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Abstract: The edge caching resource allocation problem in Fog Radio Access Networks (F-RANs) is investigated.

An incentive mechanism is introduced to motivate Content Providers (CPs) to participate in the resource allocation

procedure. We formulate the interaction between the cloud server and the CPs as a Stackelberg game, where the

cloud server sets nonuniform prices for the Fog Access Points (F-APs) while the CPs lease the F-APs for caching

their most popular contents. Then, by exploiting the multiplier penalty function method, we transform the constrained

optimization problem of the cloud server into an equivalent non-constrained one, which is further solved by using the

simplex search method. Moreover, the existence and uniqueness of the Nash Equilibrium (NE) of the Stackelberg

game are analyzed theoretically. Furthermore, we propose a uniform pricing based resource allocation strategy by

eliminating the competition among the CPs, and we also theoretically analyze the factors that affect the uniform

pricing strategy of the cloud server. We also propose a global optimization-based resource allocation strategy

by further eliminating the competition between the cloud server and the CPs. Simulation results are provided for

quantifying the proposed strategies by showing their efficiency in pricing and resource allocation.

Key words: fog radio access networks; edge caching; resource allocation; Stackelberg game; nonuniform pricing;

Nash equilibrium; competition

1 Introduction

Driven by the dramatic growth of intelligent devices
and mobile applications, wireless networks have
been suffering unprecedented data traffic pressure
in recent years. Numerous repetitive downloads and
redundant transmissions occur when vast and various
User Equipments (UEs) request the same contents.
Advanced network architectures, such as Cloud Radio
Access Networks (C-RANs), have been developed to
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relieve the traffic pressure and improve the quality of
service. Centralized cloud caching and computing in
C-RANs can provide reliable and stable service for
UEs. However, ever-increasing mobile data traffic brings
tremendous pressure on C-RANs that have capacity-
limited fronthaul links and centralized baseband unit
pools, which may cause communication interruptions or
traffic congestions especially at peak traffic moments[1].
As a complementary network architecture, Fog Radio
Access Network (F-RAN) has been further developed
and attracted increasing attention[2--7]. In F-RANs, Fog
Access Points (F-APs) equipped with edge caching and
computing resources can effectively accommodate data
traffic pressure by caching popular contents in their
local storages. However, limited edge caching resources
restrict performance improvement. Therefore, efficient
edge caching resource allocation becomes challenging
and indispensable.

Recently, researchers have been paying much attention
to the edge caching resource allocation problem
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from different aspects[8--11]. In Ref. [8], the authors
studied the problem of joint resource allocation and
content caching to improve the quality of service and
relieve backhaul congestion by utilizing radio and
content storage resources. In Ref. [9], the problem of
joint caching, channel assignment, and interference
management was formulated to maximize the system
throughput in coordinated small-cell cellular networks.
In Ref. [10], the resource allocation problem was
formulated to maximize the energy efficiency under
the constraints of transmit power, caching status, and
fronthaul capacity. In Ref. [11], the problems of user
association, caching strategy, and power allocation were
formulated to optimize cross-tier interference. As stated
previously, resources are limited, thereby leading to
competition among the participants in the resource
allocation procedure. However, most of the above works
on resource allocation ignore the competition among the
participants in the resource allocation procedure.

Game theory has the capability to stress the
competition relationship and has been extensively
utilized to solve the competitive resource allocation
problem[12--18]. In Ref. [12], the problem of multi-user
computation offloading for mobile cloud computing
was investigated under a dynamic environment. In Ref.
[13], a distributed iterative power control algorithm
was proposed to handle the power control problem for
interference management. In Ref. [14], the two-tier game
theoretic framework with static and dynamic pricing
models was proposed to allocate spectrum resource
in femtocell networks. In Ref. [15], a cooperative
bargaining game was formulated in cognitive small-
cell networks to solve the joint uplink sub-channel and
power allocation problem. In Ref. [16], the distributed
power and channel allocation problem was formulated in
cognitive femtocell networks by using coalitional game.
In Ref. [17], a Stackelberg game was formulated to
model the interaction between Small-cell Base Station
(SBS) and multiple Content Providers (CPs). In Ref.
[18], a pricing-based resource allocation strategy was
proposed to minimize the transmission latency and
mitigate the redundant transmission in small-cell cellular
networks. However, most of the above works on resource
allocation do not take the spatial distribution of SBSs

into consideration and do not consider the influence of
competition elimination on the corresponding resource
allocation strategies.

Motivated by the aforementioned discussions, we
propose pricing-based edge caching resource allocation
strategies in F-RANs. Our main contributions are
summarized as follows:

(1) We introduce an incentive mechanism to motivate
the CPs to participate in the edge caching resource
allocation procedure. The optimization problems of
the cloud server and the CPs are formulated by
considering the spatial distribution of the F-APs. Then,
the interaction between them is formulated as a
Stackelberg game. The competition among the CPs
is further formulated as a non-cooperative sub-game
because of resource limitations.

(2) We propose the nonuniform pricing based resource
allocation strategy to maximize the profits of the
cloud server and the CPs. The constrained optimization
problem of the cloud server is transformed into
an equivalent non-constrained one by exploiting the
multiplier penalty function method. Furthermore, the
existence and uniqueness of the Nash Equilibrium (NE)
are analyzed theoretically.

(3) We propose the uniform pricing based resource
allocation strategy by eliminating the competition among
the CPs, and we also theoretically analyze the factors that
affect the uniform pricing strategy of the cloud server.
Then, we propose the global optimization-based resource
allocation strategy by further eliminating the competition
between the cloud server and the CPs.

(4) We validate the efficiency of the proposed
three resource allocation strategies through simulations.
The nonuniform pricing based strategy can efficiently
improve the cache hit rate of each CP, whereas
the uniform pricing based strategy can reduce the
computational complexity. In comparison, the global
optimization-based strategy can achieve the largest
average cache hit rate of all CPs.

The rest of this paper is organized as follows. In
Section 2, the system model is briefly described. In
Section 3, the profit functions are modeled and the
Stackelberg game is formulated. The nonuniform pricing
based resource allocation strategy is presented in Section
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4. In Section 5, the uniform pricing-based and global
optimization-based edge caching resource allocation
strategies are presented, respectively. Simulation results
are shown in Section 6, and final conclusions are drawn
in Section 7.

2 System model

As illustrated in Fig. 1, we consider the F-RAN
including one cloud server, multiple F-APs, and N

CPs, which are denoted by N D f1; 2; : : : ; n; : : : ; N g.
CP n owns Cn contents, and the contents owned by
different CPs have different popularity distributions.
UEs make independent requests of the c-th content
with the popularity pn; c owned by CP n. Generally,
the content popularity follows a Zipf distribution[19].
Correspondingly, pn; c can be expressed as follows:

pn; c D
1
ı
cˇn

CnX
cD1

1
.
cˇn

(1)

where ˇn denotes the content preference parameter that
reflects the steepness of the popularity distribution of the
contents owned by CP nwith a positive value. According
to Eq. (1), we can readily establish: pn; 1>pn; 2> � � �>
pn; c> � � �>pn;Cn

.
Assume that F-APs are spatially distributed as a

Homogeneous Poisson Point Process (HPPP) with
intensity �[20, 21], where � denotes the number of F-APs
per unit area. Let �n denote the fraction of the F-APs
leased by CP n from the cloud server. Obviously, we can

establish 0 6 �n 6 1 and
NX
nD0

�n 6 1. The leased F-APs

for CP n are selected with equal probability. Each of the
leased F-APs for CP n can cache at most Qn contents.

Cloud server

...

F-AP

F-AP

F-AP

F-AP

CP 3

CP 1

CP 2

CP N

F-AP

Fig. 1 Illustration of the F-RAN.

Therefore, the distribution of these leased F-APs can be
modeled as thinned HPPP with intensity �n�. Assume
that each F-AP can serve UEs within the region of radius
R. Let Hn denote the probability that any UE is covered
by any F-AP leased by CP n. Then,Hn can be expressed
as follows[22]:

Hn D 1 � exp
�
� �n�R

2
�

(2)

If the c-th content has been cached in the leased F-APs
of CP n, its cache hit rate can be expressed as follows:

Hn; c D pn; c
�
1 � exp

�
� �n�R

2
��

(3)

3 Problem formulation

In this section, we firstly model the profits of the cloud
server and the CPs, respectively. Then, we formulate
the edge caching resource allocation problem as a
Stackelberg game. To motivate the CPs to participate
in the resource allocation procedure, we introduce an
incentive mechanism which is regulated by the pricing
strategy of the cloud server. In other words, the cloud
server can attract the CPs to lease the F-APs by setting
proper prices. Moreover, the NE of the Stackelberg game
is investigated.

3.1 Profit of the cloud server and CPs

For the cloud server, the profit comes from leasing F-
APs to the CPs. Let sn denote the nonuniform price
set by the cloud server for leasing the F-APs to CP
n and define s �

D Œs1; s2; : : : ; sn; : : : ; sN �
T and ��� �

D

Œ�1; �2; : : : ; �n; : : : ; �N �
T. Then, the profit function of

the cloud server can be modeled as follows:

Pc .sss; ���/ D

NX
nD1

�nsn (4)

For each CP, the profit consists of two parts: (1) the gain
brought by the cache hit rate and (2) the cost of leasing
F-APs from the cloud server. To achieve the maximal
cache hit rate, CP n will cache the most popular contents
in its leased F-APs. Therefore, the profit function of CP
n can be modeled as follows:

Pn .sn; �n/ D

QnX
cD1

Hn;c � sn�n (5)

3.2 Formulation of the Stackelberg game

Generally, the Stackelberg game is a strategic game that
consists of a leader and several followers that compete
with each other for certain resources[23]. The leader
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moves firstly, and the followers move subsequently. In
this work, there are two kinds of players, the cloud
server and the CPs, competing for the edge caching
resource. Therefore, we formulate their interaction as
a Stackelberg game, where the cloud server controlling
the F-APs is the leader and the CPs willing to lease the
F-APs are the followers. The CPs strictly compete with
each other in a non-cooperative fashion due to resource
limitation. Therefore, the sub-game of the proposed
Stackelberg game is modeled as a non-cooperative game.
Firstly, the cloud server sets the leasing price vector sss
for the CPs. Then, according to the determinate leasing
price vector sss, the CPs determine the leasing fraction
vector ��� .

3.2.1 Optimization problem of the cloud server

The objective of the cloud server is to maximize its
profit as formulated in Eq. (4). It is obvious that the
leasing prices of the F-APs set by the cloud server
influence the fraction of F-APs that each CP tends to
lease. Correspondingly, the optimization problem of the
cloud server can be formulated as follows:

max
sss
Pc .sss; ���/ ;

s.t. sn > 0;8n 2 N (6)

3.2.2 Optimization problem of the CPs

The objective of each CP is to maximize its profit as
formulated in Eq. (5). For CP n, once the leasing price
of F-APs is determinate, its profit completely depends on
the leasing fraction �n. If CP n leases more F-APs from
the cloud server, it can cache more contents in its leased
F-APs which will increase the cache hit rate and hence
bring more gain. However, the cost increases with the
leasing fraction �n. Correspondingly, the optimization
problem of CP n can be formulated as follows:

max
�n

Pn .sn; �n/ ;

s.t. 0 6 �n 6 1;8n 2 N ; (7)
NX
nD1

�n 6 1

Generally, the optimization problems in Formulas (6)
and (7) formulate a Stackelberg game.

3.3 Nash equilibrium

The objective of the Stackelberg game is to find the NE

point where neither the cloud server nor the CPs have
incentives to deviate[18, 24]. For the proposed Stackelberg
game, the NE is defined below.

Definition 1 Let s� and ���� denote the two solutions
of the optimization problems in Formulas (6) and (7),
respectively. Define s� �

D
�
s�1 ; s

�
2 ; : : : ; s

�
n ; : : : ; s

�
N

�T

and ���� �
D

�
��1 ; �

�
2 ; : : : ; �

�
n ; : : : ; �

�
N

�T. An NE point
represents an equilibrium status that normal solutions
will approach. Then, .s�; ����/ is an NE point for the
proposed Stackelberg game if the following conditions
are satisfied:

Pc .s�; ����/ > Pc .s; ����/ ;
Pn
�
s�n ; �

�
n

�
> Pn

�
s�n ; �n

�
;8n 2 N

(8)

Generally, the NE for a Stackelberg game can be
obtained by finding its sub-game perfect NE. For
the proposed Stackelberg game, its sub-game, which
formulates the competition among the followers, is non-
cooperative, and its NE is defined as the operating point
at which no player can improve its utility by changing
its strategy unilaterally[18]. Therefore, we can define
the NE of the proposed Stackelberg game as shown in
Formula (8).

4 Nonuniform pricing based edge caching
resource allocation strategy

In this section, we will propose a nonuniform pricing
based edge caching resource allocation strategy to solve
the above formulated optimization problems. Since the
proposed Stackelberg game is a two-layer game, we
propose to exploit the backward induction method to
obtain the NE[25]. Correspondingly, the optimal solution
of the sub-game should be obtained at first, i.e., the
leasing fraction of the F-APs for each CP should be
obtained firstly by solving the optimization problem
in Formula (7). Since there is only one leader in the
proposed Stackelberg game, the nonuniform pricing of
the cloud server can be obtained sequentially by solving
the optimization problem in Formula (6).

4.1 Leasing fractions of the F-APs

It can be readily verified that the objective function
in Formula (7) is strictly concave with respect to �n.
Therefore, with the given leasing price vector s, the
optimal leasing fraction of the F-APs for CP n can be
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readily obtained as follows:

��n D
�
.ln.Fn=sn// �R2 �  �R2

�C
(9)

where Fn D
QnX
cD1

�
pn; c �R

2
�

and .�/C �
D max .0; �/.

It can be seen from Eq. (9) that if the leasing price sn
is not lower than Fn, i.e., sn > Fn, then ��n will equal
zero, which means that CP n will opt out of leasing any
F-AP from the cloud server. In other words, CP n will
not participate in the game due to the higher leasing
price. Then, the cloud server will decrease its leasing
price sn to motivate CP n to participate in the game
again. On the other hand, if the leasing price sn is lower
than Fnexp

�
� �n�R

2
�
, i.e., sn < Fnexp

�
� �n�R

2
�
,

then ��n will equal one, which means each CP is willing
to lease all F-APs. Correspondingly, the cloud server
will increase its leasing price sn properly to gain a larger
profit.

4.2 Nonuniform pricing of the cloud server

Substitute the optimal solution in Eq. (9) into Eq. (4).
After some mathematical manipulations, the profit
function of the cloud server can be reexpressed as
follows:

Pc .s/ D
NX
nD1

1

 �R2
�n .sn lnFn � sn ln sn/ (10)

where �n denotes the indicator with �n D 1 if sn 6 Fn
and �n D 0 otherwise. The profit function in Eq. (10)
is non-convex with respect to sn due to �n. However,
with a given indicator �n, it can be readily verified that
the above function is convex. At the beginning of the
proposed game, all CPs will participate in the resource
allocation procedure. Therefore, in the following, we
commence that �n D 1; 8n 2 N [18]. To further simplify
the optimization problem, we define QPc .s/ as follows:

QPc .s/ D
NX
nD1

.�sn lnFn C sn ln sn/ (11)

By considering the constraint
NX
nD1

��n 6 1, the

optimization problem in Formula (6) can be re-expressed
in the following equivalent form:

min
s
QPc .s/ ;

s.t.
NY
nD1

sn > F (12)

where F D e� �R
2

NY
nD1

Fn.

The constrained optimization problem in Formula (12)
involves two logarithmic functions and one constraint in
the form of continued product, which requires a great
computational burden to solve by using the traditional
sub-gradient method[26]. In general, the exterior penalty
function method can be used to eliminate the constraint
in a convex optimization problem[27]. However, the
solution obtained by solving the transformed non-
constrained optimization problem may not satisfy the
given constraint. Furthermore, as the penalty factor
approaches to infinity, the corresponding Hessian
matrix becomes infinite, which will bring a heavy
computation burden. Therefore, we propose to transform
the constrained optimization problem in Formula (12)
into a non-constrained one by using the multiplier
penalty function method, which can eliminate the
constraint with a fixed penalty factor[28].

4.2.1 Elimination of the constraint

Firstly, variable y is introduced to transform the
inequality constraint into the equality one. Then, the
optimization problem in Formula (12) can be expressed
in the following equivalent form:

min
s
QPc .s/ ;

s:t:

 
NY
nD1

sn � F

!
� y2 D 0 (13)

Let � .s; w; �; y/ denote the augmented Lagrangian
function of the above optimization problem, where w
and � denote the Lagrangian multiplier and the penalty
factor, respectively. Then, it can be expressed as follows:

� .s; w; �; y/ D
NX
nD1

.�sn lnFn C sn ln sn/�

w

 
NY
nD1

sn�F �y
2

!
C
1

2
�

 
NY
nD1

sn�F �y
2

!2
(14)

By applying the method of completing the square[28], y2

can be calculated as follows:

y2 D

 
NY
nD1

sn � F �
w

�

!C
(15)

Substitute Eq. (15) into the augmented Lagrangian
function in Eq. (14). Then, we have
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� .s; w; �/ D
NX
nD1

.�sn lnFn C sn ln sn/C

1

2�

8̂<̂
:
24 w � � NY

nD1

sn C �F

!C352�w2
9>=>; (16)

Correspondingly, the constrained optimization problem
in Formula (13) can be transformed into the non-
constrained one as follows:

min� .s; w; �/ (17)

where

� .s; w; �/D

8̂̂̂̂
<̂
ˆ̂̂:
g1 .s; w; �/ ;

NY
nD1

sn�F >w=� I

g2 .s; w; �/ ;
NY
nD1

sn�F <w=�

(18)

g1 .sss; w; �/D

NX
nD1

.�sn lnFnCsn ln sn/�w2
ı
2� (19)

g2 .sss; w; �/ D

NX
nD1

.�sn lnFn C sn ln sn/C

1

2�

24 w � � NY
nD1

snC �F

!2
�w2

35 (20)

Then, we have the following theorem.
Theorem 1 The non-constrained optimization

problem in Formula (17) is equivalent to the constrained
one in Formula (12).

Proof The optimization problems in Formulas
(12) and (13) are obviously equivalent. According to
Ref. [29], the optimal solution of the non-constrained
optimization problem in Formula (17) is equivalent to the
locally optimal solution of the constrained optimization
problem in Formula (12). Based on the definition of
QPc .sss/ in Eq. (11), we can readily establish

@2 QPc .sss/

.@sn/
2
D

1

sn
> 0;8n 2 N (21)

@2 QPc .sss/

@sn@sQn
D 0;8n; Qn 2 N ; n ¤ Qn (22)

Therefore, the Hessian matrix of QPc .sss/ is positive
definite and QPc .sss/ is strictly convex. Correspondingly,
the locally optimal solution of the constrained
optimization problem in Formula (12) is its globally
optimal solution[28]. �

4.2.2 Nonuniform pricing of the cloud server

To obtain the optimal solution of the optimization
problem in Formula (17), the Lagrange multiplier w
needs to be updated iteratively to revise the augmented
Lagrangian function[28]. Let w.t/ denote the Lagrange
multiplier for the t-th iteration. According to the
multiplier penalty function method[28], the iterative
relationship between w.tC1/ and w.t/ can be established
as follows:

w.tC1/ D

"
w.t/ � �

 
NY
nD1

sn � F

!#C
(23)

Since the penalty factor � is fixed in the multiplier
penalty function method, sss is the only variable in
both g1 .sss; w; �/ and g2 .sss; w; �/ after the Lagrange
multiplier w is updated in each iteration. For
g1 .sss; w; �/, it is a convex function with respect to sn.
Consequently, the optimal solution can be obtained by
taking the first derivative with respect to sn. Let the
first derivative equal zero. Then, sn can be obtained as
follows:

sn D Fn=e; 8n 2 N (24)

where e is the base of a natural logarithm. For
g2 .sss; w; �/, we propose to use the simplex search
method, which can solve the non-constrained
optimization problem without derivation and with
low computational complexity[28]. The details of the
nonuniform pricing procedure of the cloud server are
presented in Algorithm 1.

Algorithm 1 Nonuniform pricing of the cloud server
1: procedure NONUNIFORM PRICINGNonuniform Pricing()s
2: Initialization: ", � D ", � , t D 0, w.t/.
3: while � > " do

4: if
NQ

nD1

sn � F > w.t/
ı
� , then

5: Update sn according to Eq. (24);
6: else
7: Update sn via the simplex search method;
8: end if
9: Update w.tC1/ according to Eq. (23);

10: � D
ˇ̌
w.tC1/ � w.t/

ˇ̌
;

11: t  t C 1.
12: end while
13: end procedure
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4.3 Existence and uniqueness of the NE

NE offers a predictable and stable outcome for the
Stackelberg game. However, there may be several NEs
in one game. For the proposed Stackelberg game, we
have the following theorem.

Theorem 2 There exists one and only one NE point
for the proposed Stackelberg game.

Proof As stated previously, we propose to use the
backward induction method to obtain the NE. Therefore,
we need to prove that there exists only one NE for the
non-cooperative sub-game at first and then verify the
only NE of the proposed Stackelberg game.

According to Ref. [30], for the non-cooperative sub-
game, the NE exists if the strategy space of each
player is a non-empty and closed-bounded set in the
Euclidean space. Note that the profit functionPn .sn; �n/
for CP n is continuous and convex with respect to
�n. Correspondingly, the strategy space of each CP
is a non-empty and closed-bounded convex set in the
Euclidean space. Therefore, the existence of the NE
in the sub-game can be proved. The Hessian matrix
of Pn .sn; �n/ can be easily verified to be negative
definite. Correspondingly, the profit function for each
CP is strictly concave, and the optimization problem in
Formula (7) has a unique optimal solution. Therefore,
the uniqueness of the NE for the sub-game can then be
proved.

There is only one leader in the proposed Stackelberg
game, and the profit function of the leader is convex as
stated previously, which means that the optimal solution
of the optimization problem in Formula (6) exists
uniquely. Consequently, the existence and uniqueness
of the NE for the proposed Stackelberg game can be
proved. �

5 Uniform pricing based and global
optimization based edge caching resource
allocation strategies

In this section, we propose two other edge caching
resource allocation strategies. To eliminate the
competition among the CPs, we propose a uniform
pricing based resource allocation strategy. To further
eliminate the interaction between the cloud server
and the CPs, we propose a global optimization-based

resource allocation strategy.

5.1 Uniform pricing based strategy

For the proposed nonuniform pricing based edge caching
resource allocation strategy, the competition among
the CPs is formulated as a non-cooperative game
due to resource limitations. However, the competition
will make the edge caching resources concentrate on
a few CPs that own more popular contents due to
the unbalanced content popularity distributions among
different CPs.

To solve the above issue, we propose the uniform
pricing based strategy to eliminate the competition
among the CPs by setting the same leasing price for
the F-APs, i.e., s D s1 D s2 D � � � D sN . According to
Eq. (9), the leasing fraction �n for CP n can be expressed
as follows:

�n D

�
ln
�
Fn

s

��
 �R2

�C
(25)

Substitute Eq. (25) into Eq. (4). Then, the profit function
of the cloud server can be reexpressed as follows:

Pc .s/ D s

 
NX
nD1

lnFn �N ln s

!
(26)

Taking the constraint
NX
nD1

�n 6 1 into account, the

optimization problem of the cloud server in Formula
(6) can be reexpressed as follows:

max
s
Pc .s/;

s.t. s > exp

" 
NX
nD1

lnFn �  �R2
!,

N

#
(27)

After some mathematical manipulations, the uniform
pricing strategy of the cloud server can be obtained as
follows:

sDexp

" 
NX
nD1

lnFn�min
˚
N; �R2

	!,
N

#
(28)

It can be seen from Eq. (28) that the pricing strategy
of the cloud server has a close relationship with Fn. As
shown previously, there is a positive correlation between
Fn and the storage capacityQn of the F-APs. Therefore,
the storage capacity of the F-APs is one factor that
affects the uniform pricing strategy of the cloud server.
When the F-APs have larger storage capacity, the cloud
server will increase the leasing price. The reason is that
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the F-APs with larger storage capacity can cache more
contents. Therefore, the CPs can obtain a higher cache
hit rate when they lease the same fraction of the F-APs,
which will motivate them to lease more F-APs. The
competition among the CPs will become intensive and
the cloud server will then benefit from increasing the
leasing price of the F-APs.

It can also be seen from Eq. (28) that the number
of the participant CPs N is another factor that affects
the uniform pricing strategy of the cloud server.
Correspondingly, we have the following theorem.

Theorem 3 If a new CP, which owns more popular
contents than any other CP in the current game,
participates in the resource allocation procedure, the
uniform price set by the cloud server will increase.

Proof According to Eq. (28), we consider the
following two cases: N <  �R2 and N >  �R2. In
each case, we will calculate the price increment brought
by the new CP at first. Then, we will show how this
new CP affects the uniform pricing strategy of the cloud
server.

(1) If N <  �R2, after some mathematical
manipulations, the uniform price can be reexpressed as
follows:

s1.N / D exp

0@ 1

N

NX
nD1

ln
QnX
cD1

pn;c C ln
�
 �R2

�
� 1

1A
(29)

Let h1 .N / D lnŒs1.N /�. Then, h1.N / can be
expressed as follows:

h1.N / D
1

N

NX
nD1

ln
QnX
cD1

pn;c C ln. �R2/ � 1 (30)

Let �1.N / D h1.N C 1/ � h1.N /, which denotes the
increment when the number of CPs increases from N to
N C 1. Then, we have

�1 .N / D

N ln
QnX
cD1

pNC1;c �

NX
nD1

ln
QnX
cD1

pn;c

N .N C 1/
D

N ln

0@QnX
cD1

pNC1;c

1A � ln

0@ NY
nD1

QnX
cD1

pn;c

1A
N .N C 1/

(31)

Let p .n/ D
QnX
cD1

pn;c and pmax
N D max fp .n/gNnD1.

Then, we have

�1 .N / D
1

N .N C 1/
ln
Œp .N C 1/�N

NY
nD1

p .n/

>

1

N C 1
ln
p .N C 1/

pmax
N

(32)

It can be seen from Formula (32) that if the new
participant CP owns more popular contents than any
other CP in the current game, i.e., p .N C 1/ > pmax

N ,
the increment �1 .N / will be larger than zero. The
uniform price set by the cloud server will then increase.

(2) If N >  �R2, the uniform price can be
re-expressed as follows:

s2.N / D exp

24 1
N

0@ NX
nD1

ln
QnX
cD1

pn;c �  �R
2

1AC
NX
nD1

ln
�
 �R2

�#
(33)

Let h2 .N / D lnŒs2.N /�. Then, h2.N / can be expressed
as follows:

h2.N / D
1

N

0@ NX
nD1

ln
QnX
cD1

pn;c �  �R
2

1A C ln
�
 �R2

�
(34)

Let �2.N / D h2.N C 1/ � h2.N /, which denotes the
increment when the number of CPs increases from N to
N C 1. Then, we have

�2 .N / D

N ln
QnX
cD1

pNC1; c �

NX
nD1

ln
QnX
cD1

pn; c C  �R
2

N .N C 1/
D

�1 .N /C
1

N .N C 1/
 �R2 (35)

It can be seen from Eq. (35) that the increment �2 .N /
is larger than �1 .N /. Therefore, the uniform price set
by the cloud server will increase if the new participant
CP owns more popular contents than any other CP in the
current game. �

5.2 Global optimization-based strategy

In this section, we propose a global optimization-based
edge caching resource allocation strategy, where the
competition of the players is eliminated completely.

Let Pg .���/ denote the global profit, including the
profits of the cloud server and all CPs. Then, we have
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Pg .���/ D Pc .���/C

NX
nD1

Pn .���/ D

NX
nD1

QnX
cD1

pn; c
�
1 � exp

�
� ��nR

2
��

(36)

Correspondingly, the global optimization problem can
be formulated as follows:

max
���
Pg .���/ ;

s.t. 0 6 �n 6 1;8n 2 N ; (37)
NX
nD1

�n 6 1

It can be seen from Formula (37) that the global
optimization problem is a typical water-filling one.
Obviously, the objective function in Formula (37) is
convex. The Lagrangian multiplier � is introduced as
follows:

L .���; �/ D

NX
nD1

QnX
cD1

pn; c
�
1 � exp

�
� ��nR

2
��
�

�

 
NX
nD1

�n � 1

!
(38)

Then, the corresponding optimization problem can be
solved by using the sub-gradient method, which is
generally used to solve the water-filling problem[31].
Let �.t/ denote the Lagrangian multiplier for the t-th
iteration, the iterative relationship can be established as
follows:

�.tC1/ D

"
�.t/ C

 
NX
nD1

�n � 1

!#C
(39)

Based on the Karush-Kuhn-Tucker (KKT)
condition[32, 33], ��� can be readily obtained by setting
@L .�; �/=@�n D 0. Correspondingly, we have

� .tC1/n D

24ln

0@ �r2 QnX
cD1

pn; c

,
�.tC1/

1A, �r2

35C
(40)

The details of the proposed global optimization-based
strategy are presented in Algorithm 2.

5.3 Comparison of proposed strategies

For the nonuniform pricing based resource allocation
strategy, the cloud server gains the largest profit. The
reason is that the selfishness of the cloud server and the
CPs is considered, and the interaction between them

Algorithm 2 Proposed global optimization-based strategy
1: procedure (��� )
2: Initialization: ", � D ", t D 0, �.t/, � .t/

n , 8n 2 N .
3: while � > " do
4: Update �.tC1/ according to Eq. (39);
5: Update � .tC1/

n according to Eq. (40);
6: � D

ˇ̌
�.tC1/ � �.t/

ˇ̌
;

7: t  t C 1.
8: end while
9: end procedure

is formulated as a Stackelberg game where the cloud
server has the first-mover advantage. For the uniform
pricing based resource allocation strategy, it has the
lowest computational complexity due to the closed-
form solution. However, the profit of the cloud server
is reduced due to the elimination of competition among
the CPs. For the global optimization-based resource
allocation strategy, it achieves the largest average cache
hit rate of the CPs. The reason is that the competition
among the cloud server and the CPs is eliminated
completely, which means that the CPs can cache contents
in the storages of the F-APs without paying the cloud
server.

6 Simulation results

In this section, we evaluate the efficiency of the proposed
three edge caching resource allocation strategies, namely,
Nonuniform Pricing, Uniform Pricing, and Global
Optimization, which are referred to as NUP, UP, and
GO, respectively. For comparison, the edge caching
resource allocation strategy in Ref. [18] is used as the
baseline. The system parameters are set as follows:
The number of CPs N D 4, the content preference
parameters of the CPs ˇ1 D 1:6, ˇ2 D 1:2, ˇ3 D 0:8,
ˇ4 D 0:4, the number of contents owned by the CPs
C D C1 D C2 D C3 D C4 D 5000, and the serving
radius of the F-APs R D 500m.

In Fig. 2, we show the cache hit rate of the CPs vs.
number of iterations for NUP and the baseline. It can
be observed that the cache hit rate of NUP is apparently
superior to that of the baseline. The reason is that the
CPs in the latter strategy cache the contents with equal
probability, whereas the CPs in our proposed strategy
cache the contents by considering the content popularity.
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Fig. 2 Cache hit rate of the CPs vs. number of iterations for
NUP and the baseline.

In Fig. 3, we show the leasing fraction of the F-APs
for the CPs vs. the number of iterations for NUP. NUP
can converge to a stable state quickly. Moreover, the
CP with a larger content preference parameter tends to
lease more F-APs. A larger content preference parameter
means that the contents owned by the corresponding CP
are more popular. Therefore, it can bring a larger cache
hit rate and then increase the profit by leasing the F-APs
to the CP that owns more popular contents.

In Fig. 4, we show the profit of the cloud server vs.
storage capacity of the F-APs Q for NUP and UP. It can
be observed that the profit of the cloud server in NUP
is always higher. The reason is that the cloud server
can benefit from the competition among the CPs. The
profit of the cloud server increases with both Q and N ,
which is consistent with our analytical results presented
in Section 5.2.
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Fig. 3 Leasing fraction of the F-APs for the CPs vs. number
of iterations for NUP.
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Fig. 4 Profit of the cloud server vs. storage capacity of the
F-APs Q for NUP and UP.

In Fig. 5, we show the leasing fractions of the F-APs
for the CPs vs. the storage capacity of the F-APs Q for
UP. It can be observed the CP with a larger content
preference parameter tends to lease more F-APs. It
can also be observed that the gap between the leasing
fractions of different CPs decreases with the increase of
Q. The reason is that the edge caching resource becomes
more attractive to the CPs due to the increasedQ, which
motivates the CPs to increase their leasing fractions of
the F-APs especially for the CP that leases fewer F-APs
initially.

In Fig. 6, we show the leasing fraction of the F-APs
for the CPs vs. number of iterations for GO. It can be
observed that GO converges quickly. The reason is that
the strategy uses the sub-gradient method, which can
solve the water-filling problem with fast convergence
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A
Ps

Storage capacity of the F-APs

Fig. 5 Leasing fraction of the F-APs for the CPs vs. storage
capacity of the F-APs Q for UP.
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Fig. 6 Leasing fraction of the F-APs for the CPs vs. number
of iterations for GO.

speed.
In Fig. 7, we show the average cache hit rate of the

CPs vs. storage capacity of the F-APs for three proposed
strategies. It can be observed that the average cache hit
rate of the CPs gradually increases with the competition
elimination from NUP to GO, which is consistent with
the analysis presented in Section 5.3.

7 Conclusion

In this paper, we have proposed three edge caching
resource allocation strategies for F-RANs. Firstly, we
have formulated a Stackelberg game via the introduced
incentive mechanism and proposed the nonuniform
pricing based resource allocation strategy to maximize
the profits of the cloud server and the CPs by using the
multiplier penalty function method. Secondly, we have
proposed the uniform pricing based resource allocation

Storage capacity of the F-APs
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Fig. 7 Average cache hit rate of the CPs vs. storage capacity
of the F-APs Q for three proposed strategies.

strategy by eliminating the competition among the
CPs. Thirdly, we have proposed the global optimization-
based resource allocation strategy by further eliminating
the competition between the cloud server and the CPs.
Simulation results have shown that the nonuniform
pricing based strategy has a larger cache hit rate
compared with the baseline, and has brought the
cloud server more profits than the uniform pricing-
based strategy. However, the latter strategy has lower
computational complexity due to the closed-form
solution. Besides, the global optimization-based strategy
has achieved the largest average cache hit rate due to the
complete elimination of competition among the cloud
server and the CPs.
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