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Abstract: In  this  paper,  we  propose  an  asymmetric  encrypted  end-to-end  communication  system  based  on

convolutional neural networks to solve the problem of secure transmission in the end-to-end wireless communication

system.  The  system  generates  a  key  generator  through  a  convolutional  neural  network  as  a  bridge.  The  private  and

public  keys  establish  a  key  pair  relationship  of  arbitrary  length  sequence  information.  The  transmitter  and  receiver

consist of autoencoders based on convolutional neural networks. For data confidentiality requirements, we design the

loss function of the end-to-end communication model based on a convolutional neural network. We also design bugs

based on different predictions about the information the system eavesdropper has.  Simulation results show that the

system performs well on additive Gaussian white noise and Rayleigh fading channels. A legitimate party can establish a

secure transmission under a designed communication system; an illegal eavesdropper without a key cannot accurately

decode it.

Key  words:   end-to-end  communication  system; convolutional  neural  network; asymmetric  encryption; loss  function;

physical layer security

1    Introduction

With  the  continuous  progress  of  science  and
technology,  wireless  communication  technology  has
also  experienced  rapid  development,  especially  the
application  of  mobile  communication  technology
represented  by  5G,  which  marks  an  unprecedented
change  in  the  field  of  information  dissemination[1, 2].
With  the  continuous  improvement  of  living  standards,
people  will  have  higher  and  higher  requirements  for
wireless  communication,  which  makes  the  security  of
wireless  communication  systems  a  very  challenging
task.

The  communication  system  divides  the  transmitter
and receiver into several submodules, each independent
of  the  others  and  each  with  a  separate  objective
function. The advantage of this design approach is that

each component can be optimized separately, resulting
in  today’s  reliable  modular  communication  systems[3].
With  the  emergence  of  deep  learning  concepts,  deep
neural networks have started to be applied by research
workers in wireless communications for physical layer
design,  including  channel  estimation[4],  signal
detection[5],  feedback  and  reconstruction  of  channel
state  information[6],  channel  coding  and  decoding[7],
and  end-to-end  communication  systems,  and  some
results  can  meet  or  even  surpass  the  performance  of
traditional communication algorithms.

Unlike  traditional  communication  systems,  deep
learning based end-to-end communication goes back to
the essence of communication: transferring information
from  one  end  to  the  other.  During  the  design  of  the
end-to-end  communication  system,  each  module  will
no  longer  be  designed  and  tuned  separately.  Instead,
the  communication  system  is  considered  as  a  whole,
and  the  sender  and  receiver  are  jointly  trained  to
optimize  the  system’s  performance  as  a  whole,  which
is  a  new  communication  system  optimization  idea
different from the modular design[8–13].  In Ref. [14], it
was  first  proposed  to  use  the  neural  network  in  deep
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learning  to  construct  an  end-to-end  communication
system.  The  author  can  obtain  a  higher  performance
limit  by  training  the  communication  system  based  on
the autoencoder (AE) through end-to-end learning. But
for  communication  systems,  it  is  not  enough  to
guarantee  their  reliability  and  effectiveness;  if  the
security of their communication cannot be guaranteed,
then  the  whole  communication  process  may  be
meaningless[15].

Many  researchers  and  scholars  have  explored  and
established appropriate security strategies to ensure the
successful operation of communication systems. On the
one hand, the physical layer security of communication
uses  the  randomness  of  the  transmission  medium  to
achieve  secure  transmission  and  secure  authentication
during communication,  i.e.,  its  security  is  independent
of  the  computing  resources  of  the  illegals[16–18].
Another  aspect  of  the  algorithm for  secure  encryption
based  on  the  physical  layer  is  based  on  the
characteristics  of  the  wireless  propagation  channel  or
the  characteristics  of  the  transceiver.  The  common
denominator of these characteristics is that they have a
certain  degree  of  randomness  and  independence.
However,  the  encryption  algorithm  requires  the
emergence of quantum computers with supercomputing
power  whose  security  can  be  guaranteed[19, 20].  Also,
the  application  of  security  mechanisms  for  protecting
wireless  communication  systems  through  combining
neural  networks  and  cryptography  continues  to  rise.
Reference  [21]  proposes  a  symmetric  cryptographic
design  method  for  neural  networks,  and  the  high-
performance  data  encryption  method  is  a  new attempt
to  apply  the  parallel  processing  power  of  neural
networks  to  cryptography.  The  authors  of  Ref.  [22]
demonstrated  that  neural  networks  could  learn  how to
perform various forms of encryption and decryption to
protect information from other neural networks without
the need to prescribe specific encryption algorithms to
these neural networks. The authors of Ref. [23] studied
the  endogenous  security  of  end-to-end  learning
communication, redesigned the loss function of a deep
learning communication model based on autoencoders,
and  proposed  the  use  of  noise-reducing  autoencoders
for  authentication,  a  new  deep  learning  approach  to

reconstruct  the  physical  layer  security  framework  for
wireless communication. Reference [24] proposes end-
to-end  learning  of  a  finite-length  code  for  Gaussian
eavesdropping  channels.  Communication  security  is
measured  based  on  the  mutual  information  between
messages  and  the  eavesdropper  Eve’s  observations
using mutual information neural estimation (MINE). In
Ref.  [25],  authors  proposed  to  mention  a  symmetric
encrypted end-to-end communication system based on
deep  convolutional  generative  adversarial  networks  to
solve  the  security  problem  of  transmission  in  end-to-
end  based  wireless  communication  systems.
However,  it  is  difficult  for  key  resource  management.
At  the  same  time,  the  information  transmitted
in  the  communication  system,  secret  documents  make
up  a  large  part  of  it.  Attacks  and  theft  by  illegal
users of communications can be of great benefit  when
the  communicator  does  not  take  appropriate
measures[26, 27].

So  far,  few  studies  have  paid  attention  to  wireless
communication  system  encryption  security  based  on
end-to-end  learning.  Security  is  an  important
performance  evaluation  index  of  wireless
communication  systems.  Whether  the  information
transmission  of  the  communication  system  can  get
enough security protection is an essential condition for
the  existence  and  application  of  the  communication
system.  The  research  in  this  thesis  focuses  on
combining  end-to-end  communication  systems  with
cryptography  to  achieve  wireless  communication
security.

In  this  thesis,  we  construct  a  convolutional  neural
network (CNN)-based key generator,  combine the key
generator  with  an  AE  network  based  on  CNNs,  and
design  a  CNNs-based  end-to-end  asymmetric
encrypted  communication  system  (CAE-E2E).  The
system  uses  CNNs  to  complete  the  entire
communication  process,  and  the  specific  contributions
are as follows:

(1)  To alleviate  the  critical  dimensionality  nuisance,
CNNs  are  used  as  key  generators.  The “black  box”
nature of the neural network is combined with the key
pair  to  create  an  imaging  relationship  to  improve
further the stability and flexibility of the generated key
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pair.
(2) Based on exploring the security of the end-to-end

encryption  system,  the  loss  function  of  the  end-to-end
encryption  system  based  on  CNNs  is  designed  to
improve  further  the  endogenous  safety  of  the  signal
transmitted by the transmitter in the system.

(3)  The  carefully  designed  CNNs-based  end-to-end
asymmetric  encryption  system  for  the  eavesdropping
problem  in  wireless  communication  systems  further
optimizes the information encryption key management.
Communication  system  simulation  experiments  on
additive  white  Gaussian  noise  channel  (AWGN)  and
Rayleigh  channel.  Encrypted  systems  have  bit  error
rate  (BER)  performance  similar  to  that  of  traditional
communication  systems.  The  proposed  CAE-E2E
system  has  superior  performance  in  terms  of  anti-
eavesdropping  security  compared  with  the  symmetric
encrypted end-to-end communication system (SE-E2E)
with randomly generated keys.

2    Basic theory
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Artificial  neural  networks  (ANN)  model  the
relationship  between  a  set  of  input  information  and  a
collection of output information, using models derived
from  the  human  brain’s  understanding  of  how  stimuli
from sensory inputs are responded to. The neuron is the
most  basic  unit  of  a  neural  network.  In  the  neural
network  model,  after  the  input  signal  and
parameter  are  passed  into  the  neuron,  each  input
signal  corresponds  to  the  weight  parameter

,  and  then  linearly  combined  with  the
model  parameters  in  the  neuron,  and  then  output
through the activation function ( ) to become the next
input  of  the layer neuron.  Different  connection
methods  and  different  parameter  settings  of  neurons
constitute  various  neural  networks.  The  neuron  model
is shown in Fig. 1.

With the booming field of information security, data
in transit is prone to severe security-level issues such as
leakage,  tampering,  and  repudiation.  The  purpose  of
information  encryption  research  is  to  ensure  the  need
for data confidentiality. With the development of deep
learning  and  cryptography,  intelligent  cryptography
will  be  the  future  trend  of  cryptographic

communication. Diffie and Hellman[28] first introduced
the  idea  of  the  public-key  cryptosystem,  which  is
mainly  used  to  solve  the  symmetric  cryptosystem key
distribution  and  management  problems.  The  most
crucial feature of asymmetric cryptosystems is that the
encryption  and  decryption  keys  differ.  The  key  in
asymmetric  encryption  consists  of  a  public  key  and  a
private  key  pair,  and  the  two keys  in  the  critical  team
have  a  very  close  relationship  (mathematical
relationship).

The  convolutional  neural  network  is  an  input-to-
output  mapping,  which  can  learn  many  mapping
relationships between input and output. The multi-level
structure  realizes  the  dimensionality  reduction  of  the
data,  combining  low-level  local  features  into  higher-
level  features.  By  utilizing  convolutional  and  pooling
layers  to  process  the  input  data,  CNNs  can  learn
complex  features  from  the  input.  These  properties  are
precisely what are needed to generate high-quality key
pairs. The security of the key depends on the difficulty
of  the  reverse  derivation  of  the  CNNs  model.  The
generation  of  the  seed  private  key  is  omitted,  and  the
CNNs are used as the key generator to establish the key
pair  relationship  (private  key  and  public  key)  of
sequence information of any length.

As shown in Fig. 2, the sender encrypts the message
with  the  public  key,  and  the  receiver  decrypts  the
ciphertext  with  the  private  key.  The  decryption  key
must  never  be  made  public,  and  legitimate  recipients
can  only  use  the  private  key.  During  the  encryption
process,  there  is  no  need  to  distribute  the  key  for
decryption to the receiver, thus solving the problem of
information  public  transmission  and  key  distribution.
In an asymmetric system, the private key generates the
public  key  according  to  specific  rules,  and  the
mathematically complex problem of reversely deriving
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Fig. 1    Neuron model.
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the  private  key  from  the  public  key  represents  the
algorithm’s  security.  Generally  speaking,  deriving  the
private  key  from  the  public  key  consumes  a  large
amount  of  computing  resources,  which  is  not  feasible
under  the  current  computing  background,  thereby
ensuring data security.

3    End-to-end  learning  confidential
communication mechanism

3.1    Asymmetric encrypted communication model

Wireless  communication  networks  mainly  use

protection  mechanisms  based  on  symmetric  and
asymmetric encryption. An asymmetric encrypted end-
to-end  communication  system  based  on  neural
networks  is  proposed  to  improve  the  transmission
security  of  end-to-end  communication  systems  (see
Fig. 3).

The model is based on the TensorFlow deep learning
framework  to  build  an  end-to-end  communication
system  based  on  CNNs.  CNNs  are  used  instead  of
senders,  receivers,  and eavesdroppers.  The trained key
generator  is  combined  with  the  AE  network  based  on
CNNs,  and  the  key  is  shared  with  the  transmitter  and

 

Data user Data sharer

Decrypt the ciphertext C
using the private key pri

Use pub to encrypt the plaintext
data to get the ciphertext C

Ciphertext C

Data access requests and pub

Generate public-private key pair (pub, pri), public key

 
Fig. 2    Asymmetric encryption of data.
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Fig. 3    Asymmetric encrypted communication model.
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receiver (the private key holder is the receiver, and the
public key is generated by the key generator and sent to
the transmitter).

k
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Input the binary code element private key  (omitting
the generation of the seed key) to the key generator to
generate  the  public  key .  The  original  transmission
message  is  a  randomly generated  binary  code word.
The  message  and  the  public  key  pass  through  the
neural  network  encoder  corresponding  to  the  image
function  conforming  to  the  transmission
condition  of  the  transmit  signal .  occupies  n
channel  time  slots.  The  power  normalization  layer  at
the  transmitter  side  imposes  a  power  constraint  on .
The  transmit  signal  passes  through  the  channel
described  by  the  conditional  probability  density
function .  indicates the received signal. An
additive  noise  layer  with  a  fixed  variance

 represents  the  channel.  The  noise  is
denoted by , and the received signal is . The
received signal  works in the same way as . 
indicates  the  code  rate,  and  represents  the
energy  per  bit  ratio  to  the  noise  power  spectral
density . The receiver connects the received signal

 with the private key  and then performs decryption
and decoding operations. Optimization is performed by
end-to-end  reconstruction  to  minimize  the  error
between  the  reconstructed  information  and  the
transmitted initial information .

3.2    Loss function design of the encryption system

The  secure  transmission  of  the  end-to-end
communication  system is  composed  entirely  of  neural
networks,  and  the  parameters  in  the  neural  networks
are  wholly  obtained  by  end-to-end  training.  This
system neural  network parameter optimization scheme
uses  gradient  backpropagation  to  adjust  the  model’s
parameters in the negative direction of the gradient. In
order to be able to obtain the angles of each parameter
in  the  model,  the  model’s  loss  function  needs  to  be
constructed  first,  and  the  upper  limit  of  the  model’s
performance  is  established  by  the  gradients  calculated
from  the  loss  function  of  the  model.  Therefore,  the
model  can  be  adapted  to  learn  specific  features  by
adjusting  the  learning  objectives  and  enabling  it  to

incorporate  certain  features  to  give  it  unique
characteristics.  The  model  is  implicitly  encrypted  by
using  some  parts,  and  the  output  of  the  model  also
includes  the  elements  of  model  learning;  that  is,  the
system  itself  has  specific  security.  We  propose  to
design  the  communication  system’s  loss  function
applicable  to  this  system’s  secure  transmission
technique.

The  loss  function  of  the  end-to-end  communication
system  is  mainly  composed  of  two  parts,  the  receiver
(Bob),  and  the  eavesdropper  (Eve).  The  specific
composition of the system loss function is described in
detail  next.  For  Bob,  the  goal  is  to  restore  the  code
word  sent  by  the  sender  (Alice)  as  accurately  as
possible.  For  Bob,  whose  main  guarantee  is
communication  reliability,  the  cross-first  loss  function
of the deep learning classification task is used as Bob’s
loss function. The specific expressions are as follows:
 

lBob =

n∑
i=1

xi log(ym
i ) (1)

x

xi x ym

ym
i ym

Note  that  is  the  symbol  for  Alice  to  send  the
message.  is  the i-th  element  of .  is  the  vector
output  by  the  neural  network  model  of  the  signal
received  by  Bob  (the  output  vector  of  the  signal
through the main channel).  is the i-th element of .

For  Eve,  the  goal  of  implementing  secure
transmission  is  to  make  it  as  difficult  as  possible  for
Eve  to  recover  the  original  message  sent  by  Alice
accurately.  A  loss  function  opposite  to  Bob’s  can  be
used  as  Eve’s  loss  function.  However,  in  terms  of  the
physical  meaning  represented  by  Bob’s  loss  function,
its  purpose  is  to  allow  the  receiver  to  maximize  the
probability of sending the class to which the code word
belongs.  If  Eve only  adopts  the  opposite  loss  function
to  Bob as  her  own,  it  is  equivalent  to  the  fact  that  for
Eve,  the  probability  of  sending  the  class  to  which  the
codeword  belongs  is  minimized  at  the  receiving  end.
Assume  an  ideal  situation  where  the  model  can  be
optimized  precisely  according  to  Eve’s  loss  function,
the model has probability 0 for all sent signal genera if
Eve does not use the class with the highest probability
as  the  class  for  sending  signals  as  usual.  Instead,  the
type with the lowest chance is used for sending alerts.
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Then Eve can fully recover all the signals sent, and the
system’s  security  will  no  longer  exist.  For  this,  we
redesign the loss function of the eavesdropper, the first
part of the Eve loss function:
 

l1Eve = −
n∑

i=1

xi log(zm
i ) (2)

zm

zm
i zm

Note  that  is  the  vector  output  by  the  neural
network  model  of  the  receiving  end  of  the  signal
received by Eve (the output vector of the signal passing
through  the  main  channel  and  the  eavesdropping
channel).  is the i-th element of .

It  is  imperative  to  improve  the  loss  function  of  Eve
further,  as  only  Eq.  (2)  is  used  as  the  loss  function  of
Eve,  which  may  lead  to  failure  in  achieving  secure
transmission  of  the  system  in  some  cases.  Reference
[29]  shows  that  the  method  comprises  a  transmitter,  a
channel,  and  a  receiver  to  the  Shannon  information
theory. The transmitter generates the message sent, the
channel  modifies  the  message  somehow,  and  the
receiver tries to infer which message is sent. According
to  the  analysis  of  Shannon  information  theory,  the
greater  the  information  entropy  of  the  probability
vector  output  by  the  eavesdropper  Eve  receiver,  the
higher  the  security  transmission  of  the  system.  We
increase  the  randomness  of  information  by  improving
Eve’s  loss  function  to  achieve  more  secure
communication transmission.

l2Eve

l3Eve

 in  Eq.  (3)  denotes  the  variance  of  the  output
probability  vector,  and  the  conflict  can  be  used  to
describe  the  distribution  of  the  data  somewhat.  The
smaller  the  clash,  the  tighter  the  data  distribution  and
the  more  likely  the  data  will  converge.  in  Eq.  (4)
represents the polar deviation of the output probability
vector.  The  opposite  variation  means  the  distance
between  the  maximum  and  minimum  values  in  the
data,  which can reflect the overall  distribution interval
of the data. When the extreme difference is minor, the
data  are  more  tightly  distributed.  In  the  end-to-end
communication  model,  minimizing  several  variables
mentioned  above  is  the  essence  of  constraining  the
entropy value of Eve’s output probability vector so that
Eve  gets  less  effective  information  in  recovering  the
message sent by Alice.
 

l2Eve =

n∑
i=1

(zm
i −u)2,u =

1
n

n∑
i=1

zm
i (3)

 

l3Eve =max(zm
i )−min(zm

i ) (4)

lBob lEve

lBob lEve

lBob lEve

lBob

lEve

The  analysis  yields  a  loss  function  based  on  the
secure  transmission  model  of  the  end-to-end
communication  system.  Still,  to  obtain  the  final
optimized  model,  the  corresponding  model  training
method needs to be set to make the model achieve the
expected results. The loss function of the system model
can be divided into two main parts:  and . After
constructing  the  system  model  and  the  system  loss
function,  the  training  and  optimization  of  the  model
begin.  For  the  composition  of  the  model’s  loss
function,  it  is  easy  to  think  of  two  training  methods:
unified  training and iterative  training.  Unified  training
means  combining  and  into  the  system’s  loss
function  to  optimize  the  entire  system’s  parameters.
Iterative training means using  and  as two loss
functions. First, use  as the system loss function for
training  optimization,  then  as  the  system  loss
function  to  perform  several  optimization  steps,  and
iteratively  proceed  until  the  system  finally  converges.
For  the  training  method  of  iterative  training,  different
hyperparameters  are  tried  to  be  adjusted  in  the
experiment,  and  ultimately  a  more  desirable  result
cannot  be  achieved.  Therefore,  in  this  paper,  uniform
training of the model training is used, i.e., the final loss
function of the model is
 

lEve = l1Eve+ l2Eve+ l3Eve (5)
 

loss = lBob+ lEve (6)

4    End-to-end  learning  of  the  performance
of secure communication mechanisms

4.1    System architecture

The  essence  of  the  convolutional  neural  network  is  a
multi-layer  perceptron,  and  its  advantage  lies  in  local
connection and weight sharing. According to Ref. [30],
it  is  proposed  that  hidden  layers  play  a  crucial  role  in
the performance of neural networks. The model is built
by exploring the effect  of  the number of layers on the
model’s  performance.  It  is  understood  that  increasing
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the  number  of  hidden  layers  in  a  neural  network  can
reduce  network  errors  and  improve  accuracy.  Still,  it
also  makes  the  network  model  more  complex,  thus
increasing the network training time and the possibility
of  overfitting.  Based  on  the  simulation  experiment
results,  an  end-to-end  asymmetric  encryption  neural
network is built in Table 1.

4.2    Communication system index evaluation

The  asymmetric  encrypted  end-to-end  communication
system  is  extended  to  perform  performance  analysis
under  the  AWGN  and  Rayleigh  channels.  After
constructing  the  overall  network  model  and  loss
function,  the  model’s  training  can  be  started.  The
training and testing of the models are done separately.
First,  the  system  model  is  trained,  and  its  network
parameters are saved. The data is tested by loading the
parameters retained during training.

The training process of the neural network minimizes
the loss function by continuously adjusting the size of
the  weights,  which  eventually  makes  the  network
highly accurate.  We expect the asymmetric encryption
end-to-end  system  to  use  computer  numerical
computation  through  a  deep  learning  optimizer  to
obtain  the  network  parameters  that  minimize  the
designed loss function.  The goal of choosing the most

appropriate optimizer is not to get the highest accuracy
but  to  minimize  the  training  required  by  the  neural
network  to  achieve  a  given  accuracy.  We  discuss  the
optimizers of the loss function applicable to the design
of  this  system,  comparing  the  standard  optimizers,
Adam, BGD, AdaGrad, and RMSprop, under different
channels. Loss is the penalty for poor prediction. Loss
is  a  numerical  value that  indicates  the  accuracy of  the
model  prediction  for  a  single  sample.  If  the  model’s
prediction  is  entirely  accurate,  the  loss  will  be  zero;
otherwise,  the  loss  will  be  significant.  In  this  regard,
the  models  trained  by  different  optimizers  are  drawn
based  on  the  loss  curves.  Therefore  the  loss  curve
draws the model trained by different optimizers.

As shown in Fig. 4, when using Adam and RMSprop
as optimizers in the AWGN and Raleigh channels, they
converge  at  similar  speeds,  and  the  loss  value  always
stays  around  0.  BGD  and  AdaGrad  do  not  converge
after  the  epoch  reaches  1000,  and  the  two  optimizers
under the Raleigh channel are close to the same. With

 

Table 1    CNNs model parameters.

Type of layer Kernel
size/annotation

Activation
function

Key generator

Conv1D 5 Relu
Conv1D 3 Relu
Conv1D 3 Relu
Conv1D 3 Relu
Conv1D 3 None

Transmitter

Conv1D 5 Relu
Conv1D 3 Relu
Conv1D 3 Relu
Conv1D 3 Relu
Conv1D 3 Relu

Normalization Power
normalization None

Receiver

Conv1D 5 Relu
Conv1D 3 Relu
Conv1D 3 Relu
Conv1D 3 Relu
Conv1D 3 Sigmoid
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Fig. 4    Model loss for different optimizers.
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gradient  sparsification  in  model  training,  Adam  has  a
more stable performance effect than RMSprop in terms
of  the  overall  magnitude  of  the  loss  curve  and
minimizes  the  loss  function  more  quickly.  Therefore,
Adam is chosen as the optimizer for training this neural
network.

Before  training  the  asymmetric  encryption  end-to-
end  model,  we  set  the  hyperparameters  of  the  neural
network as in Table 2. The next question that needs to
be  discussed  is  whether  the  ideal  model  can  be
obtained  when  training  its  end-to-end  communication
system with other consistent training parameters.

As  shown  in Fig.  5,  the  loss  function  converges

faster as the number of training iterations for different
channel  communication  systems  increases.  The  loss
curve  gradually  smoothes  out,  with  fluctuations  but
remains  stable  overall.  The  neural  network  can
correctly receive the features of  the signal  and decode
it  correctly.  The  designed  end-to-end  communication
encryption  system  based  on  CNNs  has  good
generalization ability.

4.3    System BER performance simulation

In  this  paper,  block  error  rate  (BLER)  is  used  as  a
metric  to  measure  the  performance  of  asymmetric
encrypted  end-to-end  communication  systems  to
analyze the performance of the communication system.
The  BLER  is  the  probability  that  the  output  of  the
receiver is not equal to the sent message, which can be
expressed as
 

BLER =
1
M

∑
s

pr(ŝ , s) (7)

MNote  that  is  the  number  of  test  data,  and  pr
indicates  the accuracy rate  of  the transmitted signal  to
the  received  signal.  In  deep  learning-based
communication systems, BLER and BER are the same
and are uniformly referred to as BER in the following.

To simulate the communication system performance,
we all  choose  the  signal-to-noise  ratio  (SNR)  that  can
be  considered  normalized.  The  purpose  of
communication is to transmit valid information. Given
the  channel  conditions,  we  always  want  to  spend  the
least amount of energy per bit on average, regardless of
the  modulation  method  and  the  error  correction  code
used  by  the  system.  So  we  always  choose  BER  for
simulation and comparison.

Eb/N0

As shown in Fig. 6, the horizontal axis of the plot is
the different signal-to-noise ratios  in dB, and the
vertical  axis is  the BER. The parameter R in a CNNs-
based  end-to-end  communication  system  is  the
message  transmission  rate, R=k/n.  There  are  two
reasons  for  setting  the  signal-to-noise  ratio  to  a
numerical value: first, if the signal-to-noise ratio is set
too high, the generalization ability of the network will
be limited,  causing the variance of  the neural  network
to be too high; second, if the signal-to-noise ratio is set
too low, the influence of noise on the input signal will

 

Table 2    Model training hyperparameters.

Parameter
Value

AWGN Raleigh
Learning rate 1×10−4

Optimizer Adam
Block size 160

Number of epochs 3500 6000
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Fig. 5    System performance evaluation.
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be too significant,  which will  limit the learning ability
of the neural network for signal characteristics and the
decoding  process,  resulting  in  excessive  deviation  of
the network.  For  performance analysis,  the end-to-end
encryption  system  is  extended  to  the  AWGN  and
Raleigh  channels  at  a  communication  rate  of R=1/2.
The main channel SNR used in this training process is
10  dB  for  the  AWGN  channel  and  15  dB  for  the
Rayleigh channel. In order to provide Eve with a better
eavesdropping environment, the signal-to-noise ratio of
the  eavesdropping  channel  is  fixed  at  20  dB.  It  is
assumed  that  Eve  has  sufficient  priori  information
about  the  received  symbolic  information,  i.e.,  she
knows the structure of the neural network based on the
end-to-end  communication  system.  Eve  uses  a  trained
and  independent  decoder  for  decoding.  Bob  and  Eve
are tested at an SNR of 0–30 dB.

The  simulation  results  satisfy  that  the  larger  the
signal-to-noise  ratio  is,  the  smaller  the  legitimate
receiver  BER  is.  The  eavesdropper  maintains  a  BER

above 50% for different signal-to-noise ratios. It can be
shown that the final trained communication system can
better  learn  the  features  of  the  main  channel  and
encrypt them implicitly into the decoder.

4.4    Communication  system  anti-eavesdropping
security evaluation

Two models,  Wiretap Channel  I  and Wiretap Channel
II, were proposed by Wyner in Ref. [31]. The first type
of  eavesdropping  channel  describes  a  communication
system  that  is  eavesdropped  on  by  an  eavesdropper
through  a  so-called  eavesdropping  channel,  where  the
content  received  by  the  eavesdropper  receives  more
severe  noise  contamination  compared  to  the  receiver.
The  second  type  of  eavesdropping  channel  is  in  a
noiseless  channel.  The  eavesdropper  can  intercept  a
section  of n-length  information  from  the  transmitted
code  word  for  analysis.  The  eavesdropper  can  only
select  a  fixed-length  area  for  eavesdropping,  but  the
eavesdropper  can  arbitrarily  determine n positions  to
eavesdrop. This is verified for the security of this end-
to-end  cryptosystem  eavesdropping  model  I.  In
practice  of  the  eavesdropping  channel  model,  most
eavesdroppers  have  poorer  channel  quality  than  the
primary  channel,  resulting  in  different  signals  being
received.  The  essence  of  our  proposed  solution  for
secure  transmission  lies  in  that  the  current
communication  system  can  work  under  the  main
channel.  In  contrast,  10 dB,  15 dB,  25 dB,  and 30 dB
noise  addition  on  the  eavesdropping  channel  can  also
carry out secure transmission. As shown in Fig.  7,  the
simulation  results  show that  the  BER of  Eve does  not
change  significantly  as  the  signal-to-noise  ratio  of  the
eavesdropping  channel  increases,  and  the
communication  encryption  system  can  maintain  a
certain  level  of  security  when  operating  in  the  main
channel.

As  powerful  machine  learning  algorithms,  neural
networks have proved their importance as state-of-the-
art experimental comparisons[32, 33]. In communication,
neural  networks are widely used to implement  end-to-
end communication systems and have achieved the best
performance in some tasks. Simply showing the BLER
of  an  autoencoder  is  not  enough  to  explain  its
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performance. We further discuss the advantages of the
CAE-E2E  system.  Therefore,  we  compare  the  system
with  the  communication  rate  of R=k/n=1  with  the
traditional  modulation  method  binary  phase-shift
keying (BPSK) under the condition of AWGN channel.
As  shown  in Fig.  8,  the  simulation  results  show  that
our  designed  end-to-end  asymmetric  encryption  may
also  yield  joint  coding  and  modulation  gains,  which
can  be  derived  as  an  advantage  of  deep  learning
applied to encryption in communication systems.

On  this  basis,  we  further  system anti-eavesdropping
security  performance  evaluation.  We  do  not  use  as
above  independent  training  eavesdropping  decoder.
Suppose Bob chooses to disclose his decoder structure.
In  that  case,  Eve  has  access  to  the  same  decoder
structure as Bob, and the eavesdropping decoder is also
the  decoder  corresponding  to  Alice’s  encoder.  Under
current conditions, the difference between Bob and Eve
is  that  the  signals  they  receive  experience  different

channel  losses.  Bob holds the private  key required for
encrypted  communication,  while  Eve  does  not  have
this  privilege.  These  factors  cause  Bob  and  Eve  to
receive  slightly  different  signals,  causing  their
understanding of  the  transmitted  information to  differ.
We  compare  the  CAE-E2E  system  to  a  random  key
symmetric  encryption  end-to-end  communication
system  (SE-E2E)  with  the  same  neural  network
structure.

The  key  generator  converts  the  private  key  into  the
corresponding  public  key  according  to  specific  rules,
and  the  length  of  the  public  key  depends  on  the
encryption algorithm used and the length of the private
key. Assuming that the value of m represents different
private key lengths, the initial length of the private key
in  the  designed  communication  encryption  system  is
m=1. The public key’s length increases with the private
key’s  length.  In  this  case,  we  hope  the  CAE-E2E
system  has  excellent  encryption  strength  for  secure
communication.  Simulation  experiments  show that  we
can effectively limit Eve’s eavesdropping by changing
the length of the private key, and Bob’s received signal
is not affected by the change in the length of the private
key.  The  CAE-E2E system is  substantially  better  than
the  SE-E2E  system  in  terms  of  communication
performance and security against eavesdropping.

5    Conclusion

In  this  paper,  we  propose  an  end-to-end  asymmetric
encrypted  communication  system  based  on  CNNs,
starting from the current security issues in designing an
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end-to-end communication system with encryption key
management.

We  propose  to  use  CNNs  as  key  generators  to
generate high-quality key pairs, and CAE-E2E systems
communicate  with  data  asymmetric  encryption.  The
designed  key  generator  generates  the  key  pair,  the
public  key is  shared with the sender  for  the  encrypted
transmission of the message, and the receiver decrypts
the  message  as  the  private  key  holder.  Based  on  this,
the  loss  function  of  the  secure  transmission  model  for
end-to-end  communication  is  redesigned  to  improve
further  the  intrinsic  security  and  optimization  of  the
end-to-end  communication  system.  Experiments  are
simulated  on  the  AWGN  and  Rayleigh  channels  to
analyze  the  effect  of  training  parameters  of  various
aspects of the loss curve on the system’s performance.
The  eavesdropper  is  designed  according  to  different
predictions  of  the  information  held  by  the
eavesdropper, all measured in terms of BER. Firstly, in
eavesdroppers with the same neural network structure,
the  BER  of  the  eavesdropper  for  the  test  noise-added
eavesdropping  channel  is  maintained  at  about  0.5.
Secondly,  the  eavesdropper  obtains  the  decoder
structure  eavesdropping  test  of  the  legitimate  person.
The  eavesdropper  can  only  decode  accurately  by
mastering  the  private  key,  which  has  better  security
performance  than  the  SE-E2E communication  system.
The experimental results show that the eavesdropper in
the CAE-E2E system has an impossible distance to the
maximum  bit  error  rate  required  for  reliable
communication.

In  future  research,  the  performance  of  the
communication  system  in  the  AWGN  channel  and
Rayleigh  channel  is  investigated  in  this  paper,  with  a
future  focus  on  migrating  the  proposed  secure
transmission scheme to more communication scenarios
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