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Abstract—COVID-19 is a contagious disease that has caused
more than 230,000 deaths worldwide at the end of April 2020.
Within a span of just a few months, it has infected more than
4 million peoples across the globe due to its high transmittance
rate. Thus, many governments have tried their best to increase the
diagnostic capability of their hospitals so that the disease can be
identified as early as possible. However, in most cases, the results
only come back after a day or two, which directly increases the
possibility of disease spreadness because of the delayed diagnosis.
Therefore, a fast screening method using existing tools such as
x-ray and computerized tomography scans can help alleviate the
burden of mass diagnosis tests. A chest x-ray is one of the best
modalities in diagnosing a pneumonia symptom, which is the
primary symptom for COVID-19. Hence, this paper proposes
a lightweight deep learning model to screen the possibility of
COVID-19 accurately. A lightweight model is important, as such
it allows the model to be deployed on various platforms that
include mobile phones, tablets, and normal computers without
worrying about the memory storage capacity. The proposed
model is based on 14 layers of convolutional neural network
with a modified spatial pyramid pooling module. The multi-
scale ability of the proposed network allows it to identify the
COVID-19 disease for various severity levels. According to the
performance results, the proposed SPP-COVID-Net achieves the
best mean accuracy of 0.946 with the lowest standard deviation
among the training folds accuracy. It comprises of just 862,331
total number of parameters, which uses less than 4 MegaBytes
memory storage. The model is suitable to be implemented for
fast screening purposes so that better-targeted diagnoses can be
performed to optimize the test time and cost.

Index Terms—COVID-19 Detection, Lightweight Deep Learn-
ing Network, Compact Deep Learning

I. INTRODUCTION

COVID-19, which was first reported in Wuhan, China is
a dangerous disease that affects mostly human respiratory
function [1]. Even though the mortality rate is not high, which
is less than 5%, but it can be transmitted easily between
humans, even with minimal contact. Thus, it is hard to contain
its spreadness and instigates many governments to order lock-
down procedures throughout the world [2]. It is done with the
intention of minimizing the physical contacts and thus curbs
the disease transmission. The social distancing term has been
popularized inline with the philosophy of reducing human
contact, which mandates each person to observe his proximity
distance to the other peoples. This step is extremely crucial

for confined space services such as lift where the users must
stand at least a meter from the others, which directly reducing
the limit it can carry on at one time.

COVID-19SARS-CoV-2 is the original virus strain that
causes the COVID-19 disease, which has evolved into sev-
eral different mutated strains [3]. The main disorder that is
commonly associated with this disease is the difficulty in
breathing which can lead to acute pneumonia [4]. One of
the cheapest ways to screen the possibility of pneumonia is
through a chest x-ray. By having an image of a chest x-
ray, the medical practitioners can observe the possibility of
respiratory problems [5]. It is also a cheaper and faster way
compared to the standard diagnosis procedures that can take up
to three days to get a confirmation result. Due to the contagious
nature of the COVID-19, a fast screening method is needed
so that the positively screened patient can be quarantined as
soon as possible [6]. It is not optimal to diagnose all possible
candidates as the cost is astronomical for the government,
especially for the developing countries.

Fig. 1. Some samples of x-ray images.

According to Atif et al. [7], the cost of processing an x-ray
image is less than RM 10, while a standard COVID-19 swab
test can cost more than RM 350 per swab [8]. Apart from
the cost, the swab test also requires dedicated test facilities
to process the samples and there will be a limit number of
test can be processed daily. Hence, an x-ray based approach
is a good screening choice for the government as it can be
captured efficiently given the widespread availability of x-ray
machines. Some samples of x-ray images are shown in Figure
1. It also a cheaper option and many doctors are trained to find
the possibility of pneumonia based on chest x-ray images. In
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order to automate the screening process, where the doctors are
already burdened with many tasks in this pandemic situation,
a lightweight deep learning model is proposed to screen the
possibility of COVID-19 disease accurately and efficiently.

In this paper, several lightweight deep learning models
will be analyzed to find the optimal model, specifically for
mobile applications. A lightweight deep learning model is
defined to be a network with a total number of parameters
less than 5,000,000. Its main advantage is the low size of
memory requirement, which makes it suitable to be imple-
mented for mobile applications. Usually, a lightweight deep
learning model is built upon a compact architecture [9], [10].
A medical practitioner can directly download the model and
run it immediately in order to automate the screening process.
It will only use a small portion of phone memory storage and
indirectly makes the screening process faster [11]. In fact, the
radiographers can take a lot of x-ray images independently,
before passing the captured images to the automatic screening
system, which will reduce the burden of medical practitioners.

Given the importance of having a good screening model,
an accurate lightweight deep learning network is proposed
by embedding a modified spatial pyramid pooling (SPP)
module [12] to the convolutional neural network (CNN). By
integrating the modified SPP module, several input scales can
be processed in parallel [13]. The proposed model is called
SPP-COVID-Net and has a total of just 862,331 parameters.
The basis of this network is derived from DarkCovid-Net [14],
in which a multi-scale approach is embedded by replacing the
last few layers of the original network with the parallel pooling
layers of SPP. The system must be made robust to various input
scales so that it can cater to variability in the capturing process
of x-ray images. A robust detection system is needed so that
the system accuracy still retain the same level of detection
given various challenge posed by the input data as argued in
[15].

This paper is organized into five main sections. Section II
discusses some recent related works, focuses on COVID-19
screening and diagnosis algorithms. Section III explains the
proposed SPP-COVID-Net by integrating the SPP module into
DarkCovid-Net. Classifications results of several lightweight
deep learning models are then compared with the proposed
method in Section IV before a concise conclusion is given in
the last section.

II. RELATED WORKS

This section summarizes some works that are related to
COVID-19 detection, particularly algorithms that are based
on x-ray and computerized tomography (CT) scan. It should
be noted that a CT scan approach is the gold standard for
detecting a pneumonia condition, but a chest x-ray modality
is the cheaper and faster way. In general, it is still difficult for
an inexperienced radiologist to differentiate the white patches
on the scan that was caused by the pneumonia condition.
Therefore, an automatic tool can be a great help in identifying
the possibility of the disease in the early stage as shown in
other successful applications [16], [17]. A concise review by

Dong et al. [18] shows the importance of medical image in
managing and treating the COVID-19 disease. One of the
crucial points that have been argued is that an automatic tool
is an efficient supplement to the laboratory-based real-time
polymerase chain reaction (RT-PCR) test.

Pereira et al. [19] have analyzed two types of machine
learning architectures to detect COVID-19, which are flat and
hierarchical structures. They have also investigated various
feature extraction methods to extract COVID-19 patterns,
which can also distinguish between pneumonia caused by
COVID-19SARS-CoV-2 and other viruses. They have tested
their proposed method on a combined database, taken from
three different resources, which have been augmented before-
hand to deal with the imbalanced data issues. In [20], Abdel-
Basset et al. focused on the x-ray segmentation method to
extract the similar small regions that may represent COVID-19
features. They have introduced a hybrid COVID-19 detection
model by applying an improved marine predators algorithm
(IMPA). A method based on the DarkNet model using chest
x-ray images was introduced by Ozturk et al. [14]. They
experimented on two different setups, which are are binary
classification (COVID-19 vs non-COVID-19) and three-class
classification (COVID-19 vs normal vs other types of vi-
ral pneumonia). Their experimental results show that they
achieved accuracies of 98.08% and 87.02% for binary and
three-class classification, respectively.

Another COVID-19 detector was devised by Togacar et
al. [21], where they have applied two deep learning model
feature extractors, which are MobileNet V2 and SqueezeNet.
The features are then classified by using the Support Vector
Machine, which is not an end-to-end operation. Before that,
the images underwent a pre-processing operation using the
Fuzzy Colour technique. Their method managed to achieve
a promising result of 99.72% accuracy. The results were
obtained according to the three-class classification setup of
COVID-19, normal, and pneumonia. In [22], the authors tackle
the same problem of three-class classification problem as
in [21]. A modified SqueezeNet model was devised using
Bayesian optimization where the network error is used to op-
timize the hyper-parameters. Their method, COVIDiagnosis-
Net utilized augmentation module to overcome the imbalanced
distribution of data between the classes. The method has
achieved 0.983 accuracy and they claimed that the network
is optimized for mobile application.

III. SPP-COVID-NET

A. Chest X-ray Dataset

The same dataset used in [23] is utilized to verify the
proposed SPP-COVID-Net performance. The dataset is con-
structed based on other online databases [24], [25], [26] that
were taken from various countries. The full dataset consists
of chest x-ray images of 219 patients of confirmed positive
COVID-19, 1341 images of normal people and 1345 images
of other types of viral pneumonia patient. Each of the x-
ray images has a resolution of 1024x1024 in the format



of Portable Network Graphics. Some samples of chest x-
ray images of COVID-19, normal and other types of viral
pneumonia patients are shown in Figure 2,3 and 4,respectively.

Fig. 2. Sample of chest x-ray images of COVID-19 patients.

Fig. 3. Sample of chest x-ray images of normal patients.

Fig. 4. Sample of chest x-ray images of other types of viral pneumonia
patients.

B. Method

SPP-COVID-19 is a detection network that classifies an x-
ray image into one of the three following classes, which are
COVID-19, normal, and other types of viral pneumonia. The
networks consist of 14 layers of normal CNN and one module
of SPP. The full network architecture is shown in Table I,
where our modified SPP module is shown in Figure 5. All 14
layers of normal CNN will be followed by batch normalization
operation and Leaky ReLU activation function. Thus, all biases
of the CNN layers will not be activated. The first two layers
of CNN is setup without any squeeze operation, while the rest
of the 12 CNN layers will adopt a squeeze scheme in the form
of four-module, indicated by i. Each of the squeeze modules
will consist of three CNN layers, where the initial number of
filters, Ni will be twice the number of filter in the second
CNN layer, Ni

2 , while the third CNN layer will have the same
number of filter as the first layer, Ni. The kernel size will be
set to 3x3 for the first and third layers, while it will be set to

1x1 for the first layer. The total number of filters in each of
the squeeze modules are set to N = {32, 64, 128, 256}.

TABLE I
ARCHITECTURE OF THE SPP-COVID-NET.

Layer No. Operation No. of Filter Kernel Stride
1 Conv2D 8 3x3 1x1
2 Conv2D 16 3x3 1x1
3 MaxPooling2D - 2x2 2x2
4 Conv2D 32 3x3 1x1
5 Conv2D 16 1x1 1x1
6 Conv2D 32 3x3 1x1
7 MaxPooling2D - 2x2 2x2
8 Conv2D 64 3x3 1x1
9 Conv2D 32 1x1 1x1

10 Conv2D 64 3x3 1x1
11 MaxPooling2D - 2x2 2x2
12 Conv2D 128 3x3 1x1
13 Conv2D 64 1x1 1x1
14 Conv2D 128 3x3 1x1
15 MaxPooling2D - 2x2 2x2
16 Conv2D 256 3x3 1x1
17 Conv2D 128 1x1 1x1
18 Conv2D 256 3x3 1x1
19 SPP module - 4x4,6x6,7x7 1x1
20 Dense 3 - -

For the modified SPP module, no convolutional operation is
performed, instead, only the multiple scales of down pooling
operation are utilized. In this paper, three maximum down
pooling operations are executed in parallel with the kernel
size of 4x4,6x6, and 7x7. Each of the pooling outputs will be
flattened into a vector, where each vector will be concatenated
into a single long vector. Then, a single layer of dense neural
network is used to classify the images into their respective
class using the SoftMax activation function.

Fig. 5. Architecture of the modified SPP module.

C. Training and Validation

The raw code for SPP-COVID-Net can be downloaded
from https://github.com/SitiRaihanah/SPP-COVID-
Net/blob/master/SPP-COVID-Net.py1. It is coded on the
Python platform using Keras front-end and TensorFlow
back-end. Adam optimizer is used to train the network using
categorical cross-entropy loss function with a total number of
epoch equal to 100 and a learning rate of 0.0001. Minibatch



TABLE II
PERFORMANCE COMPARISON BETWEEN SPP-COVID-NET AND THE BENCH-MARKED METHODS IN CLASSIFYING CHEST X-RAY IMAGES OF COVID-19

PATIENTS.

Method Total no. of Parameters Fold-1 Fold-1 Fold-1 Fold-1 Fold-1 acc Variance Standard Deviation
MobileNet V1 3,231,939 0.912 0.869 0.916 0.931 0.885 0.903 0.000626 0.0250
MobileNet V2 2,262,979 0.888 0.909 0.836 0.914 0.881 0.886 0.000944 0.0307

MobileNet V3 Small 1,665,501 0.897 0.912 0.735 0.919 0.899 0.872 0.00598 0.0774
MobileNet V3 Large 3,789,427 0.895 0.911 0.892 0.935 0.490 0.824 0.0353 0.188

ShuffleNet V1 939,531 0.474 0.926 0.845 0.904 0.851 0.800 0.0343 0.185
SquezeNet 736,963 0.952 0.948 0.957 0.959 0.497 0.862 0.0419 0.205

DarkCOVID-Net 1,167,363 0.957 0.940 0.947 0.947 0.909 0.940 0.000335 0.0183
SPP-COVID-Net 862,331 0.957 0.943 0.943 0.950 0.938 0.946 0.0000531 0.00729

size of 64 is used to train the network using a cross-validation
scheme of five folds. The performance is measured using
mean accuracy (acc) metric as shown in the following
equation, where n the is the total number of cross-validation
folds, C is the set of available class, Tp is the true positive,
Tn is the true negative, Fp is the false positive and Fn is the
false negative detection.

accj =

∑|C|
i=0

Tp,i+Tn,i

Tp,i+Tn,i+Fp,i+Fn,i

c
, , i ∈ C (1)

acc =

∑n
j=0 accj

n
(2)

IV. RESULTS AND DISCUSSION

For performance comparison, six more lightweight deep
learning models are tested, which consist of MobileNet V1
[27], MobileNet V2 [28], MobileNet V3 [29], ShuffleNet V1
[30], SqueezeNet [31] and DarkCOVID-Net [14]. Each of the
algorithms has gone through a 5-fold cross-validation test,
where the full results are shown in Table II. In general, our
SPP-COVID-Net produces the best mean accuracy of 0.946,
followed by DarkCOVID-Net and MobileNet V1 with mean
accuracy of 0.940 and 0.903, respectively. SPP-COVID-Net
also achieves the best mean accuracy with fewer total param-
eters compared to the DarkCOVID-Net and MobileNet V1.
In fact, among the benchmarked models, only three methods
have a total number of parameters that are less than 1,000,000,
which are SqueezeNet, SPP-COVID-Net, and ShuffleNet V1.
It is important to have a model with low memory requirement
but still deliver a good performance. In this case, only SPP-
COVID-Net achieves a mean accuracy of more than 0.9 with
less than 1,000,000 total parameters.

SPP-COVID-Net alters the few last layers of DarkCOVID-
Net by embedding the modified SPP module. By processing
multiple inputs with several max-pooling operators of different
kernel sizes, the algorithm manages to detect the disease
features in multi-scale form. For COVID-19 and other types
of viral pneumonia patients, their x-ray images are expected
to contain some abnormalities blobs compared to the normal
patients. These blobs vary in size and hence, the algorithm
should be able to detect them regardless of the disease severity.
Normally, a larger blob size indicates that the disease is in the
later stage and pose a more severe risk to the patients.

Besides that, Table II also shows the accuracy performance
variation among the cross-validation folds. SPP-COVID-Net
also returns the lowest standard deviation value of 0.00729,
compared to the second-highest mean accuracy algorithm,
DarkCOVID-Net with 0.0183 standard deviation. It shows that
SPP-COVID-Net is more robust to variation in training data
selection as the accuracy range is stable within [0.938, 0.957].

V. CONCLUSION

In conclusion, the proposed SPP-COVID-Net has achieved a
good mean accuracy compared to the bench-marked methods.
In fact, it is the second most lightweight model with just
862,231 total number of parameters. In terms of training
robustness, it is the most stable algorithm with a low accuracy
variation among the cross-validation folds that produce accu-
racy readings within the range of [0.938, 0.957]. SPP-COVID-
Net strength can be attributed to its ability to process multi-
scale features because of the SPP module integration. The
proposed algorithm is suitable for mobile phone applications,
which can fasten the screening process of the COVID-19
disease.
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