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Abstract—Machine learning approaches are gaining popularity
in the medical field for diagnostics, predictive analytics and
general research. With data often being unlabeled or sparse to
collect, there is a need for unsupervised learning networks in the
medical field. Self-Organizing Feature Maps (SOFM) are a com-
mon application of unsupervised networks and allow for the use
of unlabeled data in their training. We applied chest x-ray images
of COVID-19 patients to an SOFM network and found a distinct
classification between sick and healthy patients with an average
euclidean distance of 1.1 between 1st and 2nd winning neurons
in our testing set. We were also able to show which features
of the input space had the highest weight on the classification,
to study saliency of features on this unsupervised network. This
work shows that unsupervised learning is able to extract features
of medical data, specifically chest x-rays of COVID-19 patients,
while also accurately classifying the image. This SOFM network
can be found at https://github.com/king2b3/SOFM.

Index Terms—self-organization, machine learning (ML), arti-
ficial intelligence (AI), unsupervised learning, covid-19

I. INTRODUCTION

In late December 2019, a cluster of pneumonia cases in
Wuhan, China were brought forward to the World Health
Organization (W.H.O.), which later identified the coronavirus
as causative virus behind the outbreak. The virus was officially
declared a pandemic on March 11, 2020 and the W.H.O in
return called for research to focus on accelerating diagnostics,
vaccines and therapeutics for the virus [1]. There is an urgent
need for more research but there is a limit on the amount of
available data, especially in the field of diagnostic [2]. Some
of the difficulties with applying machine learning to biological
data is that the datasets are often very small and can often be
unlabeled.

Recently, many authors have shown that conventional image
processing techniques, like Convolutional Neural Networks
and Deep Learning, can help detect features in COVID-19
chest x-ray images [3]–[12]. The major downside of these
networks is that they rely on availability of labeled data.
COVID-19 databases often have incomplete and inaccurate
labels and new data is constantly being added to these existing
datasets [13]. Unsupervised learning’s biggest strength is that
labeled data is not needed in the training process, because the
network will cluster the given input space based on similar
features. Researchers in the past have applied unsupervised
learning techniques to various other biological images, like

liver CT scans and other x-ray images, to extract features and
have shown promising results [14]–[16]. Shi et al. [13] in their
general literature survey over published diagnostic COVID-
19 AI techniques showed that only deep learning and other
supervised techniques have been published.

Our literature survey also found this lack of publications
applying unsupervised techniques to classify COVID-19 chest
x-ray images. Unsupervised learning has the benefit of not
needing labeled data to still train itself, it makes a great
candidate for any kind of medical application within machine
learning. We chose to implement the Self-Organizing Feature
Map (SOFM) algorithm for its ability to be efficiently de-
ployed for continuous and real-time learning. The simplicity
of this algorithm also allows it to be implemented as a
hardware algorithm on an application specific integrated circuit
(ASIC) [17], which would allow for low powered learning and
inferencing of patient data. Our goal with this research is to
show that a SOFM is an effective technique to cluster an input
set of COVID-19 chest x-ray images while also extracting
which features caused the clustering of each classification.

II. THE SOFM ALGORITHM

The SOFM was originally proposed by Kohonen [18] and
offers an approach to unsupervised clustering of unlabeled
data. The output of an SOFM are usually one or two dimen-
sional lattices of neurons, but higher dimensional lattices are
sometimes used in vector quantization problems. The network
then uses competitive learning to selectively tune the output
neurons to the classes of the input patterns. These output
neurons then cluster their weights in locations respective to
each other based off of feature similarities. The output map is
then a representation of the topographic mapping of the input
space [19].

There are three parts to the training algorithm of an SOFM:
network initialization and presentation of input vectors, finding
the best matching neuron or unit (BMU), and updating the
corresponding weights.

A. Network Initialization and Presentation of Input Vectors

There are a few parameters that need to be defined before
the training can begin. First the network size needs to be
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Fig. 1: Visualization of an SOFM 2-D map

defined for the input and output space. The input space is
defined as

x = [x1, x2, ..., xM ]T (1)

For example, if the dataset consisted of images that are nxn
pixels, then M = n2. Then, the dimension of the output space
needs to be defined; in most cases the output is a 2-dimensional
grid, which allows for simple visualization. Fig. 1 shows a
visual representation of a 2-dimensional map with M inputs.

After the network is defined, the initial weights need to be
randomized so that training can start. One benefit of using an
SOFM is that after training is complete the output space will
be a topographic product of the input space, so no translation
is needed to prepare the inputs. The input space can consist
of any data, for example, ranging from images converted to
matrices of their gray-scaled pixel values, biological data like
ECG sensor data, or simply binary classifications. Depending
on the need of the network the dataset is normally divided into
training and testing portions. The training set does not need
to be labeled, but the testing set is often labeled for easier
visualization after training.

B. Finding the Best Matching Neuron

After applying the first input vector to the network, the
BMU must be found. The BMU is whatever output neuron’s
weights are closest to that input. The BMU, i∗, is found by

i* = argmin(
∑

(wi − xq)2) (2)

where wi is the weight vector of neuron i and xq is the input
pattern.

C. Updating the Weights

After the BMU is found, the corresponding weights wij

need to be updated as follows

∆wij = η(t)Λ(i, i∗, t)(xqj − wij) (3)

where η is the learning rate which varies by

η(t) = ηoexp(−
t

τL
) (4)

where τL is a user defined constant. The learning rate is usually
floored near 0.01 so that learning continues throughout the
whole training process. Λ is the neighborhood rate, where a
typical choice is

Λ(i, i∗, t) = exp[
− | ri − ri∗ |2

2σ2(t)
] (5)

Fig. 2: Dataset generation process

The decay in the neighborhood rate is controlled by τN just
like the decay of the learning rate.

σ(t) = σoexp(−
t

τN
) (6)

The neighborhood rate is normally floored at 1, so that each
BMU updates at least it’s neighbors in the output map.

Often the training process is broken down into two separate
sections: the Self-Organization Phase and the Convergence
Phase. The Self-Organization Phase is what trains the weights
from their initial randomization to the general structure of
the input space. The Convergence Phase is then when the
neighborhood rate and learning rate floor to their minimum
values, and then the network refines the learned weights to
better match the input space. This phase generally runs for
500 times the number of neurons in the output map, but this
might be unfeasible for certain map sizes [19]. For a larger
datasets the number of epochs can be decreased to allow for
a more reasonable training time. If so, then τN and τL need
to be modified to allow for the Convergence Phase to still be
roughly two-thirds of the training.

III. METHODOLOGY

A. Data Set Generation

We used Cohen, Morrison, and Dao’s database [20] of
COVID-19 and other chest related illness x-ray images to
generate our testing and training datasets. The database fea-
tures chest x-ray images of patients progressing with Severe
Acute Respiratory Syndrome-related Coronavirus (SARS) or
SARSr-CoV-1, SARSr-CoV-2 or COVID-19, Streptococcus
spp., Pneumocystis spp., and Acute Respiratory Distress Syn-
drome (ARDS).

The images are divided into two classes, either infected or
not infected. First, each image must be resized to the same
dimensions due to the varying resolutions of the images. We
used OpenCV [21] in Python 3.7 to generate these new resized
images, and then return their grayscaled values as a Python
list as shown in Fig. 2 We then randomly selected 80% of the
images to be used as a training set and the remaining 20% as
a testing set. The labels are then removed from the training
set, but left for the testing set.

B. Feature Extraction

In a fully trained self organizing feature map, the weights
of each neuron take the form of various inputs in the data set
belonging to the cluster the neuron represents. Therefore, a
mean of the weights of neurons in a cluster can provide an
estimate for the mean of the corresponding cluster in the data
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TABLE I: SOFM Parameters

Max Epochs η0 σ0 Map Size τN τL
7000 0.1 100 10x10 1000 1000

Fig. 3: (a) Output map showing 0 and 1 as healthy and sick
patients respectively, (b) Corresponding weight map.

set. Additionally, the variance of the corresponding cluster in
the data set can also be estimated by computing the variance of
the weights of neurons in the cluster. The means and variance
of each cluster allows us to fit a normal distribution model for
each attribute in each cluster. In this case, the pixels for the
x-ray images were treated as independent and an independent
normal distribution was modeled for every individual pixel.
This was to allow for regions to be analyzed independently. An
overlapping coefficient was used to compare the distributions
of pixels in the infected cluster with the corresponding pixels
in the non-infected cluster. The overlapping coefficient (OVL)
is a measure of the area of overlap between two normal
distributions; in this case it is representative of the probability
that an input pixel falls within both the infected and non-
infected distributions. A lower OVL is indicative of pixels that
are able to differentiate between the two clusters since there
is little overlap. An acceptance threshold can be applied to the
OVL measures of each pixel to identify its significance in the
differentiation between the two clusters: in this case we used
0.3.

C. Explainable Results

When introducing an input to the self-organizing feature
map, the SOFM outputs the neuron with the closest matching
weight map. The input can then be compared to the BMU to
see if the output of the neuron is justifiable. A low difference
between the BMU and the input image indicates the BMU has
captured the features of the input sufficiently. An acceptance
threshold can be defined by the user to validate the BMU’s
representation of the input. Once the cluster that the input
the is associated with is known via the cluster of the BMU,
the input can be compared to the distribution of the cluster
described in the the previous subsection. A Z-score can be
computed using the cluster mean and variance for each pixel
in the input image. An acceptance region for the normal
distribution can then be defined to identify any anomalies
in the input image. The input image can also be compared
to the distributions of the other clusters. The Z-score for the
significant features distinguishing the clusters should be lower

Fig. 4: Significant features distinguishing the clusters

Fig. 5: (a) Healthy and sick input images compared to corre-
sponding BMU’s, (b) Z-score of each in pixel in input images
in healthy and sick distribution

for the cluster associated with the input and higher for the
remaining clusters. There would then be a higher confidence
in the classification as well as explainable results.

IV. RESULTS AND DISCUSSION

Our training set has 148 images which means by conven-
tional SOFM standards for two phase learning that we should
run for approximately 51 thousands epochs, which we found to
be unnecessary due to the inherent similarities in the dataset.
Although there are two classes of data, the chest x-ray of
a sick patient vs. a healthy patient are not very different in
terms of the general layout of the input space. We still set
parameters for the Self-Organization Phase to run for 1000
epochs, and then have our Convergence Phase run for 6000
epochs. The parameters that we used for our training and
testing can be seen in table I. Fig. 3 shows the weight map
of the network and output map for the fore-mentioned trained
network on the testing set. The healthy cluster made up 45%
of the map while the sick cluster made up the remaining 55%.
The final euclidean distance between the 1st and 2nd BMUs
after training was 1.1 neurons, indicating that the neighbors
of each BMU reflect proper clustering.

The significant features distinguishing the two clusters were
extracted using the process described in Section III.B. using
an OVL acceptance threshold of 0.3. Visually inspecting the
cluster means for the healthy and sick cluster, illustrated in
Fig. 4, we can identify the top portion of the lungs for the
sick cluster is darker and the bottom portion of the sick
cluster is wider. Performing the OVL-based feature extraction,
we can see that the features extracted distinguishing the two
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clusters agree with the features that were identified by visual
inspection.

The input of a healthy subject and sick subject were
randomly selected for testing the explainability of the SOFM.
Visually inspecting the inputs and their corresponding BMU
in Fig. 5, shows that the input and the BMU match fairly
well aside from the details of the ribs smoothed out in
the BMU. The image illustrating the difference between the
input and BMU agrees with the visual inspection showing
very little error or difference. Comparing the subject’s x-ray
images to the cluster distributions in Fig. 5 with 2-tailed Z-
test acceptance region with α = 0.005, shows that there is a
lesser quantity of anomalies in the significant regions specified
in Fig. 4 for the cluster associated with the subject. These
results increase the confidence of the output classification of
the SOFM for that input, because the BMU properly captures
the input and the input falls better in the acceptance region of
the associated cluster, especially in the significant regions.

V. CONCLUSION AND FUTURE WORKS

We have shown that unsupervised learning, specifically with
an SOFM network, can cluster COVID-19 chest x-ray images
and extract their features successfully. The major strength
of the network is that labeled data is not a requirement for
training, which allows for the network to be trained on a
larger quantity of data since labeled data is often scarce.
Convolutional Neural Networks have a high computational
complexity as well as a large memory requirement to im-
plement. SOFMs utilize a much simpler algorithm and the
memory requirement is bound by the size of the network which
can be reduced at the expense of some resolution penalty. The
SOFM also allows for lifelong learning and enables for it to
continuously learn as more COVID-19 patient x-rays are taken.
This would also enable it to adapt as new symptoms may arise
or if the virus begins to mutate. The distributions produced
for each cluster also allow for anomaly detection using Z-
scores and acceptance regions as demonstrated in Fig. 5. This
could potentially allow for experts to be notified of any other
infection that a patient may have or that may be spreading,
which may include any further mutations.

We would like to investigate incorporating an additional set
of different inputs or attributes for each patient: symptoms,
age, gender, etc. We would like to investigate finding corre-
lation between these sets of attributes and various conditions
and infection in addition to the current COVID-19 pandemic.
This would allow for the network to classify using more easily
available measurements since x-rays are not easily accessible
especially during the current crisis. We would also like to
incorporate more clusters for various conditions instead of just
healthy and sick. This may result in a network which is able
to track various diseases and classify which cluster subjects
fall within in addition to identifying anomalies.
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