
 

Q-learning based strategy analysis of cyber-physical
systems considering unequal cost

Xin Chen, Jixiang Cheng, Luanjuan Jiang*, Qianmu Li, Ting Wang, and Dafang Li

Abstract: This  paper  proposes  a  cyber  security  strategy  for  cyber-physical  systems  (CPS)  based  on  Q-learning  under

unequal cost to obtain a more efficient and low-cost cyber security defense strategy with misclassification interference.

The system loss  caused by  strategy  selection errors  in  the  cyber  security  of  CPS is  often considered equal.  However,

sometimes  the  cost  associated  with  different  errors  in  strategy  selection  may  not  always  be  the  same  due  to  the

severity of the consequences of misclassification. Therefore, unequal costs referring to the fact that different strategy

selection  errors  may  result  in  different  levels  of  system  losses  can  significantly  affect  the  overall  performance  of  the

strategy selection process. By introducing a weight parameter that adjusts the unequal cost associated with different

types  of  misclassification  errors,  a  modified  Q-learning  algorithm  is  proposed  to  develop  a  defense  strategy  that

minimizes system loss in CPS with misclassification interference, and the objective of the algorithm is shifted towards

minimizing the overall cost. Finally, simulations are conducted to compare the proposed approach with the standard

Q-learning  based  cyber  security  strategy  method,  which  assumes  equal  costs  for  all  types  of  misclassification  errors.

The results demonstrate the effectiveness and feasibility of the proposed research.
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1    Introduction

The  advent  of  the  Internet  of  things  (IoT),  enabling
real-time  perception  of  the  physical  world  and
providing  data  support  for  intelligent  decision-
making[1, 2],  has  spurred  the  deployment  of  intelligent
cyber-physical  systems  (CPS)  that  exploit  wireless
networking  paradigms[3, 4].  CPS  integrates  physical
processes,  and  computational  and  communication
elements to create systems that can monitor and control
physical  processes  in  real-time.  These  systems  range
from  small-scale  devices,  such  as  sensors  and

actuators,  to  large-scale  infrastructures,  such  as  smart
factories  and  transportation  systems[5].  Cyber  attacks
on  CPS  can  cause  physical  damage  and  financial
losses,  and  compromise  personal  data,  making  the
security  of  CPS essential  for  the  integrity  and  privacy
of  IoT  devices  and  the  infrastructure  they  manage[6].
Given  the  backbone  role  CPS  played  in  industrial
process  and  production  control  (smart  factory),
particularly  in  the  context  of  the  IoT[7],  keeping  CPS
security  has  taken  its  top  priority  for  most  business
units  and  attracted  the  largest  share  of  attention  from
researchers and engineers in many fields. However, the
classical  defense  strategies  for  CPS  security  including
anti-viruses,  firewalls,  and  intrusion  detection  systems
(IDS)[8] tools are facing more serious challenges due to
the  rapidly  evolving  environment,  especially  the
dynamic  correlations  between  the  cyber  layer  and  the
physical  layer  of  a  CPS[9].  An  important  objective  for
CPS  security  is  to  design  effective  strategies  that  can
prevent cyberattacks more proactively.

A  large  volume  of  studies,  have  been  conducted  by
Lalropuia  and  Gupta[10],  Jin  et  al.[11],  Huang  et  al.[12],
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etc.,  on  the  CPS  defense  strategies  analysis  from
various  perspectives.  However,  most  of  them  only
assume  that  the  potential  loss  caused  by  different
defense strategies is equal regardless of the real cost to
CPS.  Actually,  in  many  real-world  applications,
different  errors  in  strategy  selection  may  result  in
different  levels  of  system  losses.  For  example,  the
defender  will  lose  only  the  strategy  deployment  cost
when CPS is not at risk of being attacked, however, the
loss  could  be  much  larger  if  the  defender  chooses  a
non-defense  strategy  when  CPS  is  really  at  risk  of
being attacked. This introduces the concept of unequal
cost, which needs to be addressed in order to accurately
evaluate  the  effectiveness  of  different  strategies.
Although  some  studies  are  focusing  on  the  cost-
sensitive  issues  in  the  field  of  machine  learning[13],
such  as  the  varying  costs  of  different  types  of
misclassification  errors  in  the  missing  healthcare  data
prediction[14, 15],  to  our  knowledge,  little  attention  has
been paid to  this  stream in the  literature  regarding the
unequal  cost  of  different  defense  strategies  in  CPS
security  management.  To  address  this  issue,  a
modification  to  the  standard  Q-learning  algorithm  is
proposed  which  takes  into  account  unequal  costs  by
introducing  a  weight  parameter  that  adjusts  the
associated cost  based on the types of  misclassification
errors.  This  modified  Q-learning  algorithm  can  be
applied  to  a  wide  range  of  CPS  that  requires  efficient
decision-making strategies for optimal performance[16].
An  intuitive  research  motivation  diagram  is  given  in
Fig. 1.

The main contributions of this paper are summarized
as follows:

(1) We develop a novel model for the cyber security
of CPS based on the Markov decision process (MDP).
In the presence of an adversary, the cyber layer of the
CPS  system  subsumes  devices  such  as  firewall,  web
server, database server, etc.

(2)  We characterize  precisely  but  intuitively  when a
defense  strategy  is  reasonable  in  the  presence  of
misclassifications  and  show  how  unequal  cost  is  to
optimize  the  combination  of  cyber  security  defense
actions  for  CPS  to  obtain  a  more  realistic  defense
strategy.

(3) We propose a modified Q-learning algorithm that
incorporates  unequal  costs,  which  is  important  for
optimizing the performance of CPS where system loss
may  vary  depending  on  different  errors  in  strategy
selection, demonstrated through simulations.

The remainder of this paper is organized as follows:
Section 2  discusses  the  pioneering work that  has  been
done on CPS. Section 3 presents a model of a CPS with
a cyber layer and a physical layer and defines unequal
cost.  A  cyber  security  strategy  for  CPS  based  on  Q-
Learning under unequal cost is introduced in Section 4.
Numerical  experiments  and  analysis  are  presented  in
Section  5.  And  finally,  in  Section  6,  the  paper  is
concluded and an outlook for future work is given.

2    Related work

In this section, an overview pertaining to the modeling
aspects  of  the  security  of  CPS  is  provided,  as  well  as
the motivations driving research in this  area.  In recent
years,  several  researchers  have  explored  the  use  of
game-theoretic  models  and  reinforcement  learning
(RL)  techniques  to  develop  novel  security  decision-
making approaches for CPS.

2.1    Game-theoretic models for CPS

Ma  et  al.[17] and  Orojloo  and  Azgomi[18] have
developed  game  theoretic  models  to  predict  the
interactions  between  a  cyber-physical  attacker  and  a
defender in different phases of intrusion and disruption.
Huang et al.[19] have proposed a Markov attack-defense
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differential  game  model  to  analyze  multi-stage
continuous attack-defense processes, while Sun et al.[20]

have  proposed  a  method  to  quantify  the  benefits  of
attack  and  defense  strategies,  considering  the
misdetection defects of the defense detection system in
CPS.  Guo  et  al.[21] employed  a  game-theoretic
approach to analyze the interactions between attackers
and  defenders  in  CPS,  as  well  as  the  interdependency
between the cyber and physical layers in CPS, enabling
the  quantification  of  the  impact  of  cyber  attacks  on
physical  damage  in  CPS,  and  facilitated  the
development  of  effective  defense  strategies.  However,
these  studies  have  not  taken  into  account  that  some
CPS environments are so complex that it is different to
model them. For example, it is necessary that generate
data first, and then only the dataset is used to train the
model,  which  is  one  aspect  that  makes  it  difficult  to
simulate  and  solve  such  complex  CPS  environments.
Therefore,  reinforcement  learning  is  employed  to
approach these questions.

2.2    Reinforcement learning for CPS

Previous  researchers  have  investigated  methods  for
optimizing the performance of CPS based on RL. Some
studies  have  focused  on  incorporating  different
environmental factors or constraints into reinforcement
learning,  such  as  energy  consumption  or
communication delay. Other studies have explored the
use  of  deep  learning  techniques[22] to  improve  the
performance  of  reinforcement  learning  in  CPS[1].  Gai
and  Qiu[23] utilized  RL  to  achieve  intelligent  content-
centric  services  and  obtain  highly  accurate  quality  of
experience  (QoE)  in  resource  allocations  for  IoT,
resolving  the  contradiction  between  performance  and
strategy generation. Huang et al.[12] considered both the
cyber  and physical  layers  of  CPS through quantitative
vulnerability  analysis  and  time-based  unified  payoff
quantification and used RL to generate optimal defense
strategies  in  the  absence  of  complete  game  parameter
knowledge.  This  approach  could  minimize  system
losses  caused  by  cyber-attacks  in  real-world  CPS.
Khoury and Nassar[24] proposed to frame CPS security
on  two  different  levels,  strategic  and  battlefield,  by
meeting  ideas  from  game  theory  and  multi-agent
reinforcement  learning  (MARL).  Cong  et  al.[25]

designed  and  implemented  RL-based  routing  schemes
combined with multi-optimality routing criteria (RLR-
M)  for  CPS,  which  is  more  flexible  than  traditional
strategies.  Yan et  al.[26] introduced a  Q-learning based
approach  to  analyze  the  vulnerability  of  CPS  under
sequential  topology  attacks,  taking  into  account  the
physical  system  behaviors,  demonstrating  the
effectiveness and feasibility of Q-learning in enhancing
the  cyber  security  of  CPS,  despite  restricted
information  on  opponents[27, 28].  While  these
approaches  address  some  of  the  challenges  associated
with applying RL to CPS and make some progress, few
have  considered  the  unequal  costs  caused  by  strategy
selection errors due to the severity of the consequences
of  misclassification,  which  is  an  essential  aspect  that
we include in our proposed payoff setting.

3    Model

3.1    Attack topology

We present a model of a CPS network layer composed
of a firewall, web server, client-server, database server,
and  file  server  FTP,  as  well  as  a  physical  layer
consisting of physical devices and control components
that  require  monitoring[29].  The  attack  scenario
considered  involves  the  exploitation  of  vulnerabilities
by  an  adversary  to  penetrate  the  firewall  and
compromise the web server,  resulting in consequential
damage  to  the  client-server,  database  server,  and  file
server  FTP.  The  illustration  provided  in Fig.  2
demonstrates  the  components  of  the  CPS  cyber  and
physical layers.

s1 s9

Assuming an attacker with minimal access privileges
initiates  an  attack  on  a  CPS  system  from  outside  the
firewall,  their  ultimate  objective  is  to  gain  root  access
to  the  database  to  obtain  or  destroy  sensitive
information,  which  plays  a  crucial  role  in  many
fields[30],  such  as  recommendation[31–35]，

prediction[36, 37], correlation mining[38, 39], etc. The CPS
system state  space comprises  nine  distinct  states,  each
representing  a  unique  system  configuration,  and  the
transition  process  between  these  states  is  graphically
depicted  in Fig.  3.  The  attack-defense  game  between
the  attacker  and  defender  progresses  through  the  state
space  until  the  final  state  is  reached,  at  which
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point  the  attacker’s  goal  is  either  achieved,  or  the
defense has successfully thwarted the attacker’s efforts
to breach the system’s security[19].

3.2    State transitions

A

S t D

ai

d j

S k

Let  denote  the  set  of  attack  actions  available  to  the
attacker in a given stage , and let  denote the set of
defense  actions  available  to  the  defender.  In  the  event
that  the  attacker  attempts  to  invade  with  an  attack
strategy ,  and  the  defender  plans  to  defend  with
defense  strategy .  Then,  the  probability  of
successfully  transitioning  to  a  new  stage  can  be
expressed as Eq. (1).
 

p
(
S k |S t,ai,d j

)
= ε
(
S t,ai,d j

)
(1)

ε
(
S t,ai,d j

)
S t ε

(
S t,ai,d j

)where  indicates the stage where the attacker

has compromised , and  is the probability

ε
(
S t,ai,d j

)
= 1

ε
(
S t,ai,d j

)
= 0

of success of attack, where  signifies that
the  attack  is  successfully  blocked,  and 
when it is invalid[20, 40].

3.3    Payoffs

Unequal  cost  is  a  concept  that  refers  to  the  fact  that
different policy errors may result  in different levels of
system  losses.  For  instance,  consider  a  cybersecurity
scenario, where attackers may attempt to steal sensitive
data or cause system failures. In such cases, the losses
incurred  due  to  an  erroneous  defense  strategy  that
incorrectly identifies an attack are significantly greater
than the losses that would arise from a failure to detect
an  attack  and  the  subsequent  decision  not  to  defend
against it. When dealing with this type of situation, it is
important  not  only  to  consider  the  overall  number  of
errors  that  may  occur  during  the  defense  process  but
also to take into account the cost associated with each
error. By incorporating unequal cost, the potential cost
of  each decision error  in  a  CPS can be  captured more
accurately and the goal is  shifted to identify a defense
strategy  that  can  minimize  the  total  cost  of  the  errors.
This can help to improve the resilience and security of
CPS,  even  in  highly  dynamic  and  challenging
environments.

S L
(
S t,ai,d j

)
d j

ai S L
(
S t,ai,d j

)
Ct

S ALt AL (ai)
S ADt Ct

S ALt

AL (ai)

S ADt

S L
(
S t,ai,d j

)

Definition 1　　System loss  refers  to
the loss to the system when strategy  cannot prevent
strategy .  is  usually  represented  by  the
degree  of  criticality  of  target  resources  ( ),  system
authority  loss  ( ),  attack  lethality  ( ),  and
security attribute damage ( ), where  reflects the
significance of the targeted resource within the overall
system,  quantifies  the  impact  of  different  levels
of  cyber  access  permissions,  including  access,  guest,
and  root,  on  system  loss,  assesses  the  level  of
harm  caused  by  an  attack  and  evaluates  its  impact  on
the system, and  captures the level  of  damage to
cyber security, which encompasses critical aspects such
as  confidentiality,  integrity,  and  availability[41].

 follows as Eq. (2).
 

S L
(
S t,ai,d j

)
=Ct ×S ALt ×AL (ai)×S ADt (2)

DC

d j

Definition 2　　Defend cost ( ) refers to the cost
required for the defender to take strategy .(

µ
(
S t,ai,d j

)
Definition 3　　Defense effectiveness 
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Fig. 2    Topology of the attack process for CPS.
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(
0 ⩽ µ

(
S t,ai,d j

)
< 1
))

d j

 denotes  the  effectiveness  of
defense,  which  means  how  much  system  loss  will  be
reduced by implementing strategy .

Ci, j

ai a j

λA,NA

λNA,A

λA,A

λA,NA > λA,A > λNA,A

Ci, j

Definition  4　　  Unequal  cost  ( )  denotes  the
cost incurred due to misclassifying  as .  There are
three  types  of  misclassification  scenarios  in  CPS,
namely  false  acceptance  (mis-recognizing  an
effective attack as an ineffective attack), false rejection

 (mis-recognizing  an  ineffective  attack  as  an
effective  attack),  and  false  identification  (mis-
recognizing  between  two  ineffective  attacks),  which
result  in  different  system  losses.  Drawing  on  the
relevant  concepts  of  cost-sensitive  classification
decisions  in  machine  learning,  we  assume  that

 in the CPS cyber security defense
process.  follows as Formula (3).
 

Ci, j =


S L(ai), if ai = a j;
λA,NAS L(ai), if ai is effective and a j is ineffective;
λNA,AS L(ai), if ai is ineffective and a j is effective;
λA,AS L(ai), if ai and a j are ineffective

(3)

θ

ai a j

Definition  5　 　 Misclassification  probability  ( )
refers to the probability of misclassifying  as .

t

The formula for calculating total defense gain at  the
stage  is shown in Formula (4).
 

Rt
D

(
S t,ai,d j

)
=

(
1−µ
(
S t,ai,d j

))
×S L

(
S t,ai,d j

)
+DC

(
d j
)
,

if random p ⩽ θ;(
1−µ
(
S t,ai,d j

))
×Ci, j+DC

(
d j
)
,

if random p > θ

(4)

4    Solution of the model

Reinforcement Learning, a branch of machine learning,
has been widely applied in security strategy analysis in
various  domains  such  as  the  Internet  of  vehicles
(IoV)[42],  mobile  social  networks  (MSNs)[43],
vulnerability  analysis  of  smart  grid[26],  etc.  In  general,
one of the most difficult tasks of the security of CPS is
to  accurately  specify  the  model  parameters,  given  the
limited  availability  of  domain  knowledge[44].  Q-
learning,  proposed  by  Watkins,  is  one  of  the  most
popular RL methods that seek efficient control policies
without  the  knowledge  of  an  explicit  system  model,

therefore  minimizing  the  effort  associated  with
simulating and solving such complex environments[45].
Furthermore, the characteristic of trial  and error in the
environment  for  Q-learning  is  particularly  adaptable
and  useful  in  real-time  and  adversarial  environments.
Q-learning  exhibits  excellent  suitability  for  cyber
security  applications  where  cyber-attacks  are
increasingly  sophisticated,  rapid,  and  ubiquitous[46, 47].
Its basic process is graphically depicted in Fig. 4.

Bellman equation is the core of Q-learning to update
the Q-value.  Its  core  idea  is  that  when  making
decisions,  we  consider  not  only  the  immediate  reward
of  the  current  decision  but  also  the  future  sustainable
reward, which is generated by it. The updated formula
for the Q-value is shown in Eq. (5).
 

Q
(
st,ax,dy

)
← (1−α) Q

(
st,ai,d j

)
+

α
[
Rt

D+γmax
d∈D

Q (st+1,a,d)
] (5)

Q
(
st,ax,dy

)
st ax dy Rt

D

max
d∈D

Q (st+1,a,d)

st+1 α

α = 1

α = 0 γ

where  denotes  the Q-value  when the  state
is , attack strategy is , and defend strategy is . 
denotes  the  immediate  reward  when  the  state
transitions.  denotes  the  max  value  in
the Q-value  table  at  state .  denotes  the  learning
rate that is often used to balance the aggressiveness and
conservatism  of  the  algorithm,  where  signifies
that  the  agent  will  primarily  learn  from  current  and
future  rewards,  potentially  resulting  in  forgetting
previously  learned  knowledge  and  divergence,  and

 means  that  the  agent  has  no  learning  ability. 
denotes decay factor.

Based  on  the  above  analysis,  we  design  the  optimal
defense  strategy  selection  algorithm  for  the  cyber
security  of  CPS  (see  Algorithm  1)..  This  algorithm
incorporates unequal cost into Q-learning, enabling the
training  of  a  robust  model  capable  of  effectively
defending  against  attacks,  even  in  the  presence  of
 

Attack
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Payoff
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dy
dyax

Q-value
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Fig. 4    Basic process of Q-learning.
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misclassifications.  By  assigning  different  costs  to
misclassifications,  the  defender  will  promote  a  more
cautious approach, which means that the defender takes
into  account  the  potential  for  misclassifications  when
making decisions on defense strategies. The goal shifts
from solely  maximizing the  success  rate  of  defense  to
minimizing  the  overall  cost,  considering  the  potential
consequences  and  expenses  associated  with
misclassifications.

5    Experiment and discussion

To demonstrate the effectiveness and feasibility of our
approach,  we  conducted  a  simulation  experiment  on  a
CPS  with  misclassification  interference.  Compared  to
the  performance  of  the  proposed  algorithm  with
traditional  Q-learning  that  does  not  consider  unequal
costs,  the  results  indicate  that  the  proposed  method
significantly improves the efficiency and effectiveness
of decision-making in CPS. Specifically, our approach
outperforms traditional Q-learning approaches in terms
of  reducing  the  impact  of  errors  in  strategy  selection
and  total  system loss.  The  experiment  is  implemented
using Python 3.9, with the help of popular data analysis
libraries such as Numpy and Pandas.

5.1    Data summary

The  CPS  state  transition  process  is  a  complex  and

dynamic  process  that  involves  the  movement  of  a
system through various states based on its internal and
external  conditions. Table  1 provides  a  detailed
description  of  the  various  states  involved  in  the  CPS
state transition process.

In  CPS  cybersecurity,  the  attacker  and  defender
strategies  are  crucial  in  determining  the  outcome  of  a
security  situation. Tables  2 and 3 provide  a  detailed
description  of  the  various  attacker  and  defender
strategies respectively [40, 48].

Q∗

Q∗

ai S t

{d0,d1, . . . ,d15}

 table plays a crucial role in the process of defense
strategy  selection.  The  defense  strategy  is  selected
according to  the  table.  Here,  we give  the  structure
of  the Q table.  The  row  index  of  the Q table  is  the
action  in  the  stage ,  and  the  column  index  is

,  which  denotes  the  set  of  defense
strategies  for  the  defender  at  each  state. Table  4
displays  the  attack  strategies  for  each  stage  and  the

 

Algorithm 1　Defense strategy selection algorithm based on
Q-learning under unequal cost
Initialize:

γ α = 1
Q (S t ,a0,a1, . . . ,an) = 0
　Let the discount factor , the learning rate ,

.

µ
(
S t ,ai,d j

)
A = {a1,a2, . . . ,an}

D = {d1,d2, . . . ,dm}
　Give the matrix , the attack set ,
the defense set .
Choose an action:

ai S t　Attacker：return an action  in the stage  uniformly at
random.

d j Q
　Defender：return an action uniformly at random with an
exploring probability, otherwise return  according to the 
table.
Learn:

Rt
D S t ai

d j

　(1) After receiving a reward  in the stage  by action 
and .
　(2) Update:

Q
(
st ,ax,dy

)
← (1−α) Q

(
st ,ai,d j

)
+α
[
Rt

D +γmax
d∈D

Q (st+1,a,d)
]

α = α×decay　(3) 
 

 

Table 1    CPS system state attributes table.

State State description SAD C SAL
s1 All nodes are in the normal state 0 0 0

s2 Firewall root permission is obtained 20 2 0.9

s3 Web server guest permission is obtained 40 4 0.6

s4 Client server guest permission is obtained 30 3 0.6

s5 Client server root permission is obtained 30 3 0.9

s6 File server FTP guest permission is obtained 30 3 0.6

s7 File server FTP root permission is obtained 30 3 0.9

s8 Date server guest permission is obtained 50 5 0.6
s9 Date server root permission is obtained 50 5 0.9

 

 

Table 2    Attack action and attribute description table.

Attack strategy Strategy description AL
a0 Not attack 0

a1 Steal account and crack it 10

a2 Oracle TNS listener 4

a3 Install trojan 5

a4 LPC to LSASS process 4

a5 Shutdown server tenor 6

a6 THS chunk overflow 7

a7 Attack address blacklist 5

a8 Install SQL Listener program 10

a9 FTP rhost attack 12
a10 Shutdown database server 8
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corresponding matrix of defense strategy effectiveness.

5.2    Comparative  analysis  for  strategy  between
equal cost and unequal cost

d0

λA,NA = 10 λA,A = 5 λNA,A = 1

θ = 0.2

Under  the  condition  of  equal  cost,  where  the  system
losses  of  false  positives  and  false  negatives  are
equivalent,  the  defender  will  adopt  regardless  of
whether  mis-recognizing  an  effective  attack  is
misclassified as an ineffective attack. And a strategy of
good defensive effectiveness will be adopted regardless
of  whether  mis-recognizing  an  effective  attack  as  the
other  effective  attack  or  an  ineffective  attack  as  an
effective attack. However, under the case of equal cost,
the defender implements preemptive defense measures
even when there  is  no apparent  attack to  ensure  cyber
security.  When  an  attack  is  detected,  the  defender
considers  two  possible  scenarios:  (1)  whether  the
effective attack can be recognized as the other effective
attack,  and  (2)  whether  the  ineffective  attack  can  be
misclassified  as  an  effective  attack.  Based  on  this
assessment, the defender selects a defense strategy that
is most likely to achieve a high success rate across all
possible scenarios. Overall,  this algorithm represents a
promising  approach  to  improving  the  robustness  and
resilience  of  machine  learning  models  against
adversarial attacks. Set , , ,

 to  train  the  model.  The  defense  strategy  in  the

case of unequal cost is shown in Table 5.

5.3    Comparative  analysis  for  system loss  between
equal cost and unequal cost

To verify the feasibility of our algorithm for a dynamic
defense environment, we perform a simulation of 1000
attacks and defenses under the condition of  equal  cost
and unequal cost and then compare the system losses.

From Fig. 5, it can be observed that under the case of
unequal  cost,  strategies  incur  certain  defense  costs  to
prevent  misclassification  errors,  resulting  in  slightly
higher  system  losses  compared  to  the  case  of  equal
cost.  However,  once  a  misclassification  error  occurs,
the system loss under the case of equal costs becomes
difficult to recover, and it is much higher than the loss
under the case of unequal costs.

 

Table 3    Defend action and attribute description table.

Defense strategy Strategy description DC
d0 Not defend 0
d1 Delete account + random frequency 185
d2 Port enlarging + IP enlarging 155
d3 Reinstall listener + fixed frequency 135
d4 Protocol changing+ random frequency 160
d5 Routing enlarging + fixed frequency 150
d6 Uninstall Trojan 80
d7 Protocol changing + IP hopping 65
d8 Add address blacklist 110
d9 Storage enlarging 85
d10 IP enlarging + IP hopping 70
d11 Restart database 100
d12 Storage enlarging + fixed frequency 75
d13 Patch SSH on FTP 115
d14 IP enlarging + fixed frequency 90
d15 Storage enlarging + random frequency 70

 

 

Table  4    Effectiveness  of  attack  strategies  and  defense
strategies in each stage.

Stage State transition
µ
(
S t ,ai,d j

)Defense strategy
effectiveness 

S 1 s1→ s2 a1
a2

d1 d2 d3[
0.2 0.6 0.5
0.8 0.3 0.6

]

S 2 s2→ s3 a3
a4

d4 d5 d6[
0.7 0.5 0.6
0.8 0.7 0.5

]

S 3 s3→ s4 a3
a7

d4 d6 d8[
0.7 0.6 0.1
0.4 0.6 0.8

]

S 4 s3→ s6 a4
a7

d7 d8 d9[
0.7 0.5 0.3
0.5 0.8 0.6

]

S 5 s4→ s5 a1
a2

d1 d2 d3[
0.2 0.6 0.5
0.8 0.3 0.6

]

S 6 s4→ s6 a4
a7

d7 d8 d9[
0.7 0.5 0.3
0.5 0.8 0.6

]

S 7 s5→ s7 a5
a6

d9 d10 d11[
0.6 0.3 0.4
0.6 0.3 0.7

]

S 8 s5→ s8 a2
a6

d1 d9 d11[
0.8 0.3 0.5
0.3 0.6 0.7

]

S 9 s6→ s7 a5
a6

d9 d10 d11[
0.6 0.3 0.4
0.6 0.3 0.7

]

S 10 s7→ s8 a2
a9

d6 d12 d13[
0.6 0.7 0.8
0.1 0.5 0.7

]

S 11 s8→ s9 a8
a10

d4 d14 d15[
0.6 0.5 0.1
0.2 0.6 0.5

]
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6    Conclusion and future work

This  paper  proposes  a  modified  Q-learning  based

strategy analysis  approach to  address  the  unequal  cost
challenges  posed  by  misclassification  errors  in  CPS,
aiming  to  optimize  defense  strategy  selection  in  CPS.
By introducing the concept of unequal cost into the Q-
learning  algorithm,  we  demonstrated  that  a  more
efficient  and  low-cost  cyber  security  defense  strategy
can  be  obtained  in  the  presence  of  misclassification
interference.  The  proposed  algorithm  can  be
implemented  in  various  CPS  applications,  including
manufacturing,  transportation,  and  healthcare  systems.
However,  the  specific  form  of  the  cost  function  may
vary  depending  on  the  particular  environments  and
systems  being  analyzed.  Careful  analysis  and  tuning
are  required  to  ensure  that  the  weighting  scheme
accurately  reflects  the  true  error  costs  associated  with
each  strategy  in  the  CPS.  Future  research  can  be
directed  to  identifying  the  optimal  values  of  the
parameters  in  the  application  field  of  IoT,  and  to
explore how the proposed algorithm can be applied to
optimize  multiple  objectives  simultaneously,  such  as
minimizing  system  loss  while  maximizing  resource
utilization.
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