

Over time, the performance of the general stage does
not change very much with the range between the highest
and lowest accuracy being 0.0012% or 0.12%. However,
the UDP and TCP performances decrease by 4.59% and
1.76%, respectively. This is not a consistent decline
as can be seen in Cycle 2. A closer look at the model
performance also shows that certain datasets are more
difficult for some models to process. It may also be that
a greater number of update cycles is needed as Tables 13
and 14 indicate that the weights do not vary greatly from
one step to another. For this reason, the basis of weights
on average performance was performed.

Table 16 contains the starting weights used during
this phase of testing. In addition to a different approach,
the values for the training set results and the results
for datasets 7 and 8 are not included in the average

Table 14 Final validation based weights.

Stage
CNN MLP

1 2 3 1 2 3

General 0.9900 0.9744 0.9918 0.9966 0.9976 0.9946

UDP 0.9824 0.9691 0.9718 0.9071 0.8872 0.9008

TCP 0.7647 0.8125 0.7971 0.8972 0.8938 0.8892

Table 15 Validation weight performance.
Stage Initial Cycle 1 Cycle 2 Cycle 3 Final

General 0.9991 0.9991 0.9979 0.9979 0.9987

UDP 0.9843 0.9464 0.9785 0.9508 0.9384

TCP 0.9438 0.9214 0.9172 0.9391 0.9262

Table 16 Initial model average based weights.

Stage
CNN MLP

1 2 3 1 2 3

General 0.9912 0.9919 0.994 0.9964 0.9989 0.9967

UDP 0.9894 0.9572 0.9908 0.6947 0.6886 0.6685

TCP 0.6844 0.7411 0.7994 0.9151 0.8929 0.8736

performance calculation. This was done because the
training performance is simply a verification check on
model operation and should not create problems for the
system. Datasets 7 and 8 also do not create problems
having recognition rates of 100% and skew the weights
higher. Clearly there is a significant difference between
the weights used at this point and the weights based
on the validation set with the UDP and TCP values are
much lower.

Table 17 provides the final weights used in the
validation series. These are the average of three updates
and show the result of the average dataset performance
on the weights.

Table 18 depicts the results from the various cycles
after updating the weights based on model average
performance.

The results shown in Tables 15 and 18 are for
the ensemble as a whole. In both cases, the general
classification task consistently performs well. The
strategy using only the weights from the validation
dataset does not provide the hoped for results though
more update rounds might be needed. The strategy
employing weights derived from average performance
of several datasets shows a greater potential as the UDP
accuracy reaches 99%.

There is another conclusion that can be drawn after

Table 17 Final model average based weights.

Stage
CNN MLP

1 2 3 1 2 3

General 0.9935 0.9929 0.9936 0.9965 0.9970 0.9967

UDP 0.9516 0.9478 0.9602 0.6693 0.6815 0.7156

TCP 0.7396 0.7556 0.7162 0.9100 0.8959 0.8866

Table 18 Ensemble average weight performance.
Stage Initial Cycle 1 Cycle 2 Cycle 3 Final

General 0.9991 0.9986 0.9991 0.9982 0.9979

UDP 0.9843 0.9360 0.9722 0.9904 0.9717

TCP 0.9438 0.9281 0.9331 0.9298 0.9246



78 Intelligent and Converged Networks, 2021, 2(1): 66–82

the viewing the final results from each model; there is a
marked difference in performance between model types.
In other words, different model types behave differently
at the various stages. All of the models perform well in
the general stage. However, the CNNs outperform the
MLPs in the UDP classification task and the opposite
is true for TCP. Table 19 provides the individual model
performance using the average accuracy weight strategy.

Clearly all of the models perform well early on.
Results that appear low when compared to the others
show the impact of a single dataset rather than reduced
overall accuracy. For example, CNN 2 has an average
general accuracy of 91.91% but this is due to an error
in processing dataset 5 at 39.99% which the ensemble
deals with through voting. Without this problem, the
CNN 2 average accuracy is 98.4%.

The evidence for the previous conclusion can be seen
at the UDP and TCP stages. The average accuracies of
the CNNs at the UDP and TCP stages are 96.3% and
78.7%, respectively; while the average accuracies of the
MLPs at the UDP and TCP stages are 80.7% and 90.2%.
The performance of CNNs is 15% better than that of the
MLPs at the UDP stage but nearly 12% worse than that
of MLPs at the TCP stage.

As a last step towards improving ensemble accuracy
at all stages, two under performing MLP models are
removed from the UDP stage and two under performing
CNNs are removed from the TCP stage. To be clear,
there are now six models in the general stage and
four at the UDP and TCP stages. When this is done,
the ensemble UDP performance increases to 99.02%
compared to a previous high of 98.43% and the TCP
accuracy is largely unchanged from its previous high of
94%.

10 Adversarial attack

Network traffic can be manipulated in a variety of
ways depending on the nature of the attack. In order

Table 19 Actual model Ave Wt performance.

Stage
CNN MLP

1 2 3 1 2 3

General 0.9987 0.9191 0.9932 0.9974 0.9957 0.9976

UDP 0.9347 0.9877 0.9664 0.7175 0.8311 0.8729

TCP 0.7863 0.8016 0.7726 0.9215 0.9098 0.8757

to determine ensemble performance in the presence of
packet modifications or an attack on the ensemble itself,
the incoming data are modified in the following ways:
� Four bytes beyond the IP header are set to 0;
� Four bytes beyond the IP header are set to 9;
� The layer 2 type is changed to 0x0806 indicating

ARP traffic; and
� The layer 3 proto ID is changed to 6 indicating TCP.
Dataset 5 is chosen as the sample collection to be

poisoned. This is because it does not contain ARP or
TCP traffic. It contains a variety of UDP packet types
and other layer 2 types as well. The impact of setting
the upper layer header to 0 is to remove identifying
characteristics which should be problematic for UDP.
Setting the header to different values would falsify
the header information including the port numbers.
Changing the layer 2 types would indicate to a rule-
based parser that the entire dataset was made up of ARP
traffic. Changing the layer 3 protocol ID to 6 would
indicate that the entire dataset was TCP. Importantly, the
ground truth for dataset 5 has already been established
and is used to the poisoned datasets. Any traditional
parser viewing packets with these changes made would
either be unable to determine the port numbers causing a
packet to be dropped or misinterpret the packet believing
it to be ARP or TCP traffic.

The packet distribution for dataset 5 is provided
in Tables 20 and 21. The dataset contains a total of
24 354 packet samples. Though this dataset is clearly
unbalanced, training for all models is completed with
balanced datasets.

After poisoning, the datasets are run through the
ensemble in the same way as the non-poisoned datasets.
While there is a slight reduction in accuracy in the last
scenario (down to 98.98%), the ensemble effectively
identifies the packets after data manipulation with
accuracies of 99.98%, 99.89%, 99.69%, and 98.98%.

Table 20 Dataset 5—Layer 2.
Loop STP CDP

2907 14 534 484

Table 21 Dataset 5—Layers 3 and 4.

IGMP DNS DHCP SSDP NBNS

2356 868 67 3111 27



Bruce Hartpence et al.: CNN and MLP neural network ensembles for packet classification and adversary defense 79

The distribution results of the four scenarios are shown
in Table 22. Dataset 5 performance is included for
comparison. For clarity, only the impacted classes are
shown.

The descriptions are necessarily shortened but refer
to a wiping of the header data, modification of header
data, changing the L2 type to ARP, and changing the
L3 protocol ID to TCP. The TCP column is included
to show the impact of the protocol ID change. The
ensemble general and UDP accuracy are included in the
last two columns. As can be seen, the ensemble is not
fooled by the packet modifications though a traditional
parser would.

Comparing the individual models to the ensemble
reveals that while a model occasionally out performs
the ensemble, this is not a consistent result. Over three
consecutive trials, the ensemble accuracy for all four
poisoning attacks was 97.5% with the outliers included.
The best performance for a single model was 92.27%.
The ensemble performs above 99.9% on UDP header
manipulation and layer 3 protocol ID field changes. In
these three cases, one or two of the models achieve
similar results, though not the same ones. The layer 2
manipulation is more challenging causing several models
to drop below 40% though the ensemble achieves 91.5%.
In this case, two of the models achieve greater than 99%
making this attack part of future research.

11 Discussion

This article began with the construction of an ensemble
comprised of four neural networks: two CNNs and two
MLPs. Each model has a unique configuration. While
the ensemble works reasonably well, achieving better
than 89% accuracy in the general packet classification
task, training time is longer than desired. In addition, the
ensemble will eventually be working in a series of stages

Table 22 Dataset 5—Poisoned.

Test IGMP DNS NBNS TCP General
accuracy

UDP
accuracy

DS 5 2356 738 90 67 0.9972 0.9843

zero’d 2358 800 91 2 0.9998 0.9843

9’s 2356 780 88 27 0.9989 0.9849

ARP 2357 731 89 75 0.9969 0.9845

TCP 2356 579 68 248 0.9898 0.9893

with the later stages depending on the accuracy early
on. Thus, it was also important to increase accuracy
while reducing training time. Here, several strategies
are considered, including modification of the ensemble
structure, tuning of the ensemble, and different voting
methods.

The two changes made at early stages were the
increase of the ensemble size to include six models
(adding a CNN and an MLP) and then a model drop
out in which the lowest performing model is simply
removed. This also alleviates the problem of voting that
utilizes an argmax function decision because a tie is less
likely at these high model accuracies. At this point, the
ensemble models take a simple majority vote on the best
class for each sample. These strategies are effective and
resulted in an accuracy increase to 99.7% in the general
classification task. However, this accuracy comes at a
cost of 5 hours of ensemble training time.

11.1 Tuning

The next step was to tune the various models
and implement the successive stages. In tuning the
models, the best optimizer, learning rates, layers, filter
configuration (CNN), and hidden nodes (MLP) are
explored. In the end, the Adam and AdaGrad optimizers
are used along with the structures shown in Tables 2 and
3. Learning rates of 1e-3 and 1e-4 are used instead of the
previous 1e-6. This process has the effect of achieving a
performance of 99.91% with 10% of the training time.

The general stage is the first of three stages. The entire
ensemble is run again in order to process the separated
UDP packets and then a third time is performed to
process TCP packets. While some tuning is done
between stages (iterations, learning rates), the models
are not changed in order to be able to compare results.
With majority voting, model dropout and tuning general
ensemble, UDP, and TCP stages have performance
averages 99.9%, 98%, and 94%, respectively. These
averages become the target values to exceed in the
subsequent voting methodology and investigations.

11.2 Voting

There are two weighting strategies investigated. The first
is based on the performance each model achieves on the
validation set. The second is on each model’s overall



80 Intelligent and Converged Networks, 2021, 2(1): 66–82

performance on the challenging datasets. In the first
case, the results are inconclusive. The initial weights are
from a high-performing configuration and the weights
change significantly. The results of the model average
performance are more encouraging. In both cases, the
models achieve 99% for the general stage. Average
weighting reaches this for the UDP stage as well. TCP
performance is largely unchanged for both strategies.

Of interest is the behavior of different model types
during the various stages. CNNs perform better for UDP
and MLPs are better at TCP recognition. The reasons
for these results are unclear however it may be that the
model types “visualize” the data differently and certain
features stand out more. In any case, this led to the
later stage ensemble modification to operation: Two
MLPs were removed from the UDP processing and two
CNNs were removed from TCP processing. The result
was an increase in UDP accuracy to above 99%. TCP
performance must still be tuned.

It is tempting to simply use CNN models for UDP
processing and MLP models for TCP. However, this
approach is problematic for several reasons. The first
concern is the processing of additional classes. While a
pattern seems to emerge from the work done so far, it is
not certain that the same behavior will continue as the
classes expand. Second, models can be unstable. For
example, when processing TCP packets, the MLP model
performance varies by more than 10% and the CNN
models achieve greater than 95%. The combination of
these results and the different method of processing the
data increases the performance of the ensemble. Lastly,
a different dataset can also cause a model to perform
differently. The same variation noted previously occurs
with CNNs, sometimes on the same dataset.

It should be noted that the ensemble has limitations.
Occasionally, one of the models will have a recognition
rate nearly 40% likely because of the fast learning rate
of 1e-3. As the models aim for function minimums,
the faster learning rate may cause them to “chase” a
gradient in the wrong direction or get stuck in a local
minimum. Some datasets can cause more problems than
others. An example can be found in dataset 4 during the
TCP stage. None of the models stand out as regularly
being able to reach 90% accuracy. In previous work,

this was due to problems in model tuning and class
definitions. Often splitting a class into multiple sub-
classes adequately addresses the issue.

11.3 Adversaries

Dataset 5 was targeted for poisoning. Four new datasets
are created, each with a different strategy for reducing
the performance of the ensemble. However, the new
datasets use the same labels as the original dataset 5.
There are two attempts to destroy or modify upper layer
header information and two attempts to change the fields
used to identify packet or frame type. After dropout,
tuning, and ensemble structure modifications, none of
the attacks were successful in dropping the accuracy
below 98% and only one attack was able to reduce
performance below 99% for either the general or UDP
cases (see Table 22). While the TCP stage was not
investigated at this point, the dataset was poisoned to
make the ensemble believe that the traffic was TCP based.
As just mentioned, this attack was not successful.

12 Conclusion

CNN and MLP neural networks have been used for
packet classification tasks; however, they suffer from
occasional instability and dataset-specific errors. Neural
network ensembles such as the one described here use
voting strategies and redundant decision making to
increase accuracy. This architecture is divided into three
stages: general, UDP, and TCP. After training and tuning
are performed the general and UDP stages reach 99%
accuracy while TCP achieves 94% for a variety of traffic
classes and datasets. It was also found that the expected
increase in training time is more than compensated by
tuning of each individual model.

However, neural network models can be fooled
by adversarial examples that seek to create miss-
classification errors. Thus the ensemble was tested
against a variety of packet modification attack directed
at header and content manipulation. In three or four
cases, the ensemble kept accuracy above 99%. In the
fourth case, it remained above 98% accuracy. This work
shows the importance of neural network ensembles
not only for very high levels of accuracy but also for
defending against these types of attack. The neural



Bruce Hartpence et al.: CNN and MLP neural network ensembles for packet classification and adversary defense 81

network ensemble is more robust than traditional parsers
or rule based systems.

References

[1] B. Hartpence and A. Kwasinski, Fast internet packet and
flow classification based on artificial neural networks, in
Proc. 2019 SoutheastCon, Huntsville, AL, USA, 2019,
p. 19433953.

[2] B. Hartpence and A. Kwasinski, A convolutional neural
network approach to improving network visibility, in Proc.
2020 29th Wireless and Optical Communications Conf.
(WOCC), Newark, NJ, USA, 2020, pp. 1–6.

[3] A. J. C. Sharkey, N. E. Sharkey, U. Gerecke, and G. O.
Chandroth, The “test and select” approach to ensemble
combination, in Proc. 1st Int. Workshop on Multiple
Classifier Systems, Cagliari, Italy, 2000, pp. 30–44.

[4] T. G. Dietterich, Ensemble methods in machine learning,
in Proc. 1st Int. Workshop on Multiple Classifier Systems,
Cagliari, Italy, 2000, pp. 1–15.

[5] M. A. Yaman, A. Subasi, and F. Rattay, Comparison of
random subspace and voting ensemble machine learning
methods for face recognition, Symmetry, vol. 10, no. 11, p.
651, 2018.

[6] U. Knauer, C. S. Von Rekowski, M. Stecklina, T.
Krokotsch, T. P. Minh, V. Hauffe, D. Kilias, I. Ehrhardt, H.
Sagischewski, S. Chmara, et al., Tree species classification
based on hybrid ensembles of a convolutional neural
network (CNN) and random forest classifiers, Remote Sens.,
vol. 11, no. 23, p. 2788, 2019.

[7] E. Tasci, Voting combinations-based ensemble of fine-tuned
convolutional neural networks for food image recognition,
Multimed. Tools Appl., vol. 79, no. 41, pp. 30 397–30 418,
2020.

[8] I. E. Livieris, A. Kanavos, V. Tampakas, and P. Pintelas,
A weighted voting ensemble self-labeled algorithm for the
detection of lung abnormalities from x-rays, Algorithms,
vol. 12, no. 3, p. 64, 2019.

[9] T. Strauss, M. Hanselmann, A. Junginger, and H. Ulmer,
Ensemble methods as a defense to adversarial perturbations
against deep neural networks, arXiv preprint arXiv:
1709.03423, 2017.

[10] W. Q. Wei, L. Liu, M. Loper, K. H. Chow, E. Gursoy, S.
Truex, and Y. Z. Wu, Cross-layer strategic ensemble defense
against adversarial examples, in Proc. 2020 Int. Conf.
Computing, Networking and Communications (ICNC), Big
Island, HI, USA, 2020, pp. 456–460.

[11] K. M. He, X. Y. Zhang, S. Q. Ren, and J. Sun, Deep
residual learning for image recognition, in Proc. IEEE Conf.

Computer Vision and Pattern Recognition (CVPR), Las
Vegas, NV, USA, 2016, pp. 770–778.

[12] K. Simonyan and A. Zisserman, Very deep convolutional
networks for large-scale image recognition, arXiv preprint
arXiv: 1409.1556, 2014.

[13] B. Pan, Z. W. Shi, and X. Xu, Hierarchical guidance
filtering-based ensemble classification for hyperspectral
images, IEEE Trans. Geosci. Remote Sens., vol. 55, no. 7,
pp. 4177–4189, 2017.

[14] S. Gunderson and F. Jagodzinski, Ensemble voting schemes
that improve machine learning models for predicting the
effects of protein mutations, in Proc. 2018 ACM Int.
Conf. Bioinformatics, Computational Biology, and Health
Informatics, New York, NY, USA, 2018, pp. 211–219.

[15] E. Sin and L. P. Wang, Bitcoin price prediction using
ensembles of neural networks, in Proc. 2017 13th Int.
Conf. Natural Computation, Fuzzy Systems and Knowledge
Discovery (ICNCFSKD), Guilin, China, 2017, pp. 666–671.

[16] L. Y. Xu, X. Zhou, Y. M. Ren, and Y. F. Qin, A traffic
classification method based on packet transport layer
payload by ensemble learning, in Proc. 2019 IEEE Sympo.
Computers and Communications (ISCC), Barcelona, Spain,
2019, pp. 1–6.

[17] S. E. Gómez, L. Hernández-Callejo, B. C. Martı́nez, and
A. J. Sánchez-Esguevillas, Exploratory study on class
imbalance and solutions for network traffic classification,
Neurocomputing, vol. 343, pp. 100–119, 2019.

[18] S. E. Gómez, B. C. Martı́nez, A. J. Sánchez-Esguevillas,
and L. H. Callejo, Ensemble network traffic classification:
Algorithm comparison and novel ensemble scheme
proposal, Comput. Networks, vol. 127, pp. 68–80, 2017.

[19] F. Gargiulo, L. I. Kuncheva, and C. Sansone, Network
protocol verification by a classifier selection ensemble, in
Proc. 8th Int. Workshop on Multiple Classifier Systems,
Reykjavik, Iceland, 2009, pp. 314–323.

[20] CAIDA, https://www.caida.org/home/.
[21] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,

Rethinking the inception architecture for computer vision,
in Proc. 2016 IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 2818–
2826.

[22] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D.
Boneh, and P. McDaniel, Ensemble adversarial training:
Attacks and defenses, arXiv preprint arXiv: 1705.07204,
2017.

[23] M. Nasr, A. Bahramali, and A. Houmansadr, Blind
adversarial network perturbations, arXiv preprint arXiv:
2002.06495, 2020.



82 Intelligent and Converged Networks, 2021, 2(1): 66–82

Andres Kwasinski received the diploma
degree in electrical engineering from the
Buenos Aires Institute of Technology,
Buenos Aires, Argentina, in 1992 and the
MS and PhD degrees in electrical and
computer engineering from the University
of Maryland, College Park, MD, USA, in

2000 and 2004, respectively. He is currently a professor at
the Department of Computer Engineering, Rochester Institute
of Technology, Rochester, NY, USA. He has co-authored over
90 publications in peer-reviewed journals and international
conferences. He has also co-authored the books Cooperative
Communications and Networking (Cambridge University Press,
2009) and 3D Visual Communications (Wiley, 2013). His current
areas of research include cognitive radios and wireless networks,
cross-layer techniques in wireless communications, and signal
processing applied to smart infrastructures. He is also the chief
editor of the Signal Processing Repository (SigPort) and an
area editor for Special Initiatives of the IEEE Signal Processing
Magazine.

Bruce Hartpence received the PhD degree
in computing and information sciences
from the Rochester Institute of Technology
in 2020, and the MS degree in information
technology from the same institute from
in 1998. He is currently a professor for
the GCCIS i-School at the Rochester

Institute of Technology (RIT) where he teaches networking and
communication. For the last several years, he has explored the
application of neural networks to communication challenges. He
has also authored several books and video series for O’Reilly
publishing including the Packet Guide series. He is also a
co-developer of the IEEE 1910.1 Meshed Tree standard for
the IEEE. His current areas of research include neural network
ensembles applied wired and wireless, real time communication,
and intelligent networking.


