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resource allocation for low-latency fog radio access networks
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Abstract: Fog Radio Access Networks (F-RANs) have been considered a groundbreaking technique to support

the services of Internet of Things by leveraging edge caching and edge computing. However, the current

contributions in computation offloading and resource allocation are inefficient; moreover, they merely consider

the static communication mode, and the increasing demand for low latency services and high throughput poses

tremendous challenges in F-RANs. A joint problem of mode selection, resource allocation, and power allocation

is formulated to minimize latency under various constraints. We propose a Deep Reinforcement Learning (DRL)

based joint computation offloading and resource allocation scheme that achieves a suboptimal solution in F-RANs.

The core idea of the proposal is that the DRL controller intelligently decides whether to process the generated

computation task locally at the device level or offload the task to a fog access point or cloud server and allocates an

optimal amount of computation and power resources on the basis of the serving tier. Simulation results show that

the proposed approach significantly minimizes latency and increases throughput in the system.

Key words: fog radio access networks; computation offloading; mode selection; resource allocation; distributed

computation; low latency; deep reinforcement learning

1 Introduction

The rapid development of Internet of Things (IoT)
has enabled the emergence of various latency-
sensitive and computation-intensive applications, such as
augmented reality, virtual reality, and natural language
processing[1, 2]. To achieve the full benefits of IoT,
sufficient networking and computation infrastructure
are mandatory to support instantaneous response and
low-latency-based IoT applications. However, IoT
devices with constrained computing capability pose
a challenge in terms of meeting the computation
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demand of these applications[3]. Furthermore, the fifth-
generation cellular systems have enabled the explosive
growth of IoT devices, whose number can reach
approximately 24 billion by 2020. Such number of
devices not only causes the growth of explosive data
but also generates massive computation demand for
next-generation wireless networks. Although cloud
computing provides a flexible configuration of hardware
resources and allows computation-intensive tasks to be
uploaded to the cloud for processing in a minimum
time. It is usually deployed far away from the users;
moreover, it imposes a heavy burden on the fronthaul
and generates an intolerable transmission delay that
degrades overall system performance[4]. As a remedy to
the above limitations, Fog Radio Access Networks (F-
RANs) have emerged as a promising architecture with
embedded storage and computing capacity to support
IoT devices[5, 6].

F-RANs extend cloud computing to the network
edge and have been integrated into the IoT operating
environment to support the demands of the users
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with real-time response and high automation[7]. By
exploiting edge computing and caching, the burden
on constrained fronthaul is significantly alleviated, and
latency is shortened[8]. In terms of supporting intensive
computation demand in F-RANs, each IoT device can
select a proper mode, which includes the local, edge,
and cloud modes. In the local mode, the task is executed
locally at the device level; for edge and cloud modes,
each User Equipment (UE) offloads the task either to
a Fog Access Point (F-AP) or a remote cloud server.
In the cloud mode, UE is served by Remote Radio
Heads (RRHs) with centralized signal processing and
resource allocation strategies; in the edge mode, the task
is executed through the F-APs[9]. The F-RAN paradigm
has been improved significantly and enabled processing
of computation tasks in the vicinity of the UE; however,
latency performance is still unsatisfactory and thus must
be further optimized.

Recently, Machine Learning (ML), specifically Deep
Reinforcement Learning (DRL), has appealed to the
research community and is considered an effective
technique for solving many classification challenges
and complex problems under high-dimensional state
space[10]. By exploiting a Deep Neural Network (DNN),
DRLs can estimate precise value function and provide
accurate regression in Reinforcement Learning (RL)
problems[11, 12]. DRL has already been widely applied
in many applications, such as voice recognition, image
recognition, large-scale data mining, and transactional
behavior analysis, and has shown promising outcomes
due to its extraordinary learning capability[13].

Driven by the advancements and significant
contributions of DRL, in this work we study a joint
DRL-based mode selection, distributed computation
resource allocation, and power allocation to achieve
low latency in F-RANs. DRL learns the optimal policy
and makes an intelligent decision in selecting a proper
mode; based on the selected mode, it allocates a precise
amount of resources.

1.1 Related work

Computation offloading is a promising solution for
low-computation-capability devices running on power
batteries. With respect to fog computing, many

studies have investigated computation offloading and
resource allocation strategies. For instance, in Refs. [14,
15], the nonorthogonal multiple access technique
for optimal and suboptimal resource allocation in
F-RANs was investigated. In Ref. [15], the main
problem was decomposed into subproblems and
then solved with matching and sequential convex
programming algorithms. A hierarchical fog architecture
was considered in Ref. [16], where user devices
can offload their tasks to either a fog node or
a remote cloud. In Ref. [17], a joint problem of
computation and radio resource allocation was studied
for offloading the computation task, and an iterative
algorithm was proposed to address the problem. In
Ref. [18], the multistage stochastic programming
approach for offloading computational expensive tasks
was investigated to meet the demands of IoT-eHealth
for low latency and real-time monitoring in F-RANs.
In Refs. [19, 20], the mixed fog/cloud system was
considered to offload the computation-intensive task to
minimize latency. In Ref. [21], the distributed game
methodology in crowd sensing was studied to ensure
maximum resource utilization.

However, the above research mainly considered
migrating computation tasks from user devices to either
edge nodes or cloud-computing servers and utilized
less efficient offloading optimization approaches. As
a key technique for enabling Artificial Intelligence
(AI), ML has recently been used extensively in
wireless networks to solve complex problems without
explicit programming[22]. In Ref. [11], an actor-critic
DRL-based scheme was studied in consideration of
joint computation offloading, radio resource allocation,
and content caching to minimize end-to-end latency
in F-RANs. In Ref. [23], a DRL scheme for IoT
edge computing was proposed in consideration of
joint computation offloading and multiuser scheduling
algorithm to minimize the long-term average weighted
sum of delay and power consumption under stochastic
traffic arrival. In contrast to Refs. [11, 23], Ref. [24]
studied the double Deep Q-Network (DQN) for efficient
computation offloading in ultradense Mobile Edge
Computing (MEC) networks. Similarly, in Ref. [25],
a DRL-based binary computation offloading approach
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was considered in IoT systems for processing non-
partitionable simple tasks. In Ref. [26], a vehicle-assisted
DRL-based offloading scheme was investigated under
latency constraints in MEC to find the optimal policy
and maximize system utility.

In the context of intelligent resource allocation,
power allocation problems were studied considering
DRL approaches in Refs. [27--31]. In Ref. [27], a
DRL for decision-making was used to find the optimal
power level for transmission without requiring global
information. Meanwhile, for tackling the challenges of
network dynamics, resource diversity, and the coupling
of resource management with mode selection in F-
RAN, a DRL-based joint mode selection and resource
management scheme was investigated in Ref. [28]. In
Ref. [29], the DRL framework was used to control power
in multiuser wireless communication cellular networks.
Transmission rate optimization was examined in Refs.
[30, 31] to gain a high throughput in the network where
DRL is used to allocate an optimal amount of power
resources.

1.2 Motivation and contributions

Most previous studies sought to optimize computation
resource allocation, mode selection, and power
allocation separately. Furthermore, in terms of
computation offloading, several works migrate the
computation task from the UE to either edge nodes
or cloud-computing servers without considering the
optimization of resources[15--20]. The aforementioned
works did not focus on the distributed solution at
the edge, and majority of the tasks were sent to
the cloud-computing tier for computation. Given that
fog nodes are introduced with limited resources,
distributed computation among the F-APs can be
promising in tackling computation-intensive tasks at
the edge. Therefore, designing an efficient AI-based
computation offloading and resource allocation scheme
is of considerable interest.

Based on the above observations, this study
proposes an efficient and low-complexity distributed
DRL framework for computation offloading, jointly
considering mode selection, computation resource
allocation, and power allocation. The main contributions

of this study are summarized as follows:
� An uplink F-RAN-based IoT environment is

presented to evaluate the performance in terms of latency.
In this architecture, three modes (i.e., local, fog, and
cloud modes) are considered. The system allows each
UE to select only one mode to execute the generated
computation task. Given that cloud computing is aware
of the state of the fog nodes, the DRL controller is
incorporated into the cloud zone, which is responsible
for precise mode selection and resource allocation.
� In the proposed framework, a joint problem of

mode selection, computation resource allocation, and
power allocation is formulated to minimize latency under
the constraints of computing resources and fronthaul
capacity, thereby guaranteeing the Quality of Service
(QoS), power consumption, and strict mode for each IoT
device. Then, this nonconvex problem is transformed
as a Markov Decision Process (MDP) problem. The
DRL technique is applied to solve the MDP problem and
achieve a suboptimal solution. Furthermore, the fixed
target network and replay memory are used for the stable
training process of neural networks.
� The effects of DRL-based mode selection and

resource allocation are illustrated. Numerical results
demonstrate the performance gain of the proposal
by comparing it with the Q-learning, fixed, and
random approaches. Based on the presented solution,
our proposed mechanism outperforms the benchmark
schemes, distinctly enhances the throughput of the
network, and significantly reduces the delay in
processing of tasks by approximately 35%–67%.

1.3 Paper organization

The remainder of this paper is organized as follows:
Section 2 presents the system model. Section 3 provides
the analytical formulation of the latency optimization
problem. Section 4 analyzes the DRL-based joint
computation offloading and resource allocation scheme.
Section 5 presents the simulation results to validate the
performance improvement of the proposed DRL scheme.
Section 6 concludes the study.

2 System model

Figure 1 depicts the considered system model for
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Fig. 1 F-RAN architecture with DRL for computation
offloading. Here, CP represents cloud server and BBU
represents baseband unit.

computation offloading and resource allocation in uplink
F-RANs, where the DRL approach is adopted to
accelerate the performance. The system architecture
consists of a set of F-APs L D f1; 2; : : : ; Lg, a
set of RRHs J D f1; 2; : : : ; J g, and several UEs
K D f1; 2; : : : ; Kg. In the proposed model, a set of
IoT devices, namely, smartphones and laptops, are
considered to be the UEs. UEs have processing and
cache capacities and thus can process the requested
computation tasks locally. Each UE k generates
computation task �k D fMk; Ckg, where Mk is the
size of input data for computation measured in bytes,
and Ck denotes the required computation resources
measured with Central Processing Unit (CPU)-cycle
frequency (Hz) to accomplish a computing task �k [3].
The generated computation task �k is delay sensitive
and can be processed either locally, at the edge tier
or on the cloud-computing servers to achieve minimal
latency in the system. In terms of task execution, the
DRL controller in the cloud makes a precise execution
decision based on available execution modes, resource
capacity, channel capacity, and transmission rate. Mode
selection can be represented as vm

k
2 f0; 1g, where

m D flocal; edge; cloudg is the offloading mode for each
UE k. Subsequently, based on the selected mode, DRL
allocates an optimal amount of resources. If the edge is
selected as the execution mode, the primary F-AP, which
is scheduled with the UE, splits the task into subtasks
and sends them to the nearest available assistive F-APs

to execute the task in a distributed manner. We assume
that each F-AP, RRH as well as the UE, are equipped
with a single antenna. In this model, we use the partial
frequency multiplexing scheme, and interference is only
considered among the UEs.

2.1 Communication model

In this subsection, we present the communication
model considered in the study. When the generated
computation task �k cannot be served locally, the UE k
offloads the task either to the edge or the cloud server
via the wireless interface of the user. We assume the
UE offloads the task to the primary F-AP l with the
decision of vedge

k
D 1 for processing at the edge, where

v
edge
k
D 1 represents that the UE k selects the edge as a

suitable mode to offload the task. The obtained signal at
the primary F-AP l from user k is expressed as follows:

yk;l D hH
k;lpk;lukC

X
i¤k;i2K

hH
k;lpi;luiCnl ;8k; l (1)

where hH
k;l is the Channel State Information (CSI) matrix,

pk;l and pi;l are the uplink transmission power of users
k and i , respectively; nl denotes the additive Gaussian
noise received at F-AP l , which is distributed as .0; �2

l
/,

and uk is the message of user k.
The Signal-to-Interference-plus-Noise Ratio (SINR)

at F-AP l from user k is represented as follows:

SINRk;l D
jhH
k;l j

2pk;lX
i¤k

jhH
i;l j

2
pi;l C �

2
l

;8k; l (2)

Moreover, the optimal transmission rate propels the
system to ensure the QoS and minimize the transmission
delay. Then the data rate, which is achieved at the F-AP
l , can be expressed as follows:

Rk;l D B log2.1C SINRk;l/ (3)

where Rk;l represents the uplink data rate from UE k to
F-AP l , and B denotes the bandwidth for the channel
in the network. Given the constrained computation
resources of fog nodes, executing all the generated tasks
at the edge is impossible. Consequently, the network
controller selects the cloud as suitable mode .vcloud

k
D 1/

to offload the computation tasks to the cloud server
through the RRH. The received signal at RRH j from
user k can be stated as follows:

yk;j D hH
k;jpk;juk C

X
i¤k;i2K

hH
k;jpi;jui C nj ;8k; j

(4)
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where pk;j is the transmitted power from user k to RRH
j , hH

k;j is the CSI matrix for RRH, and nj is the Gaussian
noise at RRH j .

Similarly, the SINR and achievable transmission rate
from user k to RRH j can be represented as follows:

SINRk;j D
jhH
k;j j

2pk;jX
i¤k

jhH
i;j j

2
pi;j C �

2
j

;8k; j (5)

Rk;j D B log2.1C SINRk;j / (6)

where Rk;j denotes the uplink data rate from the UE k
to RRH j .

The target SINR is defined as the 
min for achieving
high QoS in the system. Therefore, Eqs. (2) and (5)
suggest that for the selection of the communication mode
regardless of edge or cloud, the threshold 
min must be
satisfied.

2.2 Delay model

The generated delay in the proposed model is classified
as computing and transmission delays. Computation
delay is generated because tasks are executed in different
tiers, namely, local computation delay, computation
delay at the edge, and computation delay at the cloud-
computing zone. By contrast, transmission delay is
generated for uploading the tasks either from UE to edge
or UE to the cloud-computing tier. To download the
processed data, the system also generates transmission
delay. We present the details of the delay model in the
following subsections.

2.2.1 Local computation delay

When the DRL controller is satisfied with the processing
capacity of the IoT device, it makes the decision to
process the computation task �k locally .vlocal

k
D 1/. The

CPU of an IoT device is the primary engine for
local computation, and the performance of the CPU is
characterized by the CPU-cycle frequency[32]. Therefore,
local computation delay can be represented as follows:

Dlocal
k D

Ck

f local
k

(7)

where f local
k

is the maximum processing capacity of UE
k that can be used to execute the computation task �k .

2.2.2 Offloading delay at the edge

IoT devices have limited computation resources; thus,

when the computation resource requirement Ck cannot
be satisfied locally with the decision of the DRL
controller .vedge

k
D 1/, the UE k, k 2 K, offloads the

tasks to the edge through a wireless link. The generated
delay at the edge can be divided into transmission delay
and computation delay. The transmission delay from UE
k to primary F-AP l can be characterized as follows:

D
upload
k;l

D
Mk

Rk;l
(8)

where Mk is the size of offloaded data to the F-AP l .
In the context of accomplishing the computation task

at the edge, we consider the distributed computation
phenomenon, where the available assistive F-APs
participate in the computation process with the primary
F-AP in a distributed manner. Once the DQN selects the
edge as the suitable offloading mode, the primary l-th
F-AP splits the task of UE k into f1; 2; : : : ; N g subtasks,
which are equal to the number of participating assistive
F-APs N . The set of F-APs, which serves the UE k

to process the computation subtasks, can be expressed
as Ll D fl; lk;1; lk;2; : : : ; lk;N g � L, in which lk;n

represents that l-th primary F-AP incorporated the n-
th assistive F-AP to accomplish the subtask n. At
this time, the computation resource requirement Ck
is divided into N C 1 parts which can be denoted as
fCk;0; Ck;1; : : : ; Ck;N g. Each part of the computation
demand is distributedly executed at the edge by the
participating F-APs. Thus, the processing delay should
be the largest one, i.e.,

D
edge
k
D max

(
Ck;0

fl;k
;
Ck;1

f1;k
; : : : ;

Ck;n

fn;k
; : : : ;

Ck;N

fN;k

)
C

max.M input
l;n
CM

output
n;l

/� (9)

where fl;k and fn;k represent the computation resources
of primary F-AP l and assistive F-AP n, which are
allocated to the UE k, respectively; and M input

l;n
and

M
output
n;l

are the small chunks of input and output data
for assistive F-AP n, respectively. � represents the
transmission delay between the primary F-AP l and
assistive F-AP n, (l; n 2 L), where the longest delay
is considered the acceptable transmission delay.

We consider that the primary F-AP l and assistive F-
AP n communicate over the wireless interface. In terms
of selecting the assistive F-AP, the transmission delay �
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between the primary F-AP l and assistive F-AP n must
be less than the threshold delay ıl;n .� 6 ıl;n/.

Moreover, to make the system model more realistic,
we consider the downloading transmission latency for
processed data at UE k. Therefore, the downloading
delay from the primary F-AP l to UE k can be designated
as follows:

Ddownload
l;k D

M
processed
k

Rl;k
(10)

where M processed
k

is the processed data at the edge, and
Rl;k is the downlink data rate.

2.2.3 Offloading delay at the cloud

The fog node is introduced with limited computing
resources; hence, in some conditions, even the
distributed computation scheme is not enough to tackle
the computing demand of UE. In this context, the
controller selects the cloud mode .vcloud

k
D 1/ to offload

the task �k . Similarly, in the edge mode, latency is
generated to process the task and transmit the input
data. Furthermore, the uploading latency for the cloud
is generated in two forms, the latency from UE k to
the RRH j and RRH j to the cloud server[17]. The
transmission latency from UE k to the CP tier through
RRH can be expressed as follows:

D
upload
k;CP D

Mk

Rk;j
C

Mk

Rj;CP
(11)

where Rk;j is the uplink data rate from user k to RRH
j and Rj;CP denotes the transmission rate from RRH to
cloud-computing tier.

The processing latency at the cloud computing zone
for user k can be expressed as follows:

Dcloud
k D

Ck

f cloud
CP;k

(12)

where f cloud
CP;k is the maximum processing capacity of

cloud servers, which are allocated to UE k to accomplish
the computational task.

We consider that the amount of uploaded data is larger
than that of processed data. Given that the cloud servers
are located thousands of miles away and connected via
fiber and core networks, the downloading latency for
sending back the result of processed data from the cloud
server to UE is also non-negligible[3]. The downloading
latency from CP to UE through RRH is represented as
follows:

Ddownload
CP;k D

M
processed
k

RCP;j
C
M

processed
k

Rj;k
(13)

where RCP;j and Rj;k represent the downlink rate from
CP to RRH j and RRH j to UE k, respectively. The
uplink and downlink data rates vary.

Hereafter, we summarize the overall generated latency
in the proposed architecture. The total latency for each
layer is calculated as follows:

Dlocal
TotalD

Ck

f local
k

(14)

D
edge
TotalD

Mk

Rk;l
Cmax

(
Ck;0

fl;k
;
Ck;1

f1;k
; :::;

Ck;n

fn;k
; :::;

Ck;N

fN;k

)
C

max.M input
l;n
CM

output
n;l

/� C
M

processed
k

Rl;k
(15)

Dcloud
TotalD

Mk

Rk;j
C
Mk

Rj;CP
C

Ck

f cloud
CP;k

C
M

processed
k

RCP;j
C
M

processed
k

Rj;k

(16)

where Dlocal
Total, D

edge
Total, and Dcloud

Total represent the generated
total delay at the local, edge, and cloud-computing tiers,
respectively. Therefore, the overall system delay can be
represented as follows:

Dsystem
D

KX
kD1

vlocal
k

Ck

f local
k

C

KX
kD1

v
edge
k

�
max

�
Ck;0

fl;k
;

Ck;1

f1;k
; : : : ;

Ck;n

fn;k
; : : : ;

Ck;N

fN;k

�
C

max.M input
l;n
CM

output
n;l

/� C
M

processed
k

Rl;k

#
C

KX
kD1

vcloud
k

"
Mk

Rk;j
C

Mk

Rj;CP
C

Ck

f cloud
CP;k

C

M
processed
k

RCP;j
C
M

processed
k

Rj;k

#
(17)

The computation demand of each UE k can be served
by only one mode at a time.

3 Problem formulation

In this section, the optimization problem of computation
offloading is formulated for the uplink F-RAN
scenario. The objective of this problem is to minimize
the overall system latency by jointly optimizing mode
selection, computation resource allocation, and power
allocation under the constrains of computing resources,
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fronthaul capacity, limited transmitting power, and QoS
demand of per IoT device. The problem statement can
be represented as follows:

minimize
fvm

k
;fl;k ;pkg

Dsystem

s:t: C1 W vlocal
k C v

edge
k
C vcloud

k D 1; vmk 2 f0; 1g;8k;

C2 W
KX
kD1

v
edge
k

fl;k 6 fl ;8l;

C3 W
KX
kD1

vcloud
k Rk;j 6 Sj ;8j;

C4 W vedge
k

SINRk;l C vcloud
k SINRk;j > 
min;8k;

C5 W vedge
k

pk;l C v
cloud
k pk;j 6 Pmax;8k (18)

where the constraint C1 implies that each user k can
select only one mode at a time to process their generated
computation task. The constraint C2 limits the number
of user scheduling to each F-AP l due to its bounded
computation resources. The constraint C3 represents
that a limited number of UEs can be supported by each
RRH j with its constrained fronthaul link capacity Sj .
The QoS requirement is guaranteed by the constraint C4
regardless of edge or cloud mode. The constraint C5
illustrates that the uplink transmission rate is bounded
by the allocated power of Pmax. The mode selection vm

k
,

computing resource allocation fl;k , and power allocation
pk are considered to be the objective variables to solve
the formulated optimization problem. pk is the set of
Pk;i where f1; 2; : : : ; ig is the receiving node of either
F-AP l or RRH j , which is determined on the basis of
the selected mode.

The stated optimization problem becomes nontrivial
and difficult to solve with traditional approaches
because of the strict requirement for low latency.
Furthermore, time-varying user demand makes Formula
(18) more challenging. Generally, traditional exhaustion
optimization methods can be applied to solve the
formulated problem. However, its computational
complexity is considerably high. Moreover, the
orchestration of precise mode selection, computing
resource allocation, and power allocation provide
another level of difficulty to the system. Thus, DRL
with low computational complexity is presented to tackle
the computational offloading problem with joint mode

selection and multitier resource allocation in this uplink
F-RAN scenario.

4 DRL-based computation offloading and
resource allocation

Formula (18) is a nonconvex multivariate problem,
which is challenging to solve with conventional
approaches. However, this offloading problem can be
modeled under the MDP and can be efficiently solved
with the DQN. In this reinforcement learning based
problem, Q-learning in the cloud-computing tier acts
as a learning agent to achieve the optimal offloading
policy after extensively training the system with
numerous offloading interactions[2]. We first evaluate the
performance with the traditional Q-learning approach
and then realize the solution with DRL.

The MDP model can be defined as the tuple of
fS;A;P.stC1jst ; at /;R.st ; at /g, where S is the set
of states, A represents a set of possible actions,
P.stC1jst ; at / depicts the state transition probability,
and R.st ; at / is the received reward after performing
the action at on state st . However, state transition
probability is hardly obtained in many practical
problems. To overcome this hurdle, Q-function
Q.st ; at / is utilized as the key parameter. The Q-
function is responsible for returning the maximum
expected reward by following a policy � that is
expressed as follows[11]:

Q�.s; a/ D E

"
TX
tD0

� trt js0 D s; a0 D a; �

#
(19)

where � is a discount factor, rt represents the obtained
reward at time t , s0 is the initial state, a0 is an action,
and EtC1 is the expected return of a trajectory at time
t C 1. The optimal Q-function ensures the maximum
cumulative reward, which can be stated as follows:

Q
�

.s; a/ D max
�
Q�.s; a/ (20)

By following the Bellman criterion, the optimal Q-
function can be estimated as follows:

Q�.st ; at /DEtC1

�
rtC� max

atC1

Q�.stC1; atC1/

�
(21)

Generally, the Q-function is achieved recursively by
exploiting the information of .s; a; r; s0/ current state,
action, immediate reward, and the transition state at the
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next time span (t C 1). Subsequently, the Q-function
can be updated as follows:

QtC1.s; a/ D ˛

�
rt C � max

a02A
Q
�
stC1; a

0
��
C

.1 � ˛/Q.st ; at / (22)

where ˛ is the learning rate. By utilizing the proper
learning rate, the iteration algorithm guarantees that
Qt .s; a/ will be converged to optimal Q�.s; a/[31].

4.1 MDP-based computation offloading model

In this subsection, we model the MDP-based
computation offloading and resource allocation problem
in the following manner.

4.1.1 State space

The system state is designed with the currently available
offloading mode for UE k, the distributed computing
resources at the edge, the CSI, and the discretized power
resources of each IoT device. The system state for time
cycle t is stated as sss t D fm; fl ; hhh

H
k;i ; p

n
k
g. The meaning

of each element of the system state is elaborated in the
following manner:
� m D flocal; edge; cloudg denotes the available

modes for UE k to execute the computation task.
� fl .l D 1; 2; : : : ; L/ represents the available

computation resources of F-APs at the edge that can
be allocated to the UE k. The serving F-APs have been
categorized into primary and assistive F-APs.
� hhh

H
k;i .i D 1; 2; : : : / is the CSI vector where i

denotes the i -th receiver of either F-AP l or RRH j .
� pn

k
.n D 1; 2; : : : / depicts the discretized unit of

available transmitting power (in dBm) of UE k. The
range of power is represented as Œpmin

k;i
; pmax
k;i
�.

4.1.2 Action space

Theoretically, the agent can perform numerous actions.
However, to take numerous actions, the system requires
massive computation, which produces a huge amount
of delay and degrades the system performance. Thus,
to avoid computation complexity, the agent considers
only one IoT device at each decision epoch t . The action
at time slot t is denoted as at 2 A, where A is a finite
value space Œ1; 2; : : : ; A�. The action space for solving
the offloading problem can be designed as A D fvm

k
;

v
edge
k

pk;l C v
cloud
k

pk;j ; fl;kg. Each action of the action

space is described as follows:
� Based on the given state sss t , the agent performs

action vm
k

for selecting a mode to execute the generated
computation task of UE k.
� After selecting the mode, the agent performs action

pk;i for allocating the optimal amount of transmitting
power to upload data Mk either to the edge or the cloud.
If the agent selects the local mode .vlocal

k
D 1/, then

the uploading transiting power pk;l D 0 and pk;j D 0.
However, if the agent selects either the edge or the cloud
tier to offload the task, the action can be represented on
the basis of the selected mode as vedge

k
pk;l C v

cloud
k

pk;j ;

where vm
k
2 f0; 1g and m 2 fedge; cloudg. If the agent

selects the edge as a suitable mode .vedge
kD1

/, then it
allocates power pk;l to offload the task from the user
k to F-AP l , vedge

k
D 1. Otherwise, when vcloud

k
D 1,

the agent selects the cloud as an offloading mode and
allocates power pk;j for offloading the task from the
user k to RRH j . The possible actions for allocating
power can be the discrete amount of total power as
fp1
k;i
; p2
k;i
; : : : ; pn

k;i
g. For power allocation in the cloud

mode, we only consider allocating power between the
UE k and RRH j .
� The action fl;k represents that the computing

resources of F-AP l is allocated to the UE k if the
controller selects the edge .vedge

k
D 1/ as a suitable mode

for offloading the computation task �k . The action vector
can be represented as ff1;k; f2;k; : : : ; fL;kg, where
f1; 2; : : : ; Lg is the combination of primary F-AP l and
assistive F-APs n, .l; n/ 2 L.

In the actions of mode selection, power allocation,
and computation resource allocation, all the constraints
C1–C5 have been rigorously considered.

4.1.3 Reward function

The precise reward function helps to find the optimal
action policy[33]. Hence, the reward must be defined
appropriately for an efficient learning process. After
performing a series of actions, mode selection vm

k
, power

allocation v
edge
k

pk;l C v
cloud
k

pk;j , and computation
resource allocation fl;k , we calculate the overall system
delay from Eq. (23). Based on the performed action, if
the system minimizes delay, the agent receives a positive
reward; otherwise, the agent is
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penalized with a negative reward. The reward function
can be defined as follows:

rt D �

(
KX
kD1

vlocal
k

Ck

f local
k

C

KX
kD1

v
edge
k

�
max

�
Ck;0

fl;k
;

Ck;1

f1;k
; : : : ;

Ck;n

fn;k
; : : : ;

Ck;N

fN;k

�
C
M

processed
k

Rl;k
C

max.M input
l;n
CM

output
n;l

/�
i
C

KX
kD1

vcloud
k

�
Mk

Rk;j
C

Mk

Rj;CP
C

Ck

f cloud
CP;k

C
M

processed
k

RCP;j
C
M

processed
k

Rj;k

#)
(23)

where rt is the immediate reward. The long-term
accumulative reward is considered the minimizing delay
at a longer period T . The controller performs the best
action by exploring and exploiting each possibility to
maximize future accumulative rewards. The long-term

cumulative reward is defined as Rt D
TX
tD0

� trt with

a discount factor � 2 Œ0; 1�. � determines the effect
of future reward based on current mode selection,
power allocation, and computation resource allocation
decision. The lower the value of �, the more emphasis
on immediate rewards. We are attempting to minimize
latency; thus, the overall rewards are always negative of
latency.

The Q-learning method has been increasingly
exploited for solving the RL problem but shows
infeasibility for numerous state-action scenarios because
in practice, when the state-action pair is sufficiently large,
traversing each step with all the samples stored in a Q-
table is challenging[33]. This behavior inherently limits
the traditional RL with fully observed low-dimensional
state space. To overcome the drawbacks of Q-learning,
DRL is proposed in this work.

4.2 DRL-based computation offloading and
resource allocation

Herein, we propose the DRL-based computation
offloading scheme to improve computation performance
by accelerating the learning process. DRL can find
the optimal policy without explicit prior knowledge
of the network. In DRL, the Neural Network (NN)
can be trained directly without exploiting the

handcrafted features, thus considerably reducing system
complexity[3, 34]. Moreover, the replay memory leverages
the system performance by finding the optimal policy
with few interactions. To avoid the drawbacks of Q-
learning in large state and action space problems, the
DNN is used as a function approximator to approximate
the actionvalue function Q.s; aI!/ � Q�.s; a/, which
immensely enhances the learning capability[34]. The
entire training process and computation offloading
strategy are illustrated in Fig. 2 and Algorithm 1.

Figure 2 and Algorithm 1 represent that the DNN
takes the current state s0 as an input, which consists
of available offloading modes, computation resources
at the edge, CSI, and maximum power resource of
IoT device st D fm; fl ;hH

k;i ; p
n
k
g. By corresponding

with all the possible actions, the Q-value Q.s; aI!/ is
derived as the output by adjusting the weight of NN
parameter !. For trade-off between exploitation and
exploration, the IoT device selects the offloading policy
based on the output of DNN according to the "-greedy
policy[32]. The first and foremost action of the agent is
to select the precise computation mode vm

k
. Based on

the selected mode, the agent performs further actions
to allocate the resources. In Algorithm 1, Lines 15–21
show that if the agent selects edge mode .vedge

k
D 1/,

then the agent takes the actions for power allocation and
computation resource allocation consecutively. However,
if the agent goes with cloud mode .vcloud

k
D 1/, then it

only performs the power allocation action. By contrast,
if the agent selects local computation mode .vlocal

k
D 1/,

then the agent does not perform any further action, and
the computation process is accomplished by the local
resources. Subsequently, the agent moves to a new state
.stC1/ and calculates the rewards rt from Eq. (23) as
the negative of total system delay. In the replay memory
g, the transition .st ; at ; rt ; stC1/ of each time slot t is
stored as the experience. The DQN trains the network
by randomly sampling this transition as a minibatch
M D 32 and updates the parameter ! of the Q-network
by minimizing the loss function as follows:

L.!/ D Es;a;r;s0
�
.rt C � max

a02A

OQ.stC1; a
0
I O!/�

Q.st ; at I!//
2

�
(24)
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Fig. 2 DRL-based learning process and computation offloading for IoT devices.

where .rt C � max
a02A

OQ.stC1; a
0I O!/ is the optimal target

Q-function.
After a specific time, the agent sets the weights of the

DQN to the target DQN to update the network.

5 Simulation result

In this section, we develop the simulations to evaluate the
performance of the proposed DRL-based computation
offloading and resource allocation approach. We
compare the proposed scheme with three approaches
and provide the detailed breakdown of obtained results.

5.1 Simulation settings

The simulation platform is developed with TensorFlow
1.11.0, Python 3.6, Core i5 @ 1.6 GHz 8 CPU, and
Intel UHD graphics 620. The deployment area is 400 �
400 m2, where 10 F-APs, 5 RRHs, and 30 IoT devices
are incorporated to evaluate the system performance.
The maximum transmission power for each IoT device
is considered to be 18 dBm. We assume that the path loss
model is 128C 37 � log10 d , where d denotes distance,
the noise power spectral density is 40 dBm/Hz, and
the system bandwidth is determined as 10 MHz. To
ensure the QoS of the system, the lower bound of the
SINR is considered 
min. We consider a fully connected
DNN. The NN consists of two hidden layers, one input
layer and an output layer. A total of 64 and 32 neurons
are incorporated for the first and second hidden layers,
respectively. The Rectified Linear unit (ReLu) is used as

the activation function. The simulation parameters are
summarized in Table 1.

5.2 Convergence performance

In this subsection, we present the convergence
performance of learning parameters under the DRL
approach and compare the convergence performance
of the proposed DRL-based computation offloading
and resource allocation scheme with other well-studied
algorithms.

As shown in Fig. 3, with the batch sizeM D 32, DRL
achieves better convergence performance and incurs
lower cost compared with batch sizes 8 and 64. The
reason is that when DRL chooses batch M D 8, the
system needs a long time to achieve good policy and
incurs a high cost. On the contrary, with a large batch
size M D 64, the system calculates the gradient more
accurately, but the learning process may be trapped in the
local optimum and incur higher cost than the batch size
M D 32. Similarly, Fig. 4 exhibits that with the learning
rate of ˛ D 0:01, the system shows early convergence
and incurs the lowest cost. When the learning rate is
too low .˛ D 0:001/, the system undergoes a prolonged
learning process, whereas when the learning rate is too
large .˛ D 0:09/, the result may be trapped in the local
optimum and incur higher cost[9].

Figure 5 depicts the overall loss and convergence
behavior of the DRL algorithm. After approximately
2800 epochs, the DRL scheme achieves minimum
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Algorithm 1 DRL-based algorithm for computation
offloading and resource allocation in F-RANs

1: Initialization:
2: Initialize Q-network Q.s; a/ with random weights !.
3: Construct a target Q-network OQ.s; a/ with weights O!.
4: Initialize the replay memory g with capacity ND .
5: Size of minibatch M .
6: Maximum training episodes Emax.
7: Iteration:
8: for episode1;Emax do
9: Reset simulation parameters for the computation

offloading environment.
10: Set the initial state sss0 D Œm; fl ; hhh

H
k;i ; p

n
k
�.

11: for decision step t D 1 W T � 1 do
12: Generate a random number x between 0 and 1.
13: if x 6 " then
14: Perform a random action at for selecting mode as

vm
k

.
15: if vm

k
DD edge then

16: Take the action pk;l and fl;k based on " for
allocating the power resources and computation resource
consecutively.

17: else if vm
k
DD cloud then

18: Take the action pk;j based on " for allocating
transmitting the power resources

19: else
20: Execute the task with local resources
21: end if
22: else:
23: Perform an optimal action at as at D

arg max
at2A

Q.st ; at I!/

24: Apply the steps from 15 to 21 with optimal
action for mode selection, power allocation and computation
resource allocation [vm

k
; pk ; fl;k]

25: end if
26: Execute action at and evaluate the delay of the system
27: Calculate the reward rt from Eq. (23).
28: Store the reward rt together st , stC1, and at as an

interaction sample .st ; at ; rt ; stC1/ into the replay memory g
29: Randomly sample the minibatch with the size M of

transitions .st ; at ; rt ; stC1/ from the replay memory g
30: Train the Q-network by minibatch gradient descent

on .rt C � max
a02A

OQ.stC1; a
0I O!/ �Q.st ; at I!//

2 with !

31: Periodically update target Q-network with parameter
! to O!

32: end for
33: end for

loss and shows stability. Figure 6 shows that the
proposed approach outperforms the other schemes in
convergence performance, thus ensuring a reduced
complexity of the DRL algorithm. The reason is that

Table 1 Summary of simulation parameters.

Parameter Value
Number of fog access points L 10
Number of remote radio heads J 5
Number of UEs K 30
Noise power (dBm/Hz) �140
Channel bandwidth B (MHz) 10
Pathloss model 128C 37 � log10d

Size of replay memory ND 2000
Learning rate ˛ 0.01
Size of minibatch M 32
Discount factor � 0.9

Fig. 3 Evaluation of cost function with the number of
epochs under different batch sizes.

Fig. 4 Evaluation of cost function with the number of
epochs under different learning rates.

the DRL continuously learns with a DNN and achieves
higher learning efficiency than the other schemes. DRL
can be considered to achieve minimal latency, which is
24% lower than the random scheme and 11% lower than
the Q-learning approach. The random scheme achieves
the least efficiency in convergence performance.
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Fig. 5 Total loss during the training process.

Fig. 6 Evaluation of convergence performance of the
algorithms with number of episodes.

5.3 Performance analysis of QoS, mode selection,
and resource allocation

Figure 7 exposes the effect of different QoS in
minimizing latency. To establish the communication
link between either the UE and F-AP or UE and
RRH, the system must satisfy the threshold 
min. The
horizontal axis shows the maximum transmitting power
for each UE. The highest QoS requirement achieves
the lowest latency because for a high QoS, the system
assigns additional power resources in the communication
mode, thus, increasing the throughput of the network
and immensely minimizing latency. Figure 7 depicts
that with the highest QoS demand of 300 kbps, the
system achieves the lowest delay of approximately 4 ms,
whereas the maximum transmitting power is considered
to be 18 dBm.

In Fig. 8, we evaluate the offloading performance
of 100 computational tasks under different modes. As
shown in Fig. 8, the joint computation offloading scheme

Fig. 7 Evaluation of generated latency under different QoS
requirements.

Fig. 8 Offloading delay versus number of computation tasks
under different execution modes.

achieves the lowest latency because with the extensive
training of the NN, the DQN has learned the optimal
offloading actions and precisely assigned the task to
the respective modes. When the IoT devices execute
all the tasks by themselves, the system generates the
highest delay by comparison. The cloud and edge modes
produce relatively lower delay compared with the local
mode under the same number of computational tasks.

Figure 9 assesses the efficiency of power allocation
under different schemes of minimizing latency. With the
increase in transmitting power from 2 to 18 dBm, the
latency is significantly reduced by the proposed scheme,
which outperforms other approaches. The reason is that
the DRL efficiently learns the policy on the basis of
available resources, channel capacity, and location of the
fog nodes and performs a precise action. Q-learning and
random strategies achieve low efficiency in minimizing
latency, and they generate approximately 31% and 51%
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Fig. 9 Performance evaluation of power allocation under
different schemes.

higher latency compared with the proposed scheme,
respectively.

Figure 10 illustrates the relationship between the
number of computation resources and the offloading
delay. As shown in Fig. 10, the offloading delay keeps
dropping with the increase in the number of computation
resources. The DRL-based distributed computation
of resource allocation scheme obtains high efficiency
in minimizing latency under the same amount of
computation resources. The reason is that the proposed
scheme incorporates the F-APs wisely on the basis of
their location and resource availability. The random
approach causes the highest delay. The Q-learning and
fixed approach nearly achieve similar efficiency.

5.4 Performance evaluation of the proposed
scheme with different benchmarks

We compare the performance of the proposed scheme

Fig. 10 Performance evaluation of the distributed
computation of resource allocation for minimizing latency
under different approache.

with three prominent approaches. The evaluation is
performed under the same number of computation
tasks. Figure 11 shows that the overall offloading
delay of the system increases with the growing number
of computation tasks from 0 to 100. As shown in
Fig. 11, the proposed joint DRL-based computation
offloading and resource allocation scheme outperforms
the other three schemes. The proposed approach gains
approximately 35%–67% lower latency than the other
baselines because of the dynamic learning capacity of
the DQN. Given the revisiting nature of Q-learning[33], it
causes 35% higher latency compared with the proposed
scheme. The fixed and random approach shows low
efficiency in minimizing latency.

Table 2 shows the training time and required epochs
for evaluating the efficiency of the adopted schemes. The
DRL scheme consumes a minimum time of 109.1269 s
and takes the least number of epochs (27 000) to
accomplish the tasks. Q-learning spends more time than
the DRL and takes approximately 29 453 epochs. The
random approach consumes the longest time frame,
which is almost three times larger than the proposed
scheme, whereas the time consumption of the fixed
scheme is nearly double than that of the DRL (i.e.,
231.6821 s).

Fig. 11 Comparison of performance of the proposed scheme
with different baselines.

Table 2 Comparison of performance among different
schemes.

Scheme Number of epochs Time (s)

DRL 27 000 109.1269

Q-learning 29 453 153.1838

Fixed 39 000 231.6821

Random 44 301 286.8108
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6 Conclusion

Efficient computation offloading is a promising approach
to improve the computational capabilities of IoT devices
in F-RANs. In this study, we investigated DRL-based
joint computation offloading and resource allocation
strategies for IoT devices to achieve low latency in F-
RANs. A joint mode selection and resource allocation
problem is formulated as a nonconvex optimization
problem. To solve the problem, a low-complexity
DRL scheme, which utilizes the DNN to accelerate
the learning speed in the system, is proposed. The
DRL can determine the offloading policy efficiently
without any explicit assumption about the operating
environment and wisely allocate the resources in the
network. Furthermore, the distributed computation
resource allocation strategy is applied to enhance the
computational capacity at the edge. Extensive simulation
results demonstrate that the proposed method generates
the best policy and outperforms other methods by
achieving approximately 35%–67% lower latency.
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