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Abstract: Reconfigurable  Intelligent  Surfaces  (RIS)  have  emerged  as  a  promising  technology  for  improving  the

reliability of massive MIMO communication networks.  However,  conventional RIS suffer from poor Spectral  Efficiency

(SE)  and  high  energy  consumption,  leading  to  complex  Hybrid  Precoding  (HP)  designs.  To  address  these  issues,  we

propose a new low-complexity HP model, named Dynamic Hybrid Relay Reflecting RIS based Hybrid Precoding (DHRR-

RIS-HP).  Our  approach  combines  active  and  passive  elements  to  cancel  out  the  downsides  of  both  conventional

designs.  We  first  design  a  DHRR-RIS  and  optimize  the  pilot  and  Channel  State  Information  (CSI)  estimation  using  an

adaptive threshold method and Adaptive Back Propagation Neural Network (ABPNN) algorithm, respectively, to reduce

the Bit Error Rate (BER) and energy consumption. To optimize the data stream, we cluster them into private and public

streams using Enhanced Fuzzy C-Means (EFCM) algorithm, and schedule them based on priority and emergency level.

To maximize the sum rate and SE, we perform digital  precoder optimization at the Base Station (BS) side using Deep

Deterministic  Policy  Gradient  (DDPG)  algorithm  and  analog  precoder  optimization  at  the  DHRR-RIS  using  Fire  Hawk

Optimization (FHO) algorithm. We implement our proposed work using MATLAB R2020a and compare it with existing

works using several validation metrics. Our results show that our proposed work outperforms existing works in terms

of SE, Weighted Sum Rate (WSR), and BER.

Key  words:   Reconfigurable Intelligent Surfaces (RIS); Dynamic Hybrid Relay Reflecting (DHRR)-RIS; Multi  User  Multiple

Input  Multiple  Output  (MU-MIMO); hybrid  precoder; machine  learning  and  deep  learning  algorithms;

channel state estimation

1    Introduction

In  recent  times,  the  application  of  Multiple  Input
Multiple  Output  (MIMO)  antenna  technologies  has
significantly impacted mobile communications, leading
to an increase in spectrum efficiency rate[1].  However,
a  major  disadvantage  of  this  adoption  is  the  increased
energy  consumption.  The  fully  digital  beamforming

technique,  consisting  of  a  digital  precoder,  was
introduced earlier, but the conventional digital precoder
had excessive Radio Frequency (RF) chains and high-
resolution  Digital-to-Analog  Converters  (DACs),
which  resulted  in  increased  hardware  costs[2, 3].
Similarly, the analog precoder had a similar drawback,
but  it  used  high-resolution  Analog-to-Digital
Converters  (ADCs)[4].  To  address  these  issues,
researchers have focused on HP and combiner designs
that  combine  digital  and  analog  precoding  for  MIMO
systems,  improving  beamforming  efficiency  and
reducing  hardware  losses[5, 6].  Channel  State
Information (CSI)  is  a  crucial  parameter  for  designing
a  robust  HP/combiner[7].  However,  many  of  the
existing works estimate CSI using conventional metrics
such  as  Angle  of  Arrival  (AoA)  and  Direction  of
Arrival  (DoA)  and  perform  CSI  on  either  the
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transmitter  or  receiver  side,  leading  to  high
computation  complexity  and  channel  estimation
errors[8, 9].

Reconfigurable Intelligent Surface (RIS) has recently
gained  attention  for  mobile  network  applications,
particularly for MIMO-based HP designs and resource
allocation[10, 11].  RIS  comprises  a  reflecting  element
array  composed  of  phase  shifters  that  can  passively
alter the electromagnetic wave phase, and the reflected
signals  can  be  adjusted  to  the  desired  direction[12, 13].
Many  existing  works  perform  hybrid  precoding  and
combining in  passive RIS,  making the network highly
energy-efficient[14, 15].  However,  passive  RIS  has  a
major  drawback  of  being  fixed  in  nature  and  having
computation  overhead  for  the  transmitter  and  receiver
side[16, 17].  To  address  this  issue,  some  works
incorporate  active  elements  in  RIS,  consisting  of
baseband  processing  units  that  can  perform  channel
state  estimation  separately  for  transmitters  and
receivers  more  accurately[18, 19].  Hybrid  Relay
Reflecting RIS (HRR-RIS) is a combination of passive
and active elements expected to be the best  option for
hybrid  precoding  design.  Recent  research  adopts
machine  learning  and  deep  learning  algorithms  with
RIS  for  designing  HP/combiners[20],  yet  a  robust  and
low-complexity  design,  in  terms  of  low  resolution

DAC/ADC,  RF  chain  limitation,  and  optimal  phase
shift optimization, has not been precisely optimized.

In  this  work,  we  adopt  Dynamic  Hybrid  Relay
Reflecting  (DHRR)-RIS  as  shown  in Fig.  1 with  an
artificial  intelligence  algorithm  for  designing  robust
HP/combiners  for  MIMO  that  will  address  all  the
existing issues.

1.1    Motivation & objective

In  recent  years,  designing optimal  HPs and combiners
for  massive  MIMO  have  posed  several  challenges.
While  existing  works  have  made  progress  in
overcoming these challenges, a precise solution has not
yet  been  achieved.  Some  specific  and  common  issues
faced  by  existing  works  include  high  energy
consumption,  poor  Spectral  Efficiency  (SE),  and
increased channel estimation errors.

High  energy  consumption. Majority  of  existing
works  design  HPs  and  combiners  for  massive  MIMO
by  optimizing  RF  chains  and  phase  shifters  in
conventional phased array analog beamformers. Phased
array  analog  beamformer  is  highly  energy-consuming
when  the  number  of  antennas  is  increased,  which
attenuates  signals  and  leads  to  high  energy
consumption.  Even  though  some works  adopt  RIS  for
HPs  and  combiner  designs  in  MIMO,  the  elements  in
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Fig. 1    Design of DHRR-RIS.
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the  RIS  are  fixed  without  considering  the  dynamicity
of  the  environment,  which  also  leads  to  high  energy
consumption.

Poor  SE. Most  of  the  existing  works  have  not
adequately  addressed  the  optimization  of  the  data
stream  of  the  transmitter  in  designing  HPs  and
combiners  for  massive  MIMO.  As  the  data  streams
transmitted  by  the  transmitter  are  massive,  optimizing
the  data  stream is  necessary  to  enhance  the  SE  of  the
framework.  However,  most  of  the  state-of-the-art
works  have  not  fully  leveraged  data  stream
optimization,  and  this  has  negatively  impacted  the  SE
of the framework.

Increased  channel  estimation  errors. The  existing
works  for  channel  estimation  in  massive  MIMO
systems  considers  only  limited  metrics  such  as  AoA
and  DoA,  leading  to  increased  channel  estimation
errors.  Moreover,  most  of  these  works  performs
channel estimation at the transmitter or receiver, which
increases  hardware  complexity  and  computation
overhead, leading to further channel estimation errors.

Based  on  the  challenges  mentioned,  the  proposed
work aims to address the issue by designing an energy-
efficient,  low-complexity  HP  for  massive  MIMO
systems. The research objective is to use deep learning
methods  to  design  a  low-complexity  HP  with  low-
resolution  ADC/DAC  for  massive  MIMO  systems.
This research also aims to address the issues related to
channel estimation and SE in existing works.

Some of the sub-objectives of this research are:
• To     reduce     channel     estimation     errors    and

computation overhead by constraining pilot signals and
performing channel estimation on the DHRR-RIS side
using a machine learning algorithm.

• To    enhance    SE   and   reduce    complexity    by
optimizing the data stream into clusters and scheduling
them into two-time scales.

• To mitigate  power  and  phase  errors  by  adopting
one-bit DAC/ADC and vector modulated phase shifters
for massive MIMO.

• To ensure a robust HP design  by  performing  joint
optimization  of  RF-DAC/ADC  pairs  in  the
transmitter/receiver  side  and  phase  shifter  in  the
DHRR-RIS side, respectively.

1.2    Research contributions

The proposed research focuses on the development of a
low-complexity  HP for  massive  MIMO systems using
AI  algorithms  and  DHRR-RIS.  The  key  contributions
are listed as follows:

• Designing   a   dynamically  adjustable  DHRR-RIS
architecture  that  enhances  scalability  and  adaptability
in Multi User MIMO (MU-MIMO) systems, offering a
more  flexible  and  adaptable  communication  system
compared to traditional designs.

•  Utilizing       adaptive       threshold-based       pilot
optimization  and  Adaptive  Back  Propagation  Neural
Network  (ABPNN)  algorithms  for  efficient  CSI
estimation,  addressing  complexity  issues  related  to
increased  pilot  transmission,  high  Bit  Error  Rate
(BER), and high channel estimation errors.

• Enhanced    Fuzzy    C-Means (EFCM)    clustering
algorithm  and  two-time  scale  scheduling  for  data
stream  optimization  and  management,  addressing  SE
issues caused by increased data stream transmission.

• Implementing   cooperative  hybrid   precoding  by
optimizing the Base Station (BS) digital precoder using
Deep  Deterministic  Policy  Gradient  (DDPG)  and  the
analog precoder using Fire Hawk Optimization (FHO)
in a cooperative manner.

• Evaluating   the   proposed   HP   design’s   efficacy
through MATLAB R2020a simulations and comparing
it  with existing works using metrics such as Weighted
Sum  Rate  (WSR)  (bits/Hz),  BER,  and  SE  (bps/Hz),
demonstrating  the  advantages  of  incorporating  RIS
technology into massive MIMO systems.

2    Paper organization

The  remaining  of  the  paper  is  organized  as  follows:
Section  3  provides  the  literature  survey  and
corresponding  gaps  of  the  state-of-the-art  works.
Section  4  emphasizes  the  system  model  in  which  the
channel  model  and  problem formulation  are  analysed.
Section  5  explains  the  proposed  methodology  with
proper  explanation  and  suitable  pseudocode  and
diagrams.  Section  6  provides  the  experimental  results
with  simulation  setup,  comparative  analysis,
complexity  analysis,  and research summary.  Section 7
concludes the proposed research. The notations used in
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this research are listed in Table 1.

3    Literature survey

This  section  aims  to  provide  a  comprehensive  review
of  the  current  research  on HP design,  with  a  focus  on
the gaps in the literature. To aid in comprehension, this
section is  divided into two subsections:  RIS-based HP
design  and  HP  design  without  RIS.  Additionally,
Table  2 summarizes  the  gaps  in  the  existing  research,
along  with  the  simplified  algorithms/methods  that  are
used.

3.1    RIS  aided  channel  estimation  &  HP  design
using AI and other methods

The  rapid  development  of  RIS  has  led  to  multiple
approaches  for  enhancing  massive  MIMO
communication  networks.  We  examine  key  works,
highlighting  our  HP-DHRR-RIS  model’s  merits.
Reference  [21]  adopts  a  deep  learning-based  hybrid
precoding  approach  for  MIMO-enabled  THz
communication  using  RIS  but  overlooks  data  stream
optimization  and  scheduling,  essential  components  of
our model. Reference [22] presents a dual RIS-assisted
multi-user  MIMO  mmWave  system  with  hybrid

precoding but does not address complexities related to
pilot  and  CSI  optimization.  In  contrast,  our  model
employs an adaptive threshold method and an ABPNN
for optimizing pilot and CSI. Reference [23] describes
a  multi-hop  RIS-empowered  terahertz  communication
system  using  deep  reinforcement  learning  for  hybrid
beamforming  design.  Although  it  provides  optimized
policy  for  precoder  optimization,  it  does  not  tackle
challenges related to data stream optimization, SE, and
energy  consumption.  Our  proposed  model  overcomes
these  limitations  by  classifying  data  streams  using  an
EFCM  algorithm  and  scheduling  them  based  on
priority and emergency levels. Reference [24] applies a
distributed  machine  learning  algorithm  for  downlink
channel  estimation  in  RIS-assisted  wireless
communications  but  neglects  the  optimization  of
digital  and  analog  precoders.  In  contrast,  our  model
employs  an  DDPG  algorithm  for  digital  precoder
optimization  and  an  FHO  algorithm  for  analog
precoder optimization.

Authors in Refs. [25–27] outline various methods for
RIS-assisted  MIMO  systems  and  hybrid  precoding.
While  valuable,  they  did  not  explicitly  address
challenges tackled by our HP-DHRR-RIS model,  such
as SE, WSR, and BER.

In  summary,  our  proposed  HP-DHRR-RIS  model
surpasses existing research by addressing limitations in
current works, offering a more robust solution for RIS-
assisted MIMO communication networks. Focusing on
low-complexity  design,  SE,  WSR,  and  BER,  and
energy  consumption,  our  approach  demonstrates
significant  improvements  over  existing  techniques,
contributing to the field’s continued progression.

3.2    RIS  unaided  chanel  estimation  &  HP  design
using machine learning and other algorithms

The  proposed  HP-DHRR-RIS  model  exhibits
significant  improvements  over  current  methodologies
by incorporating RIS technology, which is often absent
in  existing  works.  Contrasted  with  the  two-timescale
end-to-end learning in Ref. [28], our model utilizes an
adaptive  threshold  method  and  ABPNN,  providing
enhanced pilot signal optimization and CSI acquisition,
effectively  addressing  the  limitations  of  Ref.  [28].  In
comparison  to  the  deep  learning-based  joint  CSI

 

Table 1    List of notations.

Notation Description
At & Ar Transmitter & receiver antennas

Jt ∈CA×At Channel between BS and DHRR-RIS
Jr ∈CAr×A Channel between user and DHRR-RIS

powBS Power at the base station
N Noise at the user

NJ, NUS Noise at DHRR-RIS and user, respectively
β

(q)
n,m Path gain
αk Relay/reflection co-efficient
R Covariance matrix

bopt Beamforming matrix
P Pilot sequences
p Estimated channel vector

Q
[
ĉVrcon

]
Quantized channel vector

J (U,V) Fuzzy objective function
Y Scheduling constant

FAP and FDP Analog and digital precoder
CM Channel matrix

VMps Vector modulated phase shifters

yxdl
z yxul

z∗ and Pilot sequence of the receivers and transmitters
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Table 2    Analysis of the gaps in the existing research.

Category Reference Method utilized Objective Pros and Cons

RIS aided
channel
estimation & HP
design using AI
and other
methods

[21] Parallel deep neural network and
zero forcing algorithm

Hybrid precoding design for
THz communication using RIS

• High computational &
hardware complexity
• High noise amplification in
multi user scenario

[22] Reimannian joint optimization
algorithm

Dual RIS based hybrid
precoding design for MU-
MIMO

• High channel estimation
• Poor SE and high energy
consumption
• Not be suitable for
unstructured data, such as
images or audio

[23] Deep reinforcement algorithm
and joint optimization method

RIS-based hybrid precoding
design for THz communication

• Less beamforming efficiency
• Increased channel estimation
errors

[24] Distributed machine learning
algorithm

RIS-based estimation of
downlink channels in wireless
environment

• Increased errors and deprived
data interpretation

[25]

Element wise minimized symbol
error rate and vector gradient
based minimized symbol error
rate

Precoder and reflection design
in cooperative manner using
RIS for MIMO

• Not suitable for dynamic
environments

[26] Channel estimation based of
decomposition method

Designing of HPs and
adjustment of RIS in
cooperative manner

• High root mean square and
phase errors

[27] Joint optimization of ADC and
RIS power

Effective beamforming for
MIMO using RIS-based ADCs

• High complexity for channel
estimation at both the
transmitter and receiver side,
respectively

RIS unaided
channel
estimation & HP
design using AI
and other
methods

[28] Dual time scale and deep neural
networks

Hybrid precoding design and
channel estimation based on
dual time scales

• High energy consumption
• Less accurate channel
estimations

[29] Convolutional neural network &
deep neural network

Cooperative design of hybrid
precoding and CSI feedback
optimization using DL

• High computational overhead
• Less energy efficiency

[30] Convolutional neural network Hybrid precoding design for
mmWave MIMO using DL

• Less SE
• Poor results in RF chain
optimization

[31]
Machine learning algorithm,
Dinklebach method, and water
filling algorithm

Hybrid precoding design for
mmWave MIMO using ML
with domestic switch network

• High hardware complexity
• Not suitable for dynamic
environment

[32] Deep neural network and zero
forcing algorithm

DL-based channel estimation
and hybrid precoding design for
mmWave MIMO

• High noise amplification for
digital precoder design

[33] Deep neural networks
DL-based channel sensing and
HP design using mmWave
MIMO

• High complexity and
computational overhead

[34]
Convolutional neural network
and hierarchical codebook
algorithm

DL-based channel estimation &
hybrid precoding for mmWave
MIMO

• Poor channel state estimation

[35] Greedy selection cross validation
method

Estimating resilient channel for
mmWave MIMO using ADCs • High squared loss errors

[36] Machine learning algorithm Utilizing low resolution analog
PS for HP design using ML

• Not focusing on data stream
optimization
• Less SE

[37] ID convolutional neural network
Adopting DL algorithm of
channel estimation of geospatial
data for mmWave MIMO

• High problem of overfitting

(To be continued)
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feedback  and  hybrid  precoding  in  FDD  mmWave
massive  MIMO  systems  in  Ref.  [29],  our  approach
employs  RIS  technology  and  the  EFCM  algorithm  to
enhance  beam  alignment  and  system  performance,
leading to more dynamic resource allocation.

Our  model  outperforms  the  deep  CNN  and
equivalent channel-based hybrid precoding in Ref. [30]
by  optimizing  the  digital  and  analog  precoders  at  the
BS  and  DHRR-RIS,  respectively,  resulting  in  a  more
robust  and  efficient  communication  system.  Differing
from the machine learning-inspired hybrid precoding in
Ref.  [31],  our  model  integrates  RIS  technology  for
superior  optimization  of  digital  and  analog  precoders
and  improved  system  performance.  Our  model
demonstrates  enhanced  performance  over  the  sparse
channel  estimation  and  hybrid  precoding  using  deep
learning  in  Ref.  [32]  due  to  the  incorporation  of  RIS
technology,  resulting  in  more  accurate  channel
estimation.  By  leveraging  RIS  technology  and
optimizing  the  digital  and  analog  precoders  at  the  BS
and  DHRR-RIS,  our  model  outperforms  the  deep
learning-based  channel  sensing  and  hybrid  precoding
in  Time  Division  Duplexing  (TDD)  massive  MIMO
Orthogonal Frequency Division Multiplexing (OFDM)
systems  in  Ref.  [33],  enabling  better  interference
management.  In  contrast  to  the  deep  learning-based
channel estimation and hybrid precoding for millimeter
wave communications in Ref. [34], our model employs
RIS technology to optimize pilot signals, CSI, and data
streams for superior link adaptation.

Our  approach  exhibits  improved  performance  in

terms of SE, WSR, and BER over the spatial wideband
channel  estimation  in  Ref.  [35]  by  incorporating  RIS
technology  and  optimizing  data  streams,  leading  to  a
more  robust  and  efficient  communication  system.  Our
model  surpasses  the  machine  learning-based  hybrid
precoding  in  Ref.  [36]  and  the  deep  learning  and
geospatial  data-based  channel  estimation  technique  in
Ref. [37] by employing RIS technology and optimizing
the digital and analog precoders at the BS and DHRR-
RIS,  resulting  in  a  more  advanced  and  efficient
communication  system  with  better  channel  estimation
accuracy.  In  comparison  to  the  deep  learning-based
robust  precoding  for  massive  MIMO in  Ref.  [38],  our
approach  addresses  limitations  by  incorporating  RIS
technology  and  optimizing  digital  and  analog
precoders,  leading  to  a  more  advanced  and  efficient
system with superior precoding robustness. In contrast
to  the  PrecoderNet  hybrid  beamforming  in  Ref.  [39],
our  model  integrates  RIS  technology  for  improved
optimization of digital and analog precoders and better
handling  of  millimeter  wave  channel  characteristics.
Lastly,  our  HP-DHRR-RIS  model  exhibits  significant
advantages  over  the  Distributed  Neural  Precoding
(DNP)  technique  in  Ref.  [40]  by  incorporating  RIS
technology, optimizing the digital and analog precoders
at  the  BS  and  DHRR-RIS,  and  reducing  overhead  in
feedback signaling.

In  conclusion,  our  HP-DHRR-RIS  model
outperforms  existing  methods  in  the  literature  by
integrating  RIS  technology  and  optimizing  digital  and
analog  precoders.  This  approach  achieves  enhanced

Table 2    Analysis of the gaps in the existing research. (Continued)

Category Reference Method utilized Objective Pros and Cons

RIS unaided
channel
estimation & HP
design using AI
and other
methods

[38] Deep neural networks
Realizing the robust precoding
by adopting DL-based hybrid
precoding

• High errors during channel
estimation

[39] Precoder networks
DRL-based hybrid
beamforming for mmWave
MIMO

• High consumption of energy
• High signal attenuation

[40] Distributed neural precoding and
deep neural network

For mmWave MIMO
distributed precoding was
performed using DL

• Poor results due to lack of
learning optimal features

Proposed work
(HP-DHRR-RIS)

Adaptive back propagation
neural network, enhanced fuzzy
c-means, deep deterministic
policy gradient, and fire hawk
optimization

Designing an energy effective
low complexity HP design of
MU-MIMO using AI based on
DHRR-RIS

• Less channel estimation errors
• High SE
• Power reduction
high energy efficiency
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communication  performance  through  improved
channel  estimation,  beam  alignment,  and  interference
management,  resulting  in  a  more  advanced  and
efficient communication system.

4    System model

At Ar

Jr ∈CAr×A

Jt ∈CA×At

y ∈CAt×1
{
yyH

}
= powBS×

IAr powBS

Φ = Dia {Φ1,Φ2, . . . ,ΦM} Ψ = Dia {Ψ1,Ψ2, . . . ,ΨM}

The  BS  and  Users  (US)  are  the  primary  entities
involved  in  the  design  of  an  HP  for  downlink  data
transmission. However, in situations where direct links
between  the  BS and  US are  hindered  by  blockages  or
path  loss,  alternative  solutions  such  as  the  proposed
DHRR-RIS can be introduced to facilitate beamformed
communication  by  designing  optimal  HPs  and
combiners  between  the  entities.  The  antennas  situated
in  the  BS  and  US  are  denoted  as  and ,
respectively. The channel between the DHRR-RIS and
US can be represented as , while the channel
between  the  BS  and  DHRR-RIS  can  be  denoted  as

,  where A is  the  dynamic  set  of  active
elements in DHRR-RIS. The transmission signal vector
can be represented as , where 

,  with  denoting  the  transmission  power.
 and ,

where M is  total  number  of  active  and  passive
reflecting elements in DHRR-RIS. The received signal
at the US can be expressed as follows:
 

x = JrΦJty+ JrΨ Jty+ JrΨNJ +NUS (1)

By simplifying Eq. (1)
 

=> (JrΨ Jt+ JrΦJt)y+N (2)
 

=> JrΛJty+N (3)

N = JrΨNJ +NUS

NJ ∼ CN(0, δ2J IM)

NUS ∼ CN(0, δ2USIAr )

δ2US = δ
2
J = δ

2

N ∼ CN
(
0, δ2

(
IAr + JrΨΨ

HJH
r

))

From Eqs. (2) and (3), the overall noise at the US can
be  denoted  as .  The  vectors  of
complexity additive white gaussian noise at the DHRR-
RIS  and  US  can  be  denoted  as  and

 respectively  in  which  the  M
denotes the number of sub-surfaces in the DHRR-RIS.
For  simplifying  the  complex  notation  in  the  above
equations,  we  have  assumed  in  which

.

4.1    Channel model

The  proposed  methodology  employs  the
Saleh−Valenzuela (S−V) channel model to analyse the

jn,m

targeted  environment.  The  S−V  channel  model  is
composed  of  time-based  stochastic  properties  that  are
well-suited  for  analysing  wireless  environments  with
multiple propagation paths. Based on the system model
design,  the  channel  vector  can  be  formulated  as
follows:
 

jn,m =

√
K

Qn,k

Qn,k∑
q=0

β
(q)
n,mb

(
φ

(q)
n,m, θ

(q)
n,m

)
(4)

jn,m
Qn,k

K

β
(q)
n,m φ

(q)
n,m θ

(q)
n,m

1 ⩽ q ⩽ Qn,k)

b
(
φ

(q)
n,m, θ

(q)
n,m

)
∈ DMm×1

Mm1

Mm2 Mm = Mm1 ×Mm2

From the above equation,  represents the channel
vectors,  denotes  the  number  of  multipath  among
the n-th  user  and m-th  sub-surface  of  the  DHRR-RIS,

 represents  the  number  of  passive  elements  in  the
DHRR-RIS.  The  gain  of  the q-th  path  can  be  denoted
as .  and  are elevation and azimuth Angle
of  Departure  (AoD)  of  the q-th  path  respectively
(  in which the vector array response can be
represented as . When we consider
the  antenna  in  Uniform  Planar  Antenna  (UPA)  array,
the elements of an antenna in a vertical manner is 
and the elements of an antenna in a horizontal direction
is  (i.e., ).  The  overall  array
response vector can be formulated as
 

b (φ,θ) = bazi (φ)⊗bele (θ) (5)

bazi (φ) bele (θ)where  and  can be expanded as
 

bazi (φ) =
1√
Mm1

[
ej2πi(di1/λ)sin(φ)

]T
, i ∈ I

(
Mm1

)
(6)

 

bele (θ) =
1√
Mm2

[
ej2πi(di2/λ)sin(θ)

]T
, i ∈ I

(
Mm2

)
(7)

λ

di1 di2
I (n) = {0,1, . . . ,n−1}

From  the  above  equations,  the  wavelength  is
represented  as ,  the  element  spacing  direction  in
vertical  and  horizontal  can  be  denoted  as  and 
respectively in which .

4.2    Problem formulation

The SE and  achievable  sum rate  during  the  precoding
design  of  the  DHRR-RIS  based  MU-MIMO  can  be
formulated based on Eq. (1) as follows:
 

f0 ({αk}) = log2

∣∣∣IAr +γJrΛJtJH
t Λ

H JH
r R−1

∣∣∣ (8)

{αk} = {α1,α2, . . . ,αK} Λ

In  the  SE  equation  mentioned  above,  the
reflecting/relay  elements  set  in  the  DHRR-RIS  is
denoted  by ,  and  represents  a
diagonal  matrix  of  the  surface.  The  covariance  matrix
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of noise in an aggregated manner is denoted by R and
can be formulated as follows:
 

R = IAr + JrΨΨ
H JH

r ∈CAr×Ar (9)

γ γ =
powBS

δ2
 can  be  denoted  as .  The  power

transmission  of  active/passive  elements  in  the  DHRR-
RIS can be expressed as
 

powac/pas ({αk}) ≜trace
(
Ψ

(
JtE

{
yyH

}
JH

t +δ
2IK

)
ΨH

)
=

trace
(
Ψ

(
powBSSJtJH

t +δ
2IK

)
ΨH

)
(10)

The problem formulation of reflection/relay surfaces
in  the  DHRR-RIS  for  maximizing  the  SE  can  be
expressed as
 

max
{αk}

f0 ({αk}) ,

subject to |αk | = 1, for k < A,

powac ({αk}) ⩽ powmax
ac

(11)

f0 ({αk}) {αk}

powmax
ac

where  is a non-convex function based on ,
and  the  power  budget  of  the  active  elements  in  the
DHRR-RIS can be denoted as .
 

∀ =
K∑

k=1

log2(1+SINRk) (12)

SINRkwhere  is  the  signal  io  interference  plus  noise
ratio of the k-th user which is formulated as
 

SINRk =

∣∣∣ jkH fAPΛ fDP
k
∣∣∣

K∑
k′,k

∣∣∣∣ jkH fAPΛ fDP
k′
∣∣∣∣+δ2

(13)

The problem of maximizing the achievable sum rate
can be formulated as
 (

FAP
opt,FDP

opt
)
= arg max

b,pre
∀

Subject to c1 : ∥FDP∥2FDP
⩽ pow

c2 : FAP ∈ ζ

(14)

FAP
opt

FDP
opt

ζ

where  denotes the matrix for beamforming, and
 denotes  the  matrix  for  precoding.  The  set  of

analog beamforming matrices is denoted as .

5    HP-DHRR-RIS model

The primary objective of this research is to design low-
complexity HPs/combiners for massive MIMO systems
using  artificial  intelligence  algorithms.  The  proposed
methodology  adopts  DHRR-RIS  for  HP  design  in

MIMO  systems  to  reduce  energy  consumption  and
hardware losses, while improving system performance.
Additionally,  the  proposed  methodology  achieves
dynamic  adaptation  to  channel  conditions  by  utilizing
DHRR-RIS.  Furthermore,  the  adoption  of  one-bit
DAC/ADC at the transmitter and receiver side reduces
power  consumption  and  hardware  costs  in  MIMO
systems. The entities involved in the proposed work are
receivers  (i.e.,  users),  transmitters  (i.e.,  base  station),
and  controllers.  The  controller  is  responsible  for
controlling the DHRR-RIS, which consists of four sub-
entities:  mapping  entity,  optimization  entity,  DRL
entity,  and  RIS  entity.  The  mapping  entity  is
responsible  for  pilot  optimization  and  CSI  estimation,
the  optimization  entity  optimizes  the  transmitter  data
streams, and the DRL entity and RIS entity design the
HP/combiner by utilizing two learning agents. Figure 2
represents  the  complete  architecture  of  the  proposed
MU-MIMO  based  DHRR-RIS  for  HP  design.  The
processes involved in the proposed methodology are as
follows:

• DHRR-RIS design;
• Machine learning based CSI estimation;
• Data stream optimization & scheduling;
• DRL-based cooperative HP design.

5.1    DHRR-RIS design

The  proposed  work  aims  to  address  the  limitations  of
conventional  RIS  by  designing  a  DHRR-RIS  that
overcomes issues related to CSI acquisition and phase
control.  Instead  of  using  phased  array  analog
precoders,  the proposed approach employs DFRR-RIS
based  analog  precoding  design,  or  analog
beamforming. The DHRR-RIS comprises both passive
(K)  and  active  (L)  elements,  which  are  collectively
represented as M = K + L.  The passive elements serve
as  the  reflecting  elements  or  analog  beamformers,
utilizing  vector  modulated  phase  shifters  to  reflect
beams  in  desired  directions.  The  use  of  vector
modulated  phase  shifters,  as  opposed  to  conventional
phase  shifters,  reduces  phase  errors.  The  components
involved in the vector modulated phase shifters include
two  hybrid  couplers,  two  single  pole  double  throw
switches,  four  buffer  amplifiers,  one  Marchand  balun,
and  two  Variational  Gain  Amplifiers  (VGAs),  which
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work  together  to  minimize  phase  errors  and  generate
wideband differential signals.

The proposed DHRR-RIS includes both passive and
active elements. The passive elements act as the analog
beamformer  and  consist  of  vector  modulated  phase
shifters  to  reflect  the  beams  in  the  desired  position.
Vector modulated phase shifters are adopted to reduce
phase errors, and the components involved in the phase
shifters  include  two  hybrid  couplers,  two  single  pole
double  throw  switches,  four  buffer  amplifiers,  one
Marchand balun, and two VGAs.

The  active  elements,  on  the  other  hand,  are
responsible for separately estimating the channel states
for the transmitter and receiver. It should be noted that
the  power  consumption  of  active  elements  is  higher
than that of passive elements due to the presence of RF
chains and power amplifiers.

The  dynamic  set  of  active  elements  in  the  proposed

DHRR-RIS can be denoted as A, where A is a subset of
{1,  2,..., M}.  The  reflection/relay  coefficient  can  be
formulated as:
 

αk =

 |αk |ejθk , if k ∈ A;

ejθk , otherwise
(15)

θk ∈ [0, 2π] k < A |αk | = 1

|αk |

From  Eq.  (15),  the  phase  shift  is  denoted  as
.  For ,  the .  There  are  three

diagonal matrices are defined based on .
Φ = Dia {Φ1,

Φ2, . . . ,ΦM} Λ = Dia {Λ1,Λ2, . . . ,ΛM} Ψ = Dia {Ψ1,

Ψ2, . . . ,ΨM}
|αk | = 1

The  diagonals  are  represented  as 
, ,  and 
. Based on the expressed diagonal matrices,

the following expression by  can be derived as
 

Φk =

0, if k ∈ A;
αk, otherwise

,Ψk =

0, if k ∈ A;
αk, otherwise

(16)

Ψk

Φk

Λ

From Eq. (16), it is inferred that the diagonals  and
 are  composed  only  with  dynamically  adjusted

reflecting elements.  is composed with all elements of
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Fig. 2    Overall architecture of proposed HP-DHRR-RIS design.
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Λ = Ψ +ΦDHRR-RIS.  So  that, .  Further,  based  on  the
varying  channel  condition  and  data  stream  flows,  the
active and passive elements are dynamically on/off by
the switch networks. By doing so, the unwanted energy
and  power  consumption  in  the  entities  get  reduced.
Figure 1 represents the detailed model of the proposed
DHRR-RIS.

5.2    Machine learning based CSI estimation

The mapping entity in the proposed DHRR-RIS system
is  responsible  for  accurately  estimating  the  CSI
separately  for  the  BS  transmitters  and  US  receivers.
While the BS has sufficient power to perform channel
estimation, the dynamic nature of the environment may
lead  to  errors  in  estimation.  Therefore,  the  mapping
entity is employed to ensure accurate estimation.

To  reduce  pilot  overhead,  the  mapping  entity
constrains the pilot signals sent by both the transmitters
and  receivers.  Specifically,  the  pilot  sequence  sent  by
the  receivers  is  expressed using the  equation provided
earlier.
 

yxdl
z =

(
FAcz

RFAcz
B

)T
CMTP+

(
FAcz

RFAcz
B

)T
Az (17)

Similarly,  the  pilot  sequence  from the  transmitter  to
the mapping entity can be formulated as,
 

yxul
z∗ =

(
FApz∗

R FApz∗
B

)T
CMTP+

(
FApz∗

R FApz∗
B

)T
Az∗ (18)

yxdl
z yxul

z∗

z∗

FAcz
R FAcz

B

FApz
R FApz

B

CM

P ∈CBS×US

In  Eqs.  (17)  and  (18),  and  represent  the
downlink pilot sequence sent by the US for z times and
the  uplink  pilot  sequence  sent  by  the  BS for  times,
respectively.  and  denote  the  analog  and
digital  combining  matrices,  while  and 
represent  the  analog  and  digital  precoding  matrices,
respectively. The channel matrix is represented by 
and  denotes the orthogonal pilot sequences
sent  by  the  BS  and  US,  respectively.  However,
continuously  transmitting  pilot  sequences  from  both
entities  can  result  in  high  pilot  overhead.  To  address
this, the mapping entity employs an adaptive threshold
method to constrain the pilot sequences, allowing only
a limited number of pilot sequences to be transmitted at
a  given  time.  The  formulation  of  limiting  the  pilot
sequence  based  on  the  adaptive  threshold  method  can
be shown as
 

Th1 < Ti, stop the P;

Th2 ⩽ Ti < Th1, allow the P
(19)

Th2 Th1where  and  denote  the  upper  and  lower
threshold  levels  respectively,  Ti  denotes  the  time  of
pilot  sequence  arrival.  If  the  pilot  sequence  arrival
crosses  the  lower  threshold  level,  then  the  mapping
entity constraints the pilot arrival and otherwise allows
the pilot arrival.

Once  the  pilot  arrival  is  constrained,  the  channel
estimation  is  done  using  an  ABPNN  which  estimates
the  channel  state  and  encodes  it  in  form  of  a  channel
vector  based  on  metrics  such  as  AoA,  DoA,  Time  of
arrival  (ToA),  channel  gain,  and  environmental
condition.  The  channel  parameter  description  is
provided as follows:

•  AoA. The  direction  angle  at  where  the  signal  is
obtained  by  the  mapping  entity.  The  formulation  of
AoA can be provided as
 

θarrival = 180◦− θsum
zero+ θ

sum
pole (20)

θarrival θsum
zero

θsum
pole

where  denotes  the  angle  of  arrival,  is  sum
of zero angles, and  is the sum of pole angles.

• DoA. The DoA is computed to determine at which
direction  the  signal  arrives  from  the  entities  to  the
mapping entity.

• ToA. The ToA is used to determine at which time
the  propagation  signals  are  arrived  at  the  mapping
entity.  The  ToA  estimation  is  highly  essential  for
limiting the pilot signals.

•  Channel  gain. The  channel  gains  are  adopted  to
showcases  the  effects  of  shadowing,  pathloss,  and
fading  in  the  channel.  The  channel  gain  can  be
formulated as
 

Y = cGX+noi (21)

X noi

where Y denotes  the  received  signal,  cG  denotes  the
channel  gain,  is  the  transmitted  signal,  and  is
noise in the signal.

•  Environmental  conditions. The  uncertain
environmental  conditions  also  influence  the  channel
estimation  accuracy.  The  environmental  conditions
include  the  natural  calamities  which  are  also
considered  by  the  proposed  work  for  robust  channel
estimation.
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The  ABPNN  is  composed  of  three  layers  such  as
input,  hidden,  and  output  layers,  respectively.  The
adoption  of  maximization  and  minimization  target
value  in  the  conventional  BPNN  provides  the  future
output values to improve the estimation accuracy.

The input pilot signal can be denoted as
 

yxdl
z + yxul

z∗ = yr (22)

Then  the  input  pilot  signals  are  passed  through  the
hidden  layers.  The  hidden  layer  is  composed  of
multiple neurons and activation functions for getting a
hidden layer output that can be formulated as
 

hidi = act1

 n∑
j=1

wei jyr j−Thi

 (23)

hidi

act1 wei j

Thi

where  denotes  the i-th  hidden  layer  neuron,  the
activation function is denoted as , and  denotes
the weight values among the neurons.  The i-th neuron
threshold can be denoted as . From the hidden layer,
the  computations  are  passed to  the  output  layer  which
can be formulated as
 

opi = act2

 m∑
j=1

cweth, jhidi− cweth

 (24)

act2
cweth

where  denotes  the  output  activation function,  and
 denotes  the  threshold  of  the  connection  weight

among the neurons in the output layer. Once the output
is  obtained,  the  generated  output  is  provided  for
adaptive  forecasting  of  future  output  values.  The
formulation of adaptive forecasting can be expressed as
 

ôpforecast = (ôpi+1)(max
(
opi

)−min
(
opi

)
+min(opi ))

(25)

ôpforecast max
(
opi

)
min

(
opi

)where  denotes the forecasted output, 
and  are  the  maximum  and  minimum  target
output respectively. After that, the forward propagation
error can be formulated as
 

Err =
1
2

L∑
l

(opl− exopl)
2 (26)

Err

opl

exopl

p = fwd
(
ĉV;Ξe

)
p fwd(·)

From Eq.  (26),  denotes  the  forward propagation
error,  is  the  desired  output  from  the  output  layer
(i.e.,  obtained  channel  vector),  and  denotes  the
expected  output.  The  estimated  channel  vector  using
ABPNN  can  be  represented  as  in
which  the  denotes  the  low dimension  vector, 

ĉV
Ξe

denotes  the  forward  propagation  operation,  is  the
obtained channel vector, and  denotes the parameter
set  for  training  the  ABPNN.  Finally,  the  error
corrections  at  the  hidden  and  output  layers  are
separately provided.  The error correction at  the output
layer can be formulated as
 

ϑl = (exopl−opl)opl(1−opl) (27)

The  error  correction  at  the  hidden  layer  can  be
formulated as
 

errc j =

 L∑
l

cweth, j×Err

hidi(1−hidi) (28)

The  estimated  channel  vectors  are  acknowledged  to
the transmitters and receivers. After some instance, the
feedback is provided to the mapping entity in terms of
achievable  rate.  Once  the  feedback  is  obtained,  the
channel  quality  is  estimated  by  performing  channel
vector  reconstruction.  The  channel  reconstruction  can
be formulated as
 

ĉVrcon = bwd
(
fwd

(
ĉV;Ξe

)
;Ξrt

)
(29)

ĉVrcon

bwd(·) Ξrt

Q
[
ĉVrcon

]
where  is  the  reconstructed  estimated  channel,

 is  the  propagation  unit,  and  denotes  the
reconstruction  training  parameter.  The  reconstructed
channel  vector  is  quantized  ( )  to  achieve  a
robust HP design. Figure 3 and Algorithm 1 denote the
machine learning based channel state estimation.

5.3    Data stream optimization & scheduling

Before  designing  the  HPs/combiners,  the  data  streams
by  the  transmitters  are  optimized  to  achieve  high  SE.
For that,  the proposed work clustered the data streams
into  public  and  private  streams  using  the  EFCM
algorithm based  on  metrics  such  as  estimated  channel
state,  and  data  stream  similarity.  The  conventional
FCM algorithm is enhanced by adopting Density Peaks
Clustering (DPC) method. The DPC is used for cluster
centre  determination,  and  FCM  is  used  for  clustering
the data streams into public and private data streams.

DS = {DS1,DS2, . . . ,DSn}
clu j

cen

The data streams originating from the BS are denoted
as .  Using  these  data  streams,
the  cluster  center  is  calculated  using  the
following formulas. Firstly, Eqs. (30) and (31) are used
to compute the distance and local density, respectively.
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τ j = min
ϱ j>ϱi

(
Dis ji

)
(30)

Dis ji

τ j ϱ j

ϱ j

where  denotes the distance between the j-th and i-
th  data  stream,  is  the  distance,  and  is  the  local
density.  can be formulated as
 

ϱ j =
∑

i

ξ
(
Dis ji− trudist

)
(31)

Dis ji

trudist ξ (ε) =
0, ε ⩾ 0

1, ε < 0(
y j

)

where  the  sample  distance  between  the j-th  and i-th
data  stream  can  be  denoted  as ,  the  truncation

distance is denoted as  in which .

Once  the  cluster  centers  are  determined,  the  index  of
the density value  can be computed as
 

y j = ϱ jτ j (32)

y j

v

yavg

The  density  index  value  described  above  is
applied  to  all  the  data  streams  to  calculate  their
respective  density  indexes.  These  indexes  are  then
sorted  in  descending  order,  and  the  top  streams  are
selected.  The  median  density  distance  is  then
computed using these selected streams.
 

y
avg =

1
v

v∑
j=1

y j (33)

y j > y
avg

clu j
cen

clu j
cen =

{
clu1

cen, clu2
cen, . . . ,

clu j
cen

}
ℶ

ℶ > 0

Data  streams  with  based  on  the  middling
density  distance  are  selected  as  cluster  centers .
The  cluster  center  matrix 

 and  maximum  iterations  (itermax)  are  also
determined.  The  termination  threshold  ( )  and  fuzzy
index (two) are set, and the termination condition 
is applied. The fuzzy membership matrix for each data
stream  is  computed  based  on  its  distance  from  the
cluster  centre  and  the  fuzzy  objective  function  is
calculated using the formula.
 

J (U,V) =
T∑
j=1

n∑
i=1

(
u ji

)n(
DEuc

ji

)2
(34)

T

n

U V

u ji

n×T DEuc
ji

From  the  above  equation,  represents  the  number
of  fuzzy  groups,  represents  the  number  of  samples
(i.e., data streams) in the environment,  and  are the
fuzzy  membership  functions  and  cluster  centre  group
respectively.  is  also  the  membership  matrix  of
dimension ,  and  denotes  the  Euclidian
distance among the normal data stream and the cluster
center.  After  that,  both  the  cluster  center  and
membership  matrix  are  updated  by Eqs.  (35)  and (36)
as
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Fig. 3    Pilot optimization and machine learning based CSI estimation.
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V j =

n∑
i=1

(
u ji

)n
DS j

n∑
i=1

(
u ji

)n
(35)

 

u ji =


1
1

T∑
k=1

DEuc
ji

DEuc
ki

1
n−2 (36)

ℶ

The  above  process  of  updation  will  be  continued
untill  condition  for  maximum  iteration  met  or
computed  error  is  smaller  than  the ,  whereas  the
updation continues untill  its  forms the desired clusters
into two types as public and private data streams. The
data stream clusters can be expressed as
 

Clus =

pubClu
DS =

(
pubClu

1 ,pubClu
2 , . . . ,pubClu

n

)
,

priClu
DS =

(
priClu

1 ,priClu
2 , . . . ,priClu

n

)  (37)

Y

Ti1S
[
pubClu

DS

]
Ti2S

[
priClu

DS

]

The  scheduling  of  data  streams  in  both  public  and
private  time  scales  is  based  on  their  priority  and
emergency  levels.  The  priority  level  indicates  the
importance of a data stream relative to others, while the
emergency  level  indicates  the  urgency  or  time
sensitivity  of  a  data  stream.  The  scheduling  technique
is  defined  by  Eq.  (38),  where  is  the  scheduling
constant,  represents  the  time  scale  of
public  streams,  and  represents  the  time
scale  of  private  data  streams.  The  public  and  private
data streams perform transmission, idle, and reception,
depending on the RF one-bit DAC/ADC’s capability in
the precoder and combiner, respectively. The proposed
scheduling process is further illustrated in Algorithm 2
and Fig. 4.
 

Y =

Ti1S
[
pubClu

DS

]
= {transmit, idle, receive} ,

Ti2S
[
priClu

DS

]
= {transmit, idle, receive}

(38)

5.4    Cooperative HP design

The  HP  design  is  a  crucial  task  that  involves  jointly
optimizing  the  one-bit  DAC-RF  chain  pairs  on  the
transmitter side and adjusting the position of the vector
modulated phase shifters in the DHRR-RIS. To achieve
this, the scheduled data streams and estimated channel
vectors are provided as input to the DRL agent, which
uses  the  DDPG  algorithm  for  optimization.
Additionally,  the  position  of  the  vector  modulated
phase  shifters  in  the  DHRR-RIS  is  adjusted  using  the
FHO algorithm.  To  ensure  design  accuracy,  the  Mean
Square  Error  (MSE)  must  be  reduced,  and  hence  the
problem is formulated as cooperative.

The proposed cooperative optimization of HP can be
formulated as
 

min
{FDP,FAP,ϖ,џ}

MSE,

Such that : c1 : FAP ∈ f,c2 :ϖ ∈ r,
c3 : ∥FAPFDP|2F = A,c4 : џ ∈G+

(39)

FAP FDP ϖ

џ
From the above problem formulation, , , ,

and  represent the analog precoder at the DHRR-RIS,
digital  precoder  at  BS,  vector  modulated  phase  shifter
matrix, and DHRR-RIS controller gain, respectively.
5.4.1    Digital precoder design on transmitter side

FDPThe DRL algorithm optimizes the digital precoder 

 

Algorithm 1　Machine learning based CSI estimation
yxdl

z yxul
z∗Input: US pilot sequence ( ), BS pilot sequence ( )

Q
[
ĉV rcon

]
Output: Quantized estimated channel vector )
Begin
　Generate pilot sequence (Eqs. (17) and (18))

→　Pilot sequence  mapping entity (active elements)
　Constrain the pilot sequence (Eq. (19))

Th1 < Ti　If  then
　　　Stop the pilots received
　Else
　　　Receive the pilots
　End If
　For all the received pilots do
　　　//Perform channel state estimation using ABPNN//
　　　Obtain the CSI metrices

P　　　Provide the input pilot signal  (Eq. (22))
P hidi　　　Provide  to the 

opi p = fwd
(
ĉV;Ξe

)
　　　Generate the output  channel vector ( )
　　　Perform adaptive forecasting (Eq. (25))
　　　Derive the forward propagation error (Eq. (26))
　　　Perform error correction at output layer (Eq. (27))
　　　Perform error correction at hidden layer (Eq. (28))

p = fwd
(
ĉV;Ξe

)
→　　　  mapping entity (active elements)

　　　Obtain feedback from US and BS
　　　Reconstruct the channel vector (Eq. (29))

Q
[
ĉV rcon

]
　　　Quantize the reconstructed channel 
　End For
End
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by  jointly  optimizing  the  one-bit  DAC-RF chain  pairs
on  the  transmitter  side  using  DDPG.  This  reduces  the
number  of  active  transmitters,  thereby  improving

Иü Þë

∇

antenna gain. The DRL algorithm is chosen because it
adapts  its  processes  based  on  the  environment  state.
The DDPG is an actor-critic model that learns both the
actor ( ) and critic ( ) functions. The parameters of
the DDPG include state (St), action (Ac), reward (Re),
state-action  pair  (St,  Ac),  discount  factor  ( ),  and
condition  for  termination. Table  3 summarizes  the
functions  of  these  three  main  parameters  in  digital
precoder design.

Q
[
ĉVrcon

]
Y

F(t−1)
AP ϖ(t−1)

Given  the  present  condition  of  the  environment,
represented by the estimated channel vector ,
and the scheduled data streams , a DRL entity selects
an  action  to  optimize  the  DAC-RF pairs  in  the  digital
precoder.  To achieve this  optimization,  the entity  uses
the  previous  states  of  and  obtained  from
the reply buffer at the previous timestamp. By adhering
to the minimum MSE minimization problem (Eq. (39)),
the digital precoder optimization can be formulated as
 

F(t)
DP =

[
ђ(t)

(
F(t−1)

AP

)CM
F(t−1)

AP

]−1(
CM(t−1)F(t−1)

AP

)CM
(40)

ђ(t)The  optimization  constant  determines  the
activation  and  deactivation  of  DAC-RF  chain  pairs
based  on  their  capacity  and  capability,  while
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Algorithm 2　Data stream optimization & scheduling

DS) clu j
cenInput: Data streams (  and cluster centers ( )

(Clus) YOutput: Data stream clusters  and scheduling ( )
Begin

DS = {DS1,DS2, . . . ,DSn}　Initialize the 
DS　For all  do

clu j
cen　　//Determine the //

τ j ϱ j　　Compute  and  (Eqs. (30) and (31))
y j　　Determine the density index value  (Eq. (32))

yavg　　Compute the middling density distance  (Eq. (33))
DS j = y j > y

avg　　If   then
DS j　　　　  is selected as a cluster

DS j　　　Else Normal 
　End If

clu j
cen =

{
clu1

cen,clu2
cen, . . . ,clu j

cen

}
　　Form 
　End For

clu j
cen itermax ℶ　Initialize , ,  , fuzzy index=2

J (U,V)　Formulate the fuzzy objective function 
　For all fuzzy groups do

V j u ji ℶ　　Update  and  until error < 
ℶ　　If error <  then

　　　　Stop and exit
　　Else Continue updation
　　End If

Clus　　Form clusters 
　End For

Clus　Perform two level scheduling for  (Eq. (38))
End

 

Table 3    Parameters of proposed DDPG.

Parameter Description

State (St) Scheduled data streams and the estimate channel
vectors at the current time stamp

Action (Ac) Performs optimization of DAC-RF pairs by
performing on and idling them

Reward (Re) Reduced MSE with high SE and achievable rate
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(
F(t−1)

AP

)CM

{sti,aci, teri,

sti+1}
teri = ter(sti,aci)

sti+1

Иü′ Þë′

represents the estimated channel between DP

and  AP  (i.e.,  DHRR-RIS)  at  the  previous  timestamp,
where  CM  is  the  channel  matrix  between  the  BS  and
DHRR-RIS. The actor and critic networks are updated
through  stochastic  gradient  descent  using  two  loss
functions.  The  mini-batches  of  samples 

 are  used  to  extract  the  loss  functions,  where
 is  the termination condition index and

denotes  the  state  transition.  The  target  networks,
 and ,  composed  of  actor  and  critic  networks,

respectively,  are  used  to  maintain  stability  in  the
DDPG network and approximate function.  The update
losses for the actor and critic can be expressed as
 

Lossü = −
∑

i

Þë (sti,Иü (sti)) (41)

 

Lossë =
∑

i

[Þë (sti,aci)−∝i]2 (42)

∝i

∝i = Rei+∇(1− teri)Þë′ (sti+1,

Иü′ (sti+1))

where  is  the  reward  function  formulation  based  on
the  state  transitions  in  the  target  state-action  space
which  is  expanded  as 

.  Algorithm  3  represents  the  DRL-based
digital precoder design at the transmitter side.
5.4.2    Analog precoder design at the DHRR-RIS

FAP

The  RIS  entity  employs  the  FHO  algorithm  to  adjust
the position of the vector modulated phase shifters (i.e.,
analog  precoder )  in  the  DHRR-RIS  for  optimal
performance.  Using  information  obtained  from  the

DRL entity, the proposed analog precoder is designed.
The  two  entities  work  cooperatively  to  achieve  a
robust, energy-efficient HP design. FHO is adopted for
analog precoder design due to its ability to provide an
optimal  solution  with  high  convergence  and  learning
rates  and  without  getting  trapped  in  local  optima.  In
this  work,  the  vector  modulated  phase  shifters  of  the
passive elements are treated as fire hawks. Initially, the
position vectors of the passive elements in the DHRR-
RIS are initialized as
 

VMps =


VMps1

VMps2

...

VMpsN


=


VMps1

1 VMps1
2 · · · VMps1

d

VMps2
1 VMps2

2 · · · VMps2
d

...
...

. . .
...

VMpsN
1 VMpsN

2 · · · VMpsN
d



(43)

To be more specific,
 

VMi
ps j (0)=VMi

ps j,min +RAN
(
VMi

ps j,max −VMi
ps j,min

)
(44)

VMi
ps j

VMi
ps j,max VMi

ps j,min

The  variable d represents  the  dimension  of  the
problem,  and  the  total  number  of  solution  vectors  is
denoted  as N.  represents  the j-th  solution
passive  element  vector  of  the  DHRR-RIS,  while

 and represent  the  maximum  and
minimum  bounds  of  the j-th  passive  element,
respectively. Objective functions are determined based
on  the  distance  and  channel  condition  between  the
passive element and BS. The passive element with the
least distance and path loss is given a higher objective
function (i.e., global best passive element), while other
passive elements with a considerable distance and path
loss  are  considered  the  best  passive  element.  The
distance  between  the  passive  element  and  BS  can  be
formulated as
 

Disu
k =

√
(y2− y1)2+ (x2− x1)2,

k = 1,2, . . . ,m;
u = 1,2, . . . , s

(45)

Disu
k

(y2− y1) (x2− x1)

where  is  the  distance  among  the u-th  passive
vector  modulated  phase  shifter  and  the k-th  BS,  the

 and  is  the  vector  modulated  phase
shifters  and  BS  co-ordinates  in  the  environment
respectively.  In  similar  manner,  the  path  loss  among

 

Algorithm 3　DRL-based digital precoder design
(Иü) (Þë)Initialize the actor  and critic  functions

Иü′ Þë′Initialize the target network function  and 
ÐSet the reply buffer 

For Episode=1, do
　Perform action exploration by process initialization

(st)　Perform observation of the initial state 
termax　For ter=1,  do

Иü　　Pick the action based on the current policy 
FDP　　Act of  optimization (Eq. (40)) and observer Re
sti+1 → Ð　　Store [ ]
∝i = Rei +∇(1− teri)Þë′ (sti+1,Иü′ (sti+1))　　Set the 

Lossü　　Actor policy updation by minimizing  (Eq. (41))
Lossë　　Critic policy updation by minimizing  (Eq. (42))
Иü′ Þë′　　Perform updation of target networks  and 

　End For
End For
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the u-th vector modulated phase shifter and k-th BS can
be formulated as
 

PL = 10× log
(

4πpd

λ

)2

−GAr−GADHRR−RIS (46)

λ pd

GADHRR−RIS

GAr

Disu
k PL

where  denotes the path loss,  is the distance of the
path  length,  is  the  gain  of  the  antenna  in
DHRR-RIS, and  is the gain of antennas in the BS.
Based on the  and  the objective function of the
analog precoder design can be formulated as
 

obj (FAP) =

VMps→ less
(
Disu

k

)
VMps→ less (PL)

(47)

obj (FAP) F(t)
DP

Based  on  the  objective  function  of  the  analog
precoder  and  the  obtained ,  the
optimization of the analog precoder can be determined.
If the objective function of the passive element is high
then the passive element is more likely to be optimized
otherwise, the next passive element with high objective
function  is  selected  from  above  constrains  (Eq.  (44)).
In  addition  to  that,  the  problem  of  minimum  mean
squared error also minimized by
 

F(t)
AP =

[
obj (FAP)

(
F(t−1)

DP

)CM
F(t−1)

DP

]−1(
CM(t−1)F(t−1)

DP

)CM

(48)

obj (FAP)

ϖ

where the objective function  is obtained from
the FHO algorithm, which determines the optimization
of  the  passive  elements  in  the  DHRR-RIS.  The  phase
shifter  matrix  is  then  optimized  using  the  gradient
projection  method  while  considering  the  MSE
minimization  constraint.  Finally,  the  proposed  hybrid
precoding approach (i.e.,  DRL-based digital  precoding
&  FHO-based  analog  precoding)  is  utilized  to  realize
hybrid beamforming, where the beams are reflected by
the  adjusted  passive  elements  to  the  receivers.  On  the
receiver  side,  the  combiner  is  designed  based  on  the
DA-DDPG,  and  the  one-bit  ADC-RF  chain  pairs  are
optimally  adjusted  to  fully  utilize  the  transmitted
beams  without  hardware  complexity.  The  pseudocode
for  FHO-based  analog  precoder  design  at  the  DHRR-
RIS  is  provided  in  Algorithm  4  for  a  better
understanding.

6    Experimental result

This  section  presents  the  analysis  of  experimental

results  of  the  proposed  and  prior  works.  The
experimental  results  analysis  section  is  composed  of
four  sub-sections,  namely  simulation  set-up,
comparative  analysis,  complexity  analysis,  and
research summary. Further details of all supplementary
sections are provided below.

6.1    Experimental setup

The proposed DHRR-RIS based HP design model was
implemented  and  simulated  using  the  MATLAB
R2020a  tool.  The  simulation  process  involved
designing  a  Simulink  model,  running  the  model  to
obtain  QAM  results  based  on  pilot  signals,  machine
learning-based  CSI  estimation,  clustering-based  data
stream  optimization  and  scheduling,  and  cooperative
HP design.  The  proposed  work  achieves  better  results
by  optimally  configuring  the  system  settings.  The
software  configuration  of  the  system  includes  the
Windows  10  operating  system  and  the  MATLAB
R2020a simulation tool. The hardware configuration of
the system included a 1-terabyte hard disk, an Intel(R)
Core(TM) i5-4590S CPU @ 3.00 GHz processor,  and
6  GB  of  RAM.  To  better  understand  the  simulation
results,  a  visual  representation  of  the  results  is  shown
in Figs. 5−9.

Figure 5 depicts  the Simulink model utilized for the
proposed  simulation,  while Fig.  6 presents  the
clustering  results  obtained  using  the  proposed  method

 

Algorithm 4　FHO-based analog precoder design

F(t)
DPInput: , Initial population vector of passive elements

F(t)
APOutput:  optimized analog precoder

Begin
　Initialize the position vectors of the passive elements (Eq.
(44))
　// Objective function determination //

Disu
k　Compute the distance among passive element and BS 

(Eq. (45))
PL　 Compute the path loss  (Eq. (46))

obj (FAP)　Obtain the objective function  (Eq. (47))
obj (FAP)　 If  is high then

　　　 Perform analog precoder optimization (Eq. (48))
　 Else
　　　 Another passive element is selected based on (Eqs. (43)
and (48))
　End If
End
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to distinguish between public and private data streams.
Furthermore, Fig.  7 displays  the  scheduling

outcomes  of  private  data  streams,  whereas Fig.  8
portrays  the  scheduling  outcomes  of  public  data
streams.  Lastly, Fig.  9 illustrates  the  results  of  the
hybrid precoding,  indicating that  the proposed method
attains higher SE.

6.2    Comparative analysis

This  section  presents  a  comparative  analysis  of  the
proposed  HP-DHRR-RIS  method  against  select  state-
of-the-art  techniques,  including  Reconfigurable
Intelligent  Surface  based  Hybrid  Precoding  (RIS-
HP)[21],  Double  Reconfigurable  Intelligent  Surface
based  Hybrid  Precoding  (DRIS-HP)[22],  and

 

MIMO transmitter MIMO channel MIMO receiver

Hybrid combiner Signal stream outputHybrid precodingSignal stream generation

Modify simulation parameters DHRR-RIS design model

Weights calculation

 
Fig. 5    Simulink model.
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Convolutional  Neural  Network  based  Hybrid
Precoding (CNN-HP)[30]. Validation metrics, including
SE,  WSR,  and  BER  are  employed  for  the  purpose  of
comparison.
6.2.1    WSR analysis
The  WSR  is  a  crucial  metric  for  communication
systems utilizing MU-MIMO technology, as it enables
control  over  power,  network,  and utility  maximization
within  the  environment.  This  metric  prioritizes  users
optimally,  with  the  aim  of  maximizing  the  overall
system performance. For an effective system, the WSR
must  be  maximized.  The  analysis  of  WSR  is  further
divided  into  three  scenarios,  which  are  explained
below.

WSR based on reflecting elements in DHRR-RIS
The  passive  reflecting  elements  are  responsible  for

analog  beamforming  in  the  proposed  environment.
Therefore, it is crucial to properly adjust these elements
to achieve a higher WSR.

Figure  10 depicts  the  WSR  analysis  for  varying
numbers  of  reflecting elements.  It  is  observed that  the
WSR  increases  with  an  increase  in  the  number  of
reflecting  elements.  The  proposed  method  achieves  a
higher  WSR than  existing  techniques,  as  it  utilizes  an
optimization-based  approach  for  adjusting  the
reflecting elements in intelligent surfaces. Specifically,
the  proposed  method  adopts  the  DHRR-RIS  passive
element as the analog beamformer for achieving hybrid
precoding.  To  achieve  this,  the  proposed  method
optimizes  the  position  of  vector  modulated  phase
shifters  in  the  passive  elements  using  the  FHO
algorithm  based  on  the  distance  between  the  DHRR-

RIS  and  transmitter,  as  well  as  the  path  loss  between
them. By optimally adjusting the reflecting elements in
the  DHRR-RIS,  the  proposed  method  maximizes  the
WSR.  Conversely,  the  existing  RIS-HP  method
maximizes  the  sum  rate  by  adopting  a  deep  learning
algorithm.  However,  its  lack  of  consideration  of
optimal metrics for analog precoding results in a lower
WSR compared to the proposed method. The DRIS-HP
technique  utilizes  the  RMO  algorithm  for  phase  shift
optimization  but  has  a  higher  computational
complexity, which hinders its WSR.

Based on the numerical  results  of  the WSR analysis
in  relation  to  the  number  of  reflecting  elements  in  the
RIS,  the  proposed  method  achieves  a  higher  WSR  of
11.5  bit/Hz  when  the  number  of  reflecting  elements
reaches  40.  In  contrast,  existing  techniques  such  as
RIS-HP and DRIS-HP limit the WSR to 9.5 bit/Hz and
7.5  bit/Hz,  respectively,  for  the  same  number  of
reflecting  elements.  This  demonstrates  that  the
proposed method outperforms existing techniques with
a difference of 2 bit/Hz to 4 bit/Hz higher WSR.

WSR based on transmitter and receiver antenna
This  section  presents  a  comparison  of  the  proposed

HP-DHRR-RIS  with  existing  works  in  terms  of  the
WSR  analysis  based  on  transmitter  and  receiver
antennas  in  the  BS  and  Us.  The  optimization  and
balancing  of  both  antennas  are  crucial  for  effective
communication in the proposed environment.

Figures  11 and 12 graphically  illustrate  the
comparison  of  WSR  to  transmitter  and  receiver
antennas.  The  proposed  work  achieves  higher  WSR
than  the  existing  works  because  it  optimizes  both
antennas  by  switching  the  pairs  of  RF  chains
DAC/ADC  between  on  and  idle  modes  based  on
incoming/outgoing  streams  and  the  capability  and
capacity  of  the  RF-DAC/ADC  pairs.  This  reduces
energy  wastage  and  complexity  during  transmission
and reception, thereby increasing WSR. In contrast, the
existing  works  RIS-HP,  DRIS-HP,  and  CNN-HP  do
not consider the complexity and energy wastage in the
transmitter and receiver antennas, limiting their WSR.

The numerical  results  of  the  WSR analysis  with  the
transmitter  antenna  show  that  the  proposed  work
achieves a higher WSR of 5.8 bit/Hz when the number
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Fig. 10    Number of reflecting elements vs. WSR.
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of  transmitter  antennas  increases  to  8.  In  contrast,  the
existing  works  RIS-HP,  DRIS-HP,  and  CNN-HP
achieve  a  lesser  WSR  of  5  bit/Hz,  4.2  bit/Hz,  and
3.8  bit/Hz,  respectively,  for  the  same  number  of
transmitter  antennas.  The  proposed  work  achieves  a
difference  of  0.8−2  bit/Hz  higher  than  the  existing
works.

The  numerical  results  of  the  WSR  with  receiver
antennas  show  that  when  the  number  of  receiver
antennas increases to 7, the WSR of the proposed work
increases  to  5.2  bit/Hz.  For  the  same  number  of
receiver  antennas,  the  existing  works  RIS-HP,  DRIS-
HP, and CNN-HP achieve a lesser WSR of 4.5 bit/Hz,
3.5 bit/Hz, and 2.5 bit/Hz, respectively. The difference
between  the  proposed  and  existing  works  is  0.7−
2.7 bit/Hz higher.
6.2.2    BER analysis
BER is an important performance metric that measures
the  accuracy  of  the  communication  system  by
evaluating  the  number  of  erroneous  bits  transmitted
over  a  channel  with  respect  to  the  total  number  of

transmitted  bits.  A  lower  BER  indicates  better
performance  and  higher  quality  of  the  communication
system.  BER  is  affected  by  various  factors  such  as
signal-to-noise  ratio,  modulation  scheme,  channel
conditions, and interference.

BER based on RF-DAC/ADC pairs
The  RF-DAC/ADC  pairs  are  crucial  components

residing in the digital precoder and combiner of the BS
and  US,  respectively,  responsible  for  baseband
communication  and  signal  conversion  of  the  raw  data
streams. To minimize the BER, proper handling of the
RF-DAC/ADC pairs is essential.

Figure 13 presents  a  comparison of  the BER to RF-
DAC/ADC pairs.  The  results  indicate  that  an  increase
in the number of RF-DAC/ADC pairs leads to a higher
BER.  This  is  due  to  the  high  noise  and  interference
levels present in the many incoming and outgoing data
streams. However, the proposed work achieves a lower
BER  than  previous  works.  The  proposed  method
performs channel  estimation  using  a  machine  learning
algorithm during  transmission  and  reception,  which  is
based  on  metrics  such  as  AoA,  ToA,  DoA,  channel
gain,  and  environmental  conditions.  By  performing
machine  learning-based  channel  estimation  before
transmission and reception, the incoming/outgoing data
stream  bits  are  free  from  noise,  thereby  reducing  the
BER.  Conversely,  previous  works  such  as  RIS-HP,
DRIS-HP,  and  CNN-HP lack  channel  state  estimation
and  focus  solely  on  HP  design,  resulting  in  a  higher
BER and reduced beamforming efficacy.

The  numerical  results  of  the  BER  with  a  varying
number  of  RF-DAC/ADC  pairs  indicate  that,  with
eight RF-DAC/ADC pairs, the proposed work achieves
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Fig. 11    Number of transmitter antennas vs. WSR.
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Fig. 12    Number of user antennas vs. WSR.
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Fig. 13    Number of RF-DAC/ADC pairs vs. BER.
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a BER of 0.01. In contrast, for the same number of RF-
DAC/ADC  pairs,  the  existing  works  RIS-HP,  DRIS-
HP,  and  CNN-HP  have  higher  BERs  of  0.013,  0.016,
and 0.018, respectively. The proposed method exhibits
a  difference  of  0.003−0.007  lesser  than  the  previous
works, indicating its superiority in BER reduction.

BER based on pilots
Pilot  signals  are  commonly  used  in  communication

systems  for  synchronization,  reference,  continuity,
equalization, etc. Therefore, effective handling of pilot
signals  is  necessary  to  reduce  unwanted  BER  in  the
system.

Figure  14 compares  the  proposed  and  existing  BER
with  the  number  of  pilot  signals.  In  contrast  to  other
graphical analyses, an increase in the number of pilots
leads  to  a  decrease  in  BER.  This  is  because  a  lower
number  of  pilots  reduces  their  utilization  rate,  while  a
higher  number  of  pilot  signals  increases  their
utilization  rate  for  the  intended  purpose.  Among  the
different methods, the proposed work achieves a lower
BER  than  the  existing  works.  This  is  because  the
proposed  work  limits  the  rate  of  pilot  signal
transmission,  as  excessive  or  less  transmission  affects
communication  reliability  and  leads  to  an  increase  in
BER.

The  proposed  work  employs  an  adaptive  threshold
method to limit the incoming pilots, thereby increasing
communication  reliability  and  reducing  BER.  In
contrast,  the  existing  works  RIS-HP,  DRIS-HP,  and
CNN-HP lack a pilot transmission limiting mechanism,
which leads to deprived communication reliability and
higher BER.

The  numerical  results  of  BER  with  the  number  of

pilots  show  that  when  the  pilot  transmission  rate
increases to 50, the proposed work achieves a BER of
0.01. For the same number of pilots, the existing works
RIS-HP, DRIS-HP, and CNN-HP achieve higher BER
of  0.013,  0.024,  and 0.029 11,  respectively.  The
difference between the proposed and existing works is
0.03−0.2711 lesser.
6.2.3    SE analysis
SE, defined as the ratio of channel bit rate and channel
spacing,  is  an  important  metric  for  analyzing  the
amount of data that can be transmitted/received over a
given bandwidth. In Fig. 15, we compare the SE of our
proposed  method  to  that  of  existing  approaches  for
varying numbers of data streams.

The  results  demonstrate  that  as  the  number  of  data
streams increases, the SE also increases. Our proposed
method achieves higher SE than prior works due to our
focus  on  data  stream  optimization  and  scheduling.
Specifically, we employ the EFCM algorithm to cluster
data  streams  into  private  and  public  groups  based  on
their  similarity  level  and  channel  estimation  results,
respectively.  These  clustered  data  streams  are  then
scheduled  into  two-time  scales  based  on  their  priority
level.  By  optimizing  data  streams  at  the  BS  side,  we
reduce  the  chance  of  complexity  due  to  over-
transmission and increase  the  SE.  In  contrast,  existing
works such as RIS-HP, DRIS-HP, and CNN-HP do not
focus  on  optimizing  data  streams,  leading  to  higher
complexity and decreased SE.

The  numerical  results  show  that  our  proposed
method  achieves  an  SE  of  33  (bit/s)/Hz  with  15  data
streams,  while  RIS-HP,  DRIS-HP,  and  CNN-HP
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achieve  28  (bit/s)/Hz,  22.7  (bit/s)/Hz,  and  19.5
(bit/s)/Hz,  respectively.  The  difference  between  our
proposed  method  and  existing  works  is  5−14.5
(bit/s)/Hz higher.

6.3    Complexity analysis

In  this  section,  we  analyze  the  computational
complexity  of  the  proposed  work.  The  proposed
approach  reduces  computational  complexity  by
implementing  intelligent  and  lightweight  processes  in
the  MU-MIMO  environment.  The  computational
complexities of each process are summarized below.

O
(
A5

r At
)

Ar

At

The CSI estimation based on the ABPNN algorithm
has a computational  complexity of ,  where 
and  denote  the  number  of  receiver  and  transmitter
antennas, respectively.

O (liNcluNiter)+O
(
nc2

)
liN

cluN iter

n

c2

The  computational  complexity  of  data  stream
clustering and scheduling using the EFCM algorithm is

,  where  denotes  the  total
links,  denotes  the  cluster  links  (set  to  2), 
denotes the number of iterations,  denotes the number
of  clustered  data  streams  to  be  scheduled,  and 
represents the constraints for scheduling.

O
(
St2Ac2E

)
St2

Ac2

O(3×dim×VMps× iter)×O
(
obj

(
FAP )) dim

VMps

obj (FAP)

The  cooperative  hybrid  precoding  design  includes
DRL-based  (i.e.,  DDPG)  digital  precoder  design  and
metaheuristics-based  (i.e.,  FHO)  analog  precoder
design. The computational complexity of DDPG-based
digital  precoder  design  is ,  where 
represents  the  state,  represents  the  action,  and E
represents  the  number  of  episodes.  The  computational
complexity  of  FHO-based  analog  precoder  design  is

,  where 
represents  the  dimensions,  represents  the
variable metric procedure size, iter denotes the number
of  iterations,  and  denotes  the  objective
function.

O(A5
t Ar+

liNcluNiter + nc2 + St2Ac2E + 3 × dim × VMps × iter+

obj (FAP))

Overall,  the  computational  complexity  of  the
proposed DHRR-RIS-based low complexity HP design
using  AI  algorithms  can  be  expressed  as 

.

6.4    Research summary

The  summary  section  briefs  the  simulation  results
analysis  of  the  proposed  and  existing  works
respectively.  Based  on  the  simulation  results,  the
proposed  research  performs  a  comparative  analysis  of
the  proposed  work  with  best  picked  existing  works  in
terms  of  several  validation  metrics.  The  graphical  and
theoretical comparisons are shown in Figs. 10−15. The
numerical  comparisons  are  shown  in Table  4.  All  the
results  show  the  proposed  work  outperforms  the
existing  works.  The  major  highlights  of  the  proposed
work are emphasized below.

• For  reducing  the  channel  estimation  errors,   we
constrain the pilot transmission of the transmitter based
on the adaptive threshold method. Further, the channel
estimation  is  done  at  the  DHRR-RIS  side  to  use  the
ABPNN algorithm to reduce the estimation errors  and
computation overhead.

• For  achieving  high  SE,  we  perform  data stream
optimization  in  which  the  transmitter  data  streams  are
clustered  using  EFCM  as  private  and  public  clusters,
and  the  clusters  are  scheduled  into  two-time  scales  to
reduce the complexity during design.

•  For  reducing  the   hardware  impairments  and  root
mean phase error loss, we adopt one-bit DAC/ADC for
the  transmitter  and  receiver  digital  precoder  side,  and
vector modulated phase shifters for the analog precoder
and combiner side.

• To ensure theHP/combiner  design  robustness,  we
perform  joint  DRL  (DA-DDPG)- and  FHO-based

 

Table 4    Comparison of proposed and existing works results.

Metric vs. validator CNN-HP DRIS-HP RIS-HP Proposed HP-DHRR-RIS Difference

WSR (bit/Hz)
Reflecting element 3.8 5.14 6.25 7.38 1.13−3.58
Transmitter antenna 2.285 3.128 3.842 4.74 0.898−2.455

Receiver antenna 1.95 2.542 3.271 3.871 0.6−1.921

BER
RF-DAC/ADC pair 0.0151 0.0132 0.0099 0.0065 0.0034−0.0086

Pilot 0.0335 0.030 0.024 0.017 0.007−0.0165
SE (bit·s−1/Hz) Data stream 13.69 16.65 19.96 26.17 6.21−12.48

  Girish Kumar N G et al.:   Performance evaluation of DHRR-RIS based HP design using machine learning... 257

 



cooperative optimization of RF-DAC/ADC pairs of the
HP/combiner  and  phase  shifters  using  the  DRL  entity
and RIS entity.

7    Conclusion

The  RIS-based  HP  design  for  MIMO  systems  faces
challenges  such  as  energy  consumption,  channel
estimation  errors,  and  reduced  SE.  To  address  these
issues,  this  proposed work utilizes  DHRR-RIS and AI
technologies.  DHRR-RIS  reduces  computational
complexity  and  allows  for  resilient  scalability.  The
proposed system includes entities such as Us, BS, and
RIS  controllers,  which  consist  of  sub-entities  such  as
the  mapping  entity,  optimization  entity,  DRL  entity,
and RIS entity. The DHRR-RIS model is designed with
vector  modulated  phase  shifters  in  the  passive
elements.  Pilot  optimization  and  CSI  estimation  are
performed  using  the  adaptive  threshold  method  and
ABPNN  algorithm.  Transmitter  data  streams  are
optimized by clustering and scheduling into public and
private  data  streams  using  the  EFCM  algorithm.
Finally, cooperative HP design is performed by jointly
optimizing  one-bit  DAC  pairs  in  the  BS  side  and
reflecting elements in the DHRR-RIS side using DDPG
and FHO algorithms. The proposed work is tested and
implemented  in  the  simulation  environment  using
MATLAB  R2020a  with  strong  system  configurations.
The  proposed  work  outperforms  existing  works  in
terms  of  validation  metrics  such  as  SE,  WSR,  and
BER.
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