

BDGOA: A bot detection approach for GitHub OAuth Apps

Zhifang Liao, Xuechun Huang, Bolin Zhang, Jinsong Wu*, and Yu Cheng

Abstract: As various software bots are widely used in open source software repositories, some drawbacks are coming

to light, such as giving newcomers non-positive feedback and misleading empirical studies of software engineering

researchers. Several techniques have been proposed by researchers to perform bot detection, but most of them are

limited to identifying bots performing specific activities, let alone distinguishing between GitHub App and OAuth App.

In this paper, we propose a bot detection technique for OAuth App, named BDGOA. 24 features are used in BDGOA,

which can be divided into three dimensions: account information, account activity, and text similarity. To better

explore the behavioral features, we define a fine-grained classification of behavioral events and introduce self-

similarity to quantify the repeatability of behavioral sequence. We leverage five machine learning classifiers on the

benchmark dataset to conduct bot detection, and finally choose random forest as the classifier, which achieves the

highest F1-score of 95.83%. The experimental results comparing with the state-of-the-art approaches also demonstrate

the superiority of BDGOA.

Key words: Github; DevBots; machine learning; text similarity

1 Introduction

The rapid development of social coding platforms,
such as GitHub, has attracted a large number of
excellent software developers. These developers
participate in the collaborative development of open-
source software through mechanisms, like issue, Pull
Request (PR), comment, and review. While the
collaborative mode increases the efficiency of
development, it also significantly increases the
workload of repository maintainers to communicate
with contributors, review codes, merge PR, run test
cases, etc.

To reduce the workload and focus on core
development and maintenance tasks, repository
maintainers usually seek some automated programs to
perform some repetitive tasks for themselves. For
example, developers have employed bots to update
software dependencies[1], execute test cases[2, 3],
perform code refactoring[4], help newcomers quickly
integrate into the team[5, 6], and so on. Generally, we
refer to these automated tools as DevBots, and various
types of DevBots are expected to be powerful tools for
solving problems in increasingly complex software
development work.

While DevBots bring convenience to software
maintainers, they can also bring unexpected negative
effects. Researchers in software engineering often
analyze developers, in order to understand their
cultural activities[7−10], assess team size[11], and make
estimates of developer productivity[12]. Their empirical
studies rely on a large number of account information
and historical behavioral records mined from software
repositories. The built-in automated nature of bots
makes them more productive, threatening the validity
of some metrics and even causing analysis results to
deviate significantly from the estimates. Dey et al.[13]

 Zhifang Liao, Xuechun Huang, and Bolin Zhang are with the

School of Computer Science and Engineering, Central South
University, Changsha 410083, China. E-mail: zfliao@
csu.edu.cn; snowona@foxmail.com; wolfbolin@foxmail.com.

 Jinsong Wu is with the School of Artificial Intelligence, Guilin
University of Electronic Technology, Guilin 541004, China,
and also with the Department of Electrical Engineering,
University of Chile, Santiago 8320000, Chile. E-mail:
jwu_soc@qq.com.

 Yu Cheng is with Hunan Glozeal Science and Technology Co.,
Ltd., Changsha 410083, China. E-mail: yucheng@tinoy.cn.

 * To whom correspondence should be addressed.
 Manuscript received: 2023-02-23; revised: 2023-03-08;

accepted: 2023-04-01

Intelligent and Converged Networks ISSN 2708-6240
2023, 4(3): 181−197 DOI: 10.23919/ICN.2023.0006

© All articles included in the journal are copyrighted to the ITU and TUP. This work is available under the CC BY-NC-ND 3.0 IGO license:

https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.

pointed out that the first step to reduce the impact of
bots on software engineering researches is to identify
those bots. There are indeed many popular and highly
regarded developing bots existing in the GitHub
community, such as Dependabot and Renovate, but not
all of them are easily recognizable, well designed, and
maintained. In an empirical study conducted by Wessel
et al.[14], respondents reported that bots may scare
newcomers with mechanistic comments, which causes
some newcomers to close their PRs. For newcomers or
inexperienced developers, it is more frustrating to
receive a comment like “you let coverage go down”
than “thanks for your contribution”. Ambiguous
perception of the identity of bot accounts and their
working logic reinforces the fear of the unknown,
reduces developers’ enthusiasm for code contribution.
From both the perspective of researchers and
developers, effective recognition of developing bots is
a necessary task.

There are two types of bot accounts on GitHub:
GitHub Apps and OAuth Apps. In earlier days,
developers used OAuth Apps for assistance in software
development. OAuth Apps can be authorized and act as
actual GitHub users, and perform most development
activities with API. As the demand for automation
grows among developers, GitHub Apps and GitHub
actions are officially launched on GitHub for a higher
level of automation. GitHub Apps can be installed by
an organization owner or individual repository
administrator, and be given access to specific content,
such as read permission to repository content, access to
source code, management of issues, PRs, and tags, etc.
GitHub Apps use their own identities when performing
activities, and it is very convenient to use GitHub API
to identify GitHub Apps (https://api.github.com/apps).
Considering that OAuth App can perform most
activities with the identity of human account, its bot
identity is more invisible. Therefore, we focus on the
identification of OAuth Apps.

Several methods have been proposed to identify bot
accounts on GitHub[13, 15−18], which apply supervised
learning techniques to enable automated bot detection,
and achieve high precision on labeled dataset.
However, most of the methods are limited to

identifying bots performing specific activities, let alone
distinguish between two different bot accounts.
Moreover, the utilization of behavioral data stays in
simple numerical statistics, without in-depth mining of
repetitive behavior patterns.

In this paper, we present an approach, BDGOA, to
identify bot accounts on GitHub, especially for OAuth
Apps. Through exploratory data analysis, we select 24
effective features, which can be divided into three
dimensions: account information, account activity, and
text similarity. In contrast to existing research, we
define a fine-grained classification for behavioral
events, and also introduce a self-similarity feature to
quantify the repeatability of behavioral sequences to
better extract behavioral features. Meanwhile, we
expand the range of selected text contents and improve
the calculation of text similarity by taking into account
the content format differences of different types of
texts. Finally, we train five machine learning classifiers
on the benchmark dataset to conduct bot detection, and
finally choose the random forest classifier, which
achieves the highest F1-score of 95.83%. The
experimental results comparing with other state-of-the-
art methods also demonstrate the superiority of our
approach.

The remainder of the paper is organized as follows.
Section 2 lists related work of our study. In Section 3,
we conduct an exploratory data analysis to extract
effective features. We review the selected features
according to three principles of generality, stability,
and robustness, and present the overall architecture of
BDGOA approach in Section 4. Section 5 presents the
dataset and evaluation metrics. Section 6 presents the
experimental results. We discuss our findings in
Section 7 and conclude the whole paper in Section 8.

2 Related work

2.1 DevBots in GitHub

To reduce workload, maintainers of open-source
project often use automated script tools to help them
perform some predefined repetitive tasks. Such
automated tools are called DevBots. Existing
researches on DevBots focus on the practical

 182 Intelligent and Converged Networks, 2023, 4(3): 181−197

application of employing bots in software engineering
and the influence of bots on activities in software
repository.

Mirhosseini and Parnin[1] analyzed 7470 GitHub
projects that use notification mechanisms, like
automated PRs and project badges, to update
dependencies, and found that the update frequencies of
software dependency were increased by 1.6 times and
1.4 times, respectively. Erlenhov et al.[3] believed that
the key to better test bots is to design more efficient
test cases, and avoid misleading conclusions from the
test results. A case study was conducted by them to
identify challenges faced in test design, and guidelines
are given for test design patterns. Urli et al.[2]

introduced the repairator bot, which constantly
monitors the failed tests and reproduced bugs, and runs
the program repair tools for each reproduced bug.
Repairator bot has studied 11 523 test failures for 1609
open-source projects, and generated patches for 15
projects. Dominic et al.[6] proposed a chatbot that can
recommend open-source projects for newcomers, and
assist them to participate in the community with
resources, like human mentors and Stack Overflow
(S.O.). related information. Similarly, Alves et al.[5]

proposed a chatbot which can filter tasks to help
newcomers choose tasks that match their skills. Wessl
et al.[19] randomly selected 351 popular projects on
GitHub and found that 26% of these projects employ
software bots, in which bots perform lots of tasks.
Before and after bots were used, statistical differences
were found in comment, commit, file changes, and
close time of PR. Moreover, Wessel et al.[20] observed
that the introduction of code review bots can increase
the number of merged PRs per month, but reduce the
communication among developers to some degree.
Phaithoon et al.[21] proposed a FixMe bot that helps
developers detect and monitor on-hold SATD in their
repositories. FixMe bot monitors SATD comments as
well as referenced issues, and developers will receive
notifications when issues are resolved. Similarly,
Mohayeji et al.[22] found that the TODO Bot does have
an encouraging effect on developers to introduce
TODO comments, and also increase the visibility of
TODO comments. Romero et al.[23] proposed an

answering bot, named GitterAns, which can
automatically detect technical questions asked by
developers in Gitter, and provide answers by utilizing
contents from the S.O. website. To realize automated
code refactoring, Wyrich and Bogner[4] developed
Refactoring-Bot, which automatically eliminates odors
in java code and commits PRs containing source code
changes to developers.

2.2 Bots detection techniques in GitHub

In most research works which investigate the influence
of introducing DevBots in software development,
researchers adopted manual inspection to identify bot
accounts, which lacks an automated solution for
identification. Due to the limitations of manual
labeling, the representativeness and validity of the
empirical study results that have not been conducted on
a large-scale bot accounts are not guaranteed.
Considering that the identification of bot accounts is
the basis for empirical studies, researchers have begun
to seek solutions.

Dey et al.[13] first proposed a method to automaticly
detect commit code bots, BIMAN. They constructed an
dataset containing 461 bots and 13 762 430 commits.
Features in three dimensions: account login, commit
messages, and changed files associated with commit
are selected. Following this, a series of researches were
conducted by Golzadeh et al.[15], who hypothesized that
the PR comments[24] submitted by bots contain
repetitive text patterns. Based on 20 090 PR comments
collected, they combined the Levenshtein edit distance
with the Jaccard distance for cluster analysis, and
found that bots have fewer patterns in their comments
than humans. To validate on a larger and more
representative dataset, Golzadeh et al.[15] constructed a
ground-truth dataset containing PR and issue
comments from 5000 GitHub accounts[15], of which
527 are labeled bots. Considering the existence of
mixed accounts with two identities, Golzadeh et al.[16]

proposed to identify human and bot at a more fine-
grained level of comments. They proposed a method
named BoDeGHa, which uses bag-of-words, as well as
Term Frequency-Inverse Document Frequency (TF-
IDF) techniques, to encode comments as vectors, and

 Zhifang Liao et al.: BDGOA: A bot detection approach for GitHub OAuth Apps 183

train a binary classifier to predict the type of
comments. Similarly, Golzadeh et al.[17] applied the
same model to Git commit messages and demonstrated
its excellent generalization performance.

Although the above methods of identifying bots in
GitHub have achieved promising results, they are
restricted to bots performing specific activity, such as
PR, issue, and commit. Abdellatif et al.[18] proposed
BotHunter, a method to detect bots from multiple
activity types. They extracted 19 features from three
dimensions: user profile, account activity, and text
similarity, and merged the datasets constructed by Dey
et al.[13] and Golzadeh et al.[15] A random forest
classifier was used on a dataset containing 5107
GitHub accounts, and achieved F1-score of 92.4% and
Area Under Curve (AUC) of 98.7%. Chidambaram
et al.[25] noted that the BoDeGHa model utilized only
activities in current repositories, which might lead to
lead to inconsistent and incomplete prediction. They
proposed method named Woc-P, which relied on the
BoDeGHa for prediction and introduced the principle
of group wisdom to correct, improving the accuracy by
6.9%.

3 Exploratory data analysis

In order to comprehensively characterize an account on
GitHub, we have to extract a large number of features
from multiple perspectives, such as account profile
information and account activity. Based on the
benchmark dataset provided by Golzadeh et al.[15], and
account information and behavioral event records
provided by GitHub archive, we launch an exploratory
data analysis to investigate personal information and
historical activity records for each account, thus mining
features that can effectively distinguish humans and
bots. Considering the time-sensitive nature of account
information, we correct the public account set. Within
the modified account set, 4462 are marked as human,
and 512 are bot accounts. We select a total of 24
distinguishing features based on data analysis, which
are divided into 3 dimensions: account information,
account activity, and text similarity.

3.1 Account information

Personal homepage on GitHub provides basic account

information, including (1) profile information, like
name, bio, and school; (2) social information, like
number of followers and followings, and affiliated
organizations; and (3) personal contribution, such as
the number of repositories, commits, and opened
issues. We hypothesize that these features would
distinguish well between humans and bots, and carry
out statistical analysis on them to confirm.

(1) Login, name, and bio
Login is the primary identifier of a GitHub account.

Users can also set an account name as alias. Bio is a
short description which can briefly introduce user
interests and skills. Figure 1 shows the profile of a bot
account with login “renovate-bot”, whose identity is
not explicitly declared in name but with clear
statements in bio. We also find the “bot” string existing
in human’s bio but it is rare to see. Dey et al.[13] first
proposed the BIN model, which uses regular
expressions to identify bots based on whether their
name contains the string “bot”. Abdellatif et al.[18]

found the presence of “bot” string in login, name, and
bio accounts for 48%, 40%, and 35% of in their
inspected accounts, respectively. We also analyze the
performance of the above features in our account set
and find that bot accounts with “bot” string in login,
name, and bio account for 74.3%, 46.4%, and 18.2% of
all bot accounts, respectively, while the corresponding
percentage for humans are 2.6%, 1.1%, and 0.3%,

(a) (b)
Fig. 1 Examples of profile information with “bot” string.

 184 Intelligent and Converged Networks, 2023, 4(3): 181−197

respectively. It can be seen that containing “bot” string
in login, name, and bio is common for bot accounts,
while humans rarely have such habits.

(2) Information integrity
There is a lot of optional profile information on user’s

homepage like email, blog, and website. Information
integrity stands for the degree of completeness of
profile information filled by users. We hypothesize that
the information integrity on personal homepages could
effectively distinguish between human and bot, and
investigate the integrity of humans and bots on 7 pieces
of information: name, bio, email, status, company,
location, and website. Statistics show that the mean
value of information integrity of bot accounts is 0.63%,
which is significantly higher than that of human at
0.42%. Actually, we find many bot accounts, such as
renovate, greenkeeper, and depfu, are widely used in
the community. Their companies and teams design
websites to introduce their products, provide user
manuals, maintain twitter accounts to expand their
social influence, and provide communications by
phone or email to give after-sales support. The tool and
product nature of bots require a higher level of
information integrity to introduce, promote, and serve.

(3) Number of followings and followers
The number of followings and followers are

considered as significant social information for GitHub
users. Users can follow accounts of their interests and
receive notifications of activity events from their
followings. The number of followers is a good
reflection of account’s popularity and activity level.
Abdellatif et al.[18] proved in statistics that humans are
more likely to perform social activities. Among the
accounts we inspected, we find the median number of
human followings is 8, while bots have an average of
only 1. What is more, the median number of human
followers is 55, while that of bots is only 2. We think
the number of followings and followers are critical
social features that provide good distinction between
humans and bots.

(4) Level of personal contribution
We choose several features to measure the individual

contribution of GitHub accounts: (1) Total issue
contribution—how many issues the user opened; (2)

Total PR contribution—how many pull requests the
user opened; (3) Total commit contribution—how
many commits are made by the user; (4) Total
repository contribution—how many repositories the
user created. We calculate the value of above four
features for each inspected account, and draw a box
plot in Fig. 2. Due to large variation in value, we take
logarithms of the total number. In terms of median,
features of four dimensions are distinguishable.

3.2 Account activity

We also try to explore valuable features from historical
behavior records. More specifically, we focus on the
type, number, and time intervals of activities performed
by GitHub users over a period of time. We hypothesize
the above information can reflect user’s role as part of
the team, as well as time and effort they invested.

To obtain behavioral data of the inspected GitHub
accounts, we download the data from the GitHub
archive in 2020 and filter all the behavioral event
records for each user in corrected account set by login.
Furthermore, we need a taxonomy of GitHub activities
to better extract behavioral features. GitHub event API
returns detailed information of events triggered by
account activities, and the corresponding API
documentation provides basic classification for events,
as Level 2 listed in Table 1. To obtain a more fine-
grained classification of behavioral events, we further
parse the “payload” object of each event record to
subdivide the event type. Finally, We divide all event
types into five dimensions: user, repository, commit,
issue, and PR, with 17 types in Level 2, and 38 types in
Level 3, as shown in Table 1.

Based on the fine-grained behavioral event

10

8

6

4

Lo
g

va
lu

e
of

 to
ta

l n
um

be
r

2

0
Issue Commit PR Repository

Human
Robot

Fig. 2 Distribution of statistical features of personal

contribution.

 Zhifang Liao et al.: BDGOA: A bot detection approach for GitHub OAuth Apps 185

classification, we extract and sort each user’s
behavioral events by timestamp. and form a sequence
of behavioral events for the whole year.

(1) Total number of activities
Abdellatif et al.[18] considered bots and humans

have different activity patterns and chose total number

of four groups of activities as key feature. We agree
with them and think this feature can directly reflect the
overall work level of GitHub users. Unlike their work,
we refer to the classification of behavioral events in
Table 1 and count the total number of behavioral
events in 5 dimensions: user-related, repository-related,
commit-related, issue-related, and PR-related. For each
account inspected, we count total number of five
dimensions of behavioral events performed in 2020.

In Fig. 3, we compare the total number of events
performed by humans and bots in above five
dimensions. Since the value of total number of
activities varies widely, we take logarithmic values for
ease of presentation. It can be seen that the median
value of activities performed by bots is higher than that
of humans in four dimensions, but significantly lower
than that of humans in the user dimension. We think
that bots are always pre-defined to perform certain
functional tasks, while user-related events, such as star
and fork, are subjective behaviors of humans.

(2) Type number of activities
Bots have access to limit resources and can only

perform several pre-defined activities, while humans
are free in their activities. Therefore, we think the type
number of behavioral events is also a good indicator to
distinguish between humans and bots. We count the
type number of activities performed by bots and
humans in five dimensions, and draw a box plot. As
shown in Fig. 4, the median of type number of
behavioral events performed by human accounts is
always higher than that of bot accounts, as well as the
maximum.

(3) Median number of activities per day
Abdellatif et al.[18] found bots have a higher level of

daily activity than humans and computed the median

Table 1 Fine-grained classification of behavioral events.

Dimension Classification level 2 Classification level 3

User
ForkEvent USER-fork_repo

WatchEvent USER-star_REPO

Commit
PushEvent COMMIT-create_commit

CommitCommentEvent COMMIT-create_comment

Repository

CreateEvent
REPO-create_repo
REPO-create_tag

REPO-create_branch

DeleteEvent
REPO-delete_repo
REPO-delete_tag

REPO-delete_branch
PublicEvent REPO-public_repo

ReleaseEvent REPO-create_release
MemberEvent REPO-create_member
GollumEvent REPO-update_wiki

Issue

IssuesEvent

ISSUE-create_issue
ISSUE-update_issue
ISSUE-delete_issue
ISSUE-reopen_issue
ISSUE-assign_issue
ISSUE-cancel_issue
ISSUE-mark_issue

ISSUE-unmark_issue

IssueCommentEvent
ISSUE-create_comment
ISSUE-edit_comment

ISSUE-delete_comment

PR
PREvent

PR-create_pull
PR-update_pull
PR-delete_pull
PR-reopen_pull
PR-assign_pull
PR-cancel_pull
PR-mark_pull

PR-unmark_pull
PR-sync_pull

PR-ask_for_review
PR-give_up_review

PRReviewEvent PR-create_review
PRReviewCommentEvent PR-create_comment

10

8

6

4

Lo
g

va
lu

e
of

 to
ta

l
nu

m
be

r o
f a

ct
iv

iti
es

2

0
Repository Issue PR Commit User

Human
Robot

Fig. 3 Distribution of total number of activities

in 5 dimensions.

 186 Intelligent and Converged Networks, 2023, 4(3): 181−197

number of activities per day for each account.
Similarly, we count the number of behavioral events
performed per day in 2020 for all the inspected
accounts and draw the count-frequency scatter plot. As
shown in Fig. 5a, the frequency of bots is significantly
higher than that of humans at a high level of daily
activity. Moreover, the number of behavioral events
performed by bots per day in some cases even exceeds
the maximum that humans can achieve.

(4) Median response time per day
Abdellatif et al.[18] observed that bots generally have

faster response time than humans, and they explained
bots are triggered by predefined events and
continuously monitor the dynamics of repository. They

compared accounts’ median response time to PR &
issue creation events. Here, we record the time
intervals between two consecutive events in behavioral
sequences of all the inspected accounts and draw the
interval-frequency scatter plot as Fig. 5b. Under the
same occurrence frequency condition, the time interval
of bots is always smaller than that of humans.

(5) Self-similarity
From the above analysis, it appears that bots with a

limited type number of activities perform more
activities than humans. Besides, bots are driven by
computer programs and they are bound to perform lots
of repetitive actions. To quantify the repetitiveness in
behavioral event sequences, we try to resort to some
sequence mining methods rather than simple numerical
statistics.

We introduce the self-similarity feature proposed by
Lee et al.[26] to measure the repetitiveness of account
activity. Firstly, we group and sort each account’s
behavioral events by timestamp, then set a reasonable
time period, followed by converting the behavioral
events within the interval into a vector by count
encoding. Then, we calculate the cosine similarity
between each behavioral vector and the unit vector.
After all behavioral vectors are converted into a set of
cosine similarities, we calculate the standard deviation
and use it as the value of self-similarity. Detailed
calculation process is described in Section 4.1.1. The
self-similarity value is close to 1 when the behavioral
event sequence is highly repetitive; conversely, it will
be close to 0.5.

To verify the validity of the self-similarity metrics,
we calculate the self-similarity value of the inspected
accounts following the above procedure and draw box
plots for humans and bots. In terms of the median
value, the self-similarity value of bots is obviously
higher than those of humans. It can be seen in Fig. 6,
some bot accounts achieve a self-similarity of 1, which
indicates they perform single activity.

3.3 Text similarity

There exists lots of unstructured text on GitHub, such
as user comments, titles of PR & issue, content of
readme files, etc. Human comments are usually
subjective and arbitrary. However, bots are usually

8

6

4

Ty
pe

 n
um

be
r o

f a
ct

iv
iti

es

2

0
Repository Issue PR Commit User

Human
Robot

Fig. 4 Distribution of type number of activities

in 5 dimensions.

107

Fr
eq

ue
nc

y

Human
Robot106

105

104

103

102

101

100

100 101 102

Interval (h)
103 104

Fr
eq

ue
nc

y

Human
Robot

105

104

103

102

101

100

100 101 102

Count
(a)

(b)

103 104

Fig. 5 Relationship between features and their relative

occurrence frequency.

 Zhifang Liao et al.: BDGOA: A bot detection approach for GitHub OAuth Apps 187

triggered to make comments after specified events
(e.g., creation of PR & issue), to indicate the results or
influence of events. The well-known renovate-bot is
widely used to update outdated software dependencies
and create PRs to provide patch. It will submit a
comment under each PR created, stating the software
dependency involved in the current update, and change
in version number, e.g., “This PR contains the
following updates:”.

Previous research[15, 16, 24] assumed that comments
published by bot accounts would show more similarity
than humans, and used text distance measures, such as
Jaccard distance[27] and Levenshtein distance[28], to
quantify the similarity of comments in terms of content
and structure. Text information studied in their
research are mainly PR & issue comments and commit
messages.

Our research extends the scope of text. We extract
text information contained in eight types of behavioral
events: commit-create_commit, commit-create_
comment, issue-create_issue, issue-create_comment,
pr-create_pull, pr-create_review, pr-create_comment,
and repo-create_release. Supplementary text
information includes contents of PR & issue, release
notes, PR reviews, etc. Considering the unique text
format of different categories, we divide the text
information into four dimensions: issue-related; PR-
related; commit-related, and release-related. We
compute text similarity in four dimensions for all the
inspected accounts and draw the box plot in Fig. 7.
Detailed calculation process is described in Section
4.1.2. It can be seen that higher median value of text
similarity is achieved by bots in all four dimensions.
This is in line with our assumptions and consistent with
findings of previous studies.

4 Bot account detection model

We have found some features that can effectively
distinguish between humans and bots during
exploratory data analysis. In this section, we describe
some detailed extraction process of features and
perform feature review based on three criteria to obtain
the final feature set. Moreover, the overall architecture
of our proposed approach BDGOA is also presented.

4.1 Feature extraction

We introduce the specific computation process for
some features in this section.
4.1.1 Self-similarity
Taking a GitHub account for example, whose self-
similarity is calculated as follows.

Firstly, generate a set of behavioral vectors. We
collect records of behavioral events for each user, sort
them by timestamp, and form a behavioral sequence.
We set the time interval to minute and split the
behavioral sequence per minute. The behavioral events
within one minute are transformed by count encoding
into a vector, which consists of event id and its
frequency.

Secondly, calculate the cosine similarity of
behavioral vectors. We calculate the cosine similarity
between each behavioral vector and a unit vector, and
obtain a set of cosine similarities. The cosine similarity
between two vectors is defined as follows:

cos(A,B) =
AB
|A||B| =

∑n
i=0 AiBi√∑n

i=1 A2
i

√∑n
i=1 B2

i

(1)

Thirdly, compute the self-similarity value H of a
GitHub account. We calculate the standard deviation of

1.00

0.99

0.98

0.97

Se
lf-

si
m

ila
rit

y

0.96

0.95

0.94
Human Robot

Fig. 6 Comparison of self-similarity between
humans and bots.

1.0

Human Robot

0.8

0.6

0.4

Te
xt

 s
im

ila
rit

y

0.2

0
Commit Issue PR Release

Fig. 7 Comparison of text similarity between humans and

bots of four types of text content.

 188 Intelligent and Converged Networks, 2023, 4(3): 181−197

this set of cosine similarities and convert them
according to

H = 1− 1
σ

(2)

σwhere is the value of standard deviation.
4.1.2 Text similarity
As mentioned in Section 3.3, we divide the text
information from 8 behavioral events into 4 categories:
issue-related, PR-related, commit-related, and release-
related, according to the relevance in terms of content
and structure. To give a example, we calculate the text
similarity of commit comments and commit messages,
and take the mean value of the two as final text
similarity of commit-related text.

C1 C2

J(C1,C2)

We choose the Jaccard distance as the text distance
metric to measure the text similarity. Assuming that
there are two comments and , the Jaccard
distance is defined as follows:

J(C1,C2) = 1− vocab(C1)∩ vocab(C2)
vocab(C1)∪ vocab(C2)

(3)

vocab(C1) vocab(C2)

C1 C2

where and denote the set of words
that appear in comment and , respectively. It
quantifies the content similarity of two comments at
the word level. We collect all the commit comments
for a given account, calculate the Jaccard distance
between any two comments, and use the mean value as
the text similarity of commit comments.

4.2 Feature review

In order to successfully apply these features to the bot
detection task on GitHub, we review them based on the
following considerations.
4.2.1 Generality
We expect the selected features with the ability to
distinguish between human and bot accounts,
especially for OAuth Apps. Account tag was chosen as
feature used in BotHunter[18], and the authors in Ref. [18]
explained that they could examine whether an account
is used as a GitHub App by API. It did achieve 100%
identification of bot accounts of GitHub Apps type.
However, it failed to distinguish between human
accounts and OAuth Apps, which did not satisfy our
demands. Besides, we removed three features: login,
name, and bio. We considered the “bot” string in the

profile information to be a strong hint of the bot
identity. Just like the account tag feature, it is more like
a label rather than a feature.
4.2.2 Stability
The GitHub platform is in the process of expanding
and evolving. New and existing accounts will have
unavoidable differences in their individual contribution
features due to the length of time they have been
registered. In order to minimize the impact, some time-
insensitive behavioral features are also introduced.
Compared with account information and text contents,
we think behavior records are the most impossible to
miss, and are intuitive and easy to obtain. Therefore,
more attention should be paid to extracting behavior
features.
4.2.3 Robustness
Utilization of behavioral data in previous research is
limited to simple numerical statistics. Although these
features have been proved distinguishable, they still
remain staying in the overall level. The self-similarity
value we proposed focus on the frequency of the
repeated activity patterns rather than the frequency of
the activities themselves. Furthermore, it can better
reflect the repetitiveness of behavioral sequences and
reveal the behavior patterns of accounts. It can be said
that, the introduction of the self-similarity value
enhances the robustness of our bot detection model.

Finally, we list all the 24 features used in our model
in Table 2.

4.3 Model structure

The overall architecture of BDGOA is presented in
Fig. 8. The corrected account set, as well as the account
information and behavioral records extracted from
GitHub archive are our data source. We divide account
information into 3 categories, namely social
information, profile information, and personal
contribution. Behavioral records are parsed to get text
contents contained in behavioral events, and behavioral
events are sorted into behavioral sequences by
timestamp. Some numerical statistics or sequence
mining approaches are adopted by us to perform
feature extraction.

All extracted features are reviewed to get the final

 Zhifang Liao et al.: BDGOA: A bot detection approach for GitHub OAuth Apps 189

valid feature set. We take these features and choose
some mainstream machine learning classifiers for
account classification, and evaluate the classification
performance on the corrected account set.

5 Experiment

5.1 Dataset

To evaluate performance of our proposed method on
bot identification task, we fetch the ground-truth
dataset (gTruth) released by Golzadeh et al.[15], who
first obtained links to over 3.3 million GitHub
repositories associated with 37 software package
registries provided by library.io. They randomly
selected 136 000 repositories as the basis for building
the dataset. By filtering out accounts with fewer than
10 comments, 79 342 GitHub accounts with 6 307 489
comments distributed across 42 492 software
repositories are available. They randomly sampled a
subset containing 5082 accounts and manually labeled
them according to PR and Issue comments. Finally, a
dataset containing 5000 GitHub accounts is
constructed, with 527 bot accounts and 4473 human
accounts.

Considering the behavioral data of these 5000
accounts needed to be utilized for feature extraction,
we download the data from GitHub archive in 2020,
which records public activities of all accounts. By
filtering on the base of the login name, we collect for
each account all of its activity records in 2020.
However, we find 136 accounts with empty activity
data when collecting data, which indicates that gTruth
is highly time-sensitive and required manual
verification and correction.

There are 70 bot accounts and 66 human accounts

Table 2 Feature set of the bot detection model.

Dimension Feature

Account profile

Profile information integrity
Number of followers
Number of followings

Total issue contributions
Total commit contributions

Total PR contributions
Total repository contributions

Account behaviour

Total number of user activities
Total number of repository activities

Total number of issue activities
Total number of PR activities

Total number of commit activities
Type number of user activities

Type number of repository activities
Type number of issue activities
Type number of PR activities

Type number of commit activities
Median activities per day

Median response time per day
Self-similarity

Text similarity

Issue-related text similarity
Commit-related text similarity

PR-related text similarity
Release-related text similarity

Data source

GitHub archive

Ground truth
GitHub accounts

Corrected
account set

Account
information

Event records

Feature extraction Classifier model

Extracting
features

Machine learning
classifier

Text
content

Event
sequence

Social
information

Personal
contribution

Profile
information

Fig. 8 Overall architecture of BDGOA.

 190 Intelligent and Converged Networks, 2023, 4(3): 181−197

among the 136 invalid accounts. We search in the
GitHub community based on the login name and
project information provided by gTruth. 54 human
accounts have changed logins, and other reasons for
invalid are distributed as follows: deleted, not existing,
public or private GitHub Apps, etc.

We update the renamed accounts, remove deleted
and non-existent accounts to get the corrected gTruth-
2020 dataset. Detailed distribution of accounts is
shown in Table 3.

5.2 Performance evaluation

Taking the 24 features of Table 2 as inputs, five
mainstream machine learning classifiers: Logistic
Regression (LR), Decision Tree (DT), Random Forest
(RF), Support Vector Machine (SVM) and
XGBoost (XGB) are chosen to perform bot accounts
detection. K-fold cross-validation is applied to evaluate
the performance of our model. The gTruth-2020
dataset is divided into k subsets of the same size. One
of the k sets is selected as test set, and the remaining
k−1 sets are taken as training set, and the above process
is repeated k times. Average value of k-times model
result is taken as the final performance of K-fold cross-
validation, which can effectively avoid over-fitting and
under-fitting.

Precision, recall, and F1-score are chosen as
evaluation metrics. Precision is the probability of the
number of accounts that are true bot relative to the
number of accounts that are predicted to be bot. Recall
is the probability of the number of accounts correctly
predicted to be bot relative to the number of accounts
that are true bot. F1-score is the harmonic mean of the
two. Considering the imbalance of the dataset, i.e., the
number of bot accounts is significantly smaller than the
number of human accounts, we also plot the Receiver
Operating Characteristic (ROC) curve. The horizontal
coordinate of the ROC curve is the False Positive Rate
(FPR) and the vertical coordinate is the True Positive
Rate (TPR). We can get a point (FPR, TPR) based on

the performance of a classifier on the test set, and by
continuously adjusting the classification threshold, we
can get an ROC curve passing through the points (0, 0)
and (1, 1).

6 Result

In this section, we present the result of our research.
The motivation and results for each question and
objective analysis are described in detail.

(1) RQ1: Which classifier achieves the best
performance on bot detection?

The motivation for RQ1 is to choose the one that
performs best on our task among mainstream machine
learning classifiers. A small portion of accounts with
missing features are deleted in the process of feature
extraction, and there are 4520 valid GitHub accounts
left in our dataset. We leverage all 24 features defined
in Table 2 and conduct the experiment on 4520 GitHub
accounts. During the experiment, default parameters
setting on top of scikit-learn[29] are used to implement
the model. What is more, we use 10-fold cross-
validation to test the accuracy of the model and take
the mean value of 10 experimental results to get the
final model performance.

We list the precision, recall, F1-score, accuracy, and
the AUC value of different machine learning classifiers
in our experiment. Among these five evaluation
metrics, we pay more attention to F1-score. The
experimental results are shown in Table 4. Overall, the
above classifiers perform very well, achieving the
average F1-score of more than 0.8 and the average
AUC value value of more than 0.9. Compared with
other machine learning classifiers, the RF and XGB
model achieve the highest F1-score. DT shows the
worst performance of all five metrics.

We have performed a detailed review of test results.
In the experiments using Random Forest and XGBoost,

Table 3 Account distribution in gTruth-2020.

Account type Count
Human 4462

Bot (GitHub Apps) 47
Bot (OAuth Apps) 465

Table 4 Performance of machine learning classifiers. (%)

Classifier Precision Recall F1-score AUC Accuracy
LR 87.69 80.28 83.82 99.05 97.57

SVM 85.92 85.92 85.92 99.21 97.79
DT 45.19 85.92 59.22 88.52 90.71
RF 94.52 97.18 95.83 99.89 99.34

XGB 95.71 94.37 95.04 99.83 99.23

 Zhifang Liao et al.: BDGOA: A bot detection approach for GitHub OAuth Apps 191

for 904 GitHub accounts included in the test set, we
find that most accounts are correctly classified. The
experimental result is shown in Table 5. Only 3 human
accounts (4 in XGBoost) are incorrectly classified as
bots, and only 2 bot accounts are incorrectly classified
as humans. After manually analyzing all wrong
classified GitHub accounts, we find that all wrong
classifications are due to low frequency of account
activity, resulting in meaningless statistics. There is
also a case where the bot is wrongly classified because
the user mainly performs commit activities and has low
text similarity. After observation, we find that this bot
account automatically pushes commits from other code
hosting platforms to GitHub, and its main work does
not center around GitHub. The text content is still
written manually.

(2) RQ2: Which features are of high importance
score?

There are many ways to compute the feature
importance for the Random Forest classifier, such as
the built-in feature importance and permutation-based
importance[30].

The importance score of feature is a built-in attribute
of random forest, we can get the relative importance
score of each feature by accessing this attribute. The
feature importance score is obtained by computing the
Gini coefficient, which can reflect the purity of the

segmented data. The permutation_importance is a
function provided by scikit-learn. The principle behind
permutation-based importance is more intuitive. A
column of features will be randomly sorted at a time to
compare the change in model performance before and
after the feature change, and the feature that has the
greatest impact on model performance is the most
important feature.

We use the permutation_importance function and the
built-in feature_importances_ attribute to compute the
feature importance. Table 6 presents the top-10
features and their importance scores in the two
evaluation metrics. It also provides us with a better
understanding of which features we should focus on.

As we can see from Table 6, the feature “issue-
related text similarity” ranks highest in both lists, and
the “profile information integrity”, “self-similarity”,
and “number of followings” features are in the second
to fourth places, with a small gap with the first place. It
proves part of our assumptions and analytical results in
Section 3. Content similarity of text contents,
repetitiveness of behavioral sequences, completeness
of profile information, and level of socialization are the
key indicators to distinguish bots from humans.

In order to demonstrate the effectiveness of all
dimensional features and also to prove that using
features of all dimensions is more effective than using
features of a single dimension, we divide all features
into four groups: profile information, text similarity,
account activity, and self-similarity. We test the
classification performance of each group of features
under five classifiers separately, and the experimental

Table 5 Confusion matrix of RF and XGBoost.

Class
RF XGBoost

Human Bot Human Bot
Human TPS: 830 FNS: 4 TPS: 829 FNS: 4

Bot FPS: 3 TNS: 67 FPS: 2 TNS: 69

Table 6 Importance scores for the top-10 features.

feature_importances_ permutation_importance
Feature Score Feature Score

Issue-related text similarity 0.1775 Issue-related text similarity 0.0158
Profile information integrity 0.1608 Profile information integrity 0.0060

Self-similarity 0.0967 Number of followings 0.0034
Number of followings 0.0618 Self-similarity 0.0019

Total number of issue activities 0.0600 Number of followers 0.0016
Number of followers 0.0486 Median activities per day 0.0009

Median response time per day 0.0448 PR-related text similarity 0.0009
Total number of commit activities 0.0419 Total number of issue activities 0.0007
Type number of commit activities 0.0346 Type number of PR activities 0.0006

Median activities per day 0.0327 Type number of commit activities 0.0005

 192 Intelligent and Converged Networks, 2023, 4(3): 181−197

results are shown in Fig. 9. As can be seen from the
ROC curves and AUC values, the group of account
activity performs the best, but the performance of each
classifier varies significantly. In contrast, the group of
self-similarity has the worst performance, but there is
little difference between different classifiers.

The experimental results show that the classification
performance using single dimensional feature is not
superior to the performance of the classifier combining
all features. Therefore, the BDGOA model selects all
the above features as the basis for classification, which
takes into account the feature validity and stability, and
thus achieves better classification performance.

(3) RQ3: How effective is BDGOA compared with
the state-of-the-art techniques?

In RQ1 and RQ2, we evaluate the performance of the
proposed method on benchmark datasets and finally

choose RF as the classifier, which achieves an F1-score
of 95.83% in detecting bots. To demonstrate the
performance advantage of the proposed BDGOA
method, we compare it with other bot detection
techniques in GitHub. Considering that the GitHub API
can accurately identify the bot identity of GitHub
Apps, we also take it as a technique for performance
comparison. Table 7 presents the performance of our
approach against other state-of-the-art methods.

GitHub App API※: Due to the iteration of GitHub
features, we can now determine whether an account is
a GitHub Apps directly from the results returned by the
GitHub API. Since many OAuth Apps in the dataset
have been converted to GitHub Apps, GitHub Apps
account for a large percentage of bot accounts. GitHub
API can accurately identify GitHub Apps and judge all
non-GitHub Apps accounts as humans, which means

1.0

0.8

0.6

0.4

TP
R

0.2

0
0 0.2 0.4

FPR
(a) Account information

0.6 0.8

<LR> (AUC=93%)
<SVM> (AUC=96%)
<DT> (AUC=93%)
<RF> (AUC=96%)
<XGB> (AUC=95%)

1.0

1.0

0.8

0.6

0.4

TP
R

0.2

0
0 0.2 0.4

FPR
(b) Text similarity

0.6 0.8

<LR> (AUC=88%)
<SVM> (AUC=86%)
<DT> (AUC=93%)
<RF> (AUC=94%)
<XGB> (AUC=98%)

1.0

1.0

0.8

0.6

0.4

TP
R

0.2

0
0 0.2 0.4

FPR
(c) Account activity

0.6 0.8

<LR> (AUC=95%)
<SVM> (AUC=90%)
<DT> (AUC=93%)
<RF> (AUC=99%)
<XGB> (AUC=99%)

1.0

1.0

0.8

0.6

0.4

TP
R

0.2

0
0 0.2 0.4

FPR
(d) Self-similarity

0.6 0.8

<LR> (AUC=90%)
<SVM> (AUC=90%)
<DT> (AUC=85%)
<RF> (AUC=81%)
<XGB> (AUC=87%)

1.0

Fig. 9 ROC curves of five classifiers. The dotled line connecting the points (0, 0) and (1, 1) is the reference line. The ROC
curves are usually on the upper left of the reference line, and the farther away from the reference line, the better the
classification result.

 ※https://docs.github.com/en/rest/apps/apps#get-an-app

 Zhifang Liao et al.: BDGOA: A bot detection approach for GitHub OAuth Apps 193

only a small percentage of OAuth Apps will be wrong
classified. It also explains its ability to achieve 90%
precision, but with AUC value of 53.1%.

BIMAN[13] and BoDeGHa[16]: These two models
measure the textual similarity of account comments
and group them into repeated comment patterns. Due to
the sparsity of text content, they do not perform well on
the benchmark dataset.

BotHunter[18]: Similar to BDGOA, BotHunter
extracts features in three dimensions: account
information, account behavior, and text similarity. Due
to the limitations of the GitHub API, which only
extracts records of account activities within the last
three months. We apply the open-source BotHunter
tool to our constructed benchmark dataset, which
covers account behavior data for the whole year of
2020, but find the classification performance of the
model decreases with larger data volume. Meanwhile,
we find that BotHunter relies heavily on the feature of
whether the profile information contains the “bot”
string. After we remove all GitHub Apps, we find that
the probability of wrong classification is further
increased. To further observe the impact of this feature,
we use uniform random numbers to interfere with the
feature value and perform the test 10 times. The mean
value of F1-score and AUC value are 90.5% and
81.0%, respectively, which indicates that the stability
of the classifier will be at risk when a small number of
features occupy a large importance weight.

The bot detection model we proposed, BDGOA, will
fully learn from the findings of the above study.
BDGOA no longer identifies bot accounts of GitHub
Apps after the GitHub feature upgrade, and such
accounts are classified as self-admitted bot accounts
whose existences are reasonable and do not interfere
with the user’s usage order. Inspired by BIMAN,

BoDeGHa, and BotHunter, BDGOA no longer relies
on text similarity or other single-dimension features.
We extract features with universality, stability, and
robustness from three dimensions: account profile,
account activity, and text similarity to avoid misleading
results from a single feature. Based on the more
comprehensive features and high-performance
classifier, BDGOA achieves better performance on the
benchmark dataset.

7 Discussion

Taking into account the discussion of wrong
classification in previous research, we have organized
and enumerated all possible reasons of wrong
classification.

7.1 Accounts that cannot be classified

Lack of profile information: Some users do not
maintain their accounts after registration or fill in
detailed profile information. Their main development
activities are not based on GitHub, but only use GitHub
as a tool to fork code or download code. They have no
contribution to open-source projects and may not even
be software developers.

Low frequency of account activity: Some users
have no activity records in GitHub for a long time, and
their development work may rely on other platforms
(e.g., Gitee and Gitlab) or Git management tools in
company. They contribute less to the open-source
community, and most of their behaviors are mainly
star, fork, and issue. Their low activity level results in
sparse statistics and no valid information to provide
judgment.

Renamed or logged out: Some users will modify
their id or log out of their accounts, even if they were
once a key participant in some project or left a record
in the event stream. Some early OAuth Apps may have
been converted to GitHub Apps and have modified
their id and visibility. Due to the changes in id and
permissions, the uniqueness and activity visibility of
the account cannot be located by the program and
therefore does not have classification value.

7.2 Accounts with classification difficulties

Mixed accounts: Users control OAuth Apps to

Table 7 Precision, recall, F1-score, and AUC of bot
detection techniques. (%)

Approach Precision Recall F1-score AUC
GitHub API 90.0 99.9 94.7 53.1

BIMAN 83.6 99.4 90.8 93.5
BoDeGHa 81.6 95.2 89.3 89.5
BotHunter 92.8 84.6 90.5 81.0
BDGOA 96.5 94.1 95.3 99.6

 194 Intelligent and Converged Networks, 2023, 4(3): 181−197

perform specific actions in the selected repository, such
as deleting branches, closing issues, and merging code
periodically. The repository is also maintained
manually by the user, including code updates,
participation in issue discussions, and review PRs. It is
difficult to classify at the account level and requires a
more fine-grained level of activity.

Copy human activities: There is some need for
users to deploy programs related to cloning activities
through OAuth Apps. Such programs copy code and
tags from other repositories in real time or periodically
in the current repository. We have observed three
reasons for this phenomenon. One is that the user’s
development activities are not performed in GitHub,
but the code needs to be open sourced through GitHub.
Second, users add external references that do not
belong to GitHub in a replicated manner, or to avoid
accidental modification of external references. Third,
users attempt to distribute content in a replicated
manner that may be legally risky.

Improvement of automatic dialogue capability:
With the development of the GPT model, bots already
have the ability to participate in discussions in issue
and PR discussions in issue and PR, even if these
accounts are not mentioned. Therefore, traditional text
similarity calculation methods based on text distance
may fail.

8 Conclusion

In this paper, we propose an approach to identify
GitHub OAuth Apps, named BDGOA. This approach
introduces the latest bot operation mechanism of
GitHub, removes GitHub Apps that are easily
identified, and optimizes the design for GitHub OAuth
applications. We extract features from three
dimensions: account information, account activity, and
text information, and finally filter 24 features
according to three criteria: generality, stability, and
robustness. We introduce the self-similarity feature to
quantify the repetitiveness of behavioral sequence and
improve the calculation of text similarity to enhance
the perception of natural languages. We evaluate the
performance of five mainstream machine learning
classifiers and finally select the RF as the classifier
according to the stability and accuracy principles.

BDGOA has excellent classification performance on
the benchmark dataset, with F1-score of 95.83%.

As the GitHub community is rapidly iterating and
many new features are introduced, like actions, star list,
and sponsors, they will continuously bring new
challenges to our model. In future work, we plan to
build a larger dataset of bot accounts based on the
BDGOA tool. We hope to model account behavior
with more sophisticated techniques, such as neural
network models, to help developers and researchers
better classify GitHub account. Meanwhile, we will
conduct an empirical study of bot accounts to
quantitatively observe its impact on existing research,
as well as the GitHub community.

References

 S. Mirhosseini and C. Parnin, Can automated pull requests
encourage software developers to upgrade out-of-date
dependencies? in Proc. 32nd IEEE/ACM Int. Conf. on
Automated Software Engineering, Urbana, IL, USA, 2017,
pp. 84–94.

[1]

 S. Urli, Z. Yu, L. Seinturier, and M. Monperrus, How to
design a program repair bot? Insights from the repairnator
project, in Proc. IEEE/ACM 40th Int. Conf. on Software
Engineering: Software Engineering in Practice Track,
Gothenburg, Sweden, 2018, pp. 95–104.

[2]

 L. Erlenhov, F. G. De O. Neto, M. Chukaleski, and S.
Daknache, Challenges and guidelines on designing test
cases for test bots, in Proc. IEEE/ACM 42nd Int. Conf. on
Software Engineering Workshops, Seoul, Republic of
Korea, 2020, pp. 41–45.

[3]

 M. Wyrich and J. Bogner, Towards an autonomous bot for
automatic source code refactoring, in Proc. IEEE/ACM 1st

Int. Workshop on Bots in Software Engineering, Montreal,
Canada, 2019, pp. 24–28.

[4]

 L. P. S. Alves, I. S. Wiese, A. P. Chaves, and I.
Steinmacher, How to find my task? Chatbot to assist
newcomers in choosing tasks in OSS projects, in Proc. 5th

Int. Workshop on Chatbot Research and Design, Virtual
Event, 2022, pp. 90–107.

[5]

 J. Dominic, J. Houser, I. Steinmacher, C. Ritter, and P.
Rodeghero, Conversational bot for newcomers onboarding
to open source projects, in Proc. IEEE/ACM 42nd Int.
Conf. on Software Engineering Workshops, Seoul,
Republic of Korea, 2020, pp. 46–50.

[6]

 S. Amreen, B. Bichescu, R. Bradley, T. Dey, Y. Ma, A.
Mockus, S. Mousavi, and R. Zaretzki, A methodology for
measuring FLOSS ecosystems, in Towards Engineering

[7]

 Zhifang Liao et al.: BDGOA: A bot detection approach for GitHub OAuth Apps 195

Free/Libre Open Source Software (FLOSS) Ecosystems
for Impact and Sustainability, B. Fitzgerald, A. Mockus,
M. Zhou, eds. Singapore: Springer, 2019, pp. 1–29.
 T. Dey, Y. Ma, and A. Mockus, Patterns of effort
contribution and demand and user classification based on
participation patterns in NPM ecosystem, in Proc.
Fifteenth Int. Conf. on Predictive Models and Data
Analytics in Software Engineering, Recife, Brazil, 2019,
pp. 36–45.

[8]

 T. Dey and A. Mockus, Deriving a usage-independent
software quality metric, Empir. Software Eng., vol. 25,
no. 2, pp. 1596–1641, 2020.

[9]

 T. Dey and A. Mockus, Which pull requests get accepted
and why? A study of popular NPM packages, arXiv
preprint arXiv: 2003.01153, 2020.

[10]

 T. Bhowmik, N. Niu, W. Wang, J. R. C. Cheng, L. Li, and
X. Cao, Optimal group size for software change tasks: A
social information foraging perspective, IEEE Trans.
Cybern., vol. 46, no. 8, pp. 1784–1795, 2016.

[11]

 M. Zhou and A. Mockus, Developer fluency: Achieving
true mastery in software projects, in Proc. Eighteenth
ACM SIGSOFT Int. Symp. on Foundations of Software
Engineering, Santa Fe, NM, USA, 2010, pp. 137–146.

[12]

 T. Dey, S. Mousavi, E. Ponce, T. Fry, B. Vasilescu, A.
Filippova, and A. Mockus, Detecting and characterizing
bots that commit code, in Proc. 17th Int. Conf. on Mining
Software Repositories, Seoul, Republic of Korea, 2020,
pp. 137–146.

[13]

 M. Wessel, A. Serebrenik, I. Wiese, I. Steinmacher, and
M. A. Gerosa, What to expect from code review bots on
GitHub? A survey with OSS maintainers, in Proc. XXXIV
Brazilian Symp. on Software Engineering, Natal, Brazil,
2020, pp. 457–462.

[14]

 M. Golzadeh, A. Decan, D. Legay, and T. Mens, A
ground-truth dataset and classification model for detecting
bots in GitHub issue and PR comments, J. Syst. Software,
vol. 175, p. 110911, 2021.

[15]

 M. Golzadeh, A. Decan, E. Constantinou, and T. Mens,
Identifying bot activity in GitHub pull request and issue
comments, in Proc. 2021 IEEE/ACM Third Int. Workshop
on Bots in Software Engineering, Madrid, Spain, 2021, pp.
21–25.

[16]

 M. Golzadeh, A. Decan, and T. Mens, Evaluating a bot
detection model on git commit messages, in Proc. 19th

Belgium-Netherlands Software Evolution Workshop,
Virtual Event, http://arxiv.org/abs/2013.11779, 2021.

[17]

 A. Abdellatif, M. Wessel, I. Steinmacher, M. A. Gerosa,
and E. Shihab, BotHunter: An approach to detect software
bots in GitHub, in Proc. IEEE/ACM 19th Int. Conf. on
Mining Software Repositories, Pittsburgh, PA, USA, pp.
6–17, 2022.

[18]

 M. Wessel, B. M. De Souza, I. Steinmacher, I. S. Wiese,
I. Polato, A. P. Chaves, and M. A. Gerosa, The power of

[19]

bots: Characterizing and understanding bots in OSS
projects, Proc. ACM Human-Comput. Interact., vol. 2,
no. CSCW, p. 182, 2018.
 M. Wessel, A. Serebrenik, I. Wiese, I. Steinmacher, and
M. A. Gerosa, Effects of adopting code review bots on
pull requests to OSS projects, in Proc. 2020 IEEE Int.
Conf. on Software Maintenance and Evolution, Adelaide,
Australia, 2020, pp. 1–11.

[20]

 S. Phaithoon, S. Wongnil, P. Pussawong, M.
Choetkiertikul, C. Ragkhitwetsagul, T. Sunetnanta, R.
Maipradit, H. Hata, and K. Matsumoto, FixMe: A GitHub
bot for detecting and monitoring on-hold self-admitted
technical debt, in Proc. 36th IEEE/ACM Int. Conf. on
Automated Software Engineering, Melbourne, Australia,
2021, pp. 1257–1261.

[21]

 H. Mohayeji, F. Ebert, E. Arts, E. Constantinou, and A.
Serebrenik, On the adoption of a TODO bot on GitHub: A
preliminary study, in Proc. IEEE/ACM 4th Int. Workshop
on Bots in Software Engineering, Pittsburgh, PA, USA,
2022, pp. 23–27.

[22]

 R. Romero, E. Parra, and S. Haiduc, Experiences building
an answer bot for gitter, in Proc. IEEE/ACM 42nd Int.
Conf. on Software Engineering Workshops, Seoul,
Republic of Korea, 2020, pp. 66–70.

[23]

 M. Golzadeh, D. Legay, A. Decan, and T. Mens, Bot or
not? Detecting bots in GitHub pull request activity based
on comment similarity, in Proc. IEEE/ACM 42nd Int. Conf.
on Software Engineering Workshops, Seoul, Republic of
Korea, 2020, pp. 31–35.

[24]

 N. Chidambaram, A. Decan, and M. Golzadeh, Leveraging
predictions from multiple repositories to improve bot
detection, in Proc. IEEE/ACM 4th Int. Workshop on Bots
in Software Engineering, Pittsburgh, PA, USA, 2022, pp.
6–9.

[25]

 E. Lee, J. Woo, H. Kim, A. Mohaisen, and H. K. Kim,
You are a game bot! Uncovering game bots in MMORPGs
via self-similarity in the wild, in Proc. 23rd Annu. Network
and Distributed System Security Symp., San Diego, CA,
USA, 2016, pp. 1–15.

[26]

 P. Jaccard, The distribution of the flora in the alpine zone,
New Phytol., vol. 11, no. 2, pp. 37–50, 1912.

[27]

 V. I. Levenshtein, Binary codes capable of correcting
deletions, insertions and reversals, Sov. Phys. Dokl.,
vol. 10, pp. 707–710, 1966.

[28]

 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, et al., Scikit-learn: Machine learning in
Python, J. Mach. Learn. Res., vol. 12, pp. 2825–2830,
2011.

[29]

 A. Altmann, L. Toloşi, O. Sander, and T. Lengauer,
Permutation importance: A corrected feature importance
measure, Bioinformatics, vol. 26, no. 10, pp. 1340–1347,
2010.

[30]

 196 Intelligent and Converged Networks, 2023, 4(3): 181−197

Zhifang Liao received the BEng degree in
industry control engineering and the MEng
degree in computer science both from the
Changsha Railway Institute, China in 1990
and 1998, respectively, and the PhD
degree in computer technology and
application from Central South University,
China in 2008. From 1990 to 1997, she

was an engineer at Hunan Computer Factory. She is currently an
associate professor at Central South University. Her research
interests include open source software, open source software
ecosystems, and data mining.

Xuechun Huang received the BEng
degree in computer science and technology
from China University of Mining and
Technology, China in 2020. She is
currently a master student in computer
science and technology at Central South
University. Her research interests include
data mining, bot account detection, and

analysis of user behavior in open source community.

Bolin Zhang received the BEng degree in
software engineering from Central South
University, China in 2020. He is currently
a master student in software engineering at
Central South University, China. His main
research interests include open source
software, open source ecosystem, and data
mining.

Jinsong Wu received the PhD degree from
Queens University, Canada in 2006. He is
a professor at the School of Artificial
Intelligence, Guilin University of
Electronic Technology, China, and the
Department of Electrical Engineering,
University of Chile, Santiago, Chile. He
received the 2020 IEEE Green

Communications and Computing Technical Committee
Distinguished Technical Achievement Recognition Award, for
his outstanding technical leadership and achievement in green
wireless communications and networking, and the 2017 IEEE
Green Communications and Computing Technical Committee
Excellent Services Award for his excellent technical leadership
and services in the green communications and computing
community. He is the proposer (2021), founder (2022) and
founding editor-in-chief (2022–present) for the international
journal Green Technologies and Sustainability (GTS), co-
published by Elsevier and China Science Publishing & Media
Ltd., jointly called KeAi. He was the leading editor and a co-
author of the comprehensive book, entitled Green
Communications: Theoretical Fundamentals, Algorithms, and
Applications, published by CRC Press in September 2012,
which has been recognized as the very first comprehensive
published book effort on green communications covering broad
topics of green wireless communications, green wireline
communications, general relevant green topics and applications
in one book using a research perspective. He won the 2017,
2019, and 2021 IEEE System Journal Best Paper Awards, and
the 2018 IEEE Green Communications and Computing
Technical Committee Best Magazine Paper Award. He was the
founder (2011) and founding chair (2011–2017) of the Technical
Committee on Green Communications and Computing
(TCGCC). He is the current Chair (2022–present), the co-
founder (2014), and the founding vice-chair (2014–2022) of
IEEE Technical Committee on Big Data (TCBD), which was the
very first technical organization on big data within the whole
IEEE. He was elected as the vice chair, Technical Activities,
IEEE Environmental Engineering Initiative (EEI) (2017–2022),
a pan-IEEE effort under IEEE Technical Activities Board (TAB)
across 25 IEEE societies, councils, and organization units (OU).
He was the very first proposer of IEEE journals/transactions on
green information and communications technologies (ICT)
(2011–2012). He was the proposer (2012), founder (2014), and
series editor (2014–2018) on green communication and
computing networks in IEEE Communications Magazine. He
was an area editor (2016–2020) of IEEE Transactions on Green
Communications and Networking. He was series editor
(2014–2016) of IEEE Journal of Selected Areas on
Communications (JSAC) series on green communications and
networking.

Yu Cheng received the BEng degree from
Hunan University, China in 2010. He is
currently working at Hunan Glozeal
Science and Technology Co., Ltd. as a
research & development engineer. His
research interests include open source
software and knowledge graph.

 Zhifang Liao et al.: BDGOA: A bot detection approach for GitHub OAuth Apps 197

