
 

Multi-features fusion for short-term photovoltaic
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Abstract: In recent years, in order to achieve the goal of “carbon peaking and carbon neutralization”, many countries

have focused on the development of clean energy, and the prediction of photovoltaic power generation has become a

hot  research  topic.  However,  many  traditional  methods  only  use  meteorological  factors  such  as  temperature  and

irradiance  as  the  features  of  photovoltaic  power  generation,  and  they  rarely  consider  the  multi-features  fusion

methods for power prediction. This paper first preprocesses abnormal data points and missing values in the data from

18 power stations in Northwest China, and then carries out correlation analysis to screen out 8 meteorological features

as  the  most  relevant  to  power  generation.  Next,  the  historical  generating  power  and  8  meteorological  features  are

fused  in  different  ways  to  construct  three  types  of  experimental  datasets.  Finally,  traditional  time  series  prediction

methods,  such  as  Recurrent  Neural  Network  (RNN),  Convolution  Neural  Network  (CNN)  combined  with  eXtreme

Gradient Boosting (XGBoost), are applied to study the impact of different feature fusion methods on power prediction.

The results show that the prediction accuracy of Long Short-Term Memory (LSTM), stacked Long Short-Term Memory

(stacked LSTM), Bi-directional LSTM (Bi-LSTM), Temporal Convolutional Network (TCN), and XGBoost algorithms can be

greatly improved by the method of integrating historical generation power and meteorological features. Therefore, the

feature  fusion  based  photovoltaic  power  prediction  method  proposed  in  this  paper  is  of  great  significance  to  the

development of the photovoltaic power generation industry.
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1    Introduction

Since  the  beginning  of  the  21st  century,  fossil  energy
has  gradually  dried  up,  and  environmental  protection
issues have become increasingly prominent. Therefore,
green  energy  has  become  the  mainstream  direction  of

the  world’s  energy  development.  Electricity  power
generation  methods  typically  include  thermal  power
generation, wind power generation, photovoltaic power
generation,  hydraulic  power  generation,  and  also
nuclear  power  generation.  In  photovoltaic  power
generation,  with  the  increasing  proportion  of  installed
photovoltaic  capacity,  the  uncertainty  of  photovoltaic
power  output  poses  great  challenges  to  the  planning
and operation of the power system. The high rejection-
to-adopt  rate  is  also  one  of  the  difficulties  in  the
development  of  the  photovoltaic  industry.  Therefore,
accurate  photovoltaic  power  prediction  is  of  great
significance  for  new  energy  grid  connection  and
dispatching.

Generally,  the  photovoltaic  power  prediction
technologies can be classified from three aspects: time
scale, prediction process, and prediction form.

The time scale can be divided into medium and long-
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term  prediction,  short-term  power  prediction,  ultra-
short-term  power  prediction,  and  minute-level
prediction.  The  length  of  the  medium  and  long-term
forecast is one month to one year[1].  Short-term power
prediction can generally predict  the longest  generation
power of 72 hours and the shortest generation power of
15  minutes.  The  prediction  time  of  ultra-short-term
power  prediction  is  much  shorter,  and  the  generated
power  in  the  next  4  hours  is  generally  predicted.  The
time length of minute-level prediction is about 2 hours,
and the time resolution is generally 5 minutes.

The prediction process can be generally divided into
direct  prediction  and  indirect  prediction.  Direct
prediction establishes a photoelectric conversion model
based  on  the  irradiance  data  collected  by  the  sensor,
including  installation  angle,  altitude,  longitude,  and
latitude  of  the  photovoltaic  system,  so  as  to  directly
output  the  photovoltaic  power.  Indirect  prediction
utilizes meteorological data, including solar irradiance,
temperature,  humidity,  wind  speed,  and  historical
photovoltaic  power  generation  data,  to  predict
photovoltaic power generation[2].

In terms of the form of prediction, it  can be divided
into  three  types:  point  prediction,  interval  prediction,
and  probability  prediction.  In  point  prediction,  the
model  gives  the  determined  power  generation
prediction value, the interval prediction gives the upper
and lower bounds of output under the confidence level,
and the probability prediction gives the expected output
value  and  probability  distribution  information  in  the
future[3].

Based  on  the  meteorological  features  and  historical
power generation data, this paper makes efforts toward
a short-term power prediction for the power generation
of  photovoltaic  power  station,  and  uses  the  indirect
prediction  method  to  make  a  point  prediction  for  a
single photovoltaic power station.

The rest of the paper is organized as follows. Section
2  introduces  the  background  of  photovoltaic  power
generation  prediction  technology.  Section  3
preprocesses  and  analyzes  the  data  of  photovoltaic
stations, and Section 4 analyzes the impact of different
feature  fusion  methods  on  the  prediction  of
photovoltaic  power  generation  after  processing  the

three  datasets  obtained  in  Section  3,  and  this  section
discusses  all  the  results.  Section  5  summarizes  the
whole paper.

2    Related work

In  literature,  many  scholars  have  conducted  extensive
research  on  photovoltaic  power  prediction.  The
following  related  work  will  be  summarized  according
to  the  research  methods,  technical  characteristics,  and
prediction results.

Firstly, regarding the photovoltaic power time series
method,  the  most  representative  time  series  prediction
method  is  the  AutoregRessive  Integrated  Moving
Average  model  (ARIMA),  which  combines  the
AutoRegressive (AR) model and Moving Average (MA)
model  and  takes  into  account  the  difference  between
these  models[4].  Therefore,  for  photovoltaic  data  with
small-scale  volatility,  the  model  can  effectively  mine
the  internal  patterns  of  the  series.  However,  the
ARIMA  model  cannot  satisfactorily  mine  the
fluctuation pattern of data in the case of high volatility.

Statistical methods train statistical models and output
prediction  results  based  on  historical  meteorological
data  and  historical  power  generation  data,  which
mainly  include  Artificial  Neural  Networks  (ANN),
deep  learning  neural  networks,  Support  Vector
Machines  (SVM),  K-Nearest  Neighbor  (KNN),  etc.  In
Ref.  [5],  a  novel  Residuals-Based Deep Least  Squares
Support  Vector  Machine  (RBD-LSSVM)  is  proposed.
Analysis of the prediction results and comparisons with
recent  and  past  studies  demonstrate  the  promising
performance  of  the  proposed  RBD-LSSVM  approach
with redundancy test-based model selection method for
modeling  and  predicting  nonlinear  time  series.  Soft
Tissue Tumors (STTs) are a form of sarcoma found in
tissues  that  connect,  support,  and  surround  body
structures. Alaoui et al.[6] proposed a machine learning
based  approach  which  combines  a  new  technique  of
preprocessing  the  data  for  features  transformation,
resampling  techniques  to  eliminate  the  bias  and  the
deviation  of  instability,  and  performing  classifier  tests
based on the SVM and Decision Tree (DT) algorithms.
The  tests  carried  out  on  the  dataset  collected  in  Nur
Hidayah Hospital of Yogyakarta in Indonesia showed a
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great  improvement  compared  to  previous  studies.
These  results  confirm  that  machine  learning  methods
could provide efficient  and effective tools  to  reinforce
the  automatic  decision-making  processes  of  STT.
Chandra  et  al.[7] proposed  an  SVM  model  based  on
supervised learning, which opens up a variety of ways
and  industrial  communication  technologies  for  5G
networks (such as factory automation). In Ref. [8], the
KNN  algorithm  is  applied  to  the  clustering  result  to
perform  short-term  predictions  of  the  traffic  flow
vectors.  Analysis  of  real  world  traffic  data  shows  the
effectiveness  of  these  methods  for  traffic  flow
predictions,  for  they  can  capture  the  nonlinear
information  of  traffic  flows  data  and  predict  traffic
flows on multiple links simultaneously.

By mixing different models and using the method of
majority  voting  or  average  prediction  probability,  the
final prediction results are often better than using only
one  model.  Reference  [9]  introduced  a  general  multi-
model mixing method based on machine learning, and
the  typical  machine  learning  models  include  Random
Forests  (RF)[9−11],  Gradient  Boosting  Regression  tree
(GBR)[12], Recursive Partitioning And Regression Tree
(RPART)[13],  SVM[14−16],  and  Multi-Layer  Perception
(MLP)[17].  Experiments  show  that  compared  with  the
single optimal model, the model mixing effect is better,
and  the  prediction  accuracy  of  photovoltaic  power
generation has been improved by more than 30%[18].

A single model has certain limitations, as it can only
capture partial features of the data, hence the prediction
results cannot meet the demand for complex dynamics.
Ensemble learning combines different  features learned
by each weak supervision model, so as to obtain a more
comprehensive  and  stronger  supervision  model[19].
Ground-based cloud images and satellite cloud images
are  also  used  in  photovoltaic  power  forecasts.  The
thickness  of  the  cloud  layer  is  calculated  according  to
the texture and gray level of the cloud image, so as to
calculate  the  attenuation  of  cloud  layers  to  irradiance
and  build  the  attenuation  model.  Combined  with  the
cloud  movement  model  and  irradiance  attenuation
model,  the  minute  power  prediction  of  photovoltaic
power station is realized.

In the research of generation power prediction based

on meteorological features, current existing works only
use  meteorological  features  or  only  use  historical
generation  power  as  the  features  of  the  input  model,
but  the  fusion  method  of  different  characteristics  will
directly  affect  the  accuracy  of  photovoltaic  generation
power  prediction.  In  this  paper,  the  representative
model  of  photovoltaic  power  prediction  is  selected  to
study the impact of different feature fusion methods on
the generation power prediction of photovoltaic power
stations.

Next,  the  Recurrent  Neural  Network  (RNN)  models
in the field of time series prediction are introduced, and
then  the  theoretical  basis  of  the  machine  learning
models  involved  in  the  research  of  multi-features
fusion  for  short-term  photovoltaic  power  prediction  is
introduced  in  this  paper,  including  Long  Short-Term
Memory  (LSTM),  Temporal  Convolutional  Network
(TCN), eXtreme Gradient Boosting (XGBoost), etc.

2.1    RNN model

The  traditional  neural  network  has  some  inherent
problems  for  photovoltaic  power  prediction.  Firstly,  it
can  not  reflect  the  correlation  within  time  series  data;
secondly,  the input  and output  length should be fixed;
thirdly, the features learned from different locations are
not  shared,  resulting  in  a  huge  number  of  network
training  parameters.  RNN  partly  solves  the  above
problems of traditional neural networks.

RNN  is  a  type  of  neural  network  used  to  process
sequence  data.  It  traverses  all  sequence  elements  and
saves  a  state,  which  contains  the  information  of  the
previous content.  The output of the model depends on
the  information  saved  in  the  previous  state.
Theoretically,  the  RNN  model  can  remember  all  the
time  step  information.  When  the  model  is  applied  to
tasks  with  a  long  sequence,  it  needs  to
comprehensively  consider  the  information  of  the
previous multiple time steps. However, the structure of
the  RNN  is  prone  to  causing  gradient  disappearance,
which leads to poor accuracy of long-term prediction.

2.2    LSTM model

A  memory  cell  is  designed  in  the  LSTM  network
structure. The LSTM model does not remember all the
information, and it only needs to selectively remember
important  information  and  forget  unimportant

  Ming Ma et al.:   Multi-features fusion for short-term photovoltaic power prediction 313

 



information, so as to reduce the burden of memory and
effectively  alleviate  the  problem  of  long-term
dependence.  The  LSTM  controls  the  long-term  and
short-term  memory  through  gating,  which  avoids
memorizing  all  information  in  the  RNN,  so  it  is
suitable for long sequence problems.

In  traditional  RNN,  the  disappearance  of  gradients
leads  to  short-term  memory.  In  LSTM,  the  model
introduces  memory  cells  whose  values  are  dependent
on  the  values  of  the  previous  memory  cell  and  the
update term weighted by the input gate. In addition, the
model  also  introduces  a  forget  gate  to  control  the
infinite  growth of  memory cells,  so as  to  facilitate  the
network to learn to remember or forget,  and avoid the
problem  of  gradient  disappearance.  In  Ref.  [20],  a
spatial-temporal  Convolutional  Long  Short-Term
Memory (ConvLSTM) model is proposed to predict the
vehicle’s  lateral  and  longitudinal  driving  intentions
simultaneously.  This  network  includes  two  modules:
the  first  module  mines  the  information  of  the  target
vehicle  using  the  LSTM  network  and  the  second
module  uses  ConvLSTM  to  capture  the  spatial
interactions  and  temporal  evolution  of  surrounding
vehicles  simultaneously  when  modeling  the  influence
of  surrounding  vehicles.  The  model  is  trained  and
verified on a real road dataset, and the results show that
the  spatial-temporal  ConvLSTM  model  is  superior  to
the  traditional  LSTM  in  terms  of  accuracy,  precision,
and  recall,  which  helps  improve  the  prediction
accuracy  at  different  time  horizons.  Li  and  Ye[21]

proposed  a  wireless  network  traffic  prediction  model
based  on  long-term  and  short-term  memory  cyclic
neural  networks.  Through  simulation  experiments,  the
throughput  prediction  of  5G  wireless  networks  using
different  scheduling  algorithms  for  many  different
types of services is studied. Simon et al.[22] verified that
the  long  short-term  memory  prediction  model  has
acceptable  prediction  accuracy  and  training  speed,
meets the needs of wireless network traffic prediction,
and has a good application prospect.

2.3    TCN model

TCN is a special Convolution Neural Network (CNN),
which  uses  one-dimensional  convolution  in

combination  with  the  one-dimensional  features  of
series  data.  In  addition,  TCN  applies  causal
convolution,  residual  connection,  and  expansion
convolution  in  model  design,  in  a  creative  way  that
effectively  avoids  the  problem  that  traditional
convolution  neural  networks  cannot  capture
information  for  a  long  time.  In  a  specific  task,  the
effect  of  TCN  can  often  reach  or  even  exceed  that  of
RNN[23, 24].  In Section 4, we compare TCN with other
neural  network  models  according  to  different  feature
fusion methods.

2.4    XGBoost model

The XGBoost model is widely used as a very effective
machine  learning  method.  It  is  an  additive  model
consisting of the base learners, each of which is based
on  the  Classification  And  Regression  Tree  (CART).
Each base learner can be optimized step by step using
the  forward  distribution  algorithm.  The  forward
distribution  algorithm  adopts  a  greedy  strategy  to
optimize  tree  by  tree.  In  the  process  of  finding  the
optimal  tree,  although  the  greedy  algorithm  can
achieve  good  results,  in  the  case  of  a  relatively  large
amount of data, the time complexity is too high and it
is  very  resource  intensive.  Therefore,  the  XGBoost
algorithm  adopts  an  approximate  algorithm  to  avoid
traversing all the points and effectively reduce the time
complexity.

3    Data  preprocessing  and  analysis  of
photovoltaic station

This  section  first  introduces  the  parameters  and  their
meanings of the data used in experiments, then detects
and identifies the abnormal points before using the data
interpolation  method  to  repair  the  abnormal  and
missing points. Next, we analyze the correlation of the
repaired  data,  and  relevant  features  with  a  high
correlation  with  the  power  generation.  Finally,
according  to  the  selected  meteorological  features  and
historical  power  generation,  three  feature  fusion
methods  are  designed  to  organize  the  data  into  three
datasets.  The  data  preprocessing  structure  is  shown in
Fig. 1.
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3.1    Photovoltaic data preparation

This  paper  uses  the  photovoltaic  data  of  18  power
stations in Northwest China, including the actual power
generation data of photovoltaic power stations and the
Numerical  Weather  Prediction  (NWP)  data  of  the
respective  photovoltaic  power  stations.  The  data  are
collected from May 25, 2020 starting at 9:00:00 to June
30,  2021  ending  at  20:55:00,  with  an  interval  of  5
minutes. NWP data include global radiation (Globalr),
direct  radiation  (Directr),  diffuse  radiation  (Diffuser),
air  temperature  (Airt),  ambient  temperature  (Cellt),
wind  speed  (WS),  wind  direction  (WD),  pressure  (P),
relative  humidity  (RH),  and have_power  indicates
whether there is output power. The photovoltaic power
data  (power)  are  discontinuous data,  and the length of
missing data between continuous data segments varies,
some as long as five days, and some less than or equal
to  2  hours.  The  longest  continuous  period  length,
secondary length, total length, and missing rate of data
of each power station are summarised in Table 1.

●  The  original  data  collected  by  the  photovoltaic
power stations can be directly used for a short period of
time, mostly 1800 continuous data points, equivalent to
about continuous data points of 6.25 days, with a small
amount of data. Photovoltaic power prediction requires
a  lot  of  training  data  to  learn  a  generalized  model.
Through observation,  the missing rate of data is  about
5.00%, which needs to be repaired and filled to expand
the amount of continuous data.

●  The  data  of  meteorological  features Globalr,
Directr, Diffuser,  WD,  and  Power  data  fluctuate
greatly,  mainly  because  the  intermittence  and
fluctuation  of  solar  resources  and  cloud  motion
shielding affect the solar irradiation. The fluctuation of
data brings some difficulties to power prediction.

●  The  overall  change  trend  of  meteorological
features Globalr,  Directr,  Diffuser,  and  Power  data  is
similar  and  has  a  high  correlation,  whereas  the
correlation of other meteorological features needs to be
calculated.
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Fig. 1    Overall diagram of data preprocessing.

 

 

Table 1    Statistics of continuous time periods and missing rate of some power station data.
Power station

number
Length of the longest

continuous time period (point)
Length of the second longest

continuous time period (point)
Total length of

data points
Missing rate

(%)
cxjtgf 1836 1139 50 841 3.37

dhmsgf 1836 1139 48 637 4.30
dhztg2 1835 1139 50 797 5.62
dhztgf 1836 1139 50 800 5.57

Noto: 5 minutes interval between two adjencent points.
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● There are many abnormal points in the dataset. For
example,  the Directr  is  0  for  a  long  time  at  night,
which  is  not  consistent  with  the  trend  of  the  data.  In
addition,  some data exceed the historical  maximum or
minimum  values.  The  abnormal  data  will  affect  the
training  of  the  subsequent  model,  and  directly  affect
the  accuracy,  robustness,  and  generalization  ability  of
the models.

3.2    Data repair

3.2.1    Outlier detection
During the data collection process, due to factors, such
as  equipment  failure,  human  error,  environmental
influence,  etc,  abnormal  points  appear  in  the  data.
These  abnormal  points  will  affect  the  prediction
accuracy  of  the  follow-up  models.  In  order  to  reduce
the impact of outliers on model training and prediction,
outliers  are  detected  and  repaired  in  the  original  data.
The results of exemplar outliers detection are shown in
Fig. 2.

In  order  to  accurately  and  comprehensively  detect
data  outliers,  this  paper  uses  three  methods  to  detect
outliers.

(1) Box diagram detection
The outliers detected by the box diagram are extreme

values in the whole dataset. We need to find outliers by
choosing  a  benchmark,  including  mild  outliers  and
extreme  outliers.  Benchmark  selection  is  based  on
sample  maximum,  sample  minimum,  sample  median,

lower quartile, upper quartile, and InterQuartile Range
(IQR).  Mild  outliers  are  any  value  1.5  times  greater
than  the  IQR  based  on  all  remaining  values  and  limit
outliers  are  any  value  3  times  greater  than  the  IQR
based on all remaining values

(2) 3-sigma criteria
Assuming that the data obey the normal distribution,

we  can  calculate  the  mean μ  and  standard  deviation δ
of  the  data,  and take x=μ  as  the  symmetry  axis  of  the
image.  The  probability  of  data  distribution  in  (μ−δ,
μ+δ) is 0.6828, that in (μ−2δ, μ+2δ) is 0.9545, and that
in  (μ−3δ, μ+3δ )  is  0.9973.  Almost  all  the  data  are
concentrated in the (μ−3δ, μ+3δ) interval, and the data
beyond this range are regarded as outliers.

(3) STL
STL method can fully consider the seasonality, trend

change,  and  residual  error  of  data.  Firstly,  the  data
period  is  calculated  by  Fourier  transform[25],  in  which
there  are  two  splitting  principles,  addition  and
multiplication. Then according to the length of the time
period  as  a  time  window,  a  moving  average  is
performed,  and  the  trend  data  of  the  original  data  can
be obtained by decomposing the  data.  Finally,  we can
analyze the decomposed residual data and use 3-sigma
criteria method to find abnormal points.
3.2.2    Data interpolation
In this paper, 13 rule-based methods are used to fill in
abnormal  data  and  missing  values.  Taking  the  data  of
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Fig. 2    Example diagram of detected abnormal points.
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power  station “qnxgh”  for  18  consecutive  days  as  an
example,  the  data  missing  rates  are  set  to  25%,  35%,
and  40% seperately,  and  R2,  Mean  Square  Error
(MSE),  Root  Mean  Square  Error  (RMSE),  and  Mean
Absolute  Error  (MAE)  are  taken  as  the  measurement
indicators,
 

R2 = 1−
∑

i (ŷi− yi)2∑
i (ȳi− yi)2 (1)

 

MSE =
1
m

m∑
i=1

(yi− ŷi)2 (2)

 

RMSE =

√√
1
m

m∑
i=1

(yi− ŷi)2 (3)

 

MAE =
1
m

m∑
i=1

|(yi− ŷi)| (4)

yi

ŷi

where m  represents  the  number  of  samples, 
represents the real value, and  represents the predicted
value.  The  evaluation  results  are  shown in Table  2.  It
can  be  seen  from Table  2 that  Interpolatetime method
has  the  best  effect  on  goodness  of  fit,  and  the  Akima
filling method also performs well. With the increase of
the  deletion  rate,  the  goodness  of  fit  of  each  method
decreases, indicating that the data with a high deletion
rate are not credible after data filling. Therefore, in this
paper,  the  missing  time  periods  are  divided  into  two
cases:  more  than  2  hours,  and  less  than  or  equal  to  2
hours.

Only  the  missing  time  periods  of  less  than  2  hours
are  repaired  by  Interpolatetime  method.  The  available
data length after data filling is shown in Table 3.

3.3    Correlation analysis

In this paper, the Pearson correlation coefficient is used
to observe the correlation between variables.

Pearson correlation coefficient is a linear correlation
coefficient.  It  assumes  that  the  data  belong  to  the
normal  distribution  to  calculate  the  similarity  between
vectors. The output range is [−1, 1]. Positive values are
positive  correlations  and  negative  values  are  negative
correlations[26].  The  results  of  the  Pearson  correlation
coefficient between meteorological features and power
generation are shown in Fig. 3.

Through  analysis,  the  correlation  between Globalr,
Directr, Diffuser,  and  power  is  0.98,  which  is  highly
correlated.  There  is  a  significant  correlation  between
Cellt and  power ,  and  there  is  a  relatively  low
correlation between Airt, WD, RH, and power. Among
them,  there  is  a  positive  correlation  between Airt  and
power, RH,  WS ,  and power  are  negatively  correlated,
while  the  correlation  value  between WS  and  P  is  too
small,  which  is  not  correlated.  To  sum  up, Globalr,
Directr, Diffuser,  Cellt,  Airt,  WD ,  and RH  are  used as
the  inputs  of  the  model  for  the  training  of  subsequent
models.

3.4    Different feature fusion methods

The  specific  data  format  of  the  preprocessed  data  is
shown in the following:
 

x0,0 x0,1 ... x0,n y0,n
x1,0 x1,1 ... x1,n y1,n
...

...
. . .

...
...

xm,0 xm,1 ... xm,n ym,n

 (5)

 

Table 2    Evaluation of different deletion rates for different data filling methods.

Missing data rate of
power station qnxgh (%)

Method of filling
missing values

Indicator
R2 MSE RMSE MAE

25
InterpolateTime 0.997 310 496 0.011 807 172 0.108 660 813 0.022 813
InterpolateAkima 0.996 864 355 0.013 765 773 0.117 327 630 0.024 253

InterpolateQuadratic 0.994 325 933 0.024 909 678 0.157 828 001 0.029 977

35
InterpolateTime 0.994 298 772 0.025 028 917 0.158 205 300 0.036 102
InterpolateAkima 0.993 923 386 0.026 676 899 0.163 330 600 0.036 948

InterpolateQuadratic 0.992 357 461 0.033 551 451 0.183 170 551 0.043 192

40
InterpolateTime 0.994 113 770 0.025 841 094 0.160 751 654 0.040 968
InterpolateAkima 0.993 928 212 0.026 655 709 0.163 265 762 0.041 695

InterpolateQuadratic 0.991 905 638 0.035 534 995 0.188 507 281 0.049 247
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m n

where  each  row  represents  the  data  value  of  a  time
point, which is 5 minutes different from the time point
of the previous row. There are  rows and  columns in
total. It represents the meteorological features value of
the  first  row  and  the  generating  power  value  of  the
second  row.  This  paper  considers  three  data  fusion
methods to form the different datasets:

●  The  meteorological  features  of  the  previous  day
are used as features to predict the power generation of
the  next  day.  The  dataset  obtained  according  to  this
feature fusion method is defined as dataset D1.

● It is considered to input the meteorological features
and  power  generation  of  the  previous  day  into  the
model as features to predict the power generation of the
next  day.  The  dataset  based  on  this  feature  fusion
method is defined as D2.

● The generation power of the previous day predicts
the generation power of the next day, and the dataset is
defined as D3 according to this feature fusion method.

According  to  different  feature  fusion  methods,  the
data are sorted into three datasets, namely D1, D2, and
D3.  In  this  paper,  TCN,  LSTM,  stacked  LSTM,  Bi-
LSTM,  and  XGBoost  models  are  used  to  test  the
impacts  of  different  feature  fusion  methods  on  model
prediction.

4    Multi-features  fusion  photovoltaic  power
prediction and result analysis

In  this  section,  Gaussian  filter  is  used  for  data
stationarity processing for the three datasets obtained in
Section 3. The processed data are divided into training
dataset  and  test  dataset  with  a  ratio  of  9:1  for  model
training,  and  the  impact  of  different  feature  fusion
methods  on  photovoltaic  power  generation  prediction
is  analyzed.  All  experiments  in  this  paper  use  RMSE,
MAE,  MSE,  R2,  Akaike  Information  Criterion  (AIC),
and  Bayesian  Information  Criterion  (BIC)  to  evaluate
the model. The formulas for AIC and BIC are detailed
below:
 

AIC = 2k−2ln(L) (6)
 

BIC = k ln (n)−2ln(L) (7)

k n

L

where  is  the  number  of  model  parameters,  is  the
number  of  samples,  and  is  the  likelihood  function.
The  experimental  environment  is  set  as  Nvidia  Tesla
V100 GPU and TensorFlow 2.7.0.

4.1    Experiments of LSTM

In order to measure the overall performance of LSTM,
we compare and analyze the evaluation indexes of each
power station in each dataset. The results are shown in
Table 4.

From Table 4 we can conclude that:
●  The  values  of  RMSE,  MAE,  and  MSE  of  the

model  in  D2  are  significantly  lower  than  that  in  D1.
The R2 value in D2 dataset is larger, indicating that the
model fits better, and the AIC and BIC are smaller than
those on D1.

● From the evaluation indicators, the model can also
achieve  a  good  prediction  effect  on  D3.  If  there  is  a
lack  of  equipment  deployment  to  collect  data  ending
with  insufficient  data,  it  also  has  a  certain  reference
value  to  use  only  the  historical  power  generation  to

 

Table 3    Available data length after partial filling.
Power

station name
Total length of

data points
Deletion
rate (%)

Available data length
after filling

cxjtgf 50 841 3.37 42 567
dhmsgf 48 637 4.30 56 895
dhztg2 50 797 5.62 49 930
dhztgf 50 800 5.57 50 792
hdjygg 42 579 4.22 42 572
hhsdgf 39 344 4.63 39 335

hhsdww 41 461 4.69 41 453
hrwwgf 53 981 4.80 53 971
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Fig. 3    Pearson  correlation  coefficient  between
meteorological features and power generation.
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predict the power generation in the future.
●  On  the  D1  dataset,  there  is  a  large  difference

between the predicted values of the model and the real
values, which shows that there is a lack of reliability to
predict  the power generation at  the future time if  only
using the characteristics of meteorological features.

4.2    Experiments of stacked LSTM

The  results  after  taking  the  average  value  of  each
evaluation  index  of  18  power  stations  are  shown  in
Table 5. The specific analysis is as follows:

●  In  D2  dataset,  the  values  of  RMSE,  MAE,  and
MSE of  the  stacked LSTM model  are  generally  lower
than  those  of  the  models  in  D1  and  D3  datasets.
Compared  with  the  performance  on  D1  dataset,  the
values  of  RMSE,  MAE,  and  MSE  are  decreased  by
97.46%, 97.35%, and 99.87%, respectively, and the R2
value is increased by 5.31%.

● In the D1 dataset  fused with the characteristics of
various  meteorological  features,  the  values  of  RMSE,
MAE,  and  MSE  of  the  stacked  LSTM  model  are
significantly higher than those on the D3 dataset, which
indicates that there are certain limitations in using only
meteorological  features  as  feature  input,  and  the
historical  power  generation  plays  a  certain  role  in  the
later stage prediction of the model, and it also indicates
that  the  historical  power  generation  has  a  strong
correlation  with  the  power  generation  at  the  current
time.  Its  correlation  is  higher  than  the  features  of
meteorological features.

4.3    Experiments of Bi-LSTM

Bi-LSTM is  composed  of  LSTM layers  with  opposite
information  transmission  directions.  The  first  layer

transmits  information  in  chronological  order,  and  the
second  layer  transmits  information  in  reverse
chronological  order.  The  output  of  Bi-LSTM  is
determined  by  the  hidden  layer  state  of  the  two
LSTMs. The structure of Bi-LSTM is shown in Fig. 4.

In  order  to  compare  the  prediction  effects  of  Bi-
LSTM  in  D1,  D2,  and  D3  datasets,  the  experimental
evaluation  results  obtained  after  averaging  the
prediction and evaluation indexes of 18 power stations
in this section are shown in Table 6.

●  From Table  6 we  can  observe  that  Bi-LSTM  has
the best prediction effect on D2 dataset, and the values
of RMSE, MAE, and MSE are significantly lower than
those on D1 and D3 datasets, indicating that the model
effectively  captures  the  correlation  between  the
characteristics  of  meteorological  features,  historical
power generation, and the current power generation.

●  The  R2  value  of  the  Bi-LSTM  model  on  D2
dataset is significantly higher than those on D1 and D3
datasets, indicating that the model has a high degree of
fitting in the test set.

● The values of AIC and BIC of Bi-LSTM model on
D2 dataset are lower than those on D1 and D3 datasets,
which  shows  that  the  model  effectively  punishes  the
parameters  that  will  increase  the  complexity  of  the
model  when  training  D2  dataset,  thus  making  the
model more concise and less complex.

● Bi-LSTM obtained the best evaluation index in D2
dataset. The model obtains the best evaluation value in
18  power  stations  in  D2  dataset.  The  above
experimental  results  confirm  the  important  role  of
historical  generation  power  in  Bi-LSTM  prediction  of
generation power.

●  Compared  with  the  LSTM  model,  the  values  of

 

Table 4    Experimental results of LSTM for three datasets.

Dataset name RMSE MAE MSE R2 AIC BIC
D1 24.4939 9.8197 818.9468 0.9492 12658.42 12668.76
D2 0.5632 0.2415 0.8158 0.9999 284.05 275.54
D3 2.1785 1.3901 5.6741 0.9996 2098.22 2106.69

 

 

Table 5    Experimental results of stacked LSTM for three datasets.

Dataset name RMSE MAE MSE R2 AIC BIC
D1 24.5239 9.6926 817.7764 0.9495 12 653.60 12 663.93
D2 0.6236 0.2570 1.0529 0.9999 −232.39 −223.88
D3 2.3538 1.6207 7.2895 0.9995 2056.12 2064.58
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MSE, AIC, and BIC of Bi-LSTM are lower, indicating
that  the  model  tends  to  choose  the  model  with  lower
complexity. In addition, the overall evaluation indexes
of  Bi-LSTM  are  better  than  those  of  stacked  LSTM,
indicating  that  the  characteristics  of  two-way  learning
in  18  power  stations  are  more  conducive  to  the
prediction  of  power  generation  of  photovoltaic  power
stations than those learned by model stacking.

4.4    Experiments of TCN

TCN  network  uses  one-dimensional  convolution  and
expansion  convolution  to  realize  the  application  of
convolution  kernel  in  the  temporal  problems.  This
section  uses  TCN  to  verify  the  impact  of  different
feature fusion methods on generation power prediction.
70% of the data in datasets D1, D2, and D3 are used as
training  dataset,  and  30% remainders  are  used  as  test
dataset  for  experiments.  The  experimental  results  of
TCN in each dataset  are shown in Fig.  5 and Table 7,
and we can draw the following conclusions:

● TCN performs best  on D2 dataset,  and the  values
of RMSE, MAE, and MSE are significantly lower than
those on D1 and D3 datasets.  In addition, R2 value of
the model on the dataset is also the highest, indicating
that the error between the predicted value and the real
value  is  small  and  the  fitting  degree  of  the  model  is
high.  The  values  of  AIC  and  BIC  of  TCN  on  D2
dataset  are  also  the  lowest,  indicating  that  there  are
fewer explanatory variables and better fitting degree of
the model on this dataset.

●  In  the  experiment  of  TCN  on  D3  dataset,  the
values of RMSE, MAE, and MSE are lower than those
on  D1  dataset,  and  the  difference  values  of  RMSE,
MAE, and MSE between D3 and D1 are small.

●  TCN  uses  one-dimensional  convolution  and
expansion  convolution  to  realize  the  application  of
convolution  neural  network  in  time  series  prediction.
However,  looking  at  the  experimental  results  between
TCN  and  LSTM,  actually  TCN  has  not  made  a  great
breakthrough  in  the  prediction  of  power  generation  of
photovoltaic  power plants.  Compared with LSTM, the
model  does  not  respond  well  to  the  internal  regular
pattern of data.

4.5    Experiments of XGBoost

XGBoost algorithm filters the features according to the
importance of the features, and selects the features with
high  importance  as  the  input  of  the  model.  In  this
paper, the maximum number of trees generated is set to
5000,  the  learning  rate  is  set  to  0.01,  and  the  value  is
set  to  0.  For  each  tree,  the  proportion  of  random
sampling  is  set  to  70%,  which  is  30% lower  than  the
default  value  of  the  system,  and  this  treatment
effectively  avoids  the  overfitting  of  the  model.  For
each tree, the column sampling ratio is set to 60%, and
the maximum depth of the tree is set to 4. In addition,
XGBoost  uses  cross-validation  in  each  iteration  to
obtain the optimal number of iterations.

Next, we take the prediction results that perform best
among  the  experimental  results  of  different  feature
fusion  methods  of  each  model  to  compare  them  with
XGBoost  algorithm.  XGBoost  algorithm  is  used  to
conduct the experiments in two scenarios: including the
historical power generation characteristics of the power
station  and  excluding  the  historical  power  generation
characteristics  of  photovoltaic  power  station.  The
specific  comparison  results  are  shown  in Table  8,
XGBoost-P  is  XGBoost  algorithm including  historical
generation power.
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Fig. 4    Structure of Bi-LSTM.

 

 

Table 6    Experimental results of Bi-LSTM for three datasets.

Dataset name RMSE MAE MSE R2 AIC BIC
D1 24.4194 9.8253 813.5776 0.9496 12 651.06 12 661.40
D2 0.5648 0.2826 0.6136 0.9999 273.89 265.38
D3 2.5159 1.6084 8.4706 0.9994 2164.13 2172.59
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Fig. 5    Experimental results of TCN for three datasets, and the time between two adjencent points is 5 minutes.

 

 

Table 7    Experimental results of TCN for three datasets.

Dataset name RMSE MAE MSE R2 AIC BIC
D1 19.9764 6.7851 582.1143 0.9633 48 036.92 48 050.03
D2 15.1136 4.9897 249.3071 0.9854 46 928.96 46 942.06
D3 19.4761 6.3841 419.9613 0.9766 50 036.73 50 049.83

 

 

Table 8    Experimental results of XGBoost and various models.

Model RMSE MAE MSE R2 AIC BIC
LSTM 0.5632 0.2415 0.8158 0.9999 284.05 275.54

Stacked LSTM 0.6236 0.2570 1.0529 0.9999 −232.39 −223.88
Bi-LSTM 0.5648 0.2826 0.6136 0.9999 273.89 265.38

TCN 15.1136 4.9897 249.3071 0.9854 46 928.96 46 942.06
XGBoost 7.7436 4.0466 171.9377 0.9889 37 546.89 37 560.00

XGBoost-P 0.7704 0.4541 0.6580 0.9999 13 698.83 13 711.95
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● LSTM, stacked LSTM, Bi-LSTM, and XGBoost-P
algorithms have achieved good results on datasets.

●  Compared  with  the  method  of  meteorological
features  fusion  only  in  LSTM,  stacked  LSTM,  Bi-
LSTM,  and  XGBoost,  the  error  evaluation  indexes
(RMSE, MAE, and MSE) of the model are reduced by
more  than  97%,  the  values  of  AIC  and  BIC  are
increased  by  more  than  60%,  the  error  evaluation
indexes (RMSE, MAE, and MSE) in TCN are reduced
by more than 20%, and the values of AIC and BIC are
increased by more than 97%.

● Compared with the method of historical generation
power fusion only, the method of historical generation
power  and  meteorological  element  feature  fusion  is
also improved in the evaluation results of each model.

●  The  complexity  of  TCN  model  using  one-
dimensional  convolution  kernel  is  too  high,  and  the
fitting  degree  of  the  model  to  the  training  data  is
relatively  high,  but  the  generalization  of  new  data  on
the test dataset is low. Therefore, the model can predict
the  overall  change  trend  of  the  data,  but  the  error  is
large for the data with large volatility.

5    Conclusion

This paper analyzes different feature fusion methods of
meteorological features and historical power generation
of photovoltaic power station, and explores the impact
of  different  feature  fusion  methods  on  the  power
generation of photovoltaic power station.

Firstly,  the  box  diagram  method,  3-sigma  criterion,
and STL are used to detect  the abnormal points  in the
photovoltaic data. Three datasets with the missing rate
of 25%, 35%, and 40%, respectively, are filled. Finally,
the  optimal  method  InterpolateTime  is  selected  to  fill
the  missing  data  and  abnormal  points,  which
effectively expands the dataset.

Secondly, this paper conducts correlation analysis on
the  filled  data  and  obtains  the  meteorological  features
with  high  correlation  with  power  generation.
Meanwhile,  combined  with  the  features  of  historical
generation power, the data are sorted into three datasets
by different feature fusion methods.

Finally,  through  three  data  fusion  methods,  the

representative LSTM, stacked LSTM, Bi-LSTM, TCN,
and  XGBoost  models  are  selected  to  conduct
experiments  on  the  datasets,  and  the  experimental
results are evaluated by six evaluation indexes, such as
AIC  for  comparative  analysis.  Results  show  that  the
fusion  method  of  historical  power  generation  and
meteorological  elements  can  greatly  improve  the
prediction  accuracy  of  LSTM,  stacked  LSTM,  Bi-
LSTM,  TCN,  and  XGBoost  algorithms.  All  error
evaluation  indicators  have  decreased  by  more  than
22.34%. The values of AIC and BIC are both increased
by more than 2.30%.

In the future, we will consider combining image data
to achieve multi-source heterogeneous data fusion. We
can  also  analyze  cloud  shadow  and  cloud  movement
through ground-based cloud images and satellite cloud
images,  followed  by  combining  meteorological
features  and  historical  power  generation  to  perform
feature  fusion  to  predict  the  power  generation  of
photovoltaic power plants in a more meaningful way.
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