
 

Emma: An accurate, efficient, and multi-modality strategy
for autonomous vehicle angle prediction
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Abstract: Autonomous  driving  and  self-driving  vehicles  have  become  the  most  popular  selection  for  customers  for

their  convenience.  Vehicle  angle  prediction  is  one  of  the  most  prevalent  topics  in  the  autonomous  driving  industry,

that is, realizing real-time vehicle angle prediction. However, existing methods of vehicle angle prediction utilize only

single-modal data to achieve model prediction, such as images captured by the camera, which limits the performance

and efficiency of the prediction system. In this paper, we present Emma, a novel vehicle angle prediction strategy that

achieves  multi-modal  prediction  and  is  more  efficient.  Specifically,  Emma  exploits  both  images  and  inertial

measurement  unit  (IMU)  signals  with  a  fusion  network  for  multi-modal  data  fusion  and  vehicle  angle  prediction.

Moreover,  we  design  and  implement  a  few-shot  learning  module  in  Emma  for  fast  domain  adaptation  to  varied

scenarios (e.g., different vehicle models). Evaluation results demonstrate that Emma achieves overall 97.5% accuracy in

predicting  three  vehicle  angle  parameters  (yaw,  pitch,  and  roll),  which  outperforms  traditional  single-modalities  by

approximately  16.7%–36.8%.  Additionally,  the  few-shot  learning  module  presents  promising  adaptive  ability  and

shows  overall  79.8% and  88.3% accuracy  in  5-shot  and  10-shot  settings,  respectively.  Finally,  empirical  results  show

that Emma reduces energy consumption by 39.7% when running on the Arduino UNO board.
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1    Introduction

The  past  decades  have  witnessed  the  explosive
development  of  autonomous  driving  and  electric
vehicles such as the Tesla Model series. According to a
recent  investigation[1],  the  global  electric  vehicle
market has reached 411 billion US dollar by the end of
2021. Such innovative autonomous driving depends on
various  sensors  (e.g.,  high-speed  camera,  radar,  and
LiDAR)  and  state-of-the-art  artificial  intelligence  (AI)
models. Specifically, these sensors first capture signals
that  contain  driving  information,  such  as  road

conditions,  congestion  situations,  and  vehicle  status.
Then,  the  captured  signals  will  be  processed  and  fed
into pre-installed deep learning models to generate the
best strategy for the current driving condition. Finally,
the central control system will conduct the strategy by
adjusting the direction and speed of the driving vehicle.

Although  existing  computer  vision  based
methods[2−5] have  achieved  great  performance  in
autonomous  driving,  two  main  challenges  remain
unsolved  in  terms  of  practicality  and  efficiency.
(1)  Single  sensor  modality: Modern  self-driving  cars
are  equipped  with  many  different  types  of  sensors,
which  work  independently  of  each  other.  Hence,  the
control  system  needs  to  provide  several  single-modal
services  by  each  uncorrelated  sensor,  which  limits  the
model  performance[2–4]. (2)  Low  adaptability: It  is
known that deep learning requires a significant amount
of  data  to  obtain  good  performance.  In  reality,
however,  a  challenge  is  that  there  exist  many  unseen
scenarios,  such  as  unseen  vehicles  and  unseen  road
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conditions. Traditional strategies need to train different
models  for  different  scenarios,  which  consumes
enormous  computational  resources  and  requires
extensive data collection[5].

To  address  the  aforementioned  two  challenges,  we
propose Emma, an accurate, efficient, and multi-sensor
modality based strategy for vehicle angle prediction in
autonomous  driving.  Vehicle  angle  prediction  is  an
important  component  in  modern  self-driving  cars
because  the  car  needs  the  angle  parameters  as  an
essential  factor  to  generate  the  best  driving  strategy.
Figure 1 shows an image captured by the camera when
driving  the  car  and  it  also  shows  the  three  angle
parameters:  yaw,  pitch,  and  roll,  which  represent  the
current  status  of  the  vehicle.  Specifically,  Emma
leverages both the images captured by the camera and
the  signals  from  inertial  measurement  unit  (IMU)
sensor with a fusion network to achieve feature fusion
and  multi-modal  prediction.  Moreover,  we  design  and
implement  a  few-shot  learning  module  based  on  the
most advanced meta-learning concept[6] to equip Emma
with  the  ability  of  fast  domain  adaptation.  That  is,
Emma can quickly adapt  to  various scenarios,  such as
new  vehicle  models  and  new  road  conditions.
Combining  the  fusion  network  with  the  few-shot
learning  method,  Emma  provides  a  high-accuracy
solution  to  predict  vehicle  angle  while  consuming
lower energy consumption.

We  implement  and  evaluate  Emma  in  a  public
autonomous  driving  dataset  that  contains  over  5000
real-world  images  as  well  as  3D  accelerometer  data.
Evaluation results show that Emma achieves an overall
97.5% accuracy  in  predicting  yaw,  pitch,  and  roll  and
is  approximately  16.7% and  36.8% higher  than  single
modality  based  methods  (i.e.,  image  only  or  IMU
only).  Additionally,  the  proposed  few-shot  learning

module  shows  promising  adaptation  ability  in  shifting
models  from  one  vehicle  model  to  another.
Specifically,  Emma  achieves  an  overall  79.8%
accuracy  in  5-shot  learning  while  realizing  an  overall
88.3% accuracy  in  10-shot  learning.  Furthermore,  we
also deploy Emma into mobile systems such as micro-
controller  and  measure  the  energy  consumption
compared  with  traditional  single-modal  settings.
Results show Emma can reduce power consumption by
39.7% compared  with  traditional  strategies  in  the
Arduino UNO platform. We believe Emma can provide
an  accurate  and  efficient  strategy  for  predicting  the
running  vehicle’s  angle  for  the  growing  autonomous
driving industry.

We summarize the contributions as follows.
•  We  propose  a  multi-modal  sensor  fusion  strategy

for  accurate  vehicle  angle  prediction,  which  is  named
Emma.  Emma  achieves  much  higher  accuracy
compared  to  the  single-sensor  modality  based  method
by  fusing  the  information  from  both  the  camera  and
IMU sensor.

•  We  design  and  implement  a  few-shot  learning
module  based  on  the  concept  of  meta-learning  to
enable  the  ability  of  domain  adaptation  of  the  models
and  increase  the  system  efficiency.  As  such,  Emma
achieves  fast  adaptation  to  various  scenarios  such  as
different vehicles.

•  We conduct  extensive  experiments  to  evaluate  the
performance  of  Emma.  The  evaluation  results
demonstrate  that  Emma  achieves  overall  97.5%
accuracy  in  vehicle  angle  prediction  while  reducing
power consumption by approximately 39.7% compared
with  traditional  methods.  In  addition,  the  proposed
few-shot learning module also realizes high accuracy in
adapting models across different scenarios.

The rest of this paper is organized as follows. Section
2  presents  the  design  and  implementation  of  Emma,
including the fusion network and the few-shot learning
module.  Then,  Section  3  shows  the  evaluation  results
of  Emma  which  contain  the  prediction  performance
and  energy  consumption.  Next,  Section  4  introduces
several  related  works  including  multi-modality  and
few-shot  learning.  Finally,  Section  5  concludes  the
paper.
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Fig. 1    Example of vehicle angle prediction.
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2    Related work

2.1    Vehicle angle prediction

Vehicle  angle  prediction  is  a  new  topic  in  the
autonomous  driving  industry  and  recent  studies  have
investigated  different  methods  to  detect  the  real-time
vehicle  angle.  For  instance,  Huang  et  al.[7]

implemented a deep learning framework for predicting
vehicle  angles  from  3D  visual  models.  Furthermore,
Khan et  al.[8] proposed a self-supervised vehicle angle
prediction  method  based  on  the  geometric  analysis  of
the  captured  images.  Compared  to  these  single-modal
approaches,  Emma  achieves  multi-modality  vehicle
angle  prediction  that  has  demonstrated  high  accuracy,
good  domain  adaptation  ability,  and  low  energy
consumption.

2.2    Multi-modality in autonomous driving

Multi-modality  sensing  improves  the  model
performance  by  combining  not  only  visual  modality
captured by the camera but  also non-image modalities
from  other  sensors  (e.g.,  IMU,  mmWave,  and
acoustic).  As  such,  it  addresses  the  limitations  of
traditional  vision-based  sensing  approaches  in  non-
line-of-sight  (NLoS)  scenarios.  For  example,  Roy
et  al.[9] proposed  a  multi-vehicle  detection  method
based on the fusion of modalities,  that is,  images with
seismic,  acoustic,  and  radar  data.  Chen  et  al.[10]

presented  MV3D,  a  sensory-fusion  framework  that
exploits signals from both LiDAR sensors and cameras
for  3D  object  detection  in  autonomous  driving.
Moreover, Pan et al.[11] introduced an acoustic-seismic
modality fusion approach to monitor  moving vehicles.
Emma follows a similar line of research by introducing
the  first  multi-modality  strategy  for  vehicle  angle
prediction.

2.3    Few-shot learning

Few-shot  learning  becomes  popular  recently  as  it
enables  deep  neural  networks  (e.g.,  CNN)  to  achieve
fast  adaptation  to  unseen  conditions  with  only  a  few
samples  (e.g.,  five  or  ten  shots).  For  instance,  Refs.
[12−14] presented the advantages of few-shot learning
compared  with  traditional  domain  shift  methods  such
as transfer learning. Furthermore,  OneFi[15] pushes the
limits by using only a one-shot sample to achieve quick
model  adaptation  in  Wi-Fi  sensing.  GazeGraph[16]

exploits  few-shot  learning  to  track  eye  movements
while  acquiring  few  sensitive  gaze  information.  In
addition,  Refs.  [17−19]  adopted  few-shot  learning  to
realize more practical website fingerprinting attacks. In
this  paper,  we  present  Emma,  the  first  work  that
leverages few-shot learning on vehicle angle prediction
in autonomous driving.

3    System design

3.1    System overview

Figure 2 presents the system overview of Emma. First,
the autonomous driving vehicle takes images from the
camera  and  signals  from  the  IMU  sensors  (e.g.,
accelerometer)  followed  by  a  signal  pre-processing
module that removes noise from the raw data. Then, we
separately  train  the  image  model  and  the  IMU model.
Next, we convert the single modality models to feature
extractors  and  feed  them  into  the  fusion  network  to
achieve  feature  fusion  and  build  a  multi-modality
model.  In  addition,  a  few-shot  learning  module  is
added  for  quickly  adapting  the  multi-modality  models
to  different  scenarios  (e.g.,  different  vehicle  models).
Finally,  the  multi-modality  model  with  high
adaptability  can  be  exploited  for  vehicle  angle
prediction.
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Fig. 2    Overview of Emma.
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3.2    Data pre-processing

In  a  real  autonomous  driving  scenario,  data  collected
by cameras  and IMU sensors  contain  not  only  vehicle
information but also extra interference. To remove the
noise from the raw data, we design and implement the
signal  processing  modules  for  both  the  image  channel
and IMU channel. Specifically, we utilize the NAFNet
model[20] to  denoise  images  captured  by  the  camera
because  it  achieves  a  high  signal-to-noise  rate  (SNR)
while keeping the structural similarity[21]. For the time-
series  data  captured  by  IMU sensors,  we  first  apply  a
Savitzky-Golay  (S-G)  filter  to  remove  noise  in  the
collected  signals  without  distorting  their  shapes[22].
Next, the denoised images and the filtered IMU signals
are  used  to  train  single  modality  independently.  In
practice,  we  apply  the  default  settings  of  the  NAFNet
model  and  set  the  frame  length  as  100  with  three
polynomial orders in the S-G filter.

3.3    Single modality model construction

To build the single modality, we utilize the well-known
convolutional  neural  network  (CNN)  that  has
demonstrated  promising  performance  in  image
classification.  Furthermore,  CNN-based  methods  are
utilized  in  one-dimensional  time-series  signals
classification[23−25] because  they  can  capture  temporal
and spatial features from time series and achieve a high
classification accuracy[26−29].  In  Emma,  we utilize  two
convolutional  layers  to  extract  temporal  and  spatial
features  from  input  data  (image  or  time-series  IMU
data) and two batch normalization layers to standardize
the  data  and  stabilize  the  learning  process.  Then,  two
max-pooling layers reduce the dimension by half and a

dropout  layer  has  been  added  for  preventing
overfitting.  Finally,  the  flatten  layer  converts  feature
maps  to  one-dimensional  and  the  last  fully-connected
layers  output  the  predicted  class  with  the  highest
probability.  We  set  the  window  size  of  the
convolutional  layer  as  5,  following  with  max-pooling
layers that have window size of 2 and stride of 2. There
are  128  filters  in  the  first  convolutional  layer,  192  in
the  second,  and  300  in  the  third.  In  addition,  we  train
the  CNN-based  models  by  setting  initial  learning  rate
as  0.01  and  train  every  single  modality  with  300
epochs.

3.4    Fusion network

Due to the difference between image signals and IMU
signals,  the  traditional  CNN-based  single  modality
model cannot directly combine and transform them into
semantic  information[30–32].  To  address  this
inconsistency  and  achieve  feature  fusion  for  multi-
modality,  we  implement  a  fusion  network  based  on  a
similar  approach  proposed  by  Pandey  and  Wang[33],
which  ignores  the  dynamic  distribution  of  the  weight
across  features  from  multiple  modalities  and  its
architecture  is  presented  in Fig.  3.  Specifically,  we
combine  features  from the  image  model  and  the  IMU
model  by  utilizing  the  joint  feature  space[34] that
employs  feature  maps  of  each  channel  as  a  feature
detector  and  filter.  Then,  the  fused  multi-modality
features will be processed and distilled as the extracted
feature  vectors  that  contain  identical  knowledge  and
informative  context  while  ignoring  interference
features. Finally, a fully-connected layer and a softmax
layer  take  the  multi-modality  features  to  produce  the
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Fig. 3    Fusion network architecture.
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output  of  predicted  vehicle  angles  with  the  highest
probability.

3.5    Few-shot learning module

Although  the  CNN-based  vehicle  angle  predictor
achieves  high  accuracy  with  the  fused  data  from
multiple  modalities,  its  performance  can  be  impacted
by  the  shifting  conditions.  One  solution  is  to  train
multiple  predictors  for  different  scenarios  (e.g.,
different vehicle models). However, such a method not
only  requires  a  large-scale  dataset  to  ensure  good
performance  but  also  limits  the  practicality  in  varied
scenarios. Therefore, considering the varying scenarios
in  practice,  we  design  a  few-shot  learning  module  in
Emma based  on  the  concept  of  meta-learning.  Below,
we illustrate our proposed algorithm in two stages: the
meta-training stage and the deployment stage.

∅

We  present  the  meta-training  algorithm  for  vehicle
angle  prediction  in Algorithm  1.  In  the  meta-training
step,  we  denote  the  vehicle  angle  predictor  as v and
network parameters as θ. After obtaining the optimized
initialization parameters θ*, the vehicle angle predictor
can  realize  fast  adaptation  to  various  scenarios  (e.g.,
new  vehicle  models  and  new  road  conditions)  with
only K  ×  N samples  in  autonomous  driving.  For
example,  when  a  new  target  dataset Dnew is  collected
from  a  different  condition  (Dnew∩DS = ),  the

optimized  predictor  can  quickly  adapt  to  this  new
scenario Tnew and obtain the new parameters θnew.  We
obtain  the  adapted  vehicle  angle  predictor  with  fine-
tuned  parameters θnew for  the  new  scenario Tnew.  In
practice,  we  set α as  0.01  and β as  0.001.  In  Section
3.3,  we  comprehensively  evaluate  the  proposed
performance of few-shot learning module.

4    Evaluation

4.1    Experimental setup

To  evaluate  the  performance  of  Emma,  we  use  the
ApolloCar3D autonomous driving dataset  provided by
Peking  University  and  Baidu,  the  search  engine  giant
of  China.  Specifically,  the  dataset  was  collected  from
30  different  vehicle  models  that  contain  a  total  of
60  000  labeled  3D  car  instances  as  well  as  3D
accelerometer  data  (x, y, z)  from  5277  real-world
images.  We  leverage  the  signal  processing  toolbox
from  MATLAB  for  pre-processing  the  accelerometer
data.  We  implement  the  CNN-based  vehicle  angle
predictor and the proposed few-shot learning module in
Keras  2.3  based  on  the  Tensorflow 2.0  framework.  In
addition, all data processing is conducted on a desktop
running Windows 10 with 32 GB memory, an Intel i7-
9700K  CPU,  and  an  NVIDIA  GeForce  RTX  2080Ti
GPU.

4.2    Overall performance

To  evaluate  the  effectiveness  of  Emma,  we  use  the
classification  accuracy  and  the  corresponding
confusion  matrices  as  the  performance  metrics.  We
divide  the  angle  ranging  from  [−π,  π]  to  the
approximate  seven  angles  [−π,  −2π/3,  −π/3,  0,  π/3,
2π/3,  π]  and  evaluate  the  accuracy  of  the  predicted
yaw, pitch, and roll. Moreover, we also train models by
using  single-modal  data,  i.e.,  only  the  images  or  only
the  accelerometer  data,  and  further,  compare  their
performance  to  the  multi-modality  model.  The  three
parts  of Fig.  4 show the  confusion  matrices  results  of
angle prediction for yaw, pitch, and roll, where Emma
achieves accuracy rates of 97.0%, 97.9%, and 97.7% in
the  mentioned  three  angle  parameters,  respectively.
Furthermore, to demonstrate the effectiveness of using
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multi-modality,  we  compare  the  two  results  of  single
modality (i.e., only images or only accelerometer), and
the results of Emma, as shown in Fig. 5. It can be seen
by fusing the multi-modality data, Emma achieves over
97.5% accuracy,  whereas  two  single  modality  based

methods  achieve  80.8% and  60.7% accuracy  only.
Therefore,  exploiting  multi-modality  can  increase  the
accuracy of vehicle angle prediction by approximately
16.7% and 36.8%.

4.3    Few-shot learning evaluation

To  evaluate  the  performance  of  the  few-shot  learning
module, we apply the model trained from the Audi Q7
to the dataset collected from two cars: Skoda Fabia and
MG GT. Specifically, we select the baseline by directly
applying  the  trained  model  of  Audi  Q7  to  predict  the
angles of the other two vehicles without adaptation and
compare  the  results  with  Emma. Figures  6 and 7
present the results of domain adaptation using the few-
shot  learning  module.  We  can  see  that  the  overall
accuracy  decreases  to  18.3% and  6.0% when  the
trained  models  are  directly  used  in  different  vehicles.
Nevertheless,  Emma  achieves  79.8% and  73.1%
accuracy rates in 5-shot learning and accuracy rates of
88.3% and  84.0% in  10-shot  learning.  Therefore,
Emma  achieves  fast  domain  adaptation  to  different
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Fig. 4    Confusion  matrices  results  of  angle  prediction  for
yaw, roll, and pitch.
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Fig. 5    Performance  comparison  of  single-  and  multi-
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Fig. 6    Domain adaptation result: Audi Q7 → Skoda Fabia.

 

    46 Intelligent and Converged Networks,  2023, 4(1): 41−49

 



vehicle  models  while  maintaining  a  high  accuracy  by
exploiting the few-shot learning approach.

4.4    Energy consumption evaluation

Having  demonstrated  the  high  performance  of  Emma
in  vehicle  angle  prediction,  we  further  evaluate  the
energy  efficiency  of  Emma  in  the  wild.  Specifically,
we  deploy  the  trained  DNN  models  in  an  Arduino
UNO  micro-controller  and  use  a  Monsoon  Power
Monitor※  to  measure  the  energy  consumption  before
and  after  applying  Emma. Figure  8 shows  the  energy
consumption  of  three  running  statuses:  (1)  No  loads:
Arduino  UNO  is  running  at  default  setting  without
DNN  models;  (2)  Multiple  DNN  models:  Arduino
UNO is running pre-installed multiple DNN models for
vehicle angle prediction; (3) Emma: Arduino is running
pre-installed DNN model with Emma. Hence, we know
that  the  energy  consumption  of  the  three  strategies  is
205 mW, 268 mW, and 243 mW. As such, the energy
consumption  of  running  multiple  DNN  models  is

approximately  63  mW  while  leveraging  Emma  with
DNN  consuming  only  38  mW.  Therefore,  Emma
reduced energy consumption by around 39.7%.

5    Conclusion

In  this  paper,  we  present  Emma,  an  efficient  and
accurate  multi-modality  strategy  for  vehicle  angle
prediction  in  autonomous  driving.  Compared  with
traditional  single-modal  methods  that  adopt  only
images  captured  by  the  camera,  Emma  leverages
signals  captured  from  both  camera  and  IMU  sensors
and utilizes a fusion network to achieve high accuracy
in  vehicle  angle  prediction.  In  addition,  a  few-shot
learning  module  enables  Emma  to  become  domain
adaptive to different scenarios, and the results indicate
Emma  can  maintain  a  high  accuracy  across  various
vehicle  models  while  reducing  power  consumption  by
39.7%.  We  believe  Emma can  provide  a  step-forward
solution  for  vehicle  angle  prediction  in  the  explosive
development of autonomous driving.
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