
 

Relay-assisted wireless energy harvesting for
multihop clustered IoT network
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Abstract: In large-scale networks such as the Internet of Things (IoT), devices seek multihop communication for long-

distance communications, which considerably impacts their power exhaustion. Hence, this study proposes an energy

harvesting-enabled,  relay-based communication in  multihop clustered IoT  networks  in  a  bid  to  conserve the battery

power in multihop IoT networks. Initially, this study proposes an efficient, hierarchical clustering mechanism in which

entire  IoT  devices  are  clustered  into  two  types:  the  closest  cluster  (CC)  and  remote  clusters  (RCs).  Additionally,

Euclidean  distance  is  employed  for  the  CC  and  fuzzy  c-means  for  the  RCs.  Next,  for  cluster  head  (CH)  selection,  this

study models a fitness function based on two metrics, namely residual energy and distance (device-to-device distance

and  device-to-sink  distance).  After  CH  selection,  the  entire  clustered  network  is  partitioned  into  several  layers,  after

which  a  relay  selection  mechanism  is  applied.  For  every  CH  of  the  upper  layer,  we  assign  a  few  lower-layer  CHs  to

function as relays. The relay selection mechanism is applied only for the devices in the RCs, while for devices in the CC,

the CH functions as a relay. Finally, several simulation experiments are conducted to validate the proposed method’s

performance. The results show the method’s superiority in terms of energy efficiency and optimal number of relays in

comparison with the state-of-the-art methods.
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1    Introduction

The  Internet  of  Things  (IoT)  is  reducing  the  gap
between  the  cyber  and  physical  worlds,  and  has
become one of the emerging network standards. It  has
many  distinctive  applications,  such  as  industrial
monitoring  and  control,  smart  healthcare,  military
surveillance,  smart  transportation,  smart  cities,  and
smart agriculture[1, 2].

These applications continuously sense, compute, and
forward  acquired  data  to  a  server  or  sink  node.
Heterogeneous  sensor  devices  are  run  on  inadequate
energy  resources  and  are  mostly  deployed  in  adverse

environments. Therefore, energy management becomes
one of the major challenges in IoT. Recently, industry-
wide  research  was  conducted  in  the  field  of  IoT  to
establish  energy-efficient,  reliable  communication
across  devices  with  a  view  to  improving  the  network
lifetime and achieving enhanced resource allocation[3].
The  literature  shows  that  using  sensor  nodes  (SNs)  in
IoT  networks  in  an  energy-efficient  way  is  still  an
unexplored field that needs to be investigated[4, 5].

Many researchers suggested that clustering is one of
the  prominent  solutions  to  reduce  the  energy
consumption of the network[6–9]. Clustering reduces the
interchange of  redundant  messages among the SNs by
conserving  the  communication  bandwidth[6].  The  idea
of data accumulation at cluster heads (CHs) assists SNs
in  saving  energy.  A  hierarchical  strategy  called
clustering  increases  the  scalability  of  IoT  networks[7].
In this strategy, the CH accumulates the data from SNs
and  sends  them to  the  sink  node.  However,  CHs  near
the  sink  node  may  experience  considerable  energy
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consumption  and  rapid  energy  depletion,  which  can
lead to hotspots in the network[8, 9]. One of the potential
strategies  to  prevent  the  hot  spot  problem  is  uneven
clustering,  which  results  in  varying  cluster  sizes  with
respect to the distance between the sink node and CHs;
i.e.,  as  distance  increases,  the  cluster  size  also
increases. Hence, we must concentrate on the reduction
in  intracluster  energy  consumption  for  the  clusters
nearer  to  the  sink  node  to  maintain  adequate  energy
between the clusters.

Clustering  is  a  successful  approach  to  effectively
manage energy. However, owing to weak connectivity
between  the  nodes,  when  the  SNs  are  moving  away
from  the  sink  node,  they  are  unable  to  transmit  the
sensed  data  to  the  sink  node.  This  results  in  poor
network performance in terms of network lifetime and
energy  consumption  in  multihop  IoT  networks.
Accordingly, few researchers suggested that relaying is
the  best  solution  to  improve  the  network  lifetime.  A
benefit  of  a  relay  network  is  that  it  enables  range
extension while using less energy. Relay nodes farther
from the  sink node typically  use  additional  energy for
data transfer. Consequently, selecting the right relay is
essential  for  sensor  node  energy  saving  because  it
considerably  influences  both  the  network  and  sensor
lifetimes[10].  Another  difficulty  with  any  wireless
network,  such  as  IoT  networks,  is  determining  the
number  of  ideal  relay  nodes.  While  selecting  more
nodes  as  relays  may  boost  diversity,  it  also  results  in
more  energy  consumption,  which  interferes  with  SN
synchronization[11].  Additionally,  most  methods  of
selecting  relay  nodes  suppose  that  the  relay  nodes  are
randomly distributed throughout the network[12]. When
relay  nodes  are  deployed  in  this  manner,  the  resulting
heterogeneous IoT network is fault tolerant. Although a
lot of work has been put into using the relay selection
technique to enhance the reliability of IoT networks, it
still remains unclear how to prevent these scenarios.

This  study  proposes  a  relay-based  hybrid  and
adaptive clustering mechanism to fill this research gap.
In this mechanism, initially,  the network is partitioned
into a few layers, and the layer nearer to the sink node
is considered the lowest layer where the closest cluster
(CC)  is  located.  Next,  the  layers  other  than  the  CC

layer  are  considered  upper  layers,  where  the  remote
clusters  (RCs)  are  located.  Furthermore,  the  CH
selection  mechanism  and  relay  selection  mechanism
are introduced to efficiently balance the entire network’s
energy.  Therefore,  the  following  are  the  major
contributions of this paper:

(1)  This  study  proposes  a  hybrid  and  adaptive
clustering  mechanism  to  efficiently  use  each  node’s
energy. In this clustering, all SNs are grouped into two
clusters, namely the CC and RCs.

(2) In a clustered IoT network, all the CHs consume
more energy than the cluster members (CMs) owing to
their continuous communication. This study proposes a
new  CH  selection  mechanism  to  reduce  the  energy
consumption  by  CH.  This  mechanism  employs  one
fitness function, which consists of the metrics, namely
distance and residual energy.

(3)  This  study  proposes  a  hierarchical  structuring
model  and  an  energy-efficient,  optimal  relay  selection
mechanism  to  provide  effective  connectivity  between
the nodes for long-distance communication.

(4)  This  study  proposes  an  effective  hierarchical
packet routing (HPR) mechanism to reduce the overall
network energy consumption.

The rest of this paper is organized as follows. Section
2  describes  the  related  past  work.  Section  3  explains
the  proposed  work.  Section  4  explores  the  simulation
results  and  their  analysis,  and  finally,  Section  5
concludes this paper.

2    Related work

In  this  section,  detailed  literature  related  to  relay
selection  mechanisms  for  clustered  IoT  networks  is
discussed.  To  maintain  connectivity  from  each  SN  to
the base station (BS),  the literature contains numerous
relay  node  placement  techniques  for  wireless  sensor
networks (WSNs) or IoT networks. The main difficulty
areas  in  employing  the  relays  in  the  deployment  area
are  low  connectivity,  scalability,  and  prolonged
lifetime[13–15].  Shukla  and  Tripathi[16] proposed  a
scalable  and  energy-efficient  routing  protocol  (SEEP)
to prolong the network lifetime of WSNs in IoT. SEEP
was  employed  in  a  multitier-based  clustering
framework, and a subarea division algorithm was used
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to  partition  the  entire  network  into  several  zones  with
varying  lengths  and  widths.  The  number  of  zones
varied with the size of the network, and each zone was
divided into a few clusters. The number of clusters near
the base station was larger compared with distant zone
clusters.  The  CH  selection  depended  on  the  metrics,
namely  distance  and  energy.  After  selecting
appropriate  CH,  optimum  number  of  relays  were
selected in each cluster. The nodes in the zone near the
base  station  could  only  perform direct  communication
with  the  base  station,  and  there  was  no  direct
communication  for  distant  zones.  Hence,  energy
depletion  increased  as  distance  increased,  and  energy
wastage was also high owing to more clusters nearer to
the base station.

Pius  Agbulu  et  al.[17] proposed  a  relaying  algorithm
for  multihop,  clustered  WSNs.  The  authors  used  a
hybrid K-means  clustering  algorithm  for  effective
clustering  and  a  gradient  descent  algorithm  for  relay
selection.  The  metrics,  namely  residual  energy  and
distance, were used for CH selection. Among the non-
CH  nodes,  the  node  with  the  highest  residual  energy,
minimal  path  losses  between  the  CHs,  shortest
transmission  distances,  and  adequate  coverage  was
selected  as  the  relay  node.  The  energy  consumption
increased  due  to  the  selection  of  a  non-CH  as  a  relay
node.  Suman  Prakash  et  al.[18] proposed  a  novel
clustering algorithm to balance the energy by selecting
optimal  CHs  and  relay  nodes  on  the  basis  of  the
metrics,  namely  delay,  distance,  link  lifetime,  and
energy. The hybrid heuristic data aggregation protocol
was  used  to  select  the  optimal  number  of  CHs  and
relay  nodes.  The  authors  computed  the  distance  based
on  the  received  signal  strength  indicator  (RSSI)  to
select the optimal number of relay nodes, but they did
not  consider  the  effective  distance  between  the  SNs
and the sink node.

Luo  et  al.[19] concentrated  on  low-cost,  fixed-
clustering  problems  and  proposed  a  random  relay-
based,  fixed-clustering  protocol  called  random  relay
selection  clustering  protocol  for  energy  harvesting
(RRCEH). This protocol split  an entire network into k
number of ring-shaped regions with equal width, where
each  region  consisted  of  an  equal  number  of  CHs.

Based on the transmitting area, the authors formulated
a  random  relay  matrix  to  select  a  few  CHs  as  relays.
Furthermore,  the  authors  computed  energy
consumption  in  three  states,  namely  data  receiving
state,  data  processing  state,  and  intercluster
communication  state.  They  measured  the  consumed
energy  in  two  ways  for  intercluster  communication,
namely  intercluster  data  transmission  and  reception.
They  measured  the  energy  consumption  but  did  not
consider it for the relay selection mechanism. Darabkh
et  al.[20] suggested a  routing scheme called low-power
energy-aware and layering-based clustering and routing
protocol  (EA-CRP).  The  scheme  was  supported  by  a
layering and clustering framework. Although EA-CRP
effectively operated in scalable networks, fewer layers
were  formed  as  the  network  size  grew,  which  caused
long-distance  communication  between  the  layers.
Consequently,  the  network  lifetime  was  shorter  for
larger network areas.

Shukla and Tripathi[21] suggested an energy-efficient
routing  protocol  and  implemented  it  in  three  phases,
namely  hierarchical  cluster  formation,  effective  relay
node selection, and efficient routing. They divided the
entire  network  into  a  few  clusters,  and  hierarchical
communication was framed between the SNs and base
station  through  relay  nodes,  cluster  coordinators,  and
CHs.  They  performed  the  selection  of  relay  nodes  by
considering  node  density  and  distance  between  the
nodes  and  the  sink  node.  Hence,  the  network  lifetime
was reduced when the node density increased.  Jaiswal
and  Anand[22] proposed  a  CH  selection  mechanism
based  on  the  gray  wolf  optimization  algorithm.  They
formulated a fitness function through which a CH was
selected  among  the  CM  nodes  which  has  maximum
energy  level,  minimum  neighboring  distance.  It  also
considers  intra-cluster  distance,  minimum  sink
distance,  and  maximum node  degree.  Here,  maximum
node  degree  includes  more  neighboring  nodes  and
maximum  priority  factor  of  the  node.  Furthermore,  a
distance-based  relay  selection  strategy  was  introduced
for effective and reliable intercluster routing. They did
not  consider  the  energy  of  distant  nodes,  which  were
incapable  of  transferring  data  toward  the  base  station.
Lin  et  al.[23] proposed  a  fan-shaped  clustering
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mechanism  for  large-scale  sensor  networks.  They
divided  the  entire  network  into  a  few  fan-shaped
clusters and introduced various energy-saving schemes
through CH selection,  relay selection,  and reclustering
methods.  Initially,  they  measured  the  central  point  in
each  layer  and  used  it  as  a  reference  for  distance
measurement for all nodes in that layer. Relay selection
was  based  on  the  distance  only,  and  a  non-CH  node
was selected as a relay node. The energy consumption
increased, and the network lifetime decreased owing to
the selection of a non-CH node as a relay node.

Barik  et  al.[24] proposed  a  device-to-device  (D2D)
relay  node  (DRN)  selection  and  uplink  transmission
power  allocation  (DSPA)  algorithm  to  reduce  the
energy  consumption  at  CHs.  They  considered  energy
consumption  during  transmission  and  reception  to
evaluate  the  energy  consumption.  CH  selection  was
performed  based  on  the  channel  quality  index.  Two
types  of  CHs  were  considered,  namely  active  and
inactive, and the inactive CH was regarded as a DRN.
Furthermore,  the  base  station  constantly  identified  the
CHs  with  low  battery  levels  so  that  the  DRNs  could
take  over  the  transmission  in  place  of  the  standard
multihop  communication.  The  energy  consumption
was effectively computed, but the distance between the
SN  and  the  base  station  was  not  considered.  Zhang
et al.[25] proposed a new mechanism called hybrid tree-
based  and  cluster-based  routing  protocol  for  raw  data
collection  to  enhance  the  network  lifetime.  Using  this
mechanism,  they  collected  raw  data  through  multihop
communication  without  any  redundant  nodes.  They
considered uniform and nonuniform distances between
the  nodes  for  the  selection  of  relay  nodes  to  save
energy. They did not compute the energy consumed at
each CH in transferring the data toward the destination.

Furthermore,  although  relays  increase  the  network
lifetime,  their  deployment  needs  an  extra  battery  for
power supply.  In such cases,  energy harvesting assists
the  network  or  node  in  sustaining  for  a  longer  time.
Simultaneous  wireless  information  and  power  transfer
(SWIPT)  is  one  of  the  energy  harvesting  techniques
and  is  useful  for  cooperative  relaying  for  next-
generation  wireless  networks[26].  Mao  et  al.[27]

evaluated  the  performance  of  multihop  relaying

employing energy harvesting. They used the amount of
harvested energy for the next-hop relay selection. They
also  framed a  relay selection mechanism for  the  time-
switching  (TS)  and  power-splitting  (PS)  protocols.
They  computed  the  largest  number  of  hops  from  the
given  source  node’s  initial  energy.  They  concentrated
on  the  amount  of  harvested  energy  but  not  on  the
number  of  relay  nodes  selected.  Chen  et  al.[28]

suggested  a  novel,  multihop,  cooperative  relaying
transmission technology in which the source and relays
both  harvested  energy  from  cochannel  interferences
(CCIs) and subsequently used it  for  data transmission.
Their proposed method identified the largest number of
hops that could be supported on the basis of the amount
of harvested energy.

Asiedu  et  al.[29] proposed  a  multihop,  decode-and-
forward SWIPT system, which transferred sensed data
toward the destination via multihop relays. The authors
used  the  PS  protocol  to  harvest  the  energy  from past-
hop nodes and considered the metrics, namely distance
and  residual  energy,  for  relay  selection.  Wu  et  al.[30]

proposed  a  cooperative  forwarding  power  (CFP)
scheme for multihop wireless cooperative networks. In
this  scheme,  multiple  tasks  were  performed  by  the
relays  and  receiver.  Initially,  the  receiver  received
information from the past-hop node or  transmitter  and
harvested  the  energy  from  the  nearest  relays.
Explicitly, the relays nearer to the transmitter harvested
the energy from the transmitter and sent it (not the data,
only  power)  to  the  receiver.  For  next-hop  relay
selection,  hop  distance  and  available  energy  were
considered,  and the  distance  between the  SN and sink
node was not taken into account.

Wang  et  al.[31] designed  an  energy-efficient
transmission  (e-Trans)  SWIPT  for  clustered  WSNs.
They  introduced  two  types  of  transmissions,  namely
direct  transmission  (DT)  and  relay  transmission  (RT).
The CH node was selected as a relay node on the basis
of  the  received  signal  strength  and  relay  selection
factor. The SWIPT-PS architecture was considered for
energy harvesting and data transmission. However, the
relay  selection  became  inefficient  when  the  received
signal  strength  was  low.  Han  et  al.[32] formulated  a
problem  in  multihop  clustered  networks  for  energy-
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efficient  routing  and  proposed  the  energy-efficient
cooperative  SWIPT routing  (EECSR) algorithm.  They
formulated two transmission links, namely information
transmission and SWIPT, which were used to forward
the information toward the destination either directly or
through  a  relay.  They  selected  one  member  node  in
between  two CH nodes  as  an  energy  harvesting  node,
which  was  also  considered  a  relay  node.  They
measured energy efficiency for DT and RT links. Each
CH  consumed  more  energy  and  transmitted  a  weak
radio  frequency  (RF)  signal  toward  the  member  node
to  harvest  the  energy,  and  the  number  of  relays
required was more when the network density increased.

Babruvhan  and  Thippeswamy[33] proposed  SWIPT-
based energy-efficient packet transmission between the
clusters  in  WSNs.  In  this  transmission,  each  CH
harvested  energy  from  its  member  nodes,  and  this
energy  was  spent  on  data  collection  and  transmission.
Next,  a  priority-based  relay  selection  mechanism  was
used,  which  comprised  two  metrics,  namely  residual
energy and distance. The highest priority node, i.e., the
one  with  least  distance  and  highest  residual  energy,
was  selected  as  a  relay  node.  A  non-CH  node  was
selected  as  a  relay  node,  following  which  the  energy
consumption increased.

Tables  1 and 2 present  the  existing  state-of-the-art
relay  selection  strategies  for  clustered,  multihop  IoT
networks  with  and  without  energy  harvesting,
respectively.  Most  of  the  abovementioned  works
considered  fixed-clustering  mechanisms,  leading  to
reduced  network  performance.  Moreover,  when  the
nodes  are  moved  away  from the  sink  node,  then  their
residual  energy starts  to  decrease  due  to  uninterrupted
communication  with  the  respective  destination.  Most
authors  proposed  CH  and  relay  selection  mechanisms
based  on  their  residual  energy  and  distance,  but  they
did  not  consider  node  density  and  coverage  range.  In
addition,  only  the  past-hop  node’s  RF  signal  was
considered  for  energy  harvesting,  and  the  remaining
nodes’ RF  signals  were  not  considered  as  a  valid
source for energy harvesting.

Problem  outline. Upon  reviewing  all  of  the
abovementioned methods,  we observed that  a  uniform
clustering mechanism was used for clustering the entire
nodes  and  that  non-CH  nodes  were  selected  as  relay
nodes.  This  increased  the  energy  consumption  and
reduced the network lifetime. Moreover, most existing
methods exhibit poor network performance when node
density and network area increase. However, this study
concentrates  on the  selection of  an optimal  number  of

 

Table 1    List of the state-of-the-art methods cluster-based relay selection mechanisms without energy harvesting.

Reference Methodology Remark

[16]

1. A SEEP was proposed.
2. The metrics, namely distance and energy, were used for CH
selection.
3. Relay node was selected from the CHs.

The number of clusters nearer to the base station
was more, and energy depletion increased when
the node was moved away from the base station.

[17]

1. A relaying algorithm for multihop, clustered networks was
proposed.
2. A hybrid K-means algorithm was used for clustering, and a
gradient descent algorithm for relay selection.
3. The metrics, namely residual energy and distance, were used for
CH selection.

A non-CH node was selected as a relay node, and
this increased the energy consumption in the
network.

[18]

1. An HHDA protocol for optimal CHs and relay selection was
proposed.
2. The metrics, namely distance, energy, link lifetime, and delay,
were used for CH and relay selections.

The distance was computed based on the RSSI to
select the optimal relay node, but the effective
distance between the SNs and sink node was not
considered.

[19]

1. An RRCEH technique for CH and relay selections was proposed.
2. A random relay matrix was formulated based on the transmitting
area.
3. Energy consumption was evaluated in three phases.

Only distance was considered for relay selection,
and available energy or consumed energy was not
considered.

[24]

1. The DSPA algorithm was used to reduce energy consumption.
2. CH selection was performed based on the channel quality index.
3. Active and inactive types of CHs were considered, and the
inactive CH was selected as a DRN.

Energy consumption was effectively computed, but
the distance between the SN and base station was
not considered.
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relays  when  node  density  increases,  and  it  thus
enhances the energy efficiency of the network.

3    Proposed work

We  develop  a  novel  clustering  and  relay  selection
mechanism  with  an  aim  to  improving  the  network
lifetime. We apply hierarchical clustering, in which all
nodes  are  grouped  into  two  types  of  clusters,  CC  and
RCs. The CC is located within the surroundings of the
sink node, while the RCs are located far away from the
sink node. The CHs of the RCs are routed through the
CH of  CC (CCH)  and  few  relays.  The  relay  selection
mechanism  is  applied  only  for  the  nodes  in  the  RCs,
while for nodes in the CC, the CH functions as a relay-
based  on  the  coverage  capacity  and  set  theorem  at
every  layer.  Our  proposed  mechanism  determines  the
optimal number of relays that can cover the entire CHs
in their upper layer.

3.1    Network model

The  following  assumptions  are  made  to  formulate  the
network for the proposed mechanism:

(1)  The  network  comprises  one  sink  node  and N
number of SNs. All these nodes are static nodes, and an
equal amount of initial energy is provided to all SNs.

(2)  All  SNs  are  location-aware,  heterogeneous,  and
battery operated.

(3)  The  sink  node  is  placed  at  the  center  of  the
network, and it handles all signaling and routing issues.

RSN

(4)  Each  SN is  equipped  with  a  single  antenna,  and
an energy harvesting capability is provided to each SN
through  a  multisource-based  hybrid  SWIPT  (H-
SWIPT)  technique[34].  Each  SN  in  its  communication
range  (CR)  communicates  with  other  SNs.  The  range
of  an  SN  is  represented  by .  Each  node  assigns  a
binary  value  to  all  other  nodes  in  the  network  on  the
basis of the distance between them.
 

s =
1, d ⩽ RSN;

0, d > RSN
(1)

d

s

l

where  represents  the  distance  between  the  target
node  and  SN,  and  the  binary  indicator. Figure  1
shows  the  network  model  comprising  number  of
layers, and the sink node is placed at the center of the
network.  In  each  layer,  all  SNs  are  clustered  into  two
types  based  on  a  hybrid  clustering  mechanism,  as
discussed in Section 3.2. The CC is located in the layer
nearer to the sink node, whereas RCs are located in the
next  layers. The  energy  model  required  for  this
research work is appended in Appendix A.

3.2    Hybrid clustering

nm

Hybrid clustering mainly aims to improve the network
lifetime  and  groups  all  the  SNs  into  two  types  of
clusters,  namely  CC  and  RCs.  The  CC  is  the  cluster
nearer  to  the  sink  node.  The  maximum  number  of
nodes, , to be included in the CC is decided as
 

nm = pn×N (2)

 

Table 2    List of the state-of-the-art cluster-based relay selection mechanisms with energy harvesting.

Reference Methodology Remark

[30]

1. A CFP scheme for multihop wireless cooperative networks was
proposed.
2. The relays nearer to the transmitter harvested energy from the
transmitter and sent it (only power, not the data) to the receiver.

Limited performance was observed for large-scale
networks because selected relays (SRs) were
nearer to the sink node.

[31]

1. An e-Trans SWIPT for clustered WSNs was designed.
2. A CH node was selected as a relay node based on received signal
strength and a relay selection factor.
3. DT and RT links were used.

Relay selection became inefficient when the
received signal strength was low.

[32]

1. The EECSR algorithm was proposed.
2. They selected one member node in between two CH nodes as an
energy harvesting node, which was also considered a relay node.
3. DT and RT links were used.

The number of relays required was high when
node density increased.

[33]

1. SWIPT-based, energy-efficient packet transmission between the
clusters in WSNs was proposed.
2. Each CH harvested energy from its member nodes.
3. A priority-based relay selection mechanism was used, which
comprised two metrics, namely residual energy and distance.

A non-CH node was selected as a relay node,
which resulted in fast energy depletion.
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pnwhere N represents  the  total  number  of  SNs  and 
represents  the  percentage  of  nodes  in  the  CC.  After
clustering a few nodes into the CC by using Eq. (2), the
remaining SNs are clustered into the RCs. The number
of RCs[35] is calculated as
 

RCopt =

√
N∗A
2π
×dTh×

M
d2

CCH

(3)

N∗A = NA−NCC

NA

NCC

dTh M×M

dCCH

where  denotes  the  number  of  alive
nodes  except  CC  nodes  (  represents  the  total
number  of  alive  nodes  in  the  network  and 
represents  the  total  number  of  alive  member  nodes  in
the  CC).  represents  the  threshold  distance. 
denotes the transmitting region and  represents the
average  Euclidean  distance  between  the  CCH  and  the
remaining  nodes  in  the  network.  After  calculating  the
number  of  clusters  using  Eq.  (3),  the  fuzzy  c-means
(FCM)  algorithm  is  applied  to  cluster  the  remaining
nodes into an optimum number of RCs. FCM is one of
the  efficient  clustering  algorithms  that  optimally
groups all the nodes into different clusters[36–39].  Here,
it uses location information to cluster the nodes on the
basis  of  membership  values  and  centroids.  The
complexity  incurred  at  clusters  formation  is
demonstrated in Lemma A1 in Appendex A.

3.3    CH selection

After clustering all SNs into two types of clusters, CH
selection  is  performed  for  effective  data
communication.  The  selection  of  CHs  in  the  CC  and
RCs is discussed in the following sub-sections.

3.3.1    CCH selection
A fitness function is formulated for CCH selection, and
it  is  the  combination  of  the  metrics,  namely  residual
energy  and  relative  distance.  The  fitness  function  for
CCH selection is expressed as
 

FCCH = β×X+ (1−β)×Y (4)

X = Ere/Ei Ere

Ei

Y =
(
dTh−dSinkNode

CCM

)
/dTh

dTh

dSinkNode
CCM

β (1−β)

β

E0 E0

γ Ei E0 = γ×Ei γ

β

where  represents  the  energy  (  denotes
residual  energy[40, 41],  and  denotes  the  initial
energy),  represents  the
relative  Euclidean  distance  (  denotes  the  threshold
distance[42] and  denotes  the distance between
the  CM  of  CC  and  sink  node),  and  and  the
weights  of  the  functions X and Y,  respectively.  When
communication is initiated, the residual energy of each
node  decreases  because  of  intermittent  operations
among  the  nodes.  For  each  round  of  operations,  the
value  of [43] is  updated  based  on  the  residual  energy
and threshold energy . Noteworthily,  is assessed
based  on  and ;  i.e., ,  where  assumes
various  such  values  as  0.20,  0.40,  0.60,  and  0.80  to
update . Therefore, we have
 

β =

0.5−0.8, if EC
min ⩾ γi×Ei;

0.9, otherwise
(5)

γi = {0.80, 0.60, 0.40, 0.20} EC
minwhere ,  and  represents

the minimum residual energy among the CM nodes of
the selected cluster and is given by
 

EC
min =

 min
i

{
Ei

re

}
, i = 1,2, . . . ,NCC, for CC;

min
i

{
Ei

re

}
, i = 1,2, . . . ,NRC, for RC

(6)

NRCwhere  represents the total number of CM nodes in

 

Rl0

Rl2 Rl1
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Layer l0
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Fig. 1    Layered network model.

    212 Intelligent and Converged Networks,  2023, 4(3): 206−224

 



βthe  RC.  The  value  of  is  updated  using  Eqs.  (4)  and
(5)  and  is  used  to  calculate  the  fitness  value  of  each
CM,  and  based  on  the  values  obtained,  the  node  with
the optimal fitness value is selected as a CH.
3.3.2    RCH selection

(
dCentroid

RCM > dRC
mean

)

In  the  RC,  member  nodes  nearer  to  the  centroid  have
maximum  residual  energy.  A  fitness  function  is  used
for CH selection, (i.e., RCH) based on the metrics such
as residual energy and distance. If the remote CMs are
far away from the centroid ,  then that
function  includes  both  metrics,  namely  distance  and
energy;  otherwise,  it  includes  only  the  metric  of
energy. Therefore, the fitness function of RCH is given
as
 

FRCH =

β×X+ (1−β)×Z, if dCentroid
RCM > dRC

mean;
X, otherwise

(7)

β

Z =
(
dRC

max−dCentroid
RCM

)
/dRC

max

dRC
max

dRC
max = 1+max

(
dCentroid

RCMi

)
, i = 1,2, · · · ,nRC

where  is  updated  in  each  round  using  Eq.  (5),  and
 represents  the  relative

Euclidean  distance  between  CM  and  centroid  of  a
particular  RC  (  denotes  the  maximum  distance
between  the  CM  and  centroid  is  given  by

), and
 

dRC
mean =mean

nRC∑
i=1

dCentroid
RCMi

(8)

Therefore,  CH  selection  for  the  CC  and  RCs  is
performed after all the nodes are clustered into several
clusters  using  the  FCM  algorithm.  Equations  (4)  and
(7) are used to calculate the fitness value of each CM,
and  the  node  with  the  maximum  fitness  value  is
selected as a CH.

Algorithm  1  describes  the  step-by-step  process  of
CH  selection  for  CC  and  RCs.  As  communication
progresses,  each  node’s  residual  energy  decreases.
After  several  rounds,  the  energy  at  each  node  in  the
network  is  not  sufficient  to  forward  the  sensed  or
collected  data  to  the  respective  CH  or  sink  node,  and
this implies the death of a node. Therefore, a large data
packet  loss  occurs  and  also  leads  to  reduction  in
network lifetime. To avoid this loss, this study provides
each  node  the  ability  to  harvest  energy  by  using  a
multisource-based H-SWIPT technique[34].

H-SWIPT  is  a  combination  of  the  TS  and  PS
protocols.  Here,  multiple  sources  are  considered  for

energy harvesting such as sink node’s RF energy, CCI,
and neighbor nodes’ RF signal, in addition to the past-
hop  node’s  RF  signal.  In  this  technique,  each  node
harvests energy using the RF signals transmitted in the
network  from  multiple  sources  and  simultaneously
transfers  the  energy  and  data  to  the  CH or  sink  node.
For  this  purpose,  the  expression for  residual  energy is
modified and is provided in Eq. (9). Accordingly, when
the  node’s  residual  energy  is  less  than  the  threshold
energy, the corresponding node starts to harvest energy
using  the  H-SWIPT technique;  otherwise,  it  continues
the  process  with  the  available  energy.  The  modified
residual energy[34] is expressed as
 

Êre =

Ere+Eeh
T , if Ere < E0;

Ere, otherwise
(9)

Eeh
Twhere  represents  total  energy  harvested  from

multiple  sources  using  the  H-SWIPT  architecture  at
each  sensor  node  in  the  network.  Once  the  CH
selection  is  completed  for  both  types  of  clusters,  the
network is formulated into hierarchical layers.

Here,  the  network  is  divided  into  a  few  layers,  and
relays are introduced to reduce the burden on CHs in a
bid to improve the network lifetime and reduce energy
consumption. The complexity incurred at CH selection
is demonstrated in Lemma A2 in Appendix A.

3.4    Hierarchical structuring

In hierarchical structuring, the entire clustered network
is  divided into  several  layers.  For  division into  layers,

 

Algorithm 1　CH Selection
for CCH selection do

β　Update  using Eqs. (5) and (6)
NCC　for  do

FCCH　　CM obtains its  value using Eq. (4)
　end

FCCH　The CM with the highest  is called CCH
end
for RCH selection do

β　Update  using Eqs. (5) and (6)
NRC　for  do

FRCH　　CM obtains its  value using Eq. (7)
　end

FRCH　The CM with the highest  is called RCH
end
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l0, l1, . . .

l0
l1, l2, . . .

we  considered  as  a  reference  the  maximum  coverage
(R)  of  the  sink  node. Figure  1 shows  the  layered
network  model  of  the  proposed  work.  Initially,  all
clusters  are  divided  into l number  of  layers,  such  as

. The layer nearer to the sink node is considered
,  where  the  CC  is  located.  The  distant  layers  are

denoted as , at which only the RCs are located.
In each layer, for each cluster, one node is elected as a
CH,  and  all  remaining  nodes  are  considered  CMs.  In
the CC, the CH acts  as a relay,  whereas in the RCs,  a
few CHs are selected as relays.

RFurthermore,  the CR of  the sink node, ,  is  defined
as  the  maximum  Euclidean  distance  between  the  sink
node and SN.
 

R =max
(
dSN

SinkNode

)
(10)

l0

l0

Initially, the coverage range for layer  is defined as
the  maximum distance  between  the  sink  node  and  the
most  distant  member  node  of  CC.  Therefore,  the
coverage range for layer  is calculated as
 

Rl0 =max
(
dCCM

SinkNode

)
(11)

l1
l0 Rl0

R

l1

Similarly,  the  coverage  range  for  layer  is  the
cumulative range of coverage of layer , , and some
percentage of the CR of coverage of the sink node, .
Thus, the coverage range for layer  is expressed as
 

Rl1 = Rl0 + (X×R/100) (12)

Rl1 l1 Rl0

l0 X

R

li

where denotes the range of coverage for layer , 
denotes the range of coverage for layer ,  denotes a
constant,  and  denotes  the  communication  coverage
range  of  the  sink  node.  In  a  generalized  form,  the
coverage range of the -th layer is expressed as
 

Rli = Rli−1 + (X×R/100) (13)

Rli li
i = 1,2, . . . Rli−1

li−1

li
li+1 l0

where  denotes the coverage range of layer , where
,  and  denotes  the  coverage  range  of

layer .  After  partitioning  the  entire  network  into  a
few layers, a few CHs in the -th layer are selected as
relays  for  the  CHs of  the -th  layer  except  layer .
This  optimal  relay  selection  reduces  the  energy
consumption and effectively forwards the data packets
toward the sink node.

3.5    Relay selection

Generally,  relays  are  used  for  long-distance

li
li+1

li
CHp

i p = 1,2, . . . , s li+1

CHq
i+1 q = 1,2, . . . , t i = 1,2, . . .

li
li+1

CHp
i CHq

(i+1)

CHp
i (CR(CHp

i ))

CHq
(i+1)

CHp
i

communication  in  multihop  IoT  networks.  The  relay
selection  mechanism  is  applied  only  for  nodes  in  the
RCs,  whereas  for  nodes  in  CC,  the  CH functions  as  a
relay.  Few  RCHs  of  the -th  layer  are  considered
relays for the RCHs of the -th layer. Let us consider
that  the  RCHs  of  the -th  layer  are  represented  by

,  where ,  and that  those of  the -th
layer  are ,  where  and .
Initially,  the -th  layer’s  RCHs  are  considered
candidate  relays  for  the -th  layer’s  RCHs,  which
need  support  for  data  transmission.  Furthermore,  for
optimal relay selection, initially, the Euclidean distance
between  the -th  candidate  relay  and -th
RCHs  is  computed.  If  the  distance  obtained  is  within
the CR of the -th candidate relay , then
the -th  RCH  comes  under  the  respective
candidate  relay’s  proximity.  Therefore,  the  node
proximity for the -th candidate relay is given as
 

Pp
i =

CHq
i+1, if d

CHq
i+1

CHp
i
⩽ CR

(
CHp

i

)
;

0, otherwise
(14)

CHp
i

li
li+1

li

Optimal  relay  selection  is  performed  after  obtaining
the -th candidate relay’s proximity. Thereafter, we
check for a single relay in the -th layer that covers the
maximum number of RCHs of the -th layer. Hence,
the optimal relay for the -th layer is selected as
 

ORli =max
p

Pp
i (15)

ORli li
Pp

i

li

where  represents a single optimal relay for the -th
layer  and  represents  the candidate relay set  for  the

-th layer.  If  the single relay is not sufficient to cover
the entire CHs of the next layer, then we check for the
combination  of  two  or  more  relays.  For  this  purpose,
we  check  for  the  optimal  combinations  of  candidate
relays.  Among  possible  combinations,  the  best
combination,  i.e.,  one  with  maximum  node  coverage
capacity, is selected. As there exist varying numbers of
nodes  and  CHs  in  the  network,  we  adopt  multirelay
combinations  (MRCs).  In  this,  the  number  of
combinational  relays  varies  depending  upon  the  node
count  and  CH  count.  Optimal  MRC  selection  is
performed as
 

ORli =max
p

(
Pp

i ∪Pp+1
i

)
(16)

Pp
i Pp+1

iwhere  and  represent  the  candidate  relay  sets
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li

li

for  the -th  layer.  The  abovementioned  equation
checks  for  two  relay  combinations  that  have  the
maximum node coverage capacity in the -th layer.

li+1

li

If the entire RCHs in the -th layer are not covered
with  the  two  relay  combination  candidates,  then  we
will check for more MRCs. Hence, the proposed relay
selection  mechanism  selects  an  optimal  number  of
relays from the set of candidate relays in the -th layer
until it covers the entire RCHs of the next layer, and it
is given by
 

ORli =max
p

(
Pp

i ∪Pp+1
i ∪ · · ·∪Ps

i

)
(17)

li

After  selecting  optimal  relays  for  effective  data
transmission in the -th layer, the remaining CHs send
their  aggregated  data  packets  to  their  respective
destinations.  Once  all  the  CHs  and  relays  have  been
selected,  they  propagate  an  advertisement  message  to
their  CMs and  to  all  the  CHs  for  packet  routing.  Few
CMs and CHs of RCs that are ready for communication
send  their  join  request  messages  to  appropriate  CHs
and relays. Furthermore, all the CHs and SRs follow a
time  division  multiple  access  schedule  to  transfer  the
data from CMs to CHs. Similarly, all the CHs or relays
send  their  aggregated  data  packets  to  the  sink  node
using  the  carrier  sense  multiple  access/collision
avoidance scheduling algorithm based on the proposed
routing  mechanism.  Algorithm  2  shows  the  relay
selection mechanism for RCs.

3.6    Hierarchical packet routing

l0 l0 (
dSinkNode

CCM

)
(
dCCH

CCM

)
l0

The  proposed  mechanism  includes  the  HPR  strategy
for  energy-efficient  data  transmission.  Initially,  all  the
CMs  and  CCH  verify  the  distance  between  them  and
the  sink  node  in  layer .  In  layer ,  if  the  distance
between the CM of CC and the sink node  is
less than or equal to the distance between the CCM and
CCH ,  then  the  CCM  directly  sends  its  data
packets to the sink node; otherwise, it will send them to
CCH. Hence, the destination of the CCM of layer can
be expressed as
 

Destl0CCM =

SinkNode, if dSinkNode
CCM ⩽ dCCH

CCM;

CCH, if dSinkNode
CCM > dCCH

CCM

(18)

l1Similarly, the CMs of the RCs in layer  send their
data  packets  to  respective  RCHs.  Next,  the  RCHs

l1

l1 (
dSinkNode

RCH or SR

) (
dCCH

RCH or SR

)

l1

forward  the  collected  data  packets  to  either  the  sink
node  or  CCH  on  the  basis  of  the  distance.
Simultaneously,  the  SRs  presented  in  layer  collect
and aggregate the data packets from next layer’s RCHs
and  forward  them  to  either  the  sink  node  or  CCH.  In
layer ,  if  the  distance  between  the  RCH  or  SR  and
sink  node  is  less  than  or  equal  to  the
distance between the  RCH and CCH ,  then
the  cumulated  data  packets  are  directly  forwarded  to
the  sink  node;  otherwise,  they  are  sent  to  CCH.
Therefore,  the  destination  of  CHs  or  SRs  of  layer 
can be expressed as
 

Destl1RCH or SR =

Sink Node, if dSinkNode
RCH or SR ⩽ dCCH

RCH or SR;

CCH, if dSinkNode
RCH or SR > dCCH

RCH or SR
(19)

l2From  layer  layer  onward,  the  SNs  will  not  have

 

Algorithm 2　Relay selection for RCs
l0for upper layers except  do

CHp
i , p = 1,2, . . . , s　for 

CHq
i+1,q = 1,2, . . . , t　　for 
Pp

i ← ∅　　　　　

CHp
i CHq

i+1　　　Compute the distance between  and 
CHp

i　　　Compute the CR of 

d
CHq

i+1
CHp

i
⩽ CR

(
CHp

i

)
　　　if  then

Pp
i ← Pp

i ∪
{
CHq

i+1

}
　　　　　

　　end
　end
　for relay selection do

p = 1,2, . . . , s　　for 

coverage
(
CHp

i

)
= total number of CHs inli+1　　　if -th layer

ORli = CHp
i　　　　

coverage
(
CHp

i ∪CHp+1
i

)
= total number of CHs in li+1　　　else if -

th layer

ORli = CHp
i ∪CHp+1

i　　　　

coverage
(
CHp

i ∪CHp+1
i ∪CHp+2

i

)
= total number of CHs in li+1

　　　else if
-th

layer
ORli = CHp

i ∪CHp+1
i ∪CHp+2

i　　　　

coverage
(
CHp

i ∪CHp+1
i ∪ · · ·∪CHs

i

)
= total number of CHs in li+1

　　　else
-th

layer
ORli = CHp

i ∪CHp+1
i ∪ · · ·∪CHs

i　　　　

　　end
　end
end
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l2

l1 l1(
CHr1

1 and CHr2
1

)
l2

l2

direct communication with the sink node and will rely
on the previous layer’s  relays to  transfer  data  packets.
The  destination  of  the  RCHs  of  layer  is  decided
based  on  the  distance  between  its  RCH  and  SRs  of
layer .  Let  us  suppose  that  two  relays  of  layer 

 cover entire RCHs of layer , then the
destination of the RCHs of layer  can be expressed as
 

Destl2RCH =


CHr1

1 , if d
CHr1

1
CHRCH

2
⩽ d

CHr2
1

CHRCH
2

;

CHr2
1 , if d

CHr1
1

CHRCH
2
> d

CHr2
1

CHRCH
2

(20)

CHr1
1 CHr2

1 l1

l2
l2
(
CHRCH

2

)
l1
(
CHr1

1

)
CHRCH

2

l1
(
CHr2

1

)
CHr1

1

CHr2
1

where  and represent the two SRs of layer .
The abovementioned equation describes the destination
of  the  RCHs  of  layer .  If  the  distance  between  the
RCH of layer   and the SR of layer  
is  less  than  or  equal  to  the  distance  between 
and other SR of layer  , then the collected and
aggregated  data  packets  of  respective  RCHs  are
forwarded  through  the  relay ;otherwise,  they  are
forwarded through the  relay .  In  this  manner,  the
upper layers maintain communication with CHs of the
lower  layers  to  transfer  the  data  packets  to  the  sink
node.

4    Simulation

The performance of  the  proposed method is  evaluated
in  this  section  via  various  simulation  experiments.
Initially,  this  section  explores  the  particulars  of  the
simulation setup and then the results.

4.1    Simulation setup

δi j = 1 ∀i

j ∈ di j

Pmax

σi j
2

Pmax

MATLAB  is  used  to  simulate  the  proposed  method.
We consider a network of 100 nodes randomly located
in  an  area  of  1000  m  ×  1000  m  with  the  sink  node
located  at  the  center.  We  assum  a  small-scale  relay
fading  communication  channel  and  that  all  the
receiving  nodes  have  equal  priority,  i.e., , ,

.  Furthermore,  we  consider  similar  energy
harvesting  parameters  to  those  used  in  Ref.  [30].  We
set  the  maximum  transmitting  power  to  be  100
MW,  antenna  noise  variance  = −50, −40,  and
−30 dBm, and minimum harvesting energy to be 10%
of . Table  3 presents  the  parameters  required  to
simulate the proposed network.

4.2    Simulation results and analysis

pn

The performance of  the  proposed method is  evaluated
through the optimum value of  and energy efficiency
metric  under  varying  numbers  of  relays,  noise
variances, transmitting powers, number of rounds, and
nodes under the RT and DT modes. The DT mode uses
a DT link to transmit data to the sink node, whereas the
RT  mode  uses  relays  for  the  same.  Furthermore,  the
proposed method’s performance is compared with that
of the e-Trans SWIPT[31] and EECSR[32] methods.

pn4.2.1    Optimum value of 

pn pn

The maximum number of nodes that can be included in
the CC is decided based on  (see Fig. 2). We vary 
from  0  to  1.0  in  extensive  simulation  experiments  to
determine its optimum value. The number of rounds is

 

Table 3    Simulation setup.
Parameter Value

Node count (N) 100
Network area 1000 m × 1000 m

Size of the control packet 200 bit
Size of the data packet 4000 bit

Node placement Random
Transmission range of each

node 250 m

EiInitial energy ( ) 1 J
pn 0, 0.2, 0.4, 0.6, 0.8, 1.0

Efs

Energy consumed in free space
( ) 10 pJ/bit/m2

Emp

Energy consumed in multipath
propagation environment ( ) 0.0013 pJ/bit/m4

dTh 87.7058 m

EElec

Energy consumed to transmit or
receive 1-bit information ( ) 50 nJ/bit

σi j
2 −50, −40, −30 dBm

Number of simulation rounds 1500
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Fig. 2    Optimum value of pn for closest clustering.
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pn

pn

measured  for  each  simulation  for  three  performance
metrics,  namely  first  node  death  (FND),  half  node
death  (HND),  and  last  node  death  (LND).  The
optimum  value  of  is  determined  when  these  three
metrics acquire largest number of rounds. From Fig. 2,
it can be seen that the optimum value of  is 0.20, as
it  covers  the  largest  number  of  rounds  for  all  the
abovementioned  metrics.  This  optimum value  is  fixed
for the rest of the simulation experiments.
4.2.2    Energy efficiency
The  energy  efficiency  of  wireless  communication
systems  quantifies  the  number  of  bits  of  information
consistently  conveyed  from a  transmitter  to  a  receiver
per  unit  of  energy  used  at  the  transmitter.  In  most
cases,  the  energy  is  consumed  by  the  data  processing
circuitry,  which  is  considered  static  power
consumption,  and  to  send  and  receive  signals  from
various  SNs  through  a  wireless  fading  medium.  The
performance  of  the  proposed  method  was  evaluated
using  the  metric  of  energy  efficiency.  Therefore,  we
considered  system  energy  efficiency  for  our  proposed
method as
 

Energy efficiency =
throughput (bit)

Total energy consumed (J)
(21)

Figure 3 shows the average energy efficiency (kbit/J)
increment versus the increased number of relays under
the  two  transmission  modes  with  varying  noise
variance. From Fig. 3, we can observe that at the same
noise level, the RT mode’s energy efficiency is higher
than that of the DT mode. Compared with RT, DT has
larger  fading  effects,  more  path  loss,  and  a  smaller

coverage  area,  leading  to  increased  energy
consumption and decreased energy efficiency.

σi j
2

σi j
2

Furthermore,  for  the  two  modes,  the  energy
efficiency  at −50  dBm  noise  variance  is  higher  than
that  at −40  dBm.  From Fig.  3,  the  average  energy
efficiency  is  observed  at  = −50  dBm  to  be
approximately 3544 and 5394 kbit/J for the DT and RT
modes,  respectively.  Similarly,  the  average  energy
efficiency at  = −40 dBm for the DT and RT modes
is  approximately  2466  and  3857  kbit/J,  respectively.
Hence,  at  various  noise  variances,  the  RT  mode  of
transmission  is  more  energy  efficient  than  the  DT
mode of data transmission.

Figure  4 shows  the  graph  of  energy  efficiency
(kbit/J)  versus  maximum transmit  power  (dBm) under
the two transmission modes. An increase in maximum
transmit  power  immediately  results  in  a  gain  in  the
system’s  energy  efficiency  and  is  independent  of  the
mode  of  transmission  because  a  higher  value  of
transmit  power  increases  the  signal-to-interference-
plus-noise ratio (SINR) at the receiver.

Furthermore,  when  the  maximum  transmit  power  is
greater  than  or  equal  to  20  dBm,  the  system’s  energy
efficiency  increases,  reaches  an  optimal  value,  and
remains  constant.  A  further  increase  in  transmission
power  would  reduce  the  system’s  efficiency  once  the
efficiency  has  reached  its  optimum level  owing  to  the
energy-limited  sensors’ excessive  energy  usage.  From
Fig.  4,  we  can  observe  that  the  RT  mode’s  energy
efficiency  is  higher  than  that  of  the  DT  mode.  On
average,  the  energy  efficiency  under  the  RT  mode  is
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700 kbit/J higher than that under the DT mode. Hence,
in terms of average energy efficiency, the RT mode is
35% better than the DT mode.

σi j
2 σi j

2

Figure  5 shows  the  graph  for  energy  efficiency
versus  the  number  of  rounds  under  different  noise
variances  and  the  number  of  relays.  From Fig.  5,  we
can  observe  that  the  system’s  energy  efficiency
increases  with  decreased  noise  variance  and  an
increased  number  of  relays.  Moreover,  a  decrease  in
noise power improves the SINR, and an increase in the
number  of  relays  can  maximize  the  probability  of
selecting a more energy-efficient transmission path. At
−50  dBm  noise  variance,  the  approximated  average
energy  efficiency  is  3533  kbit/J  when  the  number  of
relays  (NR)  is  6  and  3266  kbit/J  when  NR  is  3.
Similarly,  at −40  dBm  noise  variance,  the
approximated average energy efficiency is  2550 kbit/J
when  NR  =  6  and  2266  kbit/J  when  NR  =  3.
Furthermore,  at −30  dBm  noise  variance,  the
approximated average energy efficiency is  1700 kbit/J
when NR = 6 and 1566 kbit/J when NR = 3. Hence, the
percentage  of  improvements  in  the  average  energy
efficiency for  = −50 dBm over = −40 and −30
dBm  are  29% and  51%,  respectively.  Therefore,  the
energy  efficiency  is  high  when  the  noise  variance  is
low and NRs are more.

Figure 6 shows the number of relays versus varying
node density for the proposed method and the existing
methods,  namely  e-Trans  SWIPT[31] and  EECSR[32].
From Fig.  6,  we  can  observe  that  more  relays  are
required  to  reach  the  destination  as  the  number  of

nodes  increases.  The  proposed  method  selects  an
optimal  number  of  relays  compared  with  e-Trans
SWIPT  and  EECSR  because  the  latter  two  methods
select  the  relay  node  irrespective  of  the  number  of
nodes when the distance between the two CHs is high
and  do  not  consider  the  distance  between  the  CH and
sink node.

Here,  we  consider  both  distances  and  select  an
optimal number of relay nodes depending on the node
density. From Fig. 6, we can observe that, on average,
the NR required for the proposed method is 6, whereas
it  is  10  and  12  for  the  EECSR  and  e-Trans  SWIPT
methods,  respectively.  Hence,  the  proposed  method
requires a lower number of relay nodes when the node
density  is  low,  and  as  node  density  increases,  an
optimal  NR  is  required  when  compared  with  the
existing methods.

σi j
2

Figure  7 shows  the  graph  for  energy  efficiency
(kbit/J)  versus  the  number  of  nodes  under  the  RT
mode.  Here,  the  proposed  method’s  energy  efficiency
is compared with that of the EECSR method at various
noise  variances  under  the  RT  mode  of  transmission
with varying number of nodes. From the figure, we can
observe  that  for  the  proposed  method,  when  the
number  of  nodes  increases,  the  energy  efficiency  also
increases  at  various  noise  variances.  The  percentage
improvement  in  terms  of  energy  efficiency  at  =
−50  dBm  of  the  proposed  method  compared  with  the
EECSR method is 18.2% when the number of nodes is
50, 15.4% when the number of nodes is 100, and 11%
when the number of nodes is 150.
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Similarly,  the  percentage  improvement  in  terms  of
energy  efficiency  at  = −40  dBm  of  the  proposed
method  compared  with  the  EECSR  method  is  25%
when the number of nodes is 50, 17% when the number
of nodes is 100, and 15.5% when the number of nodes
is 150. Furthermore, the percentage of improvement in
terms  of  energy  efficiency  at  = −30  dBm  of  the
proposed  method  over  the  EECSR  method  is  36%
when  the  number  of  nodes  is  fifty,  12.5% when  the
number of nodes is 100, and 24% when the number of
nodes is 150. Therefore, under the RT mode, when the
number  of  nodes  increases,  the  proposed  method’s
energy  efficiency  at  fewer  noise  variances  is  higher
compared with the EECSR method.

σi j
2

Figure  8 shows  the  graph  of  energy  efficiency
(kbit/J)  versus  the  number  of  nodes  under  the  DT
mode.  Here,  the  proposed  method’s  energy  efficiency
is compared with that of the EECSR method at various
noise  variances  under  the  DT  mode  with  varying
numbers of nodes. From Fig. 8, we can observe that for
the  proposed  method,  when  the  number  of  nodes
increases,  the  energy  efficiency  also  increases  at
various noise variances. The percentage average energy
efficiency  improvements  of  the  proposed  method
compared with the EECSR method at  = −50, −40,
and −30  dBm  are  12.5%,  21.4%,  and  31.6%,
respectively, when the number of nodes is 50.

Similarly,  the  percentage  of  average  energy
efficiency improvements  of  the proposed method over

σi j
2

σi j
2

the  EECSR  method  at  =−50, −40,  and −30  dBm
are  13.8%,  16.6%,  and  20%,  respectively,  when  the
number of nodes is 100. Furthermore, the percentage of
average  energy  efficiency  improvements  of  the
proposed  method  over  the  EECSR  method  at  =
−50, −40, and −30 dBm are 10.3%,  9.4%,  and 16.6%,
respectively, when the number of nodes is 150.

From Figs.  7 and 8,  we  can  observe  that  the  RT
mode’s energy efficiency is higher than that of the DT
mode  because  higher  node  density  results  in  higher
energy  consumption  owing  to  increased  path  loss  and
fading  effects  between  the  nodes  and  CHs.  Hence,
higher  energy  consumption  results  in  lower  energy
efficiency.

Figures  9 and 10 show the  required  NR for  varying
CR at  a  node count  of  100 and 200,  respectively.  The
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required  NR  decreases  when  the  CR  of  each  node
increases, as shown in the figures. From Fig. 9, we can
observe that when a node’s CR is less, then it requires
more NR because each CH covers only a few nodes.

However,  when  the  CR  of  a  node  increases,  then
each  CH  covers  a  maximum  number  of  nodes,  and
there  are  fewer  requirements  for  higher  number  of
relays.  If  the  number  of  nodes  increases  from  100  to
200, then each CH cannot cover a maximum number of
nodes,  as  a  result  of  which  it  requires  more  NR when
the CR is less, as shown in Figs. 9 and 10. On average,
the NR required for the proposed, EECSR, and e-Trans
SWIPT  methods  is  9,  1,  and  12,  respectively,  for  a
node count of 100, as shown in Fig. 9. On average, the
NRs  required  for  the  proposed  EECSR  and  e-Trans
SWIPT methods are 13, 16, and 18, respectively, for a
node  count  of  200,  as  shown  in Fig.  10.  From  the
results,  we  can  observe  that  the  performance  of  the
proposed  method  is  superior  to  that  of  the  existing
methods;  i.e.,  the  optimum  NR  required  for  the
proposed  method  is  less  than  those  required  by  the
existing methods for various node counts.

Figure  11 shows the  graph for  the  number  of  relays
versus  varying  signal-to-noise  ratios  (SNRs  (dB))
under varying node densities and noise variances. From
Fig. 11, we can observe that as the SNR increases, the
number  of  relays  also  increases  for  different  node
densities  and  noise  variances.  As  the  SNR  increases,
noise  variance  decreases,  the  CR  of  each  node
decreases,  and  more  relays  are  required  to  transmit
information  toward  the  sink  node.  For  the  low-SNR
region,  the  NR  required  for  a  node  count  of  200  is

more than those required for node counts of 100 and 50
at  the  same noise  level.  At −40 dBm, the  average NR
required for node counts of 200, 100, and 50 is 24, 15,
and  7,  respectively.  At −30  dBm,  the  average  NRs
required for node counts of 200, 100, and 50 are 21, 11,
and 5, respectively.

5    Conclusion

Energy management poses one of the major challenges
in IoT networks. Hence, this study proposed an energy-
efficient  relay  selection  mechanism  for  clustered  IoT
networks  to  efficiently  use  the  network’s  energy  and
provide  reliable  communication  between  the  nodes.
Initially, this study proposes hybrid clustering in which
the entire network is divided into two types of clusters,
namely the CC and RCs. Furthermore, CH selection is
introduced  by  formulating  a  fitness  function  based  on
the metrics, namely distance and residual energy. After
CH selection,  the  entire  network is  divided into  a  few
layers, and some CH nodes are selected as relay nodes
in each layer. The relay selection is applied only for the
upper layers, where the RCs are located, and the CCH
function  as  a  relay.  The  proposed  method’s
performance  is  examined  through  several  simulation
experiments,  and  it  exhibits  better  results  compared
with the existing methods under varying noise variance
and node density.

Appendix

A    Energy model

This  study  uses  the  free  space  energy  model  or  the
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dTh

multipath  propagation  model,  both  of  which  are
employed  based  on  the  distance  between  the  sender
and  receiver  nodes  (d)[40, 41].  The  threshold  distance
( ) is used to decide which propagation model (d2 or
d4) will be used for the energy consumption. Generally,
energy consumption at each node is evaluated based on
four  states,  namely  transmitting,  receiving,  idle,  and
sleep.  Among  these  four  states,  the  states’ idle  and
sleep  consume  a  negligible  amount  of  energy.
Therefore, we consider energy consumption during the
transmitting  and  receiving  states  only.  The  amount  of
energy  consumed  to  transmit  a  packet  of k-bit  length
over a distance d is given by the following:
 

Etx (k,d) =

k×Eel+ k×Efs×d2, if d ⩽ dTh;

k×Eel+ k×Emp×d4, if d > dTh
(A1)

Eel

Efs Emp

dTh =

√
Efs

Emp

where  signifies the energy consumed to transmit or
receive  1-bit  information  and  and  denote  the
energies  consumed  in  free  space  and  multipath
propagation  environments,  respectively.  Additionally,

 denotes  the  threshold  distance[42].  The

amount of energy consumed to receive a packet of k-bit
length is given by
 

Erx (k) = k×Eel (A2)

Ere

Etx (k,d) Erx (k)
The  residual  energy  is  then  evaluated  based  on

 and  as
 

Ere = ECurrent−ECons (A3)

EConswhere  represents  the  total  energy  consumed
during  the  transmission  and  reception  of  a k-bit  data
packet  and  is  equal  to  the  summation  of  the
transmitting and receiving energies, i.e.,
 

ECons = Etx (k,d)+Erx (k) (A4)

Equations  (A1)  and  (A2)  are  restricted  to  only  the
SN.  If  the  SN  acts  as  a  CH,  then  it  collects  the
information from all the member nodes and transmits it
to  the  sink  node.  Therefore,  the  amount  of  energy
consumed  to  transmit  and  receive  the  information  by
the CH is given by
 

Etx (k×ncm,d) = (k×ncm(Eel+ECD)+
(
k×Efs×d2

ch

)
, if dch ⩽ dTh;

(k×ncm(Eel+ECD)+
(
k×Emp×d4

ch

)
, if dch > dTh

(A5)

Additionally, we have
 

Erx (k×ncm) = k×ncm (Eel+ECD) (A6)

ncm ECD

dch

where  denotes the total number of CM nodes, 
denotes  the  total  energy  consumed  during  data
collection from all the CMs by the CH in a cluster, and

 denotes the Euclidean distance between the CH and
sink node.

O (N)

O (1)

Lemma  A1　 The  time  complexity  incurred  at
cluster  formation  in  the  worst  case  is  given  by ,
where N denotes  the total  number of  IoT nodes in  the
network.  Next,  the  worst-case  complexity  for
exchanging messages during cluster formation is given
by .

O (1)

O (N)

O (1)

Proof　 In  the  proposed  approach,  nodes  are
clustered  into  several  clusters  only  at  the  beginning,
i.e.,  before  data  transmission.  The cluster  formation is
performed  with  the  assistance  of  the  CR  of  the  nodes
and  the  radius  (length  or  width)  of  the  network.
Clustering all nodes into hierarchical clusters is a one-
time process.  The information regarding the clustering
is broadcasted by the sink node. Because the nodes are
aware  of  their  locations,  they  can  determine  their
cluster  on  the  basis  of  their  CR.  Hence,  the  message
exchanging  time  is  constant  for  all  nodes,  i.e., ,
and  the  worst-case  time  complexity  of  the  entire
network  is  given  by .  At  the  time  of  cluster
formation,  the  nodes  won  exchange  any  information,
and,  hence,  the  worst-case  message  exchanging
complexity is given by .

O (n) n≪ N

Lemma  A2　 The  time  complexity  and  message
exchanging  complexity  incurred  during  the  CH
selection  in  the  worst  case  are ,  where 
denotes the total number of IoT nodes in the layer.

O (n)

Proof　Let  us  consider  that  a  cluster  has n number
of nodes. To become the CH, each node in that cluster
must check the probability of being selected as the CH
for n−1  nodes.  Hence,  the  time  complexity  of  the
proposed  CH  selection  approach  is  given  by .
After  the computation of  probabilities  of  each node in
the  cluster,  the  node  with  the  maximum probability  is
selected as the CH. After being selected as the CH, the
node broadcasts a message to all the other nodes in the
cluster,  conveying  that  it  is  the  CH.  Hence,  two
messages  must  be  broadcast,  one  before  the  CH
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O (1)

O (n)

selection  and  another  after  it.  Thus,  the  message
broadcasting  complexity  is  given  by .  Thus,  the
overall complexity due to the exchange of messages in
each cluster is given by .
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