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Abstract: As various software bots are widely used in open source software repositories, some drawbacks are coming

to  light,  such  as  giving  newcomers  non-positive  feedback  and  misleading  empirical  studies  of  software  engineering

researchers.  Several  techniques  have been proposed by  researchers  to  perform bot  detection,  but  most  of  them are

limited to identifying bots performing specific activities, let alone distinguishing between GitHub App and OAuth App.

In this  paper,  we propose a bot detection technique for OAuth App, named BDGOA. 24 features are used in BDGOA,

which  can  be  divided  into  three  dimensions:  account  information,  account  activity,  and  text  similarity.  To  better

explore  the  behavioral  features,  we  define  a  fine-grained  classification  of  behavioral  events  and  introduce  self-

similarity  to  quantify  the  repeatability  of  behavioral  sequence.  We  leverage  five  machine  learning  classifiers  on  the

benchmark  dataset  to  conduct  bot  detection,  and  finally  choose  random  forest  as  the  classifier,  which  achieves  the

highest F1-score of 95.83%. The experimental results comparing with the state-of-the-art approaches also demonstrate

the superiority of BDGOA.
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1    Introduction

The  rapid  development  of  social  coding  platforms,
such  as  GitHub,  has  attracted  a  large  number  of
excellent  software  developers.  These  developers
participate  in  the  collaborative  development  of  open-
source  software  through  mechanisms,  like  issue,  Pull
Request  (PR),  comment,  and  review.  While  the
collaborative  mode  increases  the  efficiency  of
development,  it  also  significantly  increases  the
workload  of  repository  maintainers  to  communicate
with  contributors,  review  codes,  merge  PR,  run  test
cases, etc.

To  reduce  the  workload  and  focus  on  core
development  and  maintenance  tasks,  repository
maintainers  usually  seek  some automated  programs to
perform  some  repetitive  tasks  for  themselves.  For
example,  developers  have  employed  bots  to  update
software  dependencies[1],  execute  test  cases[2, 3],
perform  code  refactoring[4],  help  newcomers  quickly
integrate  into  the  team[5, 6],  and  so  on.  Generally,  we
refer to these automated tools as DevBots, and various
types of DevBots are expected to be powerful tools for
solving  problems  in  increasingly  complex  software
development work.

While  DevBots  bring  convenience  to  software
maintainers,  they  can  also  bring  unexpected  negative
effects.  Researchers  in  software  engineering  often
analyze  developers,  in  order  to  understand  their
cultural  activities[7−10],  assess  team  size[11],  and  make
estimates of developer productivity[12]. Their empirical
studies  rely  on a  large  number  of  account  information
and historical  behavioral  records  mined from software
repositories.  The  built-in  automated  nature  of  bots
makes  them  more  productive,  threatening  the  validity
of  some  metrics  and  even  causing  analysis  results  to
deviate  significantly  from  the  estimates.  Dey  et  al.[13]
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pointed  out  that  the  first  step  to  reduce  the  impact  of
bots  on  software  engineering  researches  is  to  identify
those bots.  There are  indeed many popular  and highly
regarded  developing  bots  existing  in  the  GitHub
community, such as Dependabot and Renovate, but not
all of them are easily recognizable, well designed, and
maintained. In an empirical study conducted by Wessel
et  al.[14],  respondents  reported  that  bots  may  scare
newcomers  with  mechanistic  comments,  which  causes
some newcomers to close their PRs. For newcomers or
inexperienced  developers,  it  is  more  frustrating  to
receive  a  comment  like “you  let  coverage  go  down”
than “thanks  for  your  contribution”.  Ambiguous
perception  of  the  identity  of  bot  accounts  and  their
working  logic  reinforces  the  fear  of  the  unknown,
reduces  developers’ enthusiasm  for  code  contribution.
From  both  the  perspective  of  researchers  and
developers,  effective recognition of  developing bots  is
a necessary task.

There  are  two  types  of  bot  accounts  on  GitHub:
GitHub  Apps  and  OAuth  Apps.  In  earlier  days,
developers used OAuth Apps for assistance in software
development. OAuth Apps can be authorized and act as
actual  GitHub  users,  and  perform  most  development
activities  with  API.  As  the  demand  for  automation
grows  among  developers,  GitHub  Apps  and  GitHub
actions  are  officially  launched on GitHub for  a  higher
level  of  automation.  GitHub  Apps  can  be  installed  by
an  organization  owner  or  individual  repository
administrator,  and be  given access  to  specific  content,
such as read permission to repository content, access to
source code, management of issues, PRs, and tags, etc.
GitHub Apps use their own identities when performing
activities, and it is very convenient to use GitHub API
to  identify  GitHub  Apps  (https://api.github.com/apps).
Considering  that  OAuth  App  can  perform  most
activities  with  the  identity  of  human  account,  its  bot
identity  is  more  invisible.  Therefore,  we  focus  on  the
identification of OAuth Apps.

Several  methods have been proposed to  identify  bot
accounts  on  GitHub[13, 15−18],  which  apply  supervised
learning techniques to enable automated bot detection,
and  achieve  high  precision  on  labeled  dataset.
However,  most  of  the  methods  are  limited  to

identifying bots performing specific activities, let alone
distinguish  between  two  different  bot  accounts.
Moreover,  the  utilization  of  behavioral  data  stays  in
simple numerical statistics, without in-depth mining of
repetitive behavior patterns.

In  this  paper,  we  present  an  approach,  BDGOA,  to
identify bot accounts on GitHub, especially for OAuth
Apps. Through exploratory data analysis, we select 24
effective  features,  which  can  be  divided  into  three
dimensions: account information, account activity, and
text  similarity.  In  contrast  to  existing  research,  we
define  a  fine-grained  classification  for  behavioral
events,  and  also  introduce  a  self-similarity  feature  to
quantify  the  repeatability  of  behavioral  sequences  to
better  extract  behavioral  features.  Meanwhile,  we
expand the range of selected text contents and improve
the calculation of text similarity by taking into account
the  content  format  differences  of  different  types  of
texts. Finally, we train five machine learning classifiers
on the benchmark dataset to conduct bot detection, and
finally  choose  the  random  forest  classifier,  which
achieves  the  highest  F1-score  of  95.83%.  The
experimental results comparing with other state-of-the-
art  methods  also  demonstrate  the  superiority  of  our
approach.

The  remainder  of  the  paper  is  organized  as  follows.
Section 2 lists related work of our study. In Section 3,
we  conduct  an  exploratory  data  analysis  to  extract
effective  features.  We  review  the  selected  features
according  to  three  principles  of  generality,  stability,
and  robustness,  and  present  the  overall  architecture  of
BDGOA approach in Section 4. Section 5 presents the
dataset  and  evaluation  metrics.  Section  6  presents  the
experimental  results.  We  discuss  our  findings  in
Section 7 and conclude the whole paper in Section 8.

2    Related work

2.1    DevBots in GitHub

To  reduce  workload,  maintainers  of  open-source
project  often  use  automated  script  tools  to  help  them
perform  some  predefined  repetitive  tasks.  Such
automated  tools  are  called  DevBots.  Existing
researches  on  DevBots  focus  on  the  practical
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application  of  employing  bots  in  software  engineering
and  the  influence  of  bots  on  activities  in  software
repository.

Mirhosseini  and  Parnin[1] analyzed  7470  GitHub
projects  that  use  notification  mechanisms,  like
automated  PRs  and  project  badges,  to  update
dependencies, and found that the update frequencies of
software  dependency  were  increased  by  1.6  times  and
1.4  times,  respectively.  Erlenhov et  al.[3] believed  that
the  key  to  better  test  bots  is  to  design  more  efficient
test  cases,  and  avoid  misleading  conclusions  from  the
test  results.  A  case  study  was  conducted  by  them  to
identify challenges faced in test design, and guidelines
are  given  for  test  design  patterns.  Urli  et  al.[2]

introduced  the  repairator  bot,  which  constantly
monitors the failed tests and reproduced bugs, and runs
the  program  repair  tools  for  each  reproduced  bug.
Repairator bot has studied 11 523 test failures for 1609
open-source  projects,  and  generated  patches  for  15
projects.  Dominic  et  al.[6] proposed  a  chatbot  that  can
recommend  open-source  projects  for  newcomers,  and
assist  them  to  participate  in  the  community  with
resources,  like  human  mentors  and  Stack  Overflow
(S.O.).  related  information.  Similarly,  Alves  et  al.[5]

proposed  a  chatbot  which  can  filter  tasks  to  help
newcomers choose tasks that  match their  skills.  Wessl
et  al.[19] randomly  selected  351  popular  projects  on
GitHub  and  found  that  26% of  these  projects  employ
software  bots,  in  which  bots  perform  lots  of  tasks.
Before and after  bots  were used,  statistical  differences
were  found  in  comment,  commit,  file  changes,  and
close time of PR. Moreover, Wessel et al.[20] observed
that  the  introduction  of  code  review bots  can  increase
the  number  of  merged  PRs  per  month,  but  reduce  the
communication  among  developers  to  some  degree.
Phaithoon  et  al.[21] proposed  a  FixMe  bot  that  helps
developers  detect  and  monitor  on-hold  SATD  in  their
repositories.  FixMe  bot  monitors  SATD  comments  as
well  as  referenced  issues,  and  developers  will  receive
notifications  when  issues  are  resolved.  Similarly,
Mohayeji et al.[22] found that the TODO Bot does have
an  encouraging  effect  on  developers  to  introduce
TODO  comments,  and  also  increase  the  visibility  of
TODO  comments.  Romero  et  al.[23] proposed  an

answering  bot,  named  GitterAns,  which  can
automatically  detect  technical  questions  asked  by
developers  in  Gitter,  and  provide  answers  by  utilizing
contents  from  the  S.O.  website.  To  realize  automated
code  refactoring,  Wyrich  and  Bogner[4] developed
Refactoring-Bot,  which automatically eliminates odors
in java code and commits  PRs containing source code
changes to developers.

2.2    Bots detection techniques in GitHub

In most research works which investigate the influence
of  introducing  DevBots  in  software  development,
researchers  adopted  manual  inspection  to  identify  bot
accounts,  which  lacks  an  automated  solution  for
identification.  Due  to  the  limitations  of  manual
labeling,  the  representativeness  and  validity  of  the
empirical study results that have not been conducted on
a  large-scale  bot  accounts  are  not  guaranteed.
Considering  that  the  identification  of  bot  accounts  is
the basis for empirical studies, researchers have begun
to seek solutions.

Dey et  al.[13] first  proposed a method to automaticly
detect commit code bots, BIMAN. They constructed an
dataset  containing  461  bots  and 13 762 430 commits.
Features  in  three  dimensions:  account  login,  commit
messages,  and  changed  files  associated  with  commit
are selected. Following this, a series of researches were
conducted by Golzadeh et al.[15], who hypothesized that
the  PR  comments[24] submitted  by  bots  contain
repetitive text patterns. Based on 20 090 PR comments
collected, they combined the Levenshtein edit distance
with  the  Jaccard  distance  for  cluster  analysis,  and
found that  bots  have fewer patterns in their  comments
than  humans.  To  validate  on  a  larger  and  more
representative dataset, Golzadeh et al.[15] constructed a
ground-truth  dataset  containing  PR  and  issue
comments  from  5000  GitHub  accounts[15],  of  which
527  are  labeled  bots.  Considering  the  existence  of
mixed accounts  with two identities,  Golzadeh et  al.[16]

proposed  to  identify  human  and  bot  at  a  more  fine-
grained  level  of  comments.  They  proposed  a  method
named BoDeGHa, which uses bag-of-words, as well as
Term  Frequency-Inverse  Document  Frequency  (TF-
IDF)  techniques,  to  encode  comments  as  vectors,  and
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train  a  binary  classifier  to  predict  the  type  of
comments.  Similarly,  Golzadeh  et  al.[17] applied  the
same model to Git commit messages and demonstrated
its excellent generalization performance.

Although  the  above  methods  of  identifying  bots  in
GitHub  have  achieved  promising  results,  they  are
restricted  to  bots  performing  specific  activity,  such  as
PR,  issue,  and  commit.  Abdellatif  et  al.[18] proposed
BotHunter,  a  method  to  detect  bots  from  multiple
activity  types.  They  extracted  19  features  from  three
dimensions:  user  profile,  account  activity,  and  text
similarity, and merged the datasets constructed by Dey
et  al.[13] and  Golzadeh  et  al.[15] A  random  forest
classifier  was  used  on  a  dataset  containing  5107
GitHub accounts, and achieved F1-score of 92.4% and
Area  Under  Curve  (AUC)  of  98.7%.  Chidambaram
et  al.[25] noted  that  the  BoDeGHa  model  utilized  only
activities  in  current  repositories,  which  might  lead  to
lead  to  inconsistent  and  incomplete  prediction.  They
proposed  method  named  Woc-P,  which  relied  on  the
BoDeGHa  for  prediction  and  introduced  the  principle
of group wisdom to correct, improving the accuracy by
6.9%.

3    Exploratory data analysis

In order to comprehensively characterize an account on
GitHub, we have to extract a large number of features
from  multiple  perspectives,  such  as  account  profile
information  and  account  activity.  Based  on  the
benchmark dataset provided by Golzadeh et al.[15], and
account  information  and  behavioral  event  records
provided by GitHub archive, we launch an exploratory
data  analysis  to  investigate  personal  information  and
historical activity records for each account, thus mining
features  that  can  effectively  distinguish  humans  and
bots.  Considering  the  time-sensitive  nature  of  account
information,  we correct  the public  account  set.  Within
the  modified  account  set,  4462  are  marked  as  human,
and  512  are  bot  accounts.  We  select  a  total  of  24
distinguishing  features  based  on  data  analysis,  which
are  divided  into  3  dimensions:  account  information,
account activity, and text similarity.

3.1    Account information

Personal  homepage  on  GitHub provides  basic  account

information,  including  (1)  profile  information,  like
name,  bio,  and  school;  (2)  social  information,  like
number  of  followers  and  followings,  and  affiliated
organizations;  and  (3)  personal  contribution,  such  as
the  number  of  repositories,  commits,  and  opened
issues.  We  hypothesize  that  these  features  would
distinguish  well  between  humans  and  bots,  and  carry
out statistical analysis on them to confirm.

(1) Login, name, and bio
Login is  the primary identifier of a GitHub account.

Users  can  also  set  an  account  name  as  alias.  Bio  is  a
short  description  which  can  briefly  introduce  user
interests and skills. Figure 1 shows the profile of a bot
account  with  login “renovate-bot”,  whose  identity  is
not  explicitly  declared  in  name  but  with  clear
statements in bio. We also find the “bot” string existing
in  human’s  bio  but  it  is  rare  to  see.  Dey et  al.[13] first
proposed  the  BIN  model,  which  uses  regular
expressions  to  identify  bots  based  on  whether  their
name  contains  the  string “bot”.  Abdellatif  et  al.[18]

found the presence of “bot” string in login, name, and
bio  accounts  for  48%,  40%,  and  35% of  in  their
inspected  accounts,  respectively.  We  also  analyze  the
performance  of  the  above  features  in  our  account  set
and  find  that  bot  accounts  with “bot” string  in  login,
name, and bio account for 74.3%, 46.4%, and 18.2% of
all  bot accounts,  respectively,  while the corresponding
percentage  for  humans  are  2.6%,  1.1%,  and  0.3%,
 

(a) (b) 
Fig. 1    Examples of profile information with “bot” string.
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respectively. It can be seen that containing “bot” string
in  login,  name,  and  bio  is  common  for  bot  accounts,
while humans rarely have such habits.

(2) Information integrity
There is a lot of optional profile information on user’s

homepage  like  email,  blog,  and website.  Information
integrity  stands  for  the  degree  of  completeness  of
profile information filled by users. We hypothesize that
the information integrity on personal homepages could
effectively  distinguish  between  human  and  bot,  and
investigate the integrity of humans and bots on 7 pieces
of  information:  name,  bio,  email,  status,  company,
location,  and  website.  Statistics  show  that  the  mean
value of information integrity of bot accounts is 0.63%,
which  is  significantly  higher  than  that  of  human  at
0.42%.  Actually,  we  find  many  bot  accounts,  such  as
renovate,  greenkeeper,  and depfu,  are  widely  used  in
the  community.  Their  companies  and  teams  design
websites  to  introduce  their  products,  provide  user
manuals,  maintain  twitter  accounts  to  expand  their
social  influence,  and  provide  communications  by
phone or email to give after-sales support. The tool and
product  nature  of  bots  require  a  higher  level  of
information integrity to introduce, promote, and serve.

(3) Number of followings and followers
The  number  of  followings  and  followers  are

considered as significant social information for GitHub
users.  Users  can follow accounts  of  their  interests  and
receive  notifications  of  activity  events  from  their
followings.  The  number  of  followers  is  a  good
reflection  of  account’s  popularity  and  activity  level.
Abdellatif et al.[18] proved in statistics that humans are
more  likely  to  perform  social  activities.  Among  the
accounts  we inspected,  we find the median number of
human followings  is  8,  while  bots  have  an  average  of
only  1.  What  is  more,  the  median  number  of  human
followers is  55,  while that  of bots is  only 2.  We think
the  number  of  followings  and  followers  are  critical
social  features  that  provide  good  distinction  between
humans and bots.

(4) Level of personal contribution
We choose several features to measure the individual

contribution  of  GitHub  accounts:  (1)  Total  issue
contribution—how  many  issues  the  user  opened;  (2)

Total  PR  contribution—how  many  pull  requests  the
user  opened;  (3)  Total  commit  contribution—how
many  commits  are  made  by  the  user;  (4)  Total
repository  contribution—how  many  repositories  the
user  created.  We  calculate  the  value  of  above  four
features  for  each  inspected  account,  and  draw  a  box
plot in Fig. 2. Due to large variation in value, we take
logarithms  of  the  total  number.  In  terms  of  median,
features of four dimensions are distinguishable.

3.2    Account activity

We also try to explore valuable features from historical
behavior  records.  More  specifically,  we  focus  on  the
type, number, and time intervals of activities performed
by GitHub users over a period of time. We hypothesize
the above information can reflect user’s role as part of
the team, as well as time and effort they invested.

To  obtain  behavioral  data  of  the  inspected  GitHub
accounts,  we  download  the  data  from  the  GitHub
archive  in  2020  and  filter  all  the  behavioral  event
records for each user in corrected account set by login.
Furthermore, we need a taxonomy of GitHub activities
to better extract behavioral features. GitHub event API
returns  detailed  information  of  events  triggered  by
account  activities,  and  the  corresponding  API
documentation provides basic classification for events,
as  Level  2  listed  in Table  1.  To  obtain  a  more  fine-
grained  classification  of  behavioral  events,  we  further
parse  the “payload” object  of  each  event  record  to
subdivide  the  event  type.  Finally,  We  divide  all  event
types  into  five  dimensions:  user,  repository,  commit,
issue, and PR, with 17 types in Level 2, and 38 types in
Level 3, as shown in Table 1.

Based  on  the  fine-grained  behavioral  event
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Fig. 2    Distribution of statistical features of personal

contribution.
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classification,  we  extract  and  sort  each  user’s
behavioral  events  by  timestamp.  and  form  a  sequence
of behavioral events for the whole year.

(1) Total number of activities
Abdellatif  et  al.[18] considered  bots  and  humans

have different activity patterns and chose total number

of  four  groups  of  activities  as  key  feature.  We  agree
with them and think this feature can directly reflect the
overall work level of GitHub users. Unlike their work,
we  refer  to  the  classification  of  behavioral  events  in
Table  1 and  count  the  total  number  of  behavioral
events in 5 dimensions: user-related, repository-related,
commit-related, issue-related, and PR-related. For each
account  inspected,  we  count  total  number  of  five
dimensions of behavioral events performed in 2020.

In Fig.  3,  we  compare  the  total  number  of  events
performed  by  humans  and  bots  in  above  five
dimensions.  Since  the  value  of  total  number  of
activities varies widely, we take logarithmic values for
ease  of  presentation.  It  can  be  seen  that  the  median
value of activities performed by bots is higher than that
of  humans  in  four  dimensions,  but  significantly  lower
than  that  of  humans  in  the  user  dimension.  We  think
that  bots  are  always  pre-defined  to  perform  certain
functional tasks, while user-related events, such as star
and fork, are subjective behaviors of humans.

(2) Type number of activities
Bots  have  access  to  limit  resources  and  can  only

perform  several  pre-defined  activities,  while  humans
are free in their activities. Therefore, we think the type
number of behavioral events is also a good indicator to
distinguish  between  humans  and  bots.  We  count  the
type  number  of  activities  performed  by  bots  and
humans  in  five  dimensions,  and  draw  a  box  plot.  As
shown  in Fig.  4,  the  median  of  type  number  of
behavioral  events  performed  by  human  accounts  is
always higher than that of bot accounts, as well as the
maximum.

(3) Median number of activities per day
Abdellatif et al.[18] found bots have a higher level of

daily  activity  than  humans  and  computed  the  median

 

Table 1    Fine-grained classification of behavioral events.

Dimension Classification level 2 Classification level 3

User
ForkEvent USER-fork_repo

WatchEvent USER-star_REPO

Commit
PushEvent COMMIT-create_commit

CommitCommentEvent COMMIT-create_comment

Repository

CreateEvent
REPO-create_repo
REPO-create_tag

REPO-create_branch

DeleteEvent
REPO-delete_repo
REPO-delete_tag

REPO-delete_branch
PublicEvent REPO-public_repo

ReleaseEvent REPO-create_release
MemberEvent REPO-create_member
GollumEvent REPO-update_wiki

Issue

IssuesEvent

ISSUE-create_issue
ISSUE-update_issue
ISSUE-delete_issue
ISSUE-reopen_issue
ISSUE-assign_issue
ISSUE-cancel_issue
ISSUE-mark_issue

ISSUE-unmark_issue

IssueCommentEvent
ISSUE-create_comment
ISSUE-edit_comment

ISSUE-delete_comment

PR
PREvent

PR-create_pull
PR-update_pull
PR-delete_pull
PR-reopen_pull
PR-assign_pull
PR-cancel_pull
PR-mark_pull

PR-unmark_pull
PR-sync_pull

PR-ask_for_review
PR-give_up_review

PRReviewEvent PR-create_review
PRReviewCommentEvent PR-create_comment
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Fig. 3    Distribution of total number of activities

in 5 dimensions.
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number  of  activities  per  day  for  each  account.
Similarly,  we  count  the  number  of  behavioral  events
performed  per  day  in  2020  for  all  the  inspected
accounts and draw the count-frequency scatter plot. As
shown in Fig. 5a, the frequency of bots is significantly
higher  than  that  of  humans  at  a  high  level  of  daily
activity.  Moreover,  the  number  of  behavioral  events
performed by bots per day in some cases even exceeds
the maximum that humans can achieve.

(4) Median response time per day
Abdellatif et al.[18] observed that bots generally have

faster  response  time  than  humans,  and  they  explained
bots  are  triggered  by  predefined  events  and
continuously monitor the dynamics of repository. They

compared  accounts’ median  response  time  to  PR  &
issue  creation  events.  Here,  we  record  the  time
intervals between two consecutive events in behavioral
sequences  of  all  the inspected  accounts  and  draw  the
interval-frequency  scatter  plot  as Fig.  5b.  Under  the
same occurrence frequency condition, the time interval
of bots is always smaller than that of humans.

(5) Self-similarity
From the  above  analysis,  it  appears  that  bots  with  a

limited  type  number  of  activities  perform  more
activities  than  humans.  Besides,  bots  are  driven  by
computer programs and they are bound to perform lots
of  repetitive  actions.  To  quantify  the  repetitiveness  in
behavioral  event  sequences,  we  try  to  resort  to  some
sequence mining methods rather than simple numerical
statistics.

We introduce the self-similarity feature proposed by
Lee  et  al.[26] to  measure  the  repetitiveness  of  account
activity.  Firstly,  we  group  and  sort  each  account’s
behavioral  events  by  timestamp,  then  set  a  reasonable
time  period,  followed  by  converting  the  behavioral
events  within  the  interval  into  a  vector  by  count
encoding.  Then,  we  calculate  the  cosine  similarity
between  each  behavioral  vector  and  the  unit  vector.
After all  behavioral vectors are converted into a set of
cosine similarities,  we calculate the standard deviation
and  use  it  as  the  value  of  self-similarity.  Detailed
calculation  process  is  described  in  Section  4.1.1.  The
self-similarity  value  is  close  to  1  when  the  behavioral
event  sequence  is  highly  repetitive;  conversely,  it  will
be close to 0.5.

To  verify  the  validity  of  the  self-similarity  metrics,
we  calculate  the  self-similarity  value  of  the  inspected
accounts following the above procedure and draw box
plots  for  humans  and  bots.  In  terms  of  the  median
value,  the  self-similarity  value  of  bots  is  obviously
higher  than those  of  humans.  It  can be  seen in Fig.  6,
some bot accounts achieve a self-similarity of 1, which
indicates they perform single activity.

3.3    Text similarity

There  exists  lots  of  unstructured text  on  GitHub,  such
as  user  comments,  titles  of  PR  &  issue,  content  of
readme  files,  etc.  Human  comments  are  usually
subjective  and  arbitrary.  However,  bots  are  usually
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triggered  to  make  comments  after  specified  events
(e.g., creation of PR & issue), to indicate the results or
influence  of  events.  The  well-known  renovate-bot  is
widely used to update outdated software dependencies
and  create  PRs  to  provide  patch.  It  will  submit  a
comment  under  each  PR  created,  stating  the  software
dependency involved in the current update, and change
in  version  number,  e.g., “This  PR  contains  the
following updates: ......”.

Previous  research[15, 16, 24] assumed  that  comments
published by bot accounts would show more similarity
than humans, and used text distance measures, such as
Jaccard  distance[27] and  Levenshtein  distance[28],  to
quantify the similarity of comments in terms of content
and  structure.  Text  information  studied  in  their
research are mainly PR & issue comments and commit
messages.

Our  research  extends  the  scope  of  text.  We  extract
text information contained in eight types of behavioral
events:  commit-create_commit,  commit-create_
comment,  issue-create_issue,  issue-create_comment,
pr-create_pull,  pr-create_review,  pr-create_comment,
and  repo-create_release.  Supplementary text
information  includes  contents  of  PR  &  issue,  release
notes,  PR  reviews,  etc.  Considering  the  unique  text
format  of  different  categories,  we  divide  the  text
information  into  four  dimensions:  issue-related;  PR-
related;  commit-related,  and  release-related.  We
compute  text  similarity  in  four  dimensions  for  all  the
inspected  accounts  and  draw  the  box  plot  in Fig.  7.
Detailed  calculation  process  is  described  in  Section
4.1.2.  It  can  be  seen  that  higher  median  value  of  text
similarity  is  achieved  by  bots  in  all  four  dimensions.
This is in line with our assumptions and consistent with
findings of previous studies.

4    Bot account detection model

We  have  found  some  features  that  can  effectively
distinguish  between  humans  and  bots  during
exploratory  data  analysis.  In  this  section,  we  describe
some  detailed  extraction  process  of  features  and
perform feature review based on three criteria to obtain
the final feature set. Moreover, the overall architecture
of our proposed approach BDGOA is also presented.

4.1    Feature extraction

We  introduce  the  specific  computation  process  for
some features in this section.
4.1.1    Self-similarity
Taking  a  GitHub  account  for  example,  whose  self-
similarity is calculated as follows.

Firstly,  generate  a  set  of  behavioral  vectors.  We
collect records of behavioral events for each user,  sort
them  by  timestamp,  and  form  a  behavioral  sequence.
We  set  the  time  interval  to  minute  and  split  the
behavioral sequence per minute. The behavioral events
within  one  minute  are  transformed  by  count  encoding
into  a  vector,  which  consists  of  event  id  and  its
frequency.

Secondly,  calculate  the  cosine  similarity  of
behavioral  vectors.  We  calculate  the  cosine  similarity
between each behavioral  vector  and a  unit  vector,  and
obtain a set of cosine similarities. The cosine similarity
between two vectors is defined as follows:
 

cos(A,B) =
AB
|A||B| =

∑n
i=0 AiBi√∑n

i=1 A2
i

√∑n
i=1 B2

i

(1)

Thirdly,  compute  the  self-similarity  value H of  a
GitHub account. We calculate the standard deviation of
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this  set  of  cosine  similarities  and  convert  them
according to
 

H = 1− 1
σ

(2)

σwhere  is the value of standard deviation.
4.1.2    Text similarity
As  mentioned  in  Section  3.3,  we  divide  the  text
information from 8 behavioral events into 4 categories:
issue-related,  PR-related,  commit-related,  and  release-
related,  according to  the relevance in  terms of  content
and structure. To give a example, we calculate the text
similarity of commit comments and commit messages,
and  take  the  mean  value  of  the  two  as  final  text
similarity of commit-related text.

C1 C2

J(C1,C2)

We choose  the  Jaccard  distance  as  the  text  distance
metric  to  measure  the  text  similarity.  Assuming  that
there  are  two  comments  and ,  the  Jaccard
distance  is defined as follows:
 

J(C1,C2) = 1− vocab(C1)∩ vocab(C2)
vocab(C1)∪ vocab(C2)

(3)

vocab(C1) vocab(C2)

C1 C2

where  and  denote the set of words
that  appear  in  comment  and ,  respectively.  It
quantifies  the  content  similarity  of  two  comments  at
the  word  level.  We  collect  all  the  commit  comments
for  a  given  account,  calculate  the  Jaccard  distance
between any two comments, and use the mean value as
the text similarity of commit comments.

4.2    Feature review

In order to successfully apply these features to the bot
detection task on GitHub, we review them based on the
following considerations.
4.2.1    Generality
We  expect  the  selected  features  with  the  ability  to
distinguish  between  human  and  bot  accounts,
especially for OAuth Apps. Account tag was chosen as
feature used in BotHunter[18], and the authors in Ref. [18]
explained that they could examine whether an account
is used as a GitHub App by API. It  did achieve 100%
identification  of  bot  accounts  of  GitHub  Apps  type.
However,  it  failed  to  distinguish  between  human
accounts  and  OAuth  Apps,  which  did  not  satisfy  our
demands.  Besides,  we  removed  three  features:  login,
name,  and  bio.  We  considered  the “bot” string  in  the

profile  information  to  be  a  strong  hint  of  the  bot
identity. Just like the account tag feature, it is more like
a label rather than a feature.
4.2.2    Stability
The  GitHub  platform  is  in  the  process  of  expanding
and  evolving.  New  and  existing  accounts  will  have
unavoidable differences in their individual contribution
features  due  to  the  length  of  time  they  have  been
registered. In order to minimize the impact, some time-
insensitive  behavioral  features  are  also  introduced.
Compared with account information and text contents,
we  think  behavior  records  are  the  most  impossible  to
miss,  and  are  intuitive  and  easy  to  obtain.  Therefore,
more  attention  should  be  paid  to  extracting  behavior
features.
4.2.3    Robustness
Utilization  of  behavioral  data  in  previous  research  is
limited  to  simple  numerical  statistics.  Although  these
features  have  been  proved  distinguishable,  they  still
remain  staying  in  the  overall  level.  The  self-similarity
value  we  proposed  focus  on  the  frequency  of  the
repeated  activity  patterns  rather  than  the  frequency  of
the  activities  themselves.  Furthermore,  it  can  better
reflect  the  repetitiveness  of  behavioral  sequences  and
reveal the behavior patterns of accounts. It can be said
that,  the  introduction  of  the  self-similarity  value
enhances the robustness of our bot detection model.

Finally, we list all the 24 features used in our model
in Table 2.

4.3    Model structure

The  overall  architecture  of  BDGOA  is  presented  in
Fig. 8. The corrected account set, as well as the account
information  and  behavioral  records  extracted  from
GitHub archive are our data source. We divide account
information  into  3  categories,  namely  social
information,  profile  information,  and  personal
contribution.  Behavioral  records  are  parsed  to  get  text
contents contained in behavioral events, and behavioral
events  are  sorted  into  behavioral  sequences  by
timestamp.  Some  numerical  statistics  or  sequence
mining  approaches  are  adopted  by  us  to  perform
feature extraction.

All  extracted  features  are  reviewed  to  get  the  final
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valid  feature  set.  We  take  these  features  and  choose
some  mainstream  machine  learning  classifiers  for
account  classification,  and  evaluate  the  classification
performance on the corrected account set.

5    Experiment

5.1    Dataset

To  evaluate  performance  of  our  proposed  method  on
bot  identification  task,  we  fetch  the  ground-truth
dataset  (gTruth)  released  by  Golzadeh  et  al.[15],  who
first  obtained  links  to  over  3.3  million  GitHub
repositories  associated  with  37  software  package
registries  provided  by  library.io.  They  randomly
selected 136 000 repositories  as  the  basis  for  building
the  dataset.  By  filtering  out  accounts  with  fewer  than
10 comments, 79 342 GitHub accounts  with 6 307 489
comments  distributed  across 42 492 software
repositories  are  available.  They  randomly  sampled  a
subset containing 5082 accounts and manually labeled
them according  to  PR  and  Issue  comments.  Finally,  a
dataset  containing  5000  GitHub  accounts  is
constructed,  with  527  bot  accounts  and  4473  human
accounts.

Considering  the  behavioral  data  of  these  5000
accounts  needed  to  be  utilized  for  feature  extraction,
we  download  the  data  from  GitHub  archive  in  2020,
which  records  public  activities  of  all  accounts.  By
filtering  on  the  base  of  the  login  name,  we collect  for
each  account  all  of  its  activity  records  in  2020.
However,  we  find  136  accounts  with  empty  activity
data when collecting data,  which indicates that  gTruth
is  highly  time-sensitive  and  required  manual
verification and correction.

There  are  70  bot  accounts  and  66  human  accounts

 

Table 2    Feature set of the bot detection model.

Dimension Feature

Account profile

Profile information integrity
Number of followers
Number of followings

Total issue contributions
Total commit contributions

Total PR contributions
Total repository contributions

Account behaviour

Total number of user activities
Total number of repository activities

Total number of issue activities
Total number of PR activities

Total number of commit activities
Type number of user activities

Type number of repository activities
Type number of issue activities
Type number of PR activities

Type number of commit activities
Median activities per day

Median response time per day
Self-similarity

Text similarity

Issue-related text similarity
Commit-related text similarity

PR-related text similarity
Release-related text similarity
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Fig. 8    Overall architecture of BDGOA.
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among  the  136  invalid  accounts.  We  search  in  the
GitHub  community  based  on  the  login  name  and
project  information  provided  by  gTruth.  54  human
accounts  have  changed  logins,  and  other  reasons  for
invalid are distributed as follows: deleted, not existing,
public or private GitHub Apps, etc.

We  update  the  renamed  accounts,  remove  deleted
and non-existent  accounts  to  get  the corrected gTruth-
2020  dataset.  Detailed  distribution  of  accounts  is
shown in Table 3.

5.2    Performance evaluation

Taking  the  24  features  of Table  2 as  inputs,  five
mainstream  machine  learning  classifiers:  Logistic
Regression  (LR),  Decision  Tree  (DT),  Random Forest
(RF),  Support  Vector  Machine  (SVM)  and
XGBoost (XGB)  are  chosen  to  perform  bot  accounts
detection. K-fold cross-validation is applied to evaluate
the  performance  of  our  model.  The  gTruth-2020
dataset  is  divided into k subsets of the same size.  One
of  the k sets  is  selected  as  test  set,  and  the  remaining
k−1 sets are taken as training set, and the above process
is  repeated k times.  Average  value  of k-times  model
result is taken as the final performance of K-fold cross-
validation, which can effectively avoid over-fitting and
under-fitting.

Precision,  recall,  and  F1-score  are  chosen  as
evaluation  metrics.  Precision  is  the  probability  of  the
number  of  accounts  that  are  true  bot  relative  to  the
number of accounts that are predicted to be bot. Recall
is  the  probability  of  the  number  of  accounts  correctly
predicted  to  be  bot  relative  to  the  number  of  accounts
that are true bot. F1-score is the harmonic mean of the
two. Considering the imbalance of the dataset, i.e., the
number of bot accounts is significantly smaller than the
number  of  human accounts,  we also  plot  the  Receiver
Operating  Characteristic  (ROC)  curve.  The  horizontal
coordinate of the ROC curve is the False Positive Rate
(FPR)  and  the  vertical  coordinate  is  the True  Positive
Rate (TPR).  We can get  a  point  (FPR,  TPR) based on

the  performance  of  a  classifier  on  the  test  set,  and  by
continuously  adjusting  the  classification  threshold,  we
can get an ROC curve passing through the points (0, 0)
and (1, 1).

6    Result

In  this  section,  we  present  the  result  of  our  research.
The  motivation  and  results  for  each  question  and
objective analysis are described in detail.

(1)  RQ1:  Which  classifier  achieves  the  best
performance on bot detection?

The  motivation  for  RQ1  is  to  choose  the  one  that
performs best  on our task among mainstream machine
learning  classifiers.  A  small  portion  of  accounts  with
missing  features  are  deleted  in  the  process  of  feature
extraction,  and  there  are  4520  valid  GitHub  accounts
left in our dataset. We leverage all 24 features defined
in Table 2 and conduct the experiment on 4520 GitHub
accounts.  During  the  experiment,  default  parameters
setting on top of  scikit-learn[29] are used to implement
the  model.  What  is  more,  we  use  10-fold  cross-
validation  to  test  the  accuracy  of  the  model  and  take
the  mean  value  of  10  experimental  results  to  get  the
final model performance.

We list the precision, recall, F1-score, accuracy, and
the AUC value of different machine learning classifiers
in  our  experiment.  Among  these  five  evaluation
metrics,  we  pay  more  attention  to  F1-score.  The
experimental results are shown in Table 4. Overall, the
above  classifiers  perform  very  well,  achieving  the
average  F1-score  of  more  than  0.8  and  the  average
AUC  value  value  of  more  than  0.9.  Compared  with
other  machine  learning  classifiers,  the  RF  and  XGB
model  achieve  the  highest  F1-score.  DT  shows  the
worst performance of all five metrics.

We have performed a detailed review of test results.
In the experiments using Random Forest and XGBoost,

 

Table 3    Account distribution in gTruth-2020.

Account type Count
Human 4462

Bot (GitHub Apps) 47
Bot (OAuth Apps) 465

 

Table 4    Performance of machine learning classifiers. (%)

Classifier Precision Recall F1-score AUC Accuracy
LR 87.69 80.28 83.82 99.05 97.57

SVM 85.92 85.92 85.92 99.21 97.79
DT 45.19 85.92 59.22 88.52 90.71
RF 94.52 97.18 95.83 99.89 99.34

XGB 95.71 94.37 95.04 99.83 99.23
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for  904  GitHub  accounts  included  in  the  test  set,  we
find  that  most  accounts  are  correctly  classified.  The
experimental result is shown in Table 5. Only 3 human
accounts  (4  in  XGBoost)  are  incorrectly  classified  as
bots, and only 2 bot accounts are incorrectly classified
as  humans.  After  manually  analyzing  all  wrong
classified  GitHub  accounts,  we  find  that  all  wrong
classifications  are  due  to  low  frequency  of  account
activity,  resulting  in  meaningless  statistics.  There  is
also a case where the bot is wrongly classified because
the user mainly performs commit activities and has low
text similarity.  After observation, we find that this bot
account automatically pushes commits from other code
hosting  platforms  to  GitHub,  and  its  main  work  does
not  center  around  GitHub.  The  text  content  is  still
written manually.

(2)  RQ2:  Which  features  are  of  high  importance
score?

There  are  many  ways  to  compute  the  feature
importance  for  the  Random  Forest  classifier,  such  as
the  built-in  feature  importance  and  permutation-based
importance[30].

The importance score of feature is a built-in attribute
of  random  forest,  we  can  get  the  relative  importance
score  of  each  feature  by  accessing  this  attribute.  The
feature importance score is obtained by computing the
Gini  coefficient,  which  can  reflect  the  purity  of  the

segmented  data.  The  permutation_importance  is  a
function provided by scikit-learn. The principle behind
permutation-based  importance  is  more  intuitive.  A
column of features will be randomly sorted at a time to
compare  the  change in  model  performance before  and
after  the  feature  change,  and  the  feature  that  has  the
greatest  impact  on  model  performance  is  the  most
important feature.

We use the permutation_importance function and the
built-in  feature_importances_  attribute  to  compute  the
feature  importance. Table  6 presents  the  top-10
features  and  their  importance  scores  in  the  two
evaluation  metrics.  It  also  provides  us  with  a  better
understanding of which features we should focus on.

As  we  can  see  from Table  6,  the  feature “issue-
related  text  similarity” ranks  highest  in  both  lists,  and
the “profile  information  integrity”, “self-similarity”,
and “number of followings” features are in the second
to fourth places, with a small gap with the first place. It
proves part of our assumptions and analytical results in
Section  3.  Content  similarity  of  text  contents,
repetitiveness  of  behavioral  sequences,  completeness
of profile information, and level of socialization are the
key indicators to distinguish bots from humans.

In  order  to  demonstrate  the  effectiveness  of  all
dimensional  features  and  also  to  prove  that  using
features of all dimensions is more effective than using
features  of  a  single  dimension,  we  divide  all  features
into  four  groups:  profile  information,  text  similarity,
account  activity,  and  self-similarity.  We  test  the
classification  performance  of  each  group  of  features
under  five  classifiers  separately,  and  the  experimental

 

Table 5    Confusion matrix of RF and XGBoost.

Class
RF XGBoost

Human Bot Human Bot
Human TPS: 830 FNS: 4 TPS: 829 FNS: 4

Bot FPS: 3 TNS: 67 FPS: 2 TNS: 69
 

Table 6    Importance scores for the top-10 features.

feature_importances_ permutation_importance
Feature Score Feature Score

Issue-related text similarity 0.1775 Issue-related text similarity 0.0158
Profile information integrity 0.1608 Profile information integrity 0.0060

Self-similarity 0.0967 Number of followings 0.0034
Number of followings 0.0618 Self-similarity 0.0019

Total number of issue activities 0.0600 Number of followers 0.0016
Number of followers 0.0486 Median activities per day 0.0009

Median response time per day 0.0448 PR-related text similarity 0.0009
Total number of commit activities 0.0419 Total number of issue activities 0.0007
Type number of commit activities 0.0346 Type number of PR activities 0.0006

Median activities per day 0.0327 Type number of commit activities 0.0005

    192 Intelligent and Converged Networks,  2023, 4(3): 181−197

 



results  are  shown  in Fig.  9.  As  can  be  seen  from  the
ROC  curves  and  AUC  values,  the  group  of  account
activity performs the best, but the performance of each
classifier  varies  significantly.  In contrast,  the group of
self-similarity  has  the  worst  performance,  but  there  is
little difference between different classifiers.

The experimental results show that the classification
performance  using  single  dimensional  feature  is  not
superior to the performance of the classifier combining
all  features.  Therefore,  the  BDGOA  model  selects  all
the above features as the basis for classification, which
takes into account the feature validity and stability, and
thus achieves better classification performance.

(3) RQ3: How effective is BDGOA compared with
the state-of-the-art techniques?

In RQ1 and RQ2, we evaluate the performance of the
proposed  method  on  benchmark  datasets  and  finally

choose RF as the classifier, which achieves an F1-score
of  95.83% in  detecting  bots.  To  demonstrate  the
performance  advantage  of  the  proposed  BDGOA
method,  we  compare  it  with  other  bot  detection
techniques in GitHub. Considering that the GitHub API
can  accurately  identify  the  bot  identity  of  GitHub
Apps,  we  also  take  it  as  a  technique  for  performance
comparison. Table  7 presents  the  performance  of  our
approach against other state-of-the-art methods.

GitHub App API※: Due to the iteration of GitHub
features, we can now determine whether an account is
a GitHub Apps directly from the results returned by the
GitHub  API.  Since  many  OAuth  Apps  in  the  dataset
have  been  converted  to  GitHub  Apps,  GitHub  Apps
account for a large percentage of bot accounts. GitHub
API can accurately identify GitHub Apps and judge all
non-GitHub  Apps  accounts  as  humans,  which  means
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Fig. 9    ROC curves  of  five  classifiers.  The dotled line  connecting the  points  (0,  0)  and (1,  1)  is  the  reference  line.  The ROC
curves  are  usually  on  the  upper  left  of  the  reference  line,  and  the  farther  away  from  the  reference  line,  the  better  the
classification result.

 ※https://docs.github.com/en/rest/apps/apps#get-an-app
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only a small percentage of OAuth Apps will be wrong
classified.  It  also  explains  its  ability  to  achieve  90%
precision, but with AUC value of 53.1%.

BIMAN[13] and  BoDeGHa[16]: These  two  models
measure  the  textual  similarity  of  account  comments
and group them into repeated comment patterns. Due to
the sparsity of text content, they do not perform well on
the benchmark dataset.

BotHunter[18]: Similar  to  BDGOA,  BotHunter
extracts  features  in  three  dimensions:  account
information, account behavior, and text similarity. Due
to  the  limitations  of  the  GitHub  API,  which  only
extracts  records  of  account  activities  within  the  last
three  months.  We  apply  the  open-source  BotHunter
tool  to  our  constructed  benchmark  dataset,  which
covers  account  behavior  data  for  the  whole  year  of
2020,  but  find  the  classification  performance  of  the
model  decreases  with  larger  data  volume.  Meanwhile,
we find that BotHunter relies heavily on the feature of
whether  the  profile  information  contains  the “bot”
string. After we remove all GitHub Apps, we find that
the  probability  of  wrong  classification  is  further
increased. To further observe the impact of this feature,
we  use  uniform random numbers  to  interfere  with  the
feature value and perform the test 10 times. The mean
value  of  F1-score  and  AUC  value  are  90.5% and
81.0%,  respectively,  which  indicates  that  the  stability
of the classifier will be at risk when a small number of
features occupy a large importance weight.

The bot detection model we proposed, BDGOA, will
fully  learn  from  the  findings  of  the  above  study.
BDGOA  no  longer  identifies  bot  accounts  of  GitHub
Apps  after  the  GitHub  feature  upgrade,  and  such
accounts  are  classified  as  self-admitted  bot  accounts
whose  existences  are  reasonable  and  do  not  interfere
with  the  user’s  usage  order.  Inspired  by  BIMAN,

BoDeGHa,  and  BotHunter,  BDGOA  no  longer  relies
on  text  similarity  or  other  single-dimension  features.
We  extract  features  with  universality,  stability,  and
robustness  from  three  dimensions:  account  profile,
account activity, and text similarity to avoid misleading
results  from  a  single  feature.  Based  on  the  more
comprehensive  features  and  high-performance
classifier, BDGOA achieves better performance on the
benchmark dataset.

7    Discussion

Taking  into  account  the  discussion  of  wrong
classification  in  previous  research,  we  have  organized
and  enumerated  all  possible  reasons  of  wrong
classification.

7.1    Accounts that cannot be classified

Lack  of  profile  information:  Some  users  do  not
maintain  their  accounts  after  registration  or  fill  in
detailed  profile  information.  Their  main  development
activities are not based on GitHub, but only use GitHub
as a tool to fork code or download code. They have no
contribution to open-source projects and may not even
be software developers.

Low  frequency  of  account  activity:  Some  users
have no activity records in GitHub for a long time, and
their  development  work  may  rely  on  other  platforms
(e.g.,  Gitee  and  Gitlab)  or  Git  management  tools  in
company.  They  contribute  less  to  the  open-source
community,  and  most  of  their  behaviors  are  mainly
star,  fork, and issue. Their low activity level results in
sparse  statistics  and  no  valid  information  to  provide
judgment.

Renamed  or  logged  out:  Some  users  will  modify
their  id or log out of their  accounts,  even if  they were
once a key participant  in some project  or  left  a  record
in the event stream. Some early OAuth Apps may have
been  converted  to  GitHub  Apps  and  have  modified
their  id  and  visibility.  Due  to  the  changes  in  id  and
permissions,  the  uniqueness  and  activity  visibility  of
the  account  cannot  be  located  by  the  program  and
therefore does not have classification value.

7.2    Accounts with classification difficulties

Mixed  accounts:  Users  control  OAuth  Apps  to

 

Table  7    Precision,  recall,  F1-score,  and  AUC  of  bot
detection techniques. (%)

Approach Precision Recall F1-score AUC
GitHub API 90.0 99.9 94.7 53.1

BIMAN 83.6 99.4 90.8 93.5
BoDeGHa 81.6 95.2 89.3 89.5
BotHunter 92.8 84.6 90.5 81.0
BDGOA 96.5 94.1 95.3 99.6
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perform specific actions in the selected repository, such
as deleting branches, closing issues, and merging code
periodically.  The  repository  is  also  maintained
manually  by  the  user,  including  code  updates,
participation in issue discussions, and review PRs. It is
difficult  to  classify  at  the  account  level  and requires  a
more fine-grained level of activity.

Copy  human  activities: There  is  some  need  for
users  to  deploy  programs  related  to  cloning  activities
through  OAuth  Apps.  Such  programs  copy  code  and
tags from other repositories in real time or periodically
in  the  current  repository.  We  have  observed  three
reasons  for  this  phenomenon.  One  is  that  the  user’s
development  activities  are  not  performed  in  GitHub,
but the code needs to be open sourced through GitHub.
Second,  users  add  external  references  that  do  not
belong  to  GitHub  in  a  replicated  manner,  or  to  avoid
accidental  modification  of  external  references.  Third,
users  attempt  to  distribute  content  in  a  replicated
manner that may be legally risky.

Improvement  of  automatic  dialogue  capability:
With the development of the GPT model, bots already
have  the  ability  to  participate  in  discussions  in  issue
and  PR  discussions  in  issue  and  PR,  even  if  these
accounts are not mentioned. Therefore,  traditional  text
similarity  calculation  methods  based  on  text  distance
may fail.

8    Conclusion

In  this  paper,  we  propose  an  approach  to  identify
GitHub  OAuth  Apps,  named  BDGOA.  This  approach
introduces  the  latest  bot  operation  mechanism  of
GitHub,  removes  GitHub  Apps  that  are  easily
identified, and optimizes the design for GitHub OAuth
applications.  We  extract  features  from  three
dimensions: account information, account activity, and
text  information,  and  finally  filter  24  features
according  to  three  criteria:  generality,  stability,  and
robustness.  We  introduce  the  self-similarity  feature  to
quantify  the repetitiveness  of  behavioral  sequence and
improve  the  calculation  of  text  similarity  to  enhance
the  perception  of  natural  languages.  We  evaluate  the
performance  of  five  mainstream  machine  learning
classifiers  and  finally  select  the  RF  as  the  classifier
according  to  the  stability  and  accuracy  principles.

BDGOA  has  excellent  classification  performance  on
the benchmark dataset, with F1-score of 95.83%.

As  the  GitHub  community  is  rapidly  iterating  and
many new features are introduced, like actions, star list,
and  sponsors,  they  will  continuously  bring  new
challenges  to  our  model.  In  future  work,  we  plan  to
build  a  larger  dataset  of  bot  accounts  based  on  the
BDGOA  tool.  We  hope  to  model  account  behavior
with  more  sophisticated  techniques,  such  as  neural
network  models,  to  help  developers  and  researchers
better  classify  GitHub  account.  Meanwhile,  we  will
conduct  an  empirical  study  of  bot  accounts  to
quantitatively  observe  its  impact  on  existing  research,
as well as the GitHub community.
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