
 

Joint association and beamforming optimization in
reconfigurable intelligent surface-enhanced

user-centric networks

Ye Yao, Zhong Tian*, Zhengchuan Chen*, Min Wang, and Yunjian Jia

Abstract: Fully coordinated Cell-Free (CF) networks can alleviate the Inter-Cell Interference (ICI) for the cell-edge users

in cellular networks. Due to the complex topology of the association between the Access Points (APs) and the users in

CF networks, it is challenging to deploy CF networks in practical scenarios. In order to make CF networks feasible, we

introduce User-Centric (UC) networks enabling each user served by a limited number of APs. As a low-cost and energy-

efficient technology, Reconfigurable Intelligent Surface (RIS) can be embedded in UC networks to further improve the

system performance. First, we provide a brief survey on the prior works in UC networks for clear comprehension. Then,

we  formulate  a  Spectral  Efficiency  (SE)  maximization  problem  for  RIS-enhanced  UC  networks.  For  solving  the  non-

convex problem, we divide it into three subproblems and propose a joint optimization framework for optimizing AP-

user association, active beamforming of multiple antennas at the APs, and the passive beamforming of the RIS. Besides,

a  channel  gain  based  association  method  coupled  with  the  design  of  RIS  is  proposed  to  construct  a  dynamic  and

efficient association. The subproblems about optimizing active and passive beamforming are solved with the fractional

programming. Simulation results show that the proposed joint optimization framework for RIS-enhanced UC networks

can obtain good SE compared with other benchmark schemes.
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1    Introduction

As  the  brief  evolution  process  of  cellular  networks  is

shown in Ref. [1], the first cellular commercial system

came into being in the late 1970s and early 1980s. The

well-known conventional model of the cellular network
is  composed  of  several  hexagonal  cells,  where  a  Base
Station (BS) or Access Point (AP) is introduced in each
cell[2].  Actually,  it  is  an  AP-centric  network  paradigm
for  the  definition  of  each  cell  deriving  from  the
coverage of the AP. The users at the cell edge confront
serious  Inter-Cell  Interference  (ICI)  in  AP-centric
network,  which  becomes  a  bottleneck  for  the
enhancement of the system capacity.

As  a  promising  network  paradigm  to  eliminate  the
ICI  of  cell-edge  users  in  cell-centric  networks,  Cell-
Free  (CF)  network  was  widely  studied.  This  new
network architecture was introduced in Ref. [3], where
all APs were coordinated jointly to serve all users with
the  same  time-frequency  resource.  In  Ref.  [4],  CF
network was  also  called  inter-cell  coordination,  which
has been shown to be an effective idea to improve the
capacity  compared  with  conventional  cellular
networks.  As  proved  in  Ref.  [5],  CF  massive  MIMO
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systems can outperform small-cell systems in terms of
throughput.  Nonetheless,  CF  systems  require  more
backhaul.  In  Ref.  [6],  authors  have  illustrated  that
fronthaul/backhaul links and signaling overhead would
increase  dramatically  with  the  expansion  of  the
network  scale,  e.g.,  the  numbers  of  APs  and  users.
Especially,  when  a  large  number  of  APs  and  massive
users  have  been  deployed  in  B5G/6G  era[7],  fully
coordinated AP-user association will make the network
overwhelmed  with  high  deploying  complexity.  Thus,
fully  coordinated  CF  network  is  challenging  to  be
deployed in practical scenarios.

A  heuristic  idea  to  make  CF  network  feasible  in
deployment is to limit the number of inter-coordinated
APs,  which  is  introduced  as  User-Centric  (UC)
network  paradigm  in  Ref.  [8].  In  UC  network
paradigm,  each  user  is  served  by  a  limited  number  of
APs  while  the  network  units  are  divided  by  users.
Considering the connecting topology between APs and
users,  the  critical  problem  in  UC  network  is  how  to
design  an  effective  and  lightweight  AP-user
association.  As  it  is  NP-hard  in  large-scale  networks,
this problem becomes a huge challenge.

The  specific  examples  of  cellular  network,  fully
coordinated CF network and UC network are shown in
Fig.  1.  In Table 1,  we summarize some characteristics
of  these  networks.  In  general,  the  cellular  network  in
Fig.  1a has  ICI  problems  and  low  backhaul/fronthaul
burden.  The  fully  coordinated  CF  network  in Fig.  1b
and  the  UC  network  in Fig.  1c have  eliminated  ICI
problem, but the former has heavier backhaul/fronthaul
burden. In fact,  since the association can be optimized
in  UC  network,  its  backhaul/fronthaul  burden  is
adjustable.

In  the  UC  network,  due  to  the  complexity  of
association  problem  itself,  the  greatest  difficulty  is  to
consider  the  joint  optimization  of  association  and
resource allocation. In order to construct a lightweight
and energy-saving UC network, an emerging technique
called Reconfigurable Intelligent Surface (RIS) can be
utilized to facilitate UC networks. RIS is composed of
an  array  of  passive  reflecting  elements  made  of  metal
materials,  which  can  manipulate  the  wireless
propagation  environment  by  adjusting  the  coefficients

of  the  reflecting  elements[9, 10] .  Although  the  trivial
power cost of RIS in working mode exists, the passive
beamforming  of  RIS  can  improve  Signal-to-Noise
Ratio  (SNR)  significantly,  providing  an  obvious  gain
on  the  energy  efficiency  of  the  system[11].  Therefore,
the  requirements  about  flexible  association  and  low
power  in  UC  network  could  be  satisfied  by  the
deployment  of  the  RIS.  Usually,  static  AP-user
association  assigning each user  with  a  limited  number
of  APs  based  on  channel  strength  can  be  easily
established, which only depends on the initial phase of
RIS and the locations of APs and users.

In  this  paper,  a  dynamic  AP-user  association  called
channel  gain  based  (h-based)  method  is  considered,
which is coupled with the design of coefficients of RIS.

 

(a) Cellular network

(c) User-centric network

(b) Fully coordinated CF

 
Fig. 1    Network paradigms.

 

 

Table 1    Comparison among different networks.

Network ICI
problem Network unit Backhaul/fronthaul

burden

Cellular network √ AP-centric
network unit Low

Fully coordinated
CF network × Whole network High

User-centric
network × User-centric

network unit Adjustable
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The h -based  association  provides  a  more  flexible
scheduling  in  the  association.  Besides,  the  weighted
sum rate of all the users can be maximized by the joint
optimization  of  active  beamforming  or  transmit
precoding of  the  multiple  antennas at  the  APs and the
passive  beamforming  of  the  RIS.  Meanwhile,
theoretical analysis and experimental results show that
the  proposed  dynamic  AP-user  association  method
does not impose too much burden on the complexity of
the overall algorithm.

The remaining sections of this paper are organized as
follows.  Section  2  performs  a  survey  on  the  prior
works at three critical aspects in UC networks. Section
3  presents  the  system  model  and  the  formulated
problem  about  joint  association  and  beamforming  in
RIS-aided  UC  networks.  Section  4  illustrates  the
proposed  joint  optimization  framework  about  AP-user
association, the transmit precoding at the APs, and the
reflecting  coefficients  at  the  RIS.  Section  5  shows the
simulation  results  and  discussions.  Section  6  presents
some research directions in the future. Finally, Section
7 draws the conclusion.

2    Prior works in UC networks

It  is  worth  noting  that  deploying  UC  networks  in
practical  communication  scenarios  should  overcome
difficulties  at  many  aspects,  e.g.,  AP-user  association,
resource  allocation,  etc.  Some researchers  put  a  lot  of
efforts  to  improve  the  performance  of  UC  networks
with  the  emerging  technologies,  e.g.,  massive
MIMO[12].  To  obtain  a  thorough  view  of  technical
challenges on UC networks, a brief description of some
critical issues on investigating UC networks are shown
as follows.

2.1    AP-user association

Actually,  the essence of  UC networks is  to  realize the
trade-off  between  the  complexity  of  establishing  AP-
user  association  and  the  performance  metrics,  e.g.,
Spectral  Efficiency  (SE)  or  Energy  Efficiency  (EE).
From  an  intuitive  perspective,  the  dense  connecting
topology of the AP-user association may provide more
degrees of freedom in spatial domain. In Ref. [8], each
AP  sorts  all  users’ channel  coefficients  and  tries  to
serve  users  with  the  strongest  channel.  Another

heuristic  association idea  is  that  each user  connects  to
the APs which can provide the maximum signal power
for  it[13].  A  user-centric  Dynamic  Cooperation
Clustering  (DCC)  framework  was  investigated  in  Ref.
[12],  as  well  as  a  channel-based  AP-user  association
method  developed  to  form  clusters.  All  the  above
association  methods  are  designed  to  maximize  the
performance  gain  of  the  system.  Thus,  utility-based
clustering can be used to describe them. When the RIS
is  introduced  into  the  UC  networks,  AP-user
association  problem  becomes  more  complicated  for
high-dimension  cascaded  channels  including  AP-RIS
and  RIS-user  components.  In  Ref.  [14],  the  AP-user
association  was  simplified  and  disassembled  as  RIS-
user  matching  subproblem,  which  was  solved  by
Linear  Conic  Relaxation  (LCR)  based  method.  To  the
best of our knowledge, the AP-user association in RIS-
aided  UC  network  has  not  been  considered  from  the
view of the entire cascaded channel, which is the basic
motivation of this paper.

2.2    Resource allocation

Usually,  the  resource  in  UC  networks  includes  the
power  of  APs,  the  transmit  precoding  of  the  multiple
antennas  at  the  APs,  the  subcarrier  allocation  in
wideband  system,  etc.  Although  appropriate  resource
allocation  in  UC  networks  is  helpful  to  improve  the
performance  metrics,  it  becomes  intractable  in  large-
scale networks. The purpose of resource allocation is to
optimize  some  performance  metrics  of  the
communication systems, which usually include SE, EE,
latency,  fairness,  etc.  The  training  resource  allocation
for  channel  estimation  in  UC  cooperation  networks  is
solved  by  a  graph-theoretic  approach  optimally  and  a
low-complexity  algorithm sub-optimally  for  the  large-
scale  networks,  respectively[15].  Besides,  two
distributed  downlink  resource  allocation  algorithms
was  proposed  to  optimize  a  hybrid  quality  of  service
metric  with  user  scheduling,  beamforming,  and  power
control  in  UC  MIMO  networks,  which  shows  the
Central Unit (CU) distributed system providing 1.3- to
1.8-fold  network  throughput  compared  to  the
Distributed  Unit  (DU)  distributed  system[16].  In
addition,  the  proportional-fair  resource  allocation
including  multiple  time  slots  allocation  and  precoding
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design in UC networks was formulated as the weighted
sum-rate  maximization  problems,  which  were  solved
by  a  two-stage  heuristic  scheme  and  a  modularity-
based  user  grouping  algorithm[17].  Scalable  precoding
schemes  were  used  for  beamforming  under  UC-DCC
framework,  promoting  the  SE  of  the  system  in  Ref.
[12].  A  Block  Coordinate  Descent  (BCD)  based  joint
AP clustering  and  beamformer  optimization  algorithm
was  proposed  to  solve  the  formulated  problem  about
maximizing  the  rate-dependent  utility  function  in  Ref.
[14].

Due to the energy-saving characteristic of RIS, it has
been  embedded  in  fully  coordinated  CF  network  to
replace some inefficient APs in Ref. [18]. In Ref. [19],
the  resource  allocation  problem  of  joint  design  of
reflection  matrix  of  RIS  and  power  control  at  APs  to
maximize  energy  efficiency  was  posed  in  RIS-aided
UC networks.

2.3    Channel estimation

Compared  with  the  cellular  networks,  the  fully
coordinated CF networks and UC networks have more
complex  connecting  topology  between  APs  and  users,
which  brings  a  huge  challenge  to  the  estimation  of
Channel  State  Information  (CSI).  The  two-stage
approach  based  on  the  vector  approximate  message
passing  algorithm  and  linear  minimum  mean  square
error  method  was  proposed  to  detect  the  random
activities  of  devices  and  estimate  their  channel  states
for  the  devices  of  Internet  of  Thing  in  UC  networks
with massive random access in Ref.  [20].  Besides,  the
blind  channel  estimation  method  for  UC  MIMO
networks was investigated in Ref. [21], which provided
lower  normalized  mean-square  error  compared  with
statistical CSI and good performance in the presence of
pilot  contamination.  In  Ref.  [22],  the  scalable  pilot
assignment  algorithm  considering  the  eigenspace  of
channel vectors was adopted to minimize the sum pilot
contamination  caused  by  all  the  serving  APs  in  UC
MIMO  networks.  Considering  the  high  computational
complexity of exploiting an accurate estimation of CSI
for  the  massive  antennas  at  APs  and  the  large
bandwidth  at  mmWave  in  UC  networks,  the  fast  and
flexible  denoising convolutional  neural  networks  were

embedded into the channel estimator[23].
When  the  RIS  is  introduced  into  the  UC  networks,

the  burden  of  channel  estimation  becomes  heavier  for
the  added  task  of  estimation  about  the  cascaded
channels.  Reducing the pilot  overhead moderately,  the
proposed  two-timescale  channel  estimation  for  RIS-
aided  wireless  communications[24] is  also  suitable  for
the RIS-aided UC networks. Since RIS can enhance the
system  performance  via  manipulating  the  wireless
environments,  a  deep  understanding  of  the  CSI
measurement  lays  a  prior  foundation  for  joint
optimization  of  association  and  beamforming  in  RIS-
aided UC networks.

3    System model

B = {1,2, . . . ,B} L = {1,2, . . . ,L}
K = {1,2, . . . ,K} N = {1,2, . . . ,N}

As  shown  in Fig.  2,  a  downlink  transmission  of  RIS-
enhanced  UC  network  is  investigated  in  this  work.
There  are B  multi-antenna  APs  with L  antennas,  K
single-antenna  users,  and  an  RIS  with N  elements
deployed  in  this  scenario.  The  index  sets  of  APs,  the
antennas  of  each  AP,  users,  and  the  elements  of  RIS
are  denoted  by , ,

, and , respectively.
In  UC network,  each AP will  only  serve  part  of  the

users. Signal transmitted by the b-th AP is
 

xb =

K∑
k=1

cb,kwb,k sk (1)

wb,k ∈ CL×1

where sk  means  the  sending  symbol  for  the k -th  user.
 represents the beamforming vector of the b-

th AP for the k-th user, and L is the number of antennas
 

AP

User

RIS

AP-user association
Beamforming 
Fig. 2    An RIS-aided UC network.
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cb,k = 1 cb,k = 0
at each AP. When the b-th AP chooses to serve the k-th
user,  holds, otherwise .

The effective channel from each AP to a user can be
expressed as
 

hH
b,k = dHb,k + fHr,kΘ

HGb,r (2)

db,k ∈ CL×1

Gb,r ∈ CN×L f H
r,k ∈ C1×N

Θ = diag
(
θr, 1, θr, 2, . . . , θr, N

)
θr,n = κnejϕn n ∈ N

ϕn ∈ [0,2π) κn

where  is the channel of the direct link from
the b-th AP to the k-th user,  which can be modeled as
Rayleigh fading[25].  and  are the
channels in the cascade links from the b-th AP to RIS
and  RIS  to  the k -th  user,  respectively,  which  conform
to Rician fading. CSI is assumed to be perfectly known
in  our  system.  We  define 
as  matrix  of  reflection  coefficients  of  RIS.  Each
reflection  element  is ( ),  where

 is  the  phase  shift  coefficient  and 
represents amplitude part.

The received signal of the k-th user is
 

yk =

B∑
b=1

hH
b,kcb,kwb,k sk +

B∑
b=1

K∑
j=1, j,k

hH
b,kcb, jwb, js j+ zk (3)

σ2
k

zk ∼ CN
(
0,σ2

k

)

The additive white Gaussian noise for the k-th user is
an  independent  and  identically  distributed  circular
symmetric  complex  Gaussian  random  variable  with
zero  mean  and  the  variance ,  expressed  as

.  The  decoding  Signal  to  Interference
plus  Noise  Ratio  (SINR)  for  the k -th  user  can  be
formulated as
 

γk =

∣∣∣∣∣∣∣
B∑

b=1

hH
b,kcb,kwb,k

∣∣∣∣∣∣∣
2

K∑
j=1, j,k

∣∣∣∣∣∣∣
B∑

b=1

hH
b,kcb, jwb, j

∣∣∣∣∣∣∣
2

+σ2
k

(4)

The  problem  about  maximization  of  SE  can  be
expressed as
 

(P1) max
C,W,Θ

f (C,W,Θ) =
K∑

k=1

ηklog2(1+γk) (5)

 

s.t.,
K∑

k=1

cb,k ⩽ M, b ∈ B (6)

 

K∑
k=1

||cb,kwb,k ||2 ⩽ Pmax, b ∈ B (7)

 

||θr,n||2 ⩽ 1, n ∈ N (8)

{cb,k} {wb,k}
ηk 1/K

where C  and  W  are  the  association  matrix  and  the
active  beamforming  matrix  composed  of  the  elements

 and  ,  respectively.  Weighted  factor  of  the
k-th user is ,  which can be set as .  Formulas (6),
(7),  and  (8)  denote  maximum  number  constraint  of
served users per AP, maximum power constraint of an
AP, and the constraint of per reflection element of RIS,
respectively.

Through  joint  optimizing C,  W ,  and Θ ,  we  can
maximize SE of the whole system. However,  the non-
convexity of objective function in P1 and constraint of
Formula  (6)  make  it  difficult  to  find  an  optimal
solution  for  this  problem.  Next,  fractional
programming technique, h-based association, and joint
optimization  are  used to  obtain  a  sub-optimal  solution
efficiently.

4    Joint optimization framework

Firstly, Lagrangian Dual Transform Technique (LDTT)
is  used  to  transform  original  objective  function  in  P1
into
 

f1(C,W,Θ,α) =
K∑

k=1

ηklog2 (1+αk)−
K∑

k=1

ηkαk+

K∑
k=1

ηk (1+αk)γk

1+γk
(9)

αk

α = [α1,α2, . . . ,αK]T

αok = γk α

f1(C,W,Θ,α)

The  intermediate  variable  for  receiving  SINR  is 
and . When C,  W,  and Θ  are fixed,
we  have  the  optimal .  Then,  with  fixed,

 can be transformed into
 

f
′
1(C,W,Θ,α) =

K∑
k=1

ωkγk

1+γk
(10)

ωk = ηk(1+αk)where . Finally, the new problem P1' can
be obtained as
 

(P1′) max
C,W,Θ,α

f
′
1(C,W,Θ,α),

s.t., Formulas (6)− (8).

f (C,W,Θ)

The  joint  alternating  optimization  framework  is
shown  in Algorithm  1,  where C,  W ,  and Θ  are
optimized,  respectively.  This  process  continues  until
the objective function  in P1 reaches a stable
value. In the following section, process of optimization
of  three  subproblems  is  investigated,  specifically.
Algorithm 1 will converge to a final state, because the
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Ia Iw Iθ

O
(
Ia(IwB2K2+ IθN2)

)

possible states of matrix C are finite. Besides, the other
two  subproblems  can  be  transformed  into  convex
problems.  We  define , ,  and  as  the  numbers  of
the  iterations  for  solving  AP-user  association,  the
active beamforming of the multiple antennas at the AP,
and  passive  beamforming  of  the  RIS,  respectively.
Thus,  can be used to express the
computational complexity of Algorithm 1.

4.1    User association

In  this  part,  our  purpose  is  to  build  a  lightweight
effective association. The core principle is that the AP-
user associations with strong channel strengths tend to
be activated in priority, while those with weak channel
strength are likely to be disconnected.

hb,k

{hb,k}

In  the  RIS-enhanced  systems,  the  effective  channel
 is  expressed  as  Eq.  (2)  where  the  reflection

coefficients  of  RIS Θ  are  involved.  Therefore,  we
propose  the h -based  association  method  which  is
coupled  with Θ .  Its  specific  process  is  summarized  as
Algorithm 2,  in  which  the  optimization  of  association
C and Θ will be coupled. With C fixed, the optimal Θ
can be obtained. On the other hand, the changing of Θ
will lead to new effective channel , which derives
a new optimal C in the process of Algorithm 1 with h-

f (C,W,Θ)

based  association.  This  process  will  continue  in  this
coupled manner until  the objective function 
in P1 converges.

hb,k

hb,k

O (BK)

In  the h -based  approach,  the  association  process  is
based  on  users’ effective  channel  coefficients  { }.
With Θ  fixed,  we  can  calculate  the  effective  channel
coefficients  { }.  For  the k -th  user,  it  will  sort  these
channel  coefficients  in  descending  order  and  only
connects  to  APs  with  the  strongest  effective  channels.
The  computational  complexity  of Algorithm  2 is

.

4.2    Active beamforming at the AP

αWith C, Θ, and  fixed, the original problem P1 shifts
into
 

(P2) max
W

f2(W),

s.t., Formula (7),

where
 

f2(W) =
K∑

k=1

ωk

∣∣∣∣∣∣∣
B∑

b=1

hH
b,kcb,kwb,k

∣∣∣∣∣∣∣
2

K∑
j=1

∣∣∣∣∣∣∣
B∑

b=1

hH
b,kcb, jwb, j

∣∣∣∣∣∣∣
2

+σ2
k

(11)

Utilizing  the  quadratic  transform[26],  the  objective
function of P2 can be transformed into
 

f2
′
(W,β) =

K∑
k=1

2
√
ωkRe{β∗k

B∑
b=1

hH
b,kcb,kwb,k}−

K∑
k=1

|βk |2
 K∑

j=1

∣∣∣∣∣∣∣
B∑

b=1

hH
b,kcb, jwb, j

∣∣∣∣∣∣∣
2

+σ2
k

 (12)

β [β1,β2, . . . ,βK]T β◦k
∂ f ′2/ ∂βk = 0

where  =   and  the  optimal  is  given
by , shown in the following:
 

β◦k =

√
ωk

B∑
b=1

hH
b,kcb,kwb,k

K∑
j=1

∣∣∣∣∣∣∣
B∑

b=1

hH
b,kcb, jwb, j

∣∣∣∣∣∣∣
2

+σ2
k

(13)

β◦k f ′2(W,β)Finally, substituting  into , the subproblem
P2 is equivalent to
 

(P2′) max
W

f ′2(W, β◦),

s.t., Formula (7),

f ′2(W, β◦)where  is  a  quadratic  concave  function  of W

 

Algorithm 1　Alternating optimization for P1
W(0) Θ(0)

| f (t)(C,W,Θ)− f (t−1)(C,W,Θ)| < δ
C(t)

α(t) α◦k = γk

β(t) W(t)

ϵ(t) Θ(t)

C(t) W(t) Θ(t)

Input:  and 
1: while:  do
2: 　Update  by the proposed Algorithm 2
3: 　Update intermediate SINR  by 
4: 　Update , obtain  by solving P2
5: 　Update , obtain  by solving P3
6: end while
Output: , , and .
Note: Algorithm 2 is designed in Section 4.1. P2 and P3 are
introduced in Sections 4.2 and 4.3, respectively.
 

 

Algorithm 2　h-based association
Θ

hb,k Θ

k = 1 : K

cb,k = 1

cb,k = 0

C

Input: 
1: Calculate { } based on 
2: for  do
3: 　Sort all APs channel coefficients in descending order
4: 　Pick the strongest channel and let corresponding ,
　　 otherwise 
5: end for
Output: 
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P2′and  Formula  (7)  is  a  convex  set.  Therefore,  is  a
convex  problem  which  can  be  solved  by  a  standard
convex optimization tool[27] directly.

4.3    Passive beamforming of the RIS

Define  some  variables  for  solving  the  passive
beamforming problem, which are shown as
 

lb,i,k = dHb,kcb,iwb,i (14)
 

θHr =
[
θr,1, θr,2, . . . , θr,N

]H (15)
 

ab,i,k = diag( fHr,k)Gb,rcb,iwb,i (16)

With C, W, and α fixed, the objective function in P1
can be equivalently given by
 

f3(θr) =
k∑

k=1

ωk

∣∣∣∣∣∣∣
B∑

b=1

(
lb,k,k +θHr ab,k,k

)∣∣∣∣∣∣∣
2

K∑
i=1

∣∣∣∣∣∣∣
B∑

b=1

(
lb,i,k +θHr ab,i,k

)∣∣∣∣∣∣∣
2

+σ2
k

(17)

Since Eq. (17) is still a complex multiple ratio term,
we  can  transform  it  into  Eq.  (18)  by  the  quadratic
transform,
 

f ′3(θr,ξ) =
K∑

k=1

2
√
ωkRe

ξ∗k(θHr
B∑

b=1

ab,k,k +

B∑
b=1

lb,k,k)

−
K∑

k=1

|ξk |2
 K∑

i=1

∣∣∣∣∣∣∣
B∑

b=1

(lb,i,k +θHr ab,i,k)

∣∣∣∣∣∣∣
2

+σ2
k


(18)

ξ = [ξ1, ξ2, . . . , ξK]T

ξ◦k θHr

∂ f ′3/ ∂ξk = 0

where the auxiliary variable  and the
optimal  for  a  fixed  can  be  obtained  by

, shown in the following:
 

ξ◦k =

√
ωk

 B∑
b=1

lb,k,k +θHr
B∑

b=1

ab,k,k


K∑

i=1

∣∣∣∣∣∣∣
B∑

b=1

lb,i,k +θHr
B∑

b=1

ab,i,k

∣∣∣∣∣∣∣
2

+σ2
k

(19)

By taking Eq.  (19)  into  Eq.  (18),  the  subproblem of
optimization on reflection coefficients is
 

(P3) max
θr

f ′3(θr,ξ◦),

s.t., Formula (8).

f ′3(θr,ξ◦) θr

P3

 is  a  quadratic  concave  function  of ,  and
the  constraint  Formula  (8)  is  a  convex  set.  Therefore,

 is  a  convex  problem  which  can  be  solved  by  a
standard convex optimization tool[27].

5    Simulation results and discussion

In  our  simulation  scenario,  four  APs  are  uniformly
deployed  on  a  semicircle  with  a  radius  of  100  meters
and  center  coordinate  of  (100 m, 0 m ).  Users  are
randomly distributed in a circle with a radius of 2 m at
the center of the semicircle. An RIS of Uniform Linear
Array (ULA) is deployed closely to the users at (100 m,
−2  m).  There  are  mainly  two  simulation  cases,  where
the number of users is K = 4 or K = 8, respectively. The
maximum  number  of  connected  users  of  each  AP  is
limited  with M  =  3  or M  =  6,  respectively.  To  clarify
clearly, we introduce Table 2 to illustrate the different
schemes,  where  NoRIS  means  the  case  without  RIS
deployed.

Weighted Sum Rate (WSR) with respect to each AP’s
maximum power Pmax is illustrated in Fig. 3. In the two
specific simulation scenarios, we assume that each AP
does not have the ability to serve all users at the same
time.  Usually,  the  RIS-enhanced  system  has  a  better
performance gain than that of NoRIS, which prove that
RIS  plays  a  leading  role  in  guaranteeing  brilliant  SE
 

Table 2    Simulation schemes.

Abbreviation Description of scheme

RIS-AC cb,k = 1
∀b ∈ B ∀k ∈ K

W and Θ optimization algorithm with all
connected CF association (AC, i.e., ,

 and )

RIS-HA Alternating iterative optimization algorithm
with h-based association (HA)

RIS-RA Alternating iterative optimization algorithm
with random association (RA)

NoRIS-HA Optimization of W in NoRIS h-based
association system
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Fig. 3    Average  rate  per  user  versus Pmax with  N =  30  and
L = 2.
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performance for users. With the increasing of Pmax, the
improvement  of  WSR  of  RIS-RA  is  very  slight
compared  with  that  of  RIS-HA.  This  is  because
Random Association (RA) may disconnect the AP-user
links  which  have  good  channel  coefficients.  In  this
case, even if Pmax  increases, it  can not be allocated on
suitable  links  to  achieve  a  considerable  performance
gain of WSR. This is the reason why C and W need to
be  jointly  designed.  SE  performance  of  RIS-HA
coincides  with  that  of  RIS-AC schemes,  which  shows
the effectiveness of h-based association.

As expected, WSR of all algorithms increases as the
elements  of  RIS  increase  in Fig.  4.  Similarly,  the
performance of RIS-HA approach approximates to that
of  RIS-AC  very  well.  The  power  consumption  model
of  our  system  is  defined  as  Eq.  (20)  based  on  the
network power consumption model in Ref. [11]，
 

PS =

B∑
b=1

K∑
k=1

||wb,k ||2+
K∑

k=1

pk + pr+B ·PAP (20)

pk = 123+1169Ba/B Ba

pr
PAP

The  power  consumption  of  the k-th  user  is  denoted  as
 mW[28], where  is the number of

the  active  association  between  the k -th  user  and  the
APs.  The  power  consumption  of  RIS  is .  The
hardware-dissipated  power  of  AP  can  be
approximated by a constant power offset 9 dBW.

In Fig.  5,  as  the  number  of  elements  of  RIS
increases,  RIS-HA  has  saved  more  energy  than  RIS-
AC.  Comparing  the  results  of  4  users  and  8  users,
energy performance of RIS-HA algorithm is improved
better  than  that  of  RIS-AC,  with  the  number  of  users
K = 8. It can be explained that RIS-HA algorithm turns

pk

off more inefficient association bits in order to meet the
upper bound of the AP’s association ability, with K = 8
and M = 6. According to the power consumption model
in Eq. (20), AP-user association is more lightweight in
h-based  approach  where  the  power  consumption  of
each user  can be saved.

As shown in Fig. 6, within a certain range, the SE of
the  system  will  be  improved  with  the  increase  of  the
number of antennas of each AP. This SE improvement
can  be  attributed  to  the  increased  diversity  gain  in
multi-antenna transmission system.

Pmax

In Fig.  7,  the  relationship  between  the  number  of
iterations  and  WSR  in  100  channel  realizations  is
shown,  with  the  number  of  elements  of  RIS N  =  10,
maximum  power  of  each  AP =  18  dBm,  and  the
number of antennas per AP L = 2. We can observe that
the  WSR  performance  of  both  RIS-AC  and  RIS-HA
converges  after  about  5  iterations,  which  is  consistent
with  the  computational  complexity  analysis  in  the
previous  part.  In  the  100  channel  simulations,  the 
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Fig. 4    Average rate per user versus N with Pmax = 18 dBm
and L= 2.
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Fig. 5    System  power  consumption  versus N with  Pmax =
18 dBm and L = 2.
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Fig. 6    Average  rate  per  user  versus  the  number  of
antennas of each AP with Pmax = 18 dBm and N= 10.
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variance  of  the  final  state  of  RIS-HA  algorithm  is
greater  than  that  of  RIS-AC.  Due  to  the  strong
correlation  between  AP-user  association  and  channel
state in RIS-HA, the association has impact on the final
state of convergence in each iteration.

6    Future research directions

6.1    Deployments of multiple types of RISs

Except  for  the  passive  RIS,  active  RIS[29] and
Simultaneously  Transmitting  And  Reflecting  Surface
(STARS)[30] are  also  proposed  recently  for  combating
the  multiplicative  fading  effect  and  increasing  the
degrees  of  freedom  in  spatial  domain,  respectively.
These  advantages  of  active  RIS  and  STARS  can
improve the capacity and coverage of the UC networks
significantly.  Therefore,  the  hybrid  deployments  of
passive  RIS,  active  RIS,  and  STARS in  UC networks

can  be  a  promising  research  field.  It  is  worth  noting
that  the  hybrid  deployments  of  RIS  include  the
geometric  position  of  the  RISs  and  the  design  of  the
reflecting  coefficients  of  RIS.  Besides,  the  AP-user
association  including  the  AP-RIS  links  and  RIS-user
links may also need to be reconstructed for maximizing
the capacity performance of the UC networks.

6.2    Deep learning-assisted dynamic management

As  the  channel  estimation  based  on  deep  learning  in
UC  networks  was  verified  in  Ref.  [23],  many  tasks,
e.g.,  the  storing  and  acquiring  of  the  CSI  data,
subcarrier allocation, and transmit precoding design in
UC  networks  can  be  jointly  managed  by  the  deep
learning algorithms. Usually, these tasks are coupled in
enhancing  the  performance  metrics  of  the  UC
networks,  which  is  difficult  to  solve  the  problem  by
optimizing  all  the  tasks  analytically.  Meanwhile,  deep
learning algorithms show the advantages on managing
multiple  tasks  simultaneously  based  on  the  data  and
training.  The  central  processing  unit  connecting  the
coordinated  APs  with  the  backhaul  links  provides  a
good opportunity to deploy the entity of deep learning
algorithms  to  manage  the  AP-user  association,
bandwidth  allocation,  power  control,  and  RIS
configurations.  Besides,  the  design  of  the  managing
system  based  on  deep  learning  should  be  flexible,
whose size can be adjusted in accordance with the scale
of the UC networks.

7    Conclusion

In  this  paper,  we  investigate  evolution  process  of
network paradigms and prior works in UC networks. A
joint  optimization  problem  about  AP-user  association,
beamforming of APs and reflection coefficients on RIS
is  formulated  to  maximize  WSR  under  RIS-enhanced
UC  networks.  To  tackle  this  problem,  an  alternating
iterative  optimization  framework  is  proposed  to
decouple  original  problem  into  three  subproblems.
Moreover,  a  dynamic  AP-user  association  can  be
effectively reconstructed by RIS through changing the
wireless  channels  which  are  critical  factor  for  the
determination  of  AP-user  association.  Simulation
results  show  that  RIS-enhanced h -based  UC  method
realizes good WSR with a low-cost approach, which is
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Fig. 7    Average  rate  per  user  versus  the  number  of
iterations  in  100  channel  realizations  with  independent
small-scale fading, where Pmax = 18 dBm, L = 2, and N = 10.
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a  promising  solution  for  the  deployment  of  UC
networks.
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