
 

Combining random forest and graph wavenet for
spatial-temporal data prediction

Chong Chen*, Yanbo Xu, Jixuan Zhao, Lulu Chen, and Yaru Xue

Abstract: The prosperity of deep learning has revolutionized many machine learning tasks (such as image recognition,

natural  language processing,  etc.).  With the widespread use of  autonomous sensor  networks,  the Internet  of  Things,

and crowd sourcing to monitor  real-world processes,  the volume,  diversity,  and veracity  of  spatial-temporal  data are

expanding rapidly. However, traditional methods have their limitation in coping with spatial-temporal dependencies,

which either incorporate too much data from weakly connected locations or ignore the relationships between those

interrelated  but  geographically  separated  regions.  In  this  paper,  a  novel  deep  learning  model  (termed  RF-GWN)  is

proposed by combining Random Forest (RF) and Graph WaveNet (GWN). In RF-GWN, a new adaptive weight matrix is

formulated by combining Variable Importance Measure (VIM) of RF with the long time series feature extraction ability

of GWN in order to capture potential  spatial  dependencies and extract long-term dependencies from the input data.

Furthermore,  two  experiments  are  conducted  on  two  real-world  datasets  with  the  purpose  of  predicting  traffic  flow

and  groundwater  level.  Baseline  models  are  implemented  by  Diffusion  Convolutional  Recurrent  Neural  Network

(DCRNN), Spatial-Temporal GCN (ST-GCN), and GWN to verify the effectiveness of the RF-GWN. The Root Mean Square

Error  (RMSE),  Mean  Absolute  Error  (MAE),  and  Mean  Absolute  Percentage  Error  (MAPE)  are  selected  as  performance

criteria. The results show that the proposed model can better capture the spatial-temporal relationships, the prediction

performance  on  the  METR-LA  dataset  is  slightly  improved,  and  the  index  of  the  prediction  task  on  the  PEMS-BAY

dataset is significantly improved. These improvements are extended to the groundwater dataset, which can effectively

improve  the  prediction  accuracy.  Thus,  the  applicability  and  effectiveness  of  the  proposed  model  RF-GWN  in  both

traffic flow and groundwater level prediction are demonstrated.
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1    Introduction

With  the  rapid  development  and  application  of
technologies  such  as  the  Internet  and  high-precision
sensors,  spatial-temporal  data  are  becoming  more
massive.  Compared  to  time  series  data,  spatial-

temporal  data  are  more  complex  in  the  (time-
dependent)  spatial  correlations[1, 2] .  Because  of  the
complexity  of  spatial-temporal  data  and  the  rapid
expansion  of  data  volume,  the  defects  of  traditional
data  mining  methods  are  becoming  increasingly
apparent[3].  Traditional  methods  based  on  statistical
principles[4, 5]  have  difficulties  in  capturing  spatial
correlation  in  spatial-temporal  series,  such  as
Autoregressive  Integrated  Moving  Average
(ARIMA)[6],  which  only  considers  the  time-
dimensional  characteristics  of  spatial-temporal  series
and  generates  large  errors  in  prediction  results.
Traditional  machine  learning  methods  (e.g.,  Support
Vector Machine (SVM)[7, 8] and Hidden Markov Model
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(HMM)[9])  can  capture  nonlinear  relationships  in
spatial-temporal data to a limited extent, but in the long
term,  they  are  difficult  to  predict  and  adapt  to  large-
scale  spatial-temporal  datasets.  The recent  proposal  of
Graph  Neural  Network  (GNN)  and  its  growing
popularity  in  the  past  few  years  make  it  possible  for
deep learning algorithms to be used in graph structured
data,  and  spatial-temporal  graph  modeling  has  also
received great attention.

In recent years, the most widely used model GNN is
Graph  Convolutional  Network  (GCN)  and  its
variants[10].  For  example,  Graph  SAmpling  and
aggreGatE  (GraphSAGE)  algorithm[11] samples  the
nodes,  aggregates  the  neighbors  of  the  nodes,  and
learns  the  nodes  based  on  the  aggregated  information.
Graph  Attention  Network  (GAT)[12] introduces  the
attention  mechanism  into  GCN  and  adds  aggregation
operations  on  neighbor  nodes  to  achieve  adaptive
assignment of weights to different neighbors. There are
two  most  common  approaches  to  capture  the  spatial-
temporal  correlation  of  spatial-temporal  data  using
GNN.  One  approach  is  to  combine  GCN  with
Recurrent  Neural  Network  (RNN).  For  example,  Li
et al.[13] proposed a Diffusion Convolutional Recurrent
Neural Network (DCRNN) model which described the
diffusion  process  of  spatial  network  information
through  diffusion  graph  convolution  network  with
RNN  capturing  the  time  correlation.  The  other
approach  is  to  combine  GCN  with  Convolutional
Neural  Network  (CNN).  For  example,  Yu  et  al.[14]

proposed  a  Spatial-Temporal  GCN  (ST-GCN),  which
used  a  CNN-based  approach  that  combines  a  GCN
layer  with  a  1D  convolutional  layer.  Both  approaches
can  easily  create  a  connection  between  two  vertices
with very little correlation. The addition of an attention
mechanism  has  since  been  proposed  to  solve  this
problem[15].  However,  the  attention  mechanism  tends
to  ignore  those  vertices  which  have  dependencies  but
lack edges.

The  key  to  spatial-temporal  data  prediction  is  to
accurately  extract  the  spatial-temporal  properties  from
the  data  and  build  a  prediction  model  on  this  basis.
Spatial-temporal  graph  modeling  faces  a  severe
challenge  in  extracting  dynamic  spatial-temporal

dependencies.  Random  Forest  (RF)  is  an  ensemble
learning  method proposed by  Breiman in  2001[16].  RF
is composed by multiple Decision Trees (DTs),  which
can  not  only  deal  with  classification  and  regression
problems,  but  also  analyze  the  critical  measure[17].  In
this  paper,  an  RF-based  Variable  Importance  Measure
(VIM)  is  designed  to  capture  the  spatial  correlation
between  vertices  in  the  spatial-temporal  graph.  RF
provides  two  kinds  of  importance  measures:  Mean
Decrease  Accuracy  (MDA)  based  on  Out-Of-Bag
(OOB) data and Mean Decrease Impurity (MDI) based
on  the  Gini  index[18].  The  MDI  of  a  feature  is
calculated  as  the  improvement  of  the  (weighted)
average  of  the  Gini  impurities  generated  on  RF  for
each  variable  in  a  single  decision  tree[19].  The  MDA
index is commonly used since it has no biases and can
directly  assess  the  impact  of  each  variable  on  the  RF
model’s  forecast  accuracy.  The  ability  to  capture
potential  spatial  correlations  in  spatial-temporal  data
can  be  achieved  with  the  help  of  RF’s  variable
importance measure.

Furthermore,  current  research  on  spatial-temporal
graph  modeling  has  shown  that  it  is  inefficient  for
learning  temporal  dependence.  For  example,  RNN-
based  methods  usually  perform  poorly  in  long-term
prediction  tasks[20].  Wu  et  al.[21] developed  Graph
WaveNet  (GWN),  which  uses  adaptive  adjacency
matrix  to  capture  spatiotemporal  correlation  by
stacking  spatiotemporal  layers  and  expands  causal
convolution as  a  time convolution layer  to  expand the
receptive  field,  allowing  to  capture  longer  sequences
with fewer layers. Therefore, we propose a new spatial-
temporal  sequence  prediction  model  (RF-GWN),
which effectively combines RF and GWN. The model
can  effectively  extract  the  complex  and  dynamic
spatial-temporal  dependencies  in  spatial-temporal  data
by  using  the  VIM  of  RF.  In  terms  of  temporal
correlation,  the  long series  temporal  feature  extraction
capability  of  GWN  is  fused  to  stack  multiple  spatial-
temporal  layers  to  capture  longer  time  series  features
with  a  shallower  network,  effectively  alleviating
overfitting.  In  order  to  verify  the  model,  two
experiments are conducted on real traffic flow datasets
and  spatial-temporal  groundwater  level  datasets.
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DCRNN,  ST-GCN,  and  GWN  are  used  as  baseline
models  to  validate  the  effectiveness  of  RF-GWN. The
experiments demonstrate that RF-GWN achieves better
performance compared to the baseline models.

2    Methodology

2.1    Mathematical definition

G = {V,E, A}
A ∈ RN×N

Xt ∈ RN×M t

X(t+1):(t+T ) ∈ RN×M×T

X(t−S ):t ∈ RN×M×S

In  spatial-temporal  graph  model,  the  graph  can  be
represented by , where V is a set of nodes,
E is  a  set  of  edges,  and  is  a  weighted
adjacency  matrix  representing  the  weighted  adjacent
relation  of  nodes.  The  graph G  has  a  dynamic  feature
matrix  at  each  time  step .  The  task  is  to
predict the feature matrix of the graph G  in the next T
time  steps  given  the  previous S
time steps .  The mapping relationship
can be expressed as
 [

X(t−S ):t,G
] f
→X(t+1):(t+T ) (1)

2.2    Framework of RF-GWN

The  proposed  deep  learning  framework  (RF-GWN)  is
displayed  in Fig.  1.  The  framework  consists  of  input
layer, stacked spatial-temporal layers, and output layer.
The  proposed  model  can  capture  spatial  dependencies
at  different  temporal  levels  by  stacking  multiple

spatial-temporal  layers,  with  the  bottom  spatial-
temporal  layer  receiving  short-range  spatial-temporal
information and the top spatial-temporal layer handling
long-range  spatial-temporal  information.  The  spatial-
temporal  layer  is  constructed  by  a  graph  convolution
module  and  a  Gated  Temporal  Convolution  layer
(Gated  TCN).  In  the  graph  convolution  module,  an
adaptive  adjacency  matrix  is  constructed  to  capture
potential  spatial  dependencies  by  introducing  RF.  On
one  hand,  the  input  is  transformed  by  the  linear  layer
and  passed  to  the  Gated  TCN  layer,  and  on  the  other
hand,  the  dependencies  between  nodes  are  learned
through RF and input to the graph convolutional neural
network  as  an  adaptive  weight  matrix,  and  different
weights  are  assigned  to  different  neighborhood  nodes
according  to  the  importance  scores  as  the  basis  for
aggregating the neighborhood nodes. The output of the
Gated TCN is passed to the graph convolutional neural
network as the feature input to the graph convolutional
neural  network.  The  output  of  each  layer  is  passed  to
the  output  layer  through  residual  connections,  and  the
output layer is set up with two ReLU activation layers
as well as two linear layers.

2.3    Graph convolution layer combining RF

Graph  convolution  is  used  to  look  for  hidden  spatial
dependencies  from  spatial-temporal  data.  To
automatically  infer  spatial  connectivity  from  data
without  any  prior  knowledge,  we  build  an  adaptive
weight  matrix  base  on  the  VIM  of  RF.  RF  is  an
integrated  method  of  Classification  And  Regression
Tree  (CART)  based  on  bootstrap  samples  and
randomly  selected  features.  As  mentioned  in
introduction, the VIM of RF is calculated in two ways:
MDA based on OOB data and MDI based on the Gini
index[18].  We  employ  the  nodes  in  the  graph  structure
as  features  of  the  sample  data  in  the  RF  model  using
the  MDA  calculation  approach.  Bootstrap  sampling
technique  is  carried  out  to  extract  training  samples
from  the  original  data  to  construct  the  decision  tree,
and  the  rest  of  the  data,  which  are  the  OOB data,  are
utilized  to  evaluate  the  accuracy  of  the  decision
tree[22, 23] .  The  OOB  errors  before  and  after  adding
random noise  to  a  feature  are  calculated  (Fig.  2).  The
average  of  the  difference  of  the  OOB  error  is  the
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Fig. 1    Framework of RF-GWN.
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importance  score  of  the  feature  in  the  whole  RF.  The
importance  score  is  used  to  measure  the  spatial
dependency  among  the  nodes  in  the  graph  structure.
The  importance  scores  of  nodes  can  be  described  as
Eq. (2).
 

FI(Vi) =
1

nTree

nTree∑
i=1

(VerrOOB2
i −VerrOOB1

i ) (2)

VerrOOB1
i Vi

VerrOOB2
i

Vi

where  is  the OOB error of  node  calculated
by  decision  tree  in  RF;  is  the  OOB  error  of
node  with the random noise added; and nTree is the
number of decision tree.

Aopt ψ

ψ

ψ

ψ

Aopt ψ

For some graph structures that lack prior knowledge,
the  spatial  connectivity  between  nodes  is  difficult  to
infer.  To  solve  this  problem,  we  propose  an  adaptive
adjacency  matrix .  The  model  sets  a  threshold 
based on the importance scores of the nodes calculated
from the VIM of RF. Nodes greater than or equal to 
are  used  as  the  actual  predicted  neighbor  nodes  to  the
target  node.  The  specific  value  of  needs  to  be
determined  according  to  the  actual  graph  structures.
The values  of  will  be  discussed in  the  experimental
section.  The  relationship  between  the  adaptive
adjacency matrix  and  is shown in Eq. (3).
 

Aopt =

{
FI(Vi, J j),

0,
FI(Vi, J j) ⩾ ψ;
FI(Vi, J j) < ψ

( j = 1,2, ...,N; j , i)

(3)

FI(Vi, J j)

Vi V j

Aopt

R ∈ RN×N

where  represents  the  importance  score  of  the
target  node  relative  to  neighbor  node .  The
adjacency  matrix  only  describes  the  connectivity
of  the  nodes,  which  can  not  adequately  express  the
degree  of  the  spatial  dependencies  between  them.  To
solve this problem, we use the importance score as an
adaptive  weight  matrix .  The  weight  matrix

requires  no  prior  knowledge  and  will  be  utilized  as  a
model  parameter  throughout  the  model’s  training.  We
propose the graph convolution layer combining RF as
 

Z = f (X, Aopt) = Sigmoid((Aopt⊗R)XW) (4)

X ∈ RN×D Z ∈ RN×M

W ∈ RD×M

⊗

where  denotes  the  input  signals, 
denotes  the  outputs,  denotes  the  model
parameter matrix,  and  is the element-wise product.

By  incorporating  RF,  the  model  is  forced  to  only
focus  on the  spatial  dependencies  between nodes  with
neighboring  relationships,  and  the  accuracy  of
prediction  is  improved.  The  redundant  parameters  in
the model are reduced and the computational efficiency
is  improved. Figure  3 shows  a  schematic  diagram  of
the graph convolution layer with RF.

2.4    Gated TCN

We employ dilated causal convolution as the temporal
convolution layer to capture the temporal relationships.
Dilated causal convolution can be sampled at intervals
in  the  input  of  convolution  process,  and  the  sampling
rate can be controlled artificially. As shown in Fig. 4, it
can extend the convolution kernel’s receptive field and
lower  network  depth  to  some  amount.  Also,  dilated
casual  convolution  networks  can  efficiently  handle
long-range  sequences  without  recursion  manner,
reducing the occurrence of gradient disappearance and
explosion[24].

f
f t

Mathematically,  given  a  1-dimensional  input
sequence x  and  a  filter ,  the  dilation  causal
convolution  operation  of x  with   at  step  can  be
expressed as Eq. (5).
 

x∗ f (t) =
K−1∑
s=0

f (s)x(t−d×n) (5)

 

Train: 2/3 samples Train: 2/3 samples
Select randomly

Tree=1 Tree=n
Importance of Vi in Tree=1

Feature importance of Vi

Importance of Vi in Tree=n

Vi
errOOB2 ··· Vi

errOOB2

Vi
errOOB1 Vi

errOOB1

Test: 1/3 samples Test: 1/3 samples

Add noise to Vi Add noise to Vi

V1, V2, ···, Vn−1, Vn V1, V2, ···, Vn−1, Vn

Ni, Nj, Np
Ni, Nj, Np

 
Fig. 2    Schematic of the method based on OOB sample for getting feature importance.
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where d  represents  the  dilation  factor.  By  stacking
dilated  causal  convolution  layers  with  dilation  factors
in an increasing order, the receptive field of TCN also
increases[25].

The  temporal  convolution  module  selects  the  gating
mechanism to  control  the  flow of  information  in  each
layer  of  the  temporal  convolutional  network[24].  As
shown in Fig. 5, Gated TCN is composed of two TCN
modules.  According  to  Ref.  [26],  a  TCN  module  is  a
dilated  causal  convolution  and  a  hyperbolic  tangent
activation  function.  Another  TCN  module  is  a  dilated
causal  convolution  and  a  Sigmoid  activation  function
to control the ratio of the delivered information.

The  formulation  of  Gated  TCN  is  presented  as
follows:
 

h = g(Θ1 ∗X+b)⊗σ(Θ2 ∗X+ c) (6)

X ∈ RN×M×S Θ1,Θ2

g(·) σ(·)
Sigmoid

where  is the input, , b, and c are the
model  parameters  of  the  extended  causal  convolution,

 is  the  output  activation  tanh  function,  and  is
the  function  that  determines  the  information
ratio to the next layer.

3    Experiment

3.1    Experimental setups

In  order  to  verify  the  proposed  model  RF-GWN,
experiments  are  conducted  on  two real  traffic  datasets
(METR-LA  and  PEMS-BAY)  and  a  spatial-temporal
groundwater  dataset.  METR-LA  and  PEMS-BAY  (in
Section  3.4)  are  typical  spatial-temporal  datasets,
which  are  often  used  to  test  the  feature  extraction
ability  of  algorithms  for  spatial-temporal  data.  The
groundwater dataset  (in Section 3.5) is  a  small  dataset
with  hundreds  of  records.  To  the  best  of  our
knowledge,  existing  researches  for  this  kind  of
problems  only  considered  the  time-relations  between
data. However, it  is obvious that spatial relations exist
between  different  geographical  locations  where
observation boreholes are deployed. Therefore, the two
kinds  of  datasets  are  used  to  verify  the  effectiveness
and applicability of RF-GWN.
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Fig. 3    Graph convolution layer with RF.
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Fig. 5    Gated TCN module.
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The data are normalized using Z-score as
 

Z =
X−X

K
(7)

Xwhere X is the sample to be processed,  represents the
average  value  of  the  sample,  and K  is  the  standard
deviation of the sample.

The  hardware  and  software  environments  for
developing  the  proposed  model  and  conducting  the
experiments are shown in Table 1.

3.2    Baseline

To  evaluate  the  ability  of  RF-GWN  in  capturing  the
spatial-temporal  correlations,  three  traditional  baseline
models  are  compared,  including GWN[21],  DCRNN[13]

and ST-GCN[14],  where GWN combines dilated causal
convolution  with  adaptive  adjacency  matrix  to  extract
spatial  dependence,  DCRNN  combines  GCN  with
RNN  in  an  encoder-decoder  manner,  and  ST-GCN
combines graph convolution with 1D convolution.

3.3    Performance criteria

Three  indexes  are  implemented  in  this  work  to  assess
the performance of the proposed model, including Root
Mean  Squared  Error  (RMSE),  Mean  Absolute  Error
(MAE), and Mean Absolute Percentage Error (MAPE).
The indexes are defined as
 

RMSE =

√√
1
n

n∑
i=1

(yi− ŷi)2 (8)

 

MAE =
1
n

n∑
i=1

|yi− ŷi| (9)

 

MAPE =
1
n

n∑
i=1

∣∣∣∣∣yi− ŷi

yi

∣∣∣∣∣ (10)

n yiwhere  is  the  number  of  training  or  test  samples; 

ŷiand  are  the  actual  value  and  predicted  value,
respectively. The average amount of the error between
the  model’s  predicted  value  and  actual  value  is
measured  by  the  RMSE.  The  average  of  the  absolute
errors  between  the  predicted  value  and  actual  value  is
calculated using MAE. MAPE is  used to  calculate  the
percentage  error  between  the  expected  and  actual
value.  For  the  three  indexes,  the  lower  the  RMSE,
MAE,  and  MAPE,  the  better  the  performance  of  the
model.

3.4    Experiments on traffic dataset

3.4.1    Dataset
METR-LA  records  four-month  traffic  speed  statistics
of 207 sensors on Los Angeles county highways from
March  1st,  2012  to  June  30th,  2012.  PEMS-BAY
contains  six-month  traffic  speed  information  of  325
sensors in the Bay area from January 1st, 2017 to May
31st,  2017.  In  this  paper,  the  same data  preprocessing
is  adopted  for  all  the  methods:  the  data  are  processed
into 5-min time interval and normalized by Z-score. At
the  same  time,  the  datasets  are  divided  into  training,
verification,  and  test  datasets  in  chronological  order
with  the  percentage  of  70%,  10%,  and  20%,
respectively. The summary of the datasets is shown in
Table 2.
3.4.2    Parameter

ψThe ideal threshold  setting in traffic flow prediction
is  the  first  topic  we  cover  in  this  section. Figure  6
compares  the  performance  of  15-min  advance
predictions  for  the  METR-LA  and  PEMS-BAY
datasets  when  different  thresholds  are  set  for  RF-
GWN,  where  the  thresholds  increase  from  0  to  0.15
with an interval of 0.01. It can be seen that the lowest
RMSE  and  MAE  are  obtained  when  the  threshold
value is  0.08 and 0.11 in  METR-LA and PEMS-BAY
datasets. The learning rate is set to 0.001 and the batch
size is set to 64 for both datasets. Weight decay is set to
0.0001  in  order  to  prevent  overfitting.  Dropout  with
p=0.3 is applied to the outputs of the graph convolution

 

Table 1    Environments of the experiment.

Item Configuration
System Ubuntu 18.04.4 LTS

Software
Python 3.7.6

PyCharm community edition 2 019.2.5
PyTorch 1.1.0

Hardware
Intel(R) Xeon(R) Silver 4110 CPU @ 2.10 GHz

16 GB RAM
NVIDIA GEFORCE RTX 2080 Ti

 

 

Table 2    Summary of METR-LA and PEMS-BAY.

Dataset Number of nodes Number of time steps
METR-LA 207 34 272

PEMS-BAY 325 52 116
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layer.  We optimize  model  parameters  of  RF-GWN by
minimizing the Mean Absolute Error (MAE) loss with
stochastic  gradient  descent.  In  addition,  the
hyperparameters of the RF for conducting experiments
are shown in Table 3.
3.4.3    Results and analysis
(1) Effects of adaptive weight matrix

On  the  METR-LA  dataset,  the  accuracy  of  the
adaptive  adjacency  matrix  produced  via  RF-based
model  learning  is  verified. Figure  7a shows  the  case
marked on the map, and Fig. 7b is a partial heat map of

the adaptive adjacency matrix in this  paper,  where the
horizontal  coordinates  only  show  the  first  50  nodes.
According to Fig. 7b, different columns in the adaptive
adjacency matrix are more different, and some columns
have more high-value points than others. For example,
columns  14,  34,  and  47  in Fig.  7b have  fewer  high-
value points compared to columns 9, 41, and 43, which
indicates  that  nodes  9,  41,  and  43  have  an  impact  on
more  nodes  in  the  graph.  The  reliability  of  the  results
can  be  confirmed  by  the  actual  geographic  traffic
distribution  map  in Fig.  7a.  Nodes  9,  41,  and  43  are
located  near  the  intersection  of  several  major  roads,
while  nodes  14,  34,  and  47  are  located  on  a  roadway
farther from the intersection, and it  is clear that traffic
speeds  at  the  intersection  node  have  an  impact  on
traffic speeds at more nodes. This demonstrates that the
model’s  spatial  dependencies  can  be  captured  more
precisely  by  the  adaptive  adjacency  matrix  learned
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Fig. 6    Evolution of RMSE and MAE.

 

 

Table 3    RF hyperparameters.

Parameter Value Parameter Value
Bootstrap True Criterion MSE

Max_features Auto Min_samples_split 2
OOB_score False n_estimators 10

n_jobs 1 Min_samples_leaf 1
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Fig. 7    Part of self-adaptive adjacency matrix.
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based  on  RF.  It  also  shows  that  RF-GWN  can  still
function  well  even  in  the  presence  of  a  flawed  graph
structure.

(2) Accuracy
The  predicted  values  (30-min-ahead)  versus  actual

values  of  the  RF-GWN  model  on  the  two  traffic
datasets  are  plotted  in Figs.  8 and  9 .  As  can  be
observed, the predicted value of RF-GWN always falls
in the middle of the actual values, which can accurately
predict  the  missing  part  of  the  actual  values  and
achieve  stable  prediction.  In  particular,  RF-GWN  can
effectively extract local features and accurately predict
the traffic speed of the entire traffic network.

Tables 4 and 5 show the performance comparison of
the model prediction in this paper with the other three
models  in  advance  of  15  min,  30  min,  and 60 min  on
the two datasets. As can be observed from Tables 4 and

5,  the  RMSE,  MAE,  and  MAPE  indexes  of  the  RF-
GWN  model  are  significantly  better  than  the
convolution-based  method  ST-GCN  and  also  better
than  the  recursive-based  method  DCRNN.  Although
the  prediction performance of  the  RF-GWN model  on
the METR-LA dataset in the 15-min horizons is lower
than  that  of  GWN,  the  difference  between  the  two  is
almost negligible. This may be due to the small sample
size  of  the  METR-LA  dataset.  In  particular,  on  the
PEMS-BAY dataset, compared to the best model GWN
in  the  benchmark  model,  a  large  improvement  is
achieved in the 15-min and 30-min horizons, and more
pronounced  in  the  60-min  horizons,  even  surpassing
GWN’s improvement over its predecessor. In addition,
the  number  of  parameters  in  RF-GWN  (2.48  ×  105)
only  accounts  for  around  half  of  ST-GCN.  Compared
to  ST-GCN  which  processes  228  nodes,  the  proposed
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Fig. 8    RF-GWN prediction curves (METR-LA).
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Fig. 9    RF-GWN prediction curves (PEMS-BAY).
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RF-GWN processes 325 nodes in PEMS-BAY dataset.
This  indicates  that  our  model  significantly  reduces
redundant parameters. The experimental results of RF-
GWN  confirm  that  by  introducing  RF  to  improve  the
model’s  ability  to  capture  spatial-temporal
dependencies,  our  method  can  make  more  accurate
predictions  than  GWN,  and  the  ability  is  improved  at
each  time  stage  relative  to  the  baseline  model,
especially the superiority in long-term prediction.

3.5    Experiments on groundwater dataset

3.5.1    Dataset
The  dataset  is  provided  by  the “ China  Western
Environment and Ecology Science Data Center” (http://
www.ncdc.ac.cn/).  The  study  area  was  selected  from
the  middle  reaches  of  the  Heihe  River  basin
(38°38′N−39°53′N, 98°53′E−100°44′E), which covers
an  area  of  roughly  9016  km2 (refer  to Fig.  2 in  a
previous research carried out by Chen et al.[3] in Heihe
River  Basin).  This  area  was  chosen  because  of  the
abundance  of  groundwater  observation  data  and  the
large  area  and  time  span  contained  in  these  data,
making it an ideal spatial-temporal dataset. The annual
precipitation in the area is low and concentrated, and it
belongs to the area with scarce groundwater resources.
The changes of  groundwater  level  within one year  are
affected  by  precipitation,  evapotranspiration,  surface
water, and agricultural irrigation. The annual low point
of  groundwater  level  is  from  March  to  May,  and  the
peak  is  from  June  to  September.  The  observation

dataset  records  historical  groundwater  level  data  from
42  water  level  observation  boreholes  in  the  area.  The
dataset  was collected from January 1986 to December
2008, recording 276 sets on a monthly basis.

Since  some  stations  had  missing  values  in  the
groundwater level data (Fig. 10), the Lagrangian linear
interpolation  method  is  used  to  repair  and  extend  the
original data. The processed data are expanded to 2750
sets.  In  addition,  we  normalized  the  expanded
groundwater  level  data  using  a Z -score  normalization
process  and returned to  the  actual  values  to  assess  the
prediction  accuracy.  80% of  the  dataset  is  selected  as
the  training  set,  10% as  the  validation  set,  and  the
remaining 10% as the test set.
3.5.2    Parameter

ψ ψ

One  of  the  key  parameters  of  the  RF-GWN  model  is
the  threshold  value .  Different  could  have  a  great
impact  on  the  prediction  effect  of  the  model.  In  this
section,  we  have  carried  out  extensive  studies  to
determine  the  threshold’s  ideal  value.  The  remaining
hyperparameters  of  the  model  for  predicting
groundwater  level  are  comparable  to  those  for
predicting traffic flow.

ψ

The  node  importance  scores  calculated  by  the  VIM
of  RF  provide  ideas  for  the  value  of  the  threshold .
Considering  the  calculation  volume  and  prediction
accuracy,  the  top  7  observation  boreholes  with  the
highest  importance  score  for  the  target  observation
borehole  are  selected,  and  the  sum  of  the  importance
scores  is  taken  as  the  optimal  threshold  value  for  the

 

Table 4    Comparison of performance criteria for different models on METR-LA dataset.

Model
15 min 30 min 60 min

MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%)
DCRNN 2.77 5.38 7.30 3.15 6.45 8.80 3.60 7.60 10.50
ST-GCN 2.88 5.74 7.62 3.47 7.24 9.57 4.59 9.40 12.70

GWN 2.69 5.15 6.90 3.07 6.22 8.37 3.53 7.37 10.01
RF-GWN 2.70 5.14 6.94 3.06 5.99 8.30 3.51 7.19 10.09

 

 

Table 5    Comparison of performance criteria for different models on PEMS-BAY dataset.

Model
15 min 30 min 60 min

MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%)
DCRNN 1.38 2.95 2.90 1.74 3.97 3.90 2.07 4.74 4.90
ST-GCN 1.36 2.96 2.90 1.81 4.27 4.17 2.49 5.69 5.79

GWN 1.30 2.74 2.73 1.63 3.70 3.67 1.95 4.52 4.63
RF-GWN 1.21 2.55 2.58 1.44 3.13 3.13 1.80 4.08 4.23
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ψ

target  observation  borehole.  In  our  experiments,  the
optimal  of  the  42 water  level  observation boreholes
are obtained separately as shown in Fig. 11, and it can
be  seen  that  the  mean  value  of  the  42  thresholds  is
0.099 965, the median value is 0.099 85, and the mode
value is 0.1.

ψ

ψ

We  tested  the  effects  of ψ= 0.099  965, ψ= 0.099  85,
and ψ=0.1 on the model performance, respectively. The
performance  of  RF-GWN  on  the  groundwater  dataset
for  different  is  compared  in Table  6.  The  results
indicate that the prediction results are similar when the
median or mode is selected as the threshold value, and
both  are  better  than  the  mean  value,  so  the  parameter
threshold  is set to 0.1 in this experiment.
3.5.3    Results and analysis
(1) Effects of adaptive weight matrix

Next,  the  spatial  dependence  capture  capability  of
our  model  is  evaluated.  Taking  the  observation
boreholes “Wangqizha”  and  “22”  as  the  target

observation  boreholes, Fig.  12 shows  the  importance

score  of  each  observation  borehole  to  the  target
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Fig. 10    Observed groundwater level in different boreholes.
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Fig. 11    Optimum  threshold  value  of  each  observation
boreholes.
 

 

Table  6    Comparison  of  performance  criteria  for  different
thresholds on groundwater dataset.

Threshold RMSE MAE MAPE (%)
Average value 0.089 86 0.078 32 0.005 719
Median value 0.088 92 0.075 16 0.005 360
Mode value 0.088 81 0.075 04 0.005 349

 

  Chong Chen et al.:   Combining random forest and graph wavenet for spatial-temporal data prediction 373

 



ψ

observation  borehole  (yellow  bar)  and  the  importance
score  of  the  target  observation  borehole  to  the  other
observation borehole  (blue bar)  learned by our  model.
It can be found that the experimentally obtained spatial
dependence  correlates  with  the  actual  geographic
distribution  of  the  boreholes  shown  in  the  study  area,
which  is  also  in  accordance  with  the  natural  law,  in
which the flow of groundwater is inevitably influenced
by  topographic  conditions,  such  as  the  undulations  of
the  local  terrain.  It  can  be  found  from the  experiment
that the number of observation boreholes affecting each
target  observation  borehole  varies,  but  most  of  the
observation boreholes are affected by only 6−7 nearby
observation  boreholes  and  the  magnitude  of  the  effect
is also different (which provides a basis for threshold 
setting).  Our  model  is  capable  of  adaptively  capturing
boreholes with high influence on the water level of the
target  borehole  in  terms  of  spatial  characteristics,  and
assigning  different  weights  according  to  the  degree  of
influence. We believe that this is due to the advantage
of  introducing  the  spatial  dependence  extraction
capability  of  RF  and  the  automatic  assignment  of
weights.  This  mechanism can significantly capture the
spatial  dependence  between  nodes  in  the  graph
structure,  which  is  beneficial  to  the  prediction
accuracy.  Compared  with  global  prediction,  the  RF-
GWN model can reduce the computational effort.

(2) Accuracy
The predicted values  and actual  values  of  RF-GWN

and  baseline  models  (DCRNN,  ST-GCN,  and  GWN)
are  plotted on the  snapshot  of  the  test  data  in Fig.  13.
The size of predicted time window is set to 12 month,
which  denotes  the  length  of  the  output  sequence.
Taking  two  target  observation  boreholes  (observation
boreholes “Wangqizha”  and  “22”)  as  examples,  it  can
be seen that the two target observation boreholes have
different  patterns  of  variation,  for  example,  the
observation borehole in Fig. 13a has an obvious rising
trend of groundwater level, and the observation borehole in
Fig. 13b has a larger fluctuation of groundwater level.
RF-GWN  can  extract  complex  groundwater  level
change patterns from different observation boreholes to
obtain better prediction performance. The results show
that  the  prediction  curves  of  the  RF-GWN  model
reflect  more  details  of  the  local  fluctuations  and  can
better  extract  local  features  and  adapt  to  the  complex
groundwater level change trends of different nodes. As
shown in the enlarged region in Fig. 13, the prediction
results are more accurate than those of GWN.

To  evaluate  the  overall  prediction  performance  of
RF-GWN  model  and  other  baseline  models  on  the
groundwater  dataset, Fig.  14 shows the average of  the
predicted  RMSE  of  different  models  over  42
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Fig. 12    Evaluation of the importance score of/to the target observation borehole.
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observation boreholes. It can be seen that the prediction
accuracy  of  RF-GWN  is  better  than  the  classical
spatial-temporal  graph  neural  network  models  such  as
DCRNN and GWN, proving that RF-GWN can model
the groundwater spatial-temporal data more effectively.
In Table 7, the mean value of index of 42 observation
boreholes  and  the  average  training  time  cost  of  each
epoch  are  recorded.  It  can  be  observed  that  ST-GCN
has  the  highest  efficiency  during  the  training  phase.
DCRNN  consumes  significantly  more  time  than  other
methods  because  of  the  requirement  of  long  sequence
training  in  recurrent  networks.  RF-GWN  and  GWN
consume  almost  the  same  amount  of  time  in  the

training  phase.  In  conclusion,  RF-GWN has  improved
the  prediction  performance  by  introducing  RF,
however, there is still room for further improvement in
computational efficiency.

4    Conclusion

In  this  work,  an  improved  spatial-time-series
forecasting  model  RF-GWN  is  proposed,  which
combines RF and GWN for the first time to efficiently
capture  spatial-temporal  dependencies.  RF-GWN
captures potential spatial correlations through the VIM
of  RF  and  uses  the  dilation  causal  convolution  as  a
temporal  convolution  layer,  enabling  the  temporal

 

(a) Observation borehole “Wangqizha”
Number of time steps Number of time steps

1466.5

1466.0

G
ro

un
dw

at
er

 le
ve

l o
f 

“W
an

gq
iz

ha
” (

m
)

G
ro

un
dw

at
er

 le
ve

l o
f “

22
”

1465.5

1465.0

1465.5

1465.4

1465.3

1465.2

4 6

0 5 10 15 20 25

(b) Observation borehole “22”

ST-GCN
DCRNN
GWN
RF-GWN
OriData

ST-GCN
DCRNN
GWN
RF-GWN
OriData

ST-GCN
DCRNN
GWN

RF-GWN
OriData

ST-GCN
DCRNN
GWN

RF-GWN
OriData

0 5 10 15 20 25

1416.5

1416.4

1416.3

1416.2

1416.1

1416.0

1415.9
1416.15

1416.20

1416.25

1416.30

8 10 12

 
Fig. 13    Prediction results of groundwater level of target observation boreholes.
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Fig. 14    RMSE of 42 observation boreholes.

 

 

Table 7    Comparison of prediction results and training time of different models.

Model RMSE MAE MAPE (%) Training time of each epoch (s)
ST-GCN 0.122 96 0.107 84 0.007 611 2.12
DCRNN 0.105 25 0.093 31 0.006 625 39.75

GWN 0.095 99 0.079 72 0.005 618 5.64
RF-GWN 0.088 81 0.072 04 0.005 349 5.91
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convolution  layer  to  capture  longer  sequences  using
fewer  layers.  Experiments  are  conducted  on  real
datasets  in  two domains,  traffic  flow and groundwater
level,  and  analyzed  in  detail  from  three  aspects:
adaptive  weight  matrix,  prediction  results,  and
evaluation index comparison of prediction results from
multiple  baseline  models.  The  results  show  that  the
introduction  of  RF  can  make  more  accurate
predictions,  and  prove  the  applicability  and
effectiveness  of  the  model  for  predicting  two types  of
spatial-temporal  distribution  data:  traffic  flow  and
groundwater  level.  However,  due  to  the  small  amount
of groundwater sample data used, the expanded dataset
failed to reach tens of thousands, the future work of the
model  may  include  exploring  applications  on  large
datasets.

References

 G.  Zhang,  H.  He,  and  D.  Katabi,  Circuit-GNN:  Graph
neural networks for distributed circuit design, in Proc. 36th

International  Conference  on  Machine  Learning,  Long
Beach, CA, USA, 2019, pp. 7364–7373.

[1]

 F.  R.  K.  Chung,  Spectral  graph  theory,  CBMS  Regional
Conference  Series  in  Mathematics,  https://doi.org/
10.1090/cbms/092, 1997.

[2]

 C.  Chen,  W.  He,  H.  Zhou,  Y.  Xue,  and  M.  Zhu,  A
comparative study among machine learning and numerical
models for simulating groundwater dynamics in the Heihe
River  Basin,  northwestern  China, Scientific  Reports,
vol. 10, no. 1, p. 3904, 2020.

[3]

 Y.  Lin  and  Y.  Yang,  Stock  markets  forecasting  based  on
fuzzy time series model, in Proc. 2009 IEEE International
Conference  on  Intelligent  Computing  &  Intelligent
Systems, Shanghai, China, 2009, pp. 782–786.

[4]

 B. Gui, X. Wei, Q. Shen, J. Qi, and L. Guo, Financial time
series  forecasting  using  support  vector  machine,  in Proc.
2014  Tenth  International  Conference  on  Computational
Intelligence  and  Security,  Kunming,  China,  2014,  pp.
39–43.

[5]

 S.  H.  Holan,  Long-memory  time  series  theory  and
methods, Journal  of  the American Statistical  Association,
vol. 103, no. 484, pp. 1715–1716, 2008.

[6]

 E.  E.  Osuna, Support  Vector  Machines:  Training  and
Application.  Cambridge,  MA,  USA:  Massachusetts
Institute of Technology, 1998.

[7]

 S.  R.  Sain,  The  nature  of  statistical  learning  theory,
Technometrics, vol. 38, no. 4, p. 409, 1996.

[8]

 L.  E.  Baum,  T.  Petrie,  G.  Soules,  and  N.  Weiss,  A
maximization  technique  occurring  in  the  statistical

[9]

analysis  of  probabilistic  functions  of  Markov  chains,
Annals  of  Mathematical  Statistics,  vol. 41,  no. 1,
pp. 164–171, 1970.
 T. N. Kipf and M. Welling, Semi-supervised classification
with  graph  convolutional  networks,  arXiv  preprint  arXiv:
1609.02907, 2016.

[10]

 W.  L.  Hamilton,  R.  Ying,  and  J.  Leskovec,  Inductive
representation  learning  on  large  graphs,  in Proc.  31st

International  Conference  on  Neural  Information
Processing  Systems,  Long  Beach,  CA,  USA,  2017,  pp.
1025–1035.

[11]

 P.  Veličković,  G.  Cucurull,  A.  Casanova,  A.  Romero,  P.
Liò,  and  Y.  Bengio,  Graph  attention  networks,  arXiv
preprint arXiv: 1710.10903, 2017.

[12]

 Y.  Li,  R.  Yu,  C.  Shahabi,  and  Y.  Liu,  Diffusion
convolutional recurrent neural network: Data-driven traffic
forecasting, arXiv preprint arXiv: 1707.01926, 2018.

[13]

 B.  Yu,  H.  Yin,  and  Z.  Zhu,  Spatio-temporal  graph
convolutional  networks:  A  deep  learning  framework  for
traffic  forecasting,  in Proc.  Twenty-Seventh  International
Joint  Conference  on  Artificial  Intelligence,  Melbourne,
Australia, 2018, pp. 3634–3640.

[14]

 J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D. -Y. Yeung,
GaAN: Gated attention networks for learning on large and
spatiotemporal  graphs,  arXiv  preprint  arXiv:  1803.07294,
2018.

[15]

 L.  Breiman,  Random  forests, Machine  Learning,  vol. 45,
no. 1, pp. 5–32, 2001.

[16]

 S.  Song,  R.  He,  Z.  Shi,  and  W.  Zhang,  Variable
importance  measure  system  based  on  advanced  random
forest, Computer  Modeling  in  Engineering &  Sciences,
vol. 128, no. 1, pp. 65–85, 2021.

[17]

 T. Hastie, R. Tibshirani, and J. Friedman, Random forests,
in the  Elements  of  Statistical  Learning.  New  York,  NY,
USA: Springer, 2009, pp. 587–604.

[18]

 M.  Loecher,  From  unbiased  MDI  feature  importance  to
explainable  AI  for  trees,  arXiv  preprint  arXiv:
2003.12043, 2020.

[19]

 Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson,
Structured  sequence  modeling  with  graph  convolutional
recurrent networks, in Proc. 25th International Conference
on Neural Information Processing, Siem Reap, Cambodia,
2018, pp. 362–373.

[20]

 Z.  Wu,  S.  Pan,  G.  Long,  J.  Jiang,  and  C.  Zhang,  Graph
wavenet  for  deep  spatial-temporal  graph  modeling,  arXiv
preprint arXiv: 1906.00121, 2019.

[21]

 A.  Fisher,  C.  Rudin,  and  F.  Dominici,  All  models  are
wrong,  but  many  are  useful:  Learning  a  variable’s
importance  by  studying  an  entire  class  of  prediction
models  simultaneously, J.  Mach.  Learn.  Res.,  vol. 20,
no. 177, pp. 1–81, 2019.

[22]

 D. H. Wolpert and W. G. Macready, An efficient method[23]

    376 Intelligent and Converged Networks,  2022, 3(4): 364−377

 



to  estimate  bagging’s  generalization  error, Machine
Learning, vol. 35, no. 1, pp. 41–55, 1999.
 Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang,
Connecting  the  dots:  Multivariate  time  series  forecasting
with  graph neural  networks,  in Proc.  26th ACM SIGKDD
International  Conference  on  Knowledge  Discovery  &
Data Mining, virtual event, CA, USA, 2020, pp. 753–763.

[24]

 G.  Jin,  C.  Liu,  Z.  Xi,  H.  Sha,  Y.  Liu,  and  J.  Huang,
Adaptive  dual-view  wavenet  for  urban  spatial–temporal
event  prediction, Information  Sciences,  vol. 588,
pp. 315–330, 2022.

[25]

 Y.  N.  Dauphin,  A.  Fan,  M.  Auli,  and  D.  Grangier,
Language  modeling  with  gated  convolutional  networks,
arXiv preprint arXiv: 1612.08083, 2016.

[26]

Chong Chen received the  BSc,  MSc,  and
PhD  degrees  from  Lanzhou  University  in
2010,  2012,  and  2017,  respectively.  He  is
currently  an  associate  professor  at  the
College  of  Information  Science  and
Engineering,  China  University  of
Petroleum-Beijing.  His  research  interests
include  numerical  modeling,  data

assimilation,  and  machine  learning.  He  is  a  member  of  China
Computer  Federation  (CCF)  and  Chinese  Association  for
Artificial Intelligence (CAAI).

Yanbo Xu is currently pursuing the master
degree of  engineering in  China University
of  Petroleum-Beijing.  Her  major  is
electronic  information  engineering.  Her
research interests include machine learning
and information prediction.

Jixuan  Zhao is  currently  pursuing  the
master  degree of  engineering in  the China
University  of  Petroleum-Beijing.  His
major  is  electronic  information
engineering.  His  research interests  include
machine  learning,  graph  neural  networks,
and information prediction.

Lulu  Chen received  the  master  degree  of
engineering  from  China  University  of
Petroleum-Beijing  in  2021.  She  is  an
engineer  of  the  Education  Management
Information  Centre  of  the  Ministry  of
Education  now.  Her  major  is  information
and  communication  engineering.  Her
research  interests  include  machine

learning, graph neural networks, and information prediction.

Yaru  Xue received  the  BS  degree  in
information  technology  from  Central
China  Normal  University,  Wuhan,  China
in 1994, the MS degree in information and
communication engineering from Lanzhou
University,  Lanzhou,  China  in  2001,  and
the  PhD degree  in  geophysics  from China
University  of  Petroleum-Beijing,  Beijing,

China in 2009. From 2009 to 2010, she was a visiting scholar in
the Geophysics Department of University of Illinois at  Urbana-
Champaign.  She  is  an  associate  professor  in  the  College  of
Information  Science  and  Engineering,  China  University  of
Petroleum-Beijing.  Her  research  interests  lie  in  seismic  data
processing, including radon transform, seismic data interpolation
and  denoising,  and  applications  of  machine  learning  in
exploration geophysics.

  Chong Chen et al.:   Combining random forest and graph wavenet for spatial-temporal data prediction 377

 


