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Abstract: Network slicing is a key technology to support the concurrent provisioning of heterogeneous Quality of

Service (QoS) in the 5th Generation (5G)-beyond and the 6th Generation (6G) networks. However, effective slicing

of Radio Access Network (RAN) is very challenging due to the diverse QoS requirements and dynamic conditions

in the 6G networks. In this paper, we propose a self-sustained RAN slicing framework, which integrates the self-

management of network resources with multiple granularities, the self-optimization of slicing control performance, and

self-learning together to achieve an adaptive control strategy under unforeseen network conditions. The proposed

RAN slicing framework is hierarchically structured, which decomposes the RAN slicing control into three levels,

i.e., network-level slicing, next generation NodeB (gNodeB)-level slicing, and packet scheduling level slicing. At the

network level, network resources are assigned to each gNodeB at a large timescale with coarse resource granularity.

At the gNodeB-level, each gNodeB adjusts the configuration of each slice in the cell at the large timescale. At the

packet scheduling level, each gNodeB allocates radio resource allocation among users in each network slice at a

small timescale. Furthermore, we utilize the transfer learning approach to enable the transition from a model-based

control to an autonomic and self-learning RAN slicing control. With the proposed RAN slicing framework, the QoS

performance of emerging services is expected to be dramatically enhanced.
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1 Introduction

With the rise of the Internet of Everything (IoE),
a plethora of vertical services and applications,
ranging from high-precision manufacturing, intelligent
transportation systems, and smart home to virtual
reality, have been introduced to improve our lives,
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society, business, and industry operations. These vertical
services with far-reaching impacts are characterized
by an extremely diverse set of Quality of Service
(QoS) requirements[1]. However, supporting emerging
vertical applications well exceeds the capabilities of
the existing 5th Generation (5G) networks. Specifically,
the concurrent provisioning of heterogeneous vertical
services calls for an extremely flexible, adaptive,
and intelligent network architecture, which directly
contradicts today’s “one-size-fits-all” network design
paradigm. Therefore, in the design of 5G-beyond and the
6th Generation (6G) networks, new network design and
operation approaches have attracted research attention,
including network slicing and Artificial Intelligence (AI)
assisted communication and networking technologies.

The fundamental concept of network slicing is to
divide one physical network into multiple virtual logical
networks, referred to as network slices, coexisting over
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a common shared physical network substrate, with the
purpose of achieving different QoS provisions in each
virtual network. Network slicing can be considered
as a convergence of Software Defined Networking
(SDN) with Network Functions Virtualization (NFV).
By creating the control plane, SDN can provide
a global view of network infrastructure and the
capability of programmable network control. On the
other hand, through NFV, network functions and
resources are not restricted to dedicated network
infrastructures. By combining SDN and NFV, the
dimensionality of each network slice during network
slicing can be customized to best fulfill the specific
QoS requirements[2]. Unfortunately, effective slicing of
Radio Access Network (RAN) is still very challenging
due to the network dynamics, performance isolation
of network slices as well as diverse QoS requirements
of different services. Furthermore, the radio resource
management also poses technical challenges on the
RAN slicing, considering the scarcity of radio resources
and increased inter-cell/inter-tier interference caused
by spatial multiplexing of the spectrum. As a result,
effective and dynamic RAN slicing will bring an
unprecedented level of network complexity, which also
makes the traditional mode based approach intractable
and ineffective[3, 4].

Therefore, we need a paradigm shift in 5G-beyond
and 6G networks from conventional network slicing
schemes, in which the network merely performs network
operation for specific scenarios and always requires
manual intervention to resolve unforeseen situations,
into a completely new intelligent network slicing
framework that can autonomously self-sustain the high
QoS performance of diverse services under the highly
dynamic and complex network conditions, which was
elaborated in our previous work[5]. Following this
paradigm, in this paper, we propose a hierarchical multi-
layer RAN slicing framework to enable the network
operation with self-sustained capability. Based on our
understanding, the self-sustained network slicing is
based on the following three key pillars:
� Self-management of network resources with

multiple granularity: Resource granularity directly
affects the flexibility to modify the network resource
management according to wide varieties of network
conditions and QoS requirements. By adopting multiple
time and resource granularities, self-management of
network resources can be decomposed into multi-
levels with the reduced management complexity,
which includes network-level resource planning, next
generation NodeB (gNodeB)-level slice configuration
adaption, and packet scheduling level slicing. Self-
management with differentiated control granularity can
enable an extremely flexible and adaptive network
architecture.
� Self-optimization of Key Performance

Indicators (KPIs) of the network: The aim of the
self-optimization is to enable the automatic optimization
of KPIs (e.g., spectrum efficiency, energy efficiency,
and QoS metrics), that is, the configuration of network,
the parameters of RAN functions, and the network
resource management scheme are autonomously and
continuously adapted to the highly dynamic network
environments. Self-optimization for network slicing is
an important area for further improvement due to the
fact that the current optimization of network slicing
mainly focuses on static network scenario.
� Self-learning to adapt control strategy rapidly

under unforeseen circumstances: In the area of
network slicing, most AI-enabled works still need to
learn from scratch when facing with a new scenario,
which is inefficient due to the large amount of training
data required, especially in scenarios with high mobility
and fast varying network conditions. With self-learning
capability, we can gain “expert knowledge” by exploiting
datasets in previous scenarios. By leveraging the “expert
knowledge”, the network controller can learn new
scenarios with limited training data and modify RAN
slicing control strategy quickly.

The remainder of the article is organized as follows:
Section 2 provides a comprehensive overview on the
network slicing technology. Challenges faced by RAN
slicing are discussed in Section 3. A self-sustained
RAN slicing framework is then presented in Section
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4, followed by a detailed explanation of the proposed
framework in Section 5. Finally, conclusions are drawn
in Section 6.

2 Network slicing: Prior arts

According to the description of 3GPP TR 28.801[6],
a network slice instance includes a set of network
functions and the supporting network resources, which
are arranged and configured to form a complete logical
network that meets specific network characteristics
required by a service instance[7]. Each network slice
is an independent part of the RAN, transport, and
Core Network (CN). In 5G and 5G-beyond networks,
network slices can be deployed with high flexibility and
elasticity thanks to NFV. Through NFV, different mobile
network components, spanning the CN and RAN, will be
virtualized as Virtualized Network Function (VNF)[8, 9],
which can run on top of a virtualization system hosted
in clouds[10, 11]. Current research in this area can be
separated into two parts: The first one deals with slicing
CN, and the latter focuses on slicing RAN.

2.1 Slicing CN

In the case of 4th Generation (4G) of mobile phone
mobile communication technology standards system,
while network functions of CN are implemented in
dedicated hardware as 3GPP Release 8 Specifications,
Taleb et al.[11] proposed the concept of a mobile carrier
cloud that places network functions as virtualized
machines hosted in clouds. In the 5G era, 3GPP
defines a service-based network architecture in which
mobile back-haul/core services are provided by VNF,
including main components of the 5G Core[11]. CN
slices are to be realized through the deployment of
a combination of VNF, e.g., network registration
and mobility management (i.e., Access and Mobility
management Function, AMF), user plane forwarding
and QoS handling (i.e., User Plane Functions, UPF), 5G
connectivity service handling (i.e., Session Management
Function, SMF), and so on.

Due to the inevitable limitation of network resources,
current researches are mainly focusing on the
deployment of CN slices and management of VNFs.

Due to the interdependence of VNFs in each network
slice, there are placement constraints for placing the
VNFs in the serving clouds. At the same time, the
VNFs of each network slice have heterogeneous resource
requirements, i.e., Central Processing Unit (CPU),
caching, communication, and storage resource[11, 12].

2.2 Slicing RAN

With the concept of Cloud-RAN, RAN components are
dividing RAN into Base Band Unit (BBU) and Remote
Radio Head (RRH), whereby BBU runs as software
and RRH will be kept deployed in the field[12]. In 5G
networks, by transforming the functionality of BBU into
a set of VNFs, RAN is evolving towards more flexible
deployments by splitting the BBU into two entities,
namely Central Unit (CU) and Distributed Unit (DU).
In this context, CU hosts time-tolerant RAN functions,
while DU hosts time-sensitive RAN functions, such as
MAC and physical layer functions[13].

While network slicing is well studied in the CN,
there are remaining challenges in the RAN slicing
that need to be addressed. The stochastic nature of
wireless networks, multi-dimensional QoS requirements
of services, highly dynamic service traffic, and inevitable
limitation of resources available in networks contribute
to the challenge.

Considering the impact of RAN slicing on the
radio interface protocol architecture in 5G networks,
an RAN slicing orchestration framework is proposed
to create pools of resources that are shared and
allocated among RAN slices[14, 15]. From the viewpoint of
radio resource allocation, considering both the cellular
network topology and the multi-cell interference, several
automated admission control and network wide resource
allocation schemes for RAN slicing were proposed
for providing throughput guarantees in each slice[16--18].
Furthermore, in the heterogeneous RAN, a dynamic
RAN resource management framework was proposed,
which jointly considered the priority of RAN slices, base-
band resources, front-haul and backhaul capacity, QoS,
and interference[19].

Since the 5G networks are characterized by a
high level of complexity, which makes traditional
mathematical approaches untenable, recently, there have
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been a few works towards the intelligent RAN slicing.
A service demand-aware resource allocation scheme
was proposed based on Deep Reinforcement Learning
(DRL) to realize a dynamic and efficient spectrum
allocation per network slice[20]. A two-timescale radio
resource scheduling strategy was proposed in Ref. [21],
where the Deep Learning (DL) algorithm was utilized
to predict traffic flow on a long-term timescale, and
the reinforcement learning method was used to perform
radio resource management.

However, based on our knowledge and literature
review, the above works are still not entirely suitable for
future wireless networks, due to the following limitation:
Most proposed network slicing schemes are limited
by conventional model based approaches, which only
perform well for ideal and specific scenarios. However,
it makes the existing network slicing schemes lack
robustness in the real deployment scenarios.

On the other hand, conventional model based
approaches are derived from communication theory.
However, the mathematical model is regulated by an
inherent trade-off between accuracy and tractability.
In network slicing, the network dynamics and time
variation pattern are extremely difficult to be modeled
in both an accurate and a tractable way. Therefore, it
is necessary to enable the automated network slicing
process without the requirements of precise modeling of
the network dynamics.

3 Challenge faced by RAN slicing

The objective of RAN slicing is to satisfy specific
QoS requirements of different services in a flexible and
efficient manner. However, challenges arise in the design
of an RAN slicing framework for the multi-cell scenario,
which can be elaborated as follows:
� Heterogeneous QoS requirements of diverse

services: According to 3GPP standards, the emerging
services can be classified into three types: ultra-Reliable
and Low-Latency Communication (uRLLC), enhanced
Mobile BroadBand (eMBB), and massive Machine-Type
Communication (mMTC). Provisioning of these services
requires diverse data rate, reliability, and latency from
networks[1]. Specifically, mMTC focuses on providing
ubiquitous connectivity to a large number of low-

complexity and low-power devices, while uRLLC is
about providing ultra-low latency and high-reliability
wireless connections. For instance, autonomous driving,
one typical uRLLC service, requires a latency below a
few milliseconds and reliability of close to 100%. In
comparison, eMBB service mainly focuses on a high
data rate and thus can tolerate longer latency and lower
reliability. Therefore, it is hard to convert the diverse
QoS requirements into the network resource demands,
that is, how to quantify the multi-dimensional network
resource demands of each service at every Transmission
Time Interval (TTI). Because of these characteristics,
simply increase of the data throughput for each service
cannot efficiently fulfill QoS requirements. As a result,
the RAN slicing framework need to intelligently and
accurately estimate the network resource demands of
slice according to the QoS requirements of service.
� Spatial-temporal dynamics of network: Due to

the mobility of users and inherent service patterns, the
status of the network is fluctuating from both spatial
and temporal dimensions. Firstly, the distribution of user
location and its mobility pattern can be varied in different
regions according to lifestyles and work habits of
people[22], which introduces spatially inhomogeneity of
service traffic among different cells. On the other hand,
the temporal dynamics of cellular networks contain both
long-term fluctuations (i.e., the dynamics of service
traffic) and short-term fluctuations (i.e., the dynamics
caused by wireless channel). Specifically, it is shown
that for a specific service, its service traffic patterns
have strong daily patterns, which will result in long-
term fluctuation of networks (in the level of hours)[6, 23].
Thus, the service traffic pattern over a region will
significantly vary from different time of a day. To follow
the spatial-temporal dynamics of the network, we need
to design the RAN slicing control with multiple time,
spatial, and network resource granularities to improve
the effectiveness of network slicing.
� Interference in wireless network environments:

When in a single-cell scenario, performance isolation of
network slices can be strictly guaranteed by assigning
orthogonal radio resources to each slice without
considering in-band interferences. However, when
in a multi-cell scenario, because of the scarcity of
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spectrum, frequency reuse takes place among different
cells to exploit the multiplexing gain. Then radio
resources in each cell will suffer from the dynamic
and unpredictable interferences from neighboring cells,
making radio resources become inhomogeneous in
communication capacity. Thus, it is more challenging to
achieve performance isolation among slices in multi-
cell scenarios. To this end, efficient utilization and
multiplexing of radio resources are critical to ensure
RAN slicing performance.
� Signaling overhead cost by RAN slicing control:

Due to the rapid change and high complexity of the
network, if the network controller directly optimizes
the QoS performance of each Vehicle-to-Everything
(V2X) service request, the real-time service is hard
to guarantee due to the costed latency related to
processing complexity. At the same time, the network
controller will also need a large amount of mobile
data to gain satisfying performance, which will incur
the overwhelming signaling overhead. Therefore, it is
necessary to balance the trade-off between the cost
of signaling overheard and the global optimality of
RAN slicing control. To address this concern, we need
to perform RAN slicing control with multiple time
granularities to reduce the amount of signaling overhead,
which is an essential issue in designing the RAN slicing
framework.
� The high complexity of RAN slicing control:

In the network slicing, the precise modeling of
a network environment is key for effective timely
decision-making control and improving KPIs of the
network. However, the traditional mathematical model

is regulated by an inherent trade-off between accuracy
and tractability. Specifically, the network dynamics
are difficult to be mathematically modeled in both an
accurate and tractable way[24]. Thus, it is highly desirable
to utilize AI technologies to improve the effectiveness
of network slicing without the requirements of a precise
mathematical model. However, it is ineffective to utilize
conventional AI algorithms in a “plug and play” way.
Therefore, we should customize AI algorithms according
to the characteristics of network slicing.

4 Design of RAN slicing framework with
self-sustained capability

To tackle these challenges, we discuss how to design
an intelligent network slicing architecture with high
flexibility and self-sustained capability, which aims at
optimizing and maintaining the QoS performance of
services. As shown in Fig. 1, we consider a multi-cell
wireless network. In this scenario, serval network slices
are established, which share the same communication
and computing resources in the network. Assume that
the multi-cell RAN is split into three typical network
slices, that is, eMBB slice, uRLLC slice, and mMTC
slice.

4.1 Preliminary: Network architecture

In order to perform centralized control of the multi-
cell RAN slicing, as shown in Fig. 1, a cloud-based
network architecture with SDN and NFV technology is
presented by integrating various network infrastructures
in the multi-cell RAN[5, 25]. The proposed architecture
has two advantages. By using the NFV, different kinds

Fig. 1 An illustration of network architecture in multi-cell RAN scenario.



286 Intelligent and Converged Networks, 2020, 1(3): 281–294

of resources are virtualized from dedicated network
infrastructures. Then a network slice can be defined as a
proper collection of resources, thereby further increasing
flexibility. On the other hand, because of the centralized
architecture and virtualization of network resources, AI-
enabled technologies can be conveniently implemented.
Three network components exist in the considered cloud-
based framework as follows:

(1) Network resource pool: The network resources
are mapped to the multi-dimension resource pool.
According to its capability and ability, in the network
resource pool, resources are further divided into three
dimensions: communication, computing, and caching.
Because computation infrastructures are heterogeneous,
computation resources are virtualized uniformly without
concern about configuration details. Moreover, radio
resources are abstracted by a multidimensional grid of
space, time, frequency, and transmit power. Furthermore,
the resource pool can provide multiple resource
granularities to support the operation of RAN slices.

(2) gNodeB: A gNodeB, defined by 3GPP, refers to
the next-generation base station in the future networks,
which accommodates the service requests inside its
coverage area (i.e., one cell). As mentioned before,

due to the limited radio resources, it is challenging to
sufficiently provide orthogonal radio resources to each
gNodeB in the multi-cell scenario. As a result, some
gNodeBs will share the same radio resources, but this
comes at cost of inter-cell interference. To address this
issue, we can assign the same set of radio resources to
multiple cells separated by an enough distance, which
can reduce interference to an acceptable level.

(3) SDN controller: The SDN controller, hosting
service entities in close physical proximity for users,
can ensure the low end-to-end response time of service
provisioning. Furthermore, the set of gNodeBs in the
multi-cell scenario is directly connected and managed
by the SDN controller. All gNodeBs share the same
network resource pool and the SDN controller has
centralized control through allocating and managing
multi-dimension resource to maintain the operation of
network slices.

4.2 Proposed RAN slicing framework

As shown in Fig. 2 and Table 1, an intelligent RAN
slicing framework with multi-level and multi-control
granularities is proposed, where PRB represents physical
resource block. This framework consists of three levels:

Fig. 2 A conceptual diagram of the proposed RAN slicing framework.
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Table 1 Control granularity of the proposed RAN slicing framework.
Control level Function Resource granularity Time granularity Spatial granularity Complexity

Network-level Assign network resources
to each gNodeB

Computation resources for
RAN function operation;
communication resources

Large timescale Whole area High

gNodeB-level
Adjust slice configuration by

setting Guaranteed Bit Rate (GBR)

and Maximum Bit Rate (MBR)

– Large timescale Single cell Medium

Packet scheduling
level

Allocate radio resources
to active users

PRB allocation for
packet transmissions

Small timescale Single active
user

Low

network-level, gNodeB-level, and packet scheduling
level. At the network level, network resources (i.e.,
computation, caching, and communication resources)
are assigned to each gNodeB at a large timescale. At
the gNodeB-level control, each gNodeB adjusts the
configuration of each slice in the cell at the large
timescale. At the packet scheduling level, each gNodeB
allocates radio resource allocation among users (UEs) in
each network slice at a small timescale.

As we can see, the proposed RAN slicing framework
with differentiated time-resource control granularities
can flexibly deal with the time-varying traffic loads
among gNodeBs. It is worthy to note that, under the
proposed RAN slicing framework, RAN slicing control
is determined by the control strategy, denoted as

� D f�N ; �g ; �P g;

where �N denotes the network-level control policy, �g

stands for the gNodeB-level control policy, and �P

represents the packet scheduling level control policy.
Furthermore, the control strategy � is represented by an
Artificial Neural Network (ANN), which is generated by
AI algorithms.

4.2.1 RAN slicing at network level

The network-level control policy �N can set
computational and communication capacity to support
the operation of gNodeBs according to the dynamic
of service traffics. The space domain granularity
of network-level control is the whole geographical
scope of the multi-cell RAN scenario. By analyzing
network-wide observations of networks (e.g., the
spatial distribution of the service traffic volume, user
distribution, and so on), the SDN controller can
achieve a global view of the whole network. With this

knowledge, the SDN controller can predict large-scale
user distribution as well as the hotspot area in the
network. Then the SDN controller assigns the network
resources to each gNodeB to ensure its operation and
avoid the traffic overload.

Furthermore, the network-wide observation of
network normally has obvious change on a long-term
timescale (in the level of seconds)[25]. SDN controller
should adapt the configuration of network slices on a
long-term timescale, which can also lower signaling
overhead and computation burden[26]. The network-level
control decides the network resource assignment among
gNodeBs, which includes the following:
�Communication capacity at each gNodeB. Firstly,

the SDN controller assigns the radio resources (i.e.,
PRB) to gNodeBs by considering the expected spatial
distribution of the traffic. Here, PRBs will be partially
reused among gNodeBs to exploit multiplexing gain.
Specifically, a set of orthogonal PRBs are assigned
to gNodeBs with close distance, and PRB reuse will
take place among gNodeBs with far distance, which
can mitigate inter-cell interference[26]. Secondly, the
bandwidth of front/ backhaul links is also determined by
the network-level control policy �N

[27].
� Computation capacity at each gNodeB. In 5G-

beyond and 6G wireless networks, the BBU of each
gNodeB is virtualized and centralized as a BBU pool,
where each virtual BBU associates with one gNodeB. In
the proposed framework, the computation capacity of the
virtual BBU is decided by the SDN controller according
to service traffic volume in the coverage of gNodeB.
Herein, the computation capacity of the virtual BBU is
quantified in the form of the maximum number of CPU
cycles per second. Specifically, the computation capacity
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of virtual BBU determines the maximum baseband
processing abilities of gNodeB, such as modulation,
coding, and radio resource management. Furthermore,
by abstracting these baseband processing abilities, we
can map the computation capacity of a virtual BBU to
its supported maximum total throughput of gNodeB[28].

4.2.2 RAN slicing at gNodeB level

Given the assigned network resources determined by the
network-level control policy �N at the large timescale
according to the gNodeB-level control policy �g , each
gNodeB will tune the configuration of slices in its
serving cell based on the dynamics of service traffic
in the cell, in order to improve the QoS performance
of services. It is noteworthy that gNodeB-level control
is not directly involved in the real-time radio resource
scheduling. Essentially, the gNodeB-level control has
two main functions:
�Ensuring QoS requirements of slices: It

transforms the dynamics of service traffic as well
as the QoS requirements of services into the data rate
constraint of users in each slice. Here, the GBR of users
in each slice is used to ensure the QoS performance.
� Ensuring performance isolation among slices: It

guarantees that the traffic overload in one slice does not
negatively affect the QoS which is experienced by UEs
in other slices. Here, each slice is imposed with the
MBR of UEs to ensure performance isolation.

The gNodeB-level control is very important in
the proposed RAN slicing framework. When current
configurations of the network slice cannot fulfill the
desired QoS requirements of service, the gNodeB-
level control policy will tune the slice configuration to
improve the QoS performance of services.

It should be noted that gNodeB-level control is a “soft”
slicing control. Existing RAN slicing control schemes
are normally “hard” slicing control. Hard slicing control
assigns a fixed number of network resources to the
agent, which can ensure QoS isolation but at the cost
of flexibility and multiplexing gain. In contrast, soft
slicing control at the gNodeB-level enables dynamic
sharing of network resources among gNodeBs, which
realizes the flexible radio resource management with
high efficiency.

4.2.3 RAN slicing at packet scheduling level

Based on the configuration determined by the gNodeB-
level, according to the packet scheduling level control
policy �P , each gNodeB executes the PRB allocation
to users based on the instantaneous service request.
The scheduling process operates at a time resolution
given by the so-called TTI, which is the smallest time
granularity in the system and currently is 1 ms in Long
Term Evolution (LTE). Apart from allocating PRBs
to users, packet scheduling level control policy �P

also responses for selecting the suitable physical layer
parameters used in the transmissions (e.g., scheduling
priority, modulation, and coding scheme[14]) according
to the QoS requirements of services[29]. Then based on
the QoS requirements of three considered services (i.e.,
mMTC, uRLLC, and eMBB), we propose the following
sets of network slices:
� Slice for the uRLLC service: This slice should

guarantee ultra-high reliable and ultra-low latency
requirements of the uRLLC service. The SDN controller
should utilize a semi-persistent scheduling function
to avoid latency induced by signaling exchange.
Furthermore, to support low latency transmission, one
option is to reduce the number of symbols in each TTI,
that is, mini-slot (e.g., 0.125 ms) is proposed as short-
TTI for meeting the latency requirement of uRLLC.
� Slice for the eMBB service: eMBB users usually

generate service requests to access the Internet with
high average data rate requirements. To improve
the overall Quality-of-Experience (QoE) and reduce
backhaul bandwidth use in eMBB transmissions, the
SDN controller should cache popular contents in the
storage infrastructure in each gNodeB.
� Slice for the mMTC service: This slice

supports the exchange of large amounts of messages
between Internet-of-Thing (IoT) devices. The SDN
controller should choose suitable access mechanisms and
resource scheduling methods, which can avoid channel
congestion and ensure high communication reliability.

4.3 Learning to control: RAN slicing powered by
self-learning

Among the main promises of AI algorithms for RAN
slicing control is its capability to enable the satisfying



Jie Mei et al.: An intelligent self-sustained RAN slicing framework for diverse service provisioning in 5G-beyond : : : 289

QoS performance of network slices starting from a blank
slate[29]. However, when deployment of new network
slices or the network condition is changing, an important
limitation of the paradigm of existing AI-based works
should be generally carried out from scratch for each new
case to obtain a new RAN slicing control strategy � . The
motivation of self-learning enabled RAN slicing control
lies in the consideration that the “learning-from-scratch”
method is unaffordable for a multi-cell RAN scenario,
due to a large amount of required training data, latency
requirement as well as the related intelligent processing
complexity[30].

To this end, the model should have self-learning
ability, which can enable fast knowledge transferring
from pre-trained models for different scenarios. To
achieve this goal, we can utilize transfer learning to
realize the self-learning for the RAN slicing control.
In the broadest sense, transfer learning studies how to
transfer the prior knowledge that is used in a given
context into a different but related context, to execute a
new task.

4.3.1 Paradigm of transfer learning

Technically, Transfer Learning (TL) is a research
problem in machine learning that focuses on storing
prior gained knowledge while solving one problem and
applying it to a different but related problem. Formally,
the framework of TL is defined as follows:

A domain, D, is defined as

D D fX;Pr.x 2 X/g;

which is a two-element tuple consisting of feature space
X and marginal probability Pr(x 2 X/, where x is a
sample data point.

On the other hand, since transfer learning can be
applied to a variety of learning problems, including
classification, prediction, and reinforcement learning,
we introduce a generic notion of a learning task below.
The learning task � is defined as

� W x 2 D ! y 2 Y;

which maps sample data point x to output y. It is
assumed that the learning task � is realized by an ANN.

Given a source domain DS, a source task �S, a target
domain DT, and a target task �T, TL aims to help
improve the learning of the target task �T in the target

domain DT using the knowledge in DS and �S.
TL aims at solving the dilemma that an ANN cannot

be trained well with the limited dataset as well as the
stringent latency requirement of intelligent processing,
by using the conventional learning model trained by
large-scale labeled datasets, namely the source domain
datasets, which are similar to the given datasets for the
task, namely the target domain datasets.

In basic, the methods of TL can be divided into
four categories: sample-based TL, mapping-based TL,
network-based TL, and adversarial-based TL[31]. In
this paper, we mainly focus on the network-based TL
methods, which implement the transfer of knowledge by
first training an ANN to execute the source task �S in
the source domain DS and then refining the parameters
of the obtained ANN to execute the target task �T in the
target domain DT.

The common approach of network-based TL is
to perform two-stage training. At first, the ANN is
pretrained to execute the source task, yielding a tentative
parameter set of the ANN. Next, in the second stage, the
ANN is re-trained in the target domain. This approach
is suitable for the situations in which a lot of datasets
are available in the source domain, whereas only a few
datasets are available in the target domain.

In the wireless communication networks, a large
amount of training sets are hard to acquire, at the cost
of consuming a large amount of signaling overheads
for exchanging the sensing information and inevitably
increasing the intelligent processing latency. Meanwhile,
these signaling overheads will also occupy too many
radio resources, leading to a low utilization efficiency
of the radio resource. Without the TL technique, the
learning procedure will be generally carried out from
scratch for each new task, which means a large amount
of signaling overheads are needed for each new task.
Luckily, we can utilize the TL technique to significantly
alleviate this issue. Although the source task needs a
large amount of training sets, the target task only needs
a small amount of training data, which greatly reduce
the amount of signalling overheads for training.

4.3.2 Embedding transfer learning in RAN slicing

Wireless networks usually exhibit changing patterns over
time. The changing wireless network environments will
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require self-learning ability to continuously mine new
features from wireless network environments without
forgetting old but essential patterns[32].

Based on the paradigm of TL, as shown in Fig. 3, the
self-learning for the RAN slicing control can be seen
as a transfer learning problem, which aims at extracting
expert knowledge from the previous scenario and using
it to adapt the RAN slicing control strategy � .

Initialization: In the initial operation of the RAN
slicing framework, the controller has no historical dataset
for the training of the ANN model. To address this
issue, we perform the RAN slicing operation by using
the conventional mathematical based network resource
management schemes with the sub-optimal but stable
performance. Meanwhile, the controller collects data
generated in operation. When the size of the dataset
is large enough, we can train the RAN slicing control
strategy � in an online way. Then we can get the
parameters of the model for transfer learning in the
future.
� Trigger condition: As mentioned in Section 3, the

service traffic in the cellular networks has strong daily
patterns. This attribute will result in significant changes
in service traffic volume every few hours. When the
service traffic volume is greatly changed (referred to as
the new scenario), it is necessary for us to re-train the
RAN slicing control strategy � .

� Knowledge transfer: Firstly, we have an RAN
slicing control strategy �old for the previous scenario.
Specifically, the expert knowledge obtained in the
previous scenario is converted to the parameters of �old.
Then we can use the parameters of �old to initialize the
parameters of the RAN slicing control strategy �new for
the new scenario.
� Fast retraining: After parameter initialization, we

can train the RAN slicing control strategy �new. Because
�new has been properly initialized, �new can be fine-
tuned quickly with a small training set.

As we can see, the self-learning enabled by transfer
learning is very general and can be applied to varieties
of AI algorithms. Therefore, self-learning can be
successfully used to facilitate the implementation of
an intelligent RAN slicing framework, especially by
reducing the amount of required training data and
validation purposes. It has essential practical value,
because in the context of multi-cell RAN, the acquisition
of a large amount of mobile data may not be practical.

5 Case study: Applying proposed RAN
slicing framework for V2X service
provision

5.1 Vehicular network scenario

To demonstrate the application of the proposed RAN

Fig. 3 Principle of embedding transfer learning in the RAN slicing control.



Jie Mei et al.: An intelligent self-sustained RAN slicing framework for diverse service provisioning in 5G-beyond : : : 291

slicing, we consider a vehicular network in an urban area
based on the Cellular Vehicle-to-Everything (C-V2X)
standard. There are two kinds of nodes in this network:
(1) vehicles requiring content services, and (2) a number
of gNodeBs delivering content information. Two types
of network slices will be established by the network
operator to support time-critical driving safety-related
information service (i.e., driving safety-related slice) and
the bandwidth-consuming infotainment services (i.e.,
infotainment-related slice).

5.2 Operation workflow of proposed RAN slicing
framework

The network-level and gNodeB-level control strategies
are first implemented on the SDN controller. The packet
scheduling level control strategy is then deployed on
each gNodeB, respectively. Furthermore, the network-
level and gNodeB-level control strategies are running
in coarse time granularity (in the level of seconds). The
packet scheduling level control strategy is running in
fine time granularity (in the level of a millisecond).
Specifically, the proposed RAN slicing control strategy
is trained in the beginning with conventional DRL in an
online/on-policy way. Figure 4 shows the interaction
between the three-level RAN slicing controls in the
proposed framework.

Firstly, based on the spatial distribution of vehicle and

the corresponding service traffic, the SDN controller
performs the network-level control by assigning the
network resources (i.e., communication and computation
resources) to each gNodeB. For instance, for the gNodeB
covering the area with high vehicle density, the SDN
controller will assign more network resources, and vice
versa.

After the network-level control is completed, each
gNodeB monitors the vehicle density and service traffic
inside its coverage area. For the fluctuations of service
traffic statistics (e.g., the average number of service
traffic per slot), gNodeB reports the status of service
traffic to the SDN controller and then performs an
adaption of slice configuration (i.e., adjusting the GBR
and MBR of user in the slice). For instance, when the
traffic burst of the infotainment-related slice happens,
the gNodeB-level controller will reduce the MBR of the
infotainment-related slice to avoid traffic congestion,
which may induce a negative impact on the QoS
performance of the safety-related slice.

Then for the packet scheduling level control, each
gNodeB makes the scheduling decision per time slot
and allocates PRBs to active vehicles. Furthermore, the
achievable data rate of the active vehicle in each network
slice is restricted by the GBR and MBR, which can both
ensure the QoS performance of each slice and avoid
traffic overload in vehicular networks.

Fig. 4 An illustration of the proposed RAN slicing framework for vehicular service provision.
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As mentioned, the service traffic of vehicular networks
has daily patterns, which results in significant changes in
service traffic volume every few hours. Therefore, when
the vehicle traffic distribution in the urban scenario is
significantly changed, the control strategy, denoted as
�old, cannot perform well for this new network condition.
In this case, the self-learning phase is triggered, and the
proposed RAN slicing framework needs to learn the new
RAN slicing control strategy, denoted as �new. For this
purpose, the parameter set of the control strategy �old

is first used as the initial parameter set of the control
strategy �new. By this way, the prior knowledge of
slicing control, interpreted as the parameter set of �old, is
transferred to the control strategy �new. Then with prior
knowledge, the control strategy �new can be retrained by
conventional DRL approaches with a small dataset.

As we can see, the proposed RAN slicing framework
has the following main advantages:
� With multiple time and resource granularities,

the RAN slicing framework can flexibly adapt to the
changing network condition of vehicular networks.
�With the self-learning capability, the proposed RAN

slicing framework can quickly learn and adapt its control
strategy when the service traffic statistic in the urban
scenario has significant variations.

6 Conclusion

Network slicing is a promising direction in meeting
the diverse QoS requirements of emerging applications.
In this paper, we have presented the design of a
self-sustained RAN slicing framework for concurrent
service provisioning. We have proposed a new intelligent
RAN slicing framework with self-sustained capability.
Although we have presented a preliminary study on the
key challenges and solutions, much more studies are
needed in order to bring them into practice. For instance,
current related works mainly focus on the designing
framework of network slicing and optimization of slicing
control but neglect to integrate network slicing with
new physical layer technologies, such as Orthogonal
Time Frequency Space modulation (OTFS), Non-
Orthogonal Multiple Access (NOMA), massive Multiple-
Input Multiple-Output (MIMO), meta-surfaces, and
deployment of Unmanned Aerial Vehicles (UAVs). With

these new physical layer technologies, the transmission
latency of service requests can be further decreased due
to the improved spectrum efficiency. Nevertheless, the
self-sustained RAN slicing framework can certainly play
an important role in the 5G-beyond and 6G networks.

References

[1] C. Yang, W. M. Shen, and X. B. Wang, The internet
of things in manufacturing: Key issues and potential
applications, IEEE Syst. Man Cybern. Mag., vol. 4, no.
1, pp. 6–15, 2018.

[2] E. C. Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez,
D. Ktenas, N. Cassiau, L. Maret, and C. Dehos, 6G:
The next frontier: From holographic messaging to
artificial intelligence using subterahertz and visible light
communication, IEEE Vehicular Technol. Mag., vol. 14, no.
3, pp. 42–50, 2019.

[3] Z. G. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. G. Ding, X. F. Lei,
G. K. Karagiannidis; and P. Z. Fan, 6G wireless networks:
Vision, requirements, architecture, and key technologies,
IEEE Vehicular Technol. Mag., vol. 14, no. 3, pp. 28–41,
2019.

[4] R. H. Wen, G. Feng, J. H. Tang, T. Q. S. Quek, G. Wang,
W. Tan, and S. Qin, On robustness of network slicing for
next-generation mobile networks, IEEE Trans. Commun.,
vol. 67, no. 1, pp. 430–444, 2019.

[5] J. Mei, X. B. Wang, and K. Zheng, Intelligent network
slicing for V2X services toward 5G, IEEE Netw., vol. 33,
no. 6, pp. 196–204, 2019.

[6] Study on Management and Orchestration of Network Slicing
for Next Generation Network, 3GPP, TR 28.801 V15.1.0,
2018.

[7] D. Naboulsi, M. Fiore, S. Ribot, and R. Stanica, Large-
scale mobile traffic analysis: A survey, IEEE Commun.
Surv. Tutorials, vol. 18, no. 1, pp. 124–161, 2016.

[8] Network Functions Virtualisation (NFV), Architectural
Framework. Sophia Antipolis, France: ETSI, 2013.

[9] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. De
Turck, and R. Boutaba, Network function virtualization:
State-of-the-art and research challenges, IEEE Commun.
Surv. Tutorials, vol. 18, no. 1, pp. 236–262, 2016.

[10] System Architecture for the 5G System, Stage 2 (Release
15), 3GPP, TS 23.501, 2018.

[11] T. Taleb, M. Corici, C. Parada, A. Jamakovic, S. Ruffino,
G. Karagiannis; and T. Magedanz, EASE: EPC as a service
to ease mobile core network deployment over cloud, IEEE
Netw, vol. 29, no. 2, pp. 78–88, 2015.

[12] M. Bagaa, T. Taleb, A. Laghrissi, A. Ksentini, and H.
Flinck, Coalitional game for the creation of efficient virtual
core network slices in 5G mobile systems, IEEE J. Sel.
Areas Commun., vol. 36, no. 3, pp. 469–484, 2018.



Jie Mei et al.: An intelligent self-sustained RAN slicing framework for diverse service provisioning in 5G-beyond : : : 293

[13] H. Halabian, Distributed resource allocation optimization
in 5g virtualized networks, IEEE J. Sel. Areas Commun.,
vol. 37, no. 3, pp. 627–642, 2019.

[14] R. Ferrus, O. Sallent, J. Perez-Romero, and R. Agusti, On
5G radio access network slicing: Radio interface protocol
features and configuration, IEEE Commun. Mag., vol. 56,
no. 5, pp. 184–192, 2018.

[15] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H.
Flinck, Network slicing and softwarization: A survey on
principles, enabling technologies, and solutions, IEEE
Commun. Surv. Tutorials, vol. 20, no. 3, pp. 2429–2453,
2018.

[16] V. Sciancalepore, M. Di Renzo, and X. Costa-Perez,
STORNS: Stochastic radio access network slicing, in Proc.
IEEE Int. Conf. on Communications, Shanghai, China,
2019, pp. 1–7.

[17] B. Khodapanah, A. Awada, I. Viering, A. N. Barreto, M.
Simsek; and G. Fettweis, Slice management in radio access
network via iterative adaptation, in Proc. IEEE Int. Conf.
on Communications, Shanghai, China, 2019, pp. 1–7.

[18] P. Caballero, A. Banchs, G. de Veciana, X. Costa-Pérez, and
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