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ABSTRACT The complete radiation field pattern of a vertical Hertzian dipole antenna on or above a lossless
or low-loss dielectric half-space is studied using a rigorous Sommerfeld formalism. The reflected fields in
the air above the interface and the subsurface fields transmitted into the dielectric are computed by numerical
integration of the Sommerfeld integrals. Furthermore, to facilitate the physical interpretation of these results,
a detailed asymptotic saddle-point integration method analysis is presented, which includes terms that vary
in magnitude with the second power of the inverse distance from the dipole. It is shown that the second-
order field constituents are dominant at the interface, where the first-order geometrical fields vanish. These
second-order terms comprise an evanescent wave propagating along the interface in the upper half-space
and a lateral wave, also known as the head wave, which propagates in the subsurface along the direction of
the critical angle. The two waves only exist between two cones whose half-angles are equal to the critical
angle, and their interference with the geometrical-optics fields determines the radiation pattern for elevation
angles near the horizon. The far zone surface fields on either side of the interface comprise two second order
waves that propagate along the interface, one with the phase velocity in the air, and the other with the phase
velocity in the dielectric. Away from the interface, the leading field components vary with the first power
of the inverse distance, which explains the sharp dip in the field pattern at the interface—a phenomenon
known as the interface pattern extinction. Another distinctive phenomenon, observed in the subsurface field
pattern, is the rippling that occurs in the angular range between the critical angle cone and the interface. The
asymptotic analysis has shown that this pattern scalloping results from the interference of the lateral wave
with the geometrical-optics spherical wave.

INDEX TERMS Dipole antennas, antenna radiation patterns, interface pattern extinction, dielectric half-
space, Sommerfeld integrals, saddle-point integration method, lateral waves.

I. INTRODUCTION
The problem of a vertical electric dipole (VED) radiating over
a material half-space is fundamental to the understanding of
antennas and wave propagation over ground. The first rigorous
formulation of this problem was obtained by Sommerfeld [1],
who expressed it in terms of the eponymous integrals. In view
of the fact that this problem is not amenable to a closed form
analytical solution, Sommerfeld and his followers resorted

to various approximate procedures, usually assuming a high-
loss ground [2]–[6]. Since the field propagating over ground
was of primary interest, the field transmitted into the lower
half-space received little attention, although there were some
early exceptions [7]. Further studies of the transmitted field
were spurred by the discovery of the so-called head wave
in the acoustic half-space problem [8]. The corresponding
electromagnetic problem was subsequently analyzed by the
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recently-developed saddle-point integration method, and it
was soon recognized that the head wave, later renamed lateral
wave, was represented by a branch cut integral in the Sommer-
feld formulation [9]–[11]. Nevertheless, this lateral wave, be-
ing a second-order effect with O(r−2) range dependence, was
often ignored in subsequent studies, which only retained the
leading first-order term with O(r−1) behavior [12]–[14]. The
latter represents the geometric-optical field, which can also be
obtained by the plane-wave reciprocity method [15]–[17]. The
radiation field pattern of an interfacial VED over a low-loss
half-space computed by this simple approach has a null at
the interface and it exhibits subsurface peaking at the critical
angle [13], [16], [18]. However, a rigorous analysis shows
that the “interface pattern extinction” is not complete when
the second-order effects are included. Furthermore, it is found
that the rigorously computed subsurface pattern exhibits a
scalloping for angles beyond the critical angle, which is absent
in the geometric-optical pattern and is thus a second-order
effect [16]. These second-order phenomena may be elucidated
by the application of the saddle-point method, but the analysis
is somewhat complicated by the fact that the standard proce-
dure breaks down at the critical angle [19].

The understanding of subsurface radiation of antennas
placed on or near an interface between two half-space media
is fundamental in radio interferometry applications where the
earth properties are those of a low-loss dielectric with moder-
ate contrasts. A quantitative analysis of this problem is also
of interest in wireless communications and sensing, where
ever higher frequency bands are utilized and over a half of
the radiated power may be transmitted into the ground as the
losses become negligible. For example, for dry earth or ur-
ban ground we can assume the dielectric constant ε′r = 4 and
conductivity σ = 10−4 S/m, which results in a loss tangent of
10−3 at 450 MHz.

In this paper, we present a study of the complete radiation
pattern of a VED on or above a lossless or low-loss dielectric
half-space, using the Sommerfeld formalism with the integrals
evaluated numerically. Furthermore, to facilitate the physical
interpretation of these results, we provide a detailed asymp-
totic saddle-point integration analysis, including effects of the
second order in the inverse distance from the dipole. Our
asymptotic procedure is not applicable at the critical angle, but
this is not a major limitation, since the main objective of this
work is to shed more light on the phenomena of interface pat-
tern extinction and subsurface pattern scalloping observed in
the angular range between the critical angle and the interface.

II. PROBLEM GEOMETRY AND NOTATION
Consider a z-oriented Hertzian dipole with the current mo-
ment I� [Am], located on the z axis at a distance h above a
dielectric half-space, as illustrated in Fig. 1. The free-space
permeability, permittivity, intrinsic impedance, and wavenum-
ber will be denoted by μ0, ε0, η0 and k0, respectively. The
media are assumed non-magnetic and characterized relative
to free space by the dielectric constants εn, n = 1, 2, with
the corresponding wavenumbers kn = k0

√
εn and intrinsic

FIGURE. 1. Schematic of a vertical electric dipole located at a height h
above a dielectric half-space when the field point is (a) above and (b)
below the interface. Of interest is the radiation field pattern in both
half-spaces at a constant radius r.

impedances ηn = η0/
√
εn, and the media contrast will be

specified by ε = ε2/ε1. The medium of the upper half-space
will be assumed lossless, but the lower half-space may op-
tionally have small lossless, in which case ε2 = ε′2 − jε′′2 =
ε′2 (1− j tan δ2), where tan δ2 is the loss tangent of the lower
medium. The e jωt time convention is assumed.

III. FORMULATION
The problem of Fig. 1 has cylindrical symmetry, with the
electric and magnetic field components given as [20]

Ez = − jω

(
1+ 1

k2
n

∂2

∂z2

)
Az (1)

Eρ = − jω

k2
n

∂2Az

∂ρ∂z
, Hϕ = − 1

μ0

∂Az

∂ρ
(2)

where the subscript n corresponds to the half-space in which
the field is evaluated, and where

Az = μ0 I�

2π jωε0ε1

∫ ∞
0

Ie
v (z|h)J0(kρρ)kρdkρ (3)

is the z component of the magnetic vector potential, in which
J0(·) denotes the zero-order Bessel function and Ie

v (z|h) is a
Green function of the transmission-line network analogue of
the layered medium, derived in Appendix A. We may express
the vector potential in both half-spaces more explicitly as

Az1 = μ0 I�

4π
k1

[
e− j�1

�1
+
∫ ∞

0

‖

e− jkz1(z+h)

jkz1
J0(kρρ)

kρdkρ
k1

]
(4)

where �1 = k1r1 and

Az2 = μ0 I�

4π
k1

∫ ∞
0

(
1+ 
‖

) e− jkz1h

jkz1
e jkz2zJ0(kρρ)

kρdkρ
k1

(5)
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where we have introduced


‖ ≡ −←−
 e
1 =

kz1 − kz2/ε

kz1 + kz2/ε
. (6)

Note that Az1 in (4) comprises a direct, whole-space term and
a “correction term” accounting for the lower half-space. The
Sommerfeld integrals in (4) and (5) are over the transverse
wavenumber kρ . Their integrands comprise the double-valued
square-root functions kz1 and kz2 with branch points at ±k1

and ±k2, respectively, which necessitates the introduction of
branch cuts in the kρ−plane, as discussed in Appendix B. It
will be convenient for our purposes to employ the hyperbolic
cuts illustrated in Fig. 16, and to introduce a four-sheeted
Riemann surface defined in Fig. 17. The Sommerfeld inte-
gration path follows the positive-real axis on Sheet I , passing
above the fourth-quadrant singularities, which in addition to
the branch points k1 and k2 include a pole kp. This Som-
merfeld pole satisfies the dispersion relation kz1 + kz2/ε = 0
obtained by equating to zero the denominator of the reflection
coefficient (6).

The electromagnetic fields corresponding to the potentials
Az1 and Az2 readily follow from (1)-(2). Assuming the nor-
malization

E = − jη1k2
1

I�

4π
E , H = − jk2

1
I�

4π
H (7)

we find the electric field components in both half-spaces as

Ez1 = ED
z1 + ER

z1 (8)

ED
z1 =

[
sin2 θ1 − (1− 3 cos2 θ1)

(
j

�1
+ 1

�2
1

)]
e− j�1

�1
(9)

ER
z1 =

∫ ∞
0


‖
e− jkz1(z+h)

jkz1
J0(kρρ)

k3
ρdkρ

k3
1

(10)

Ez2 =
∫ ∞

0

(
1− 
‖

)
e− jkz1h e jkz2z

jkz2
J0(kρρ)

k3
ρdkρ

k3
1

(11)

Eρ1 = ED
ρ1 + ER

ρ1 (12)

ED
ρ1 = − sin θ1 cos θ1

[
1− 3

(
j

�1
+ 1

�2
1

)]
e− j�1

�1
(13)

ER
ρ1 =

∫ ∞
0


‖ e− jkz1(z+h)J1(kρρ)
k2
ρdkρ

k3
1

(14)

Eρ2 =
∫ ∞

0
− (1− 
‖) e− jkz1he jkz2zJ1(kρρ)

k2
ρdkρ

k3
1

(15)

and the magnetic fields as

Hϕ1 = HD
ϕ1 +HR

ϕ1 (16)

HD
ϕ1 = − sin θ1

(
1− j

�1

)
e− j�1

�1
(17)

HR
ϕ1 =

∫ ∞
0


‖
e− jkz1(z+h)

kz1
J1(kρρ)

k2
ρdkρ

k2
1

(18)

Hϕ2 =
∫ ∞

0

(
1+ 
‖

) e− jkz1h

kz1
e jkz2zJ1(kρρ)

k2
ρdkρ

k2
1

. (19)

The radial component of the time-averaged Poynting vector is
given as

Sr = 1

2
�e EθnH∗ϕn = η1k4

1
|I�|2
32π2

�e EθnH∗ϕn (20)

where

Eθn = − sin θ Ezn + cos θ Eρn (21)

and the radiation pattern may be represented by the directive
gain

D(r, θ ) ≡ 4π
r2Sr

Prad

= 3

2
(k1r)2�e EθnH∗ϕn ≈

3

2
(k1r)2 |Eθn|2

√
ε′n
ε1

(22)

where

Prad = |I�|
2

12π
η1k2

1 (23)

is the power radiated by the dipole in an infinite homogeneous
medium with the parameters of the upper half-space. It is
understood in the above relations that n = 1 in the upper
half-space (θ ≤ π/2), and n = 2 in the lower half-space (θ ≥
π/2). Note that Prad/(4π ) may be interpreted as the power per
unit solid angle radiated by an isotropic reference antenna.
The radiation pattern of a VED has azimuthal symmetry, as
there is no dependence on ϕ, and three Sommerfeld integrals
need to be evaluated to compute D(r, θ ) (or two integrals,
if the approximation in (22) is employed). Since we wish
to study the far-zone radiation pattern of the dipole, we will
henceforth assume that k1r 
 1 and focus on the transverse
electric field components Eθn.

IV. ASYMPTOTIC REFLECTED FIELD
Although the reflected field pattern of a VED on or above a
material half-space is well understood [21], [22], we include
here the saddle-point analysis of this problem for complete-
ness. Furthermore, essentially the same method is employed
in the next section in the analysis of the transmitted field
pattern. It should be noted that there is no need to invoke the
modified saddle-point method [23, Sec. 4.4a] here, in view of
our assumption of lossless or low-loss lower half-space.

In the upper half-space of Fig. 1(a), we find Eθ1 = ED
θ1 +

ER
θ1, where

ED
θ1 = − sin θ ED

z1 + cos θ ED
ρ1

≈ − cos(θ1 − θ ) sin θ1
e− j�1

�1

+ j [sin θ + 3 sin(θ1 − θ ) cos θ1]
e− j�1

�2
1

(24)
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FIGURE. 2. Integration path C along the real axis on the top Riemann
sheet.

and ER
θ1 = − sin θ ER

z1 + cos θ ER
ρ1, where ER

z1 and ER
ρ1 are

given by (10) and (14), respectively. Note that in (24) we
have retained terms up to the second order in �−1

1 . In order to
evaluate the reflected field ER

θ1 asymptotically, we first express
the Bessel functions in (10) and (14) in terms of the Hankel
functions of the first and second kinds as Jm(z) = 1

2 [H (1)
m (z)+

H (2)
m (z)] and the extend the integration paths to the entire real

axis via the formula H (1)
m (z e jπ ) = − e− jmπH (2)

m (z), so that a
typical Sommerfeld integral is transformed as∫ ∞

0
F (kρ )Jm(kρρ)kρdkρ = 1

2

∫ ∞
∞e− jπ

F (kρ )H (2)
m (kρρ)kρdkρ

(25)
where F (kρ ) is an even function for m = 0 and odd for m = 1.
The integration path in (25) runs just below a branch cut along
the negative-real axis and a branch point at the origin, which
are introduced by the Hankel function. However, this branch
cut will not be encountered in the subsequent path transforma-
tions. To facilitate the application of the saddle-point method,
we approximate the Hankel function by its large-argument
form

H (2)
m (kρρ) ∼

√
2

πkρρ
e− j(kρρ−mπ/2−π/4)

(
1+ j

1− 4m2

8kρρ

)
(26)

where we have retained the first two terms of the expansion.
Since most of the contribution to the integrals arise from the
vicinity of the saddle point, the use of this approximation will
be justified as long as k1ρ 
 1. After these transformations,
we obtain

ER
z1 ≈

1√
2 jπ

∫ ∞
∞e− jπ


‖
e− jkz1(z+h)

kz1

e− jkρρ√
kρρ

×
(

1+ j

8kρρ

)
k3
ρdkρ

k3
1

(27)

and

ER
ρ1 ≈

−1√
2 jπ

∫ ∞
∞e− jπ


‖ e− jkz1(z+h) e− jkρρ√
kρρ

×
(

1− 3 j

8kρρ

)
k2
ρdkρ

k3
1

(28)

where the integrals are along the real-axis path C on Sheet I
of the kρ−plane, which is illustrated in Fig. 2. For simplicity,

we have omitted in this figure the second-quadrant integrand
singularities, as well as the branch cut along the negative-real
axis contributed by the Hankel function, which will be incon-
sequential in the ensuing path deformations.

To facilitate the evaluation of the integrals in (27) and (28),
we introduce a new variable of integration ξ via the transfor-
mation [23, Sec. 5.3c]

kρ = k1 sin ξ (29)

which implies kz1 = k1 cos ξ and kz2 = k1κ (ξ ), where

κ (ξ ) =
√
ε − sin2 ξ . (30)

We also convert to spherical coordinates via the substitutions
z + h = r2 cos θ2 and ρ = r2 sin θ2, where r2 is the radius of
a field point in the upper half-space measured from the image
dipole location and θ2 is the specular angle of incidence, as
indicated in Fig. 1(a). As a result of these steps, we obtain

ER
θ1 ≈

1√
π�2

∫
C

‖(ξ ) f (ξ ) e�2q(ξ )dξ , �2 = k1r2 (31)

where C is the ξ -plane image of the real-axis path on the top
Riemann sheet of the kρ-plane, and where

q(ξ ) = − j cos(ξ − θ2) (32)


‖(ξ ) = cos ξ − κ (ξ )/ε

cos ξ + κ (ξ )/ε
(33)

and

f (ξ ) = − sin ξ√
2 j

√
sin ξ

sin θ2
� (ξ ) (34)

with

� (ξ ) = cos(ξ − θ )+ j

8�2

sin θ

sin θ2
(1− 3 cot θ cot ξ ) . (35)

The transformation (29) renders kz1 single valued and removes
the associated branch cuts, so that sheets I and II of the
Riemann surface of Fig. 17 in Appendix B are mapped into
a single sheet of contiguous strips in the ξ -plane. The branch
points ±k1 are mapped into regular points ±π/2, but the
branch points ±k2 and the branch cuts associated with kz2

persist in the new plane. We will refer to this sheet as the “top”
or “proper” sheet, since it has the property that �m kz2 < 0
everywhere outside the branch cuts, on which �m kz2 = 0.
Sheets III and IV are similarly transformed into the “bottom”
or “improper” sheet on the ξ -plane, on which �m kz2 > 0
everywhere outside the branch cuts. The top sheet overlays
the bottom sheet so that a continuous transition between these
two sheets can only be effected by crossing one of the branch
cuts. We illustrate the top sheet of the ξ -plane in Fig. 3 in
the case where the medium of the lower half-space is slightly
lossy. Since the transformation (29) is periodic along the real
axis with a period of 2π , we only show one vertical stripe of
width 2π centered at the origin, which is further subdivided
into regions that correspond to the four quadrants of sheets I
and II in the kρ-plane, with the sheets identified by Roman
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FIGURE. 3. Top Riemann sheet of the ξ-plane, which is a mapping of
sheets I and II of the kρ-plane under the transformation kρ = k1 sin ξ. The
Roman numerals indicate the mapped sheets and their subscripts indicate
the quadrants, with the quadrant boundaries marked by dotted lines. On
this sheet �m kz2 < 0 everywhere excepting the branch cuts, where
�m kz2 = 0. Only the branch cuts involved in the subsequent path
deformations are depicted and are drawn in solid blue lines, with the
branch point ξb on sheet I indicated by the green cross symbol. The path C,
which is the image of the real axis integration path in kρ−plane, is
subsequently deformed into the steepest descent path CSDP through the
saddle point ξs = θ2, with both paths drawn in solid red lines. The
top-sheet Sommerfeld pole ξp is indicated by the red cross symbol. To
afford better picture clarity, a lossy case with ε = 4 − j0.2 is assumed.
(a) θ2 < θcb: CSDP does not capture the branch point and approaches j ∞on
the top sheet. (b) θ2 > θcb: CSDP captures the branch point and lies in part
on the bottom sheet, as indicated by the dashed red line, which
necessitates that the path wrapped around the branch cut Cb be added, so
that CSDPand the original path C may be reconnected on the top sheet at
infinity. On the right side of Cb �e kz2 > 0, while on the left side �e kz2 < 0.
The branch cut is subsequently deformed into the steepest descent path
CBCP, as shown by the dash-dot green line. The Sommerfeld pole is not
captured by these path deformations.

numerals with subscripts indicating the quadrants. The path
denoted by C is the mapping of the real-axis integration path
on sheet I in Fig. 2 and the heavy lines show the mapping of
the hyperbolic branch cuts associated with kz2 on sheets I and
II . The branch point ξb, which corresponds to k2 on sheet I
in Fig. 2, and which plays an important role in the following

analysis, satisfies the relations

sin ξb =
√
ε , cos ξb = − j

√
ε − 1 (36)

from which we find

ξb = ξ ′b + jξ ′′b = π/2+ j log
(√
ε +√ε − 1

)
(37)

and the Sommerfeld pole kp is similarly mapped into

ξp = π

2
+ j ln

(√
ε

ε + 1
− j√

ε + 1

)
. (38)

To facilitate the evaluation of the integral in (31), we de-
form the path C into the steepest descent path (SDP) CSDP
passing through the saddle point ξs, where the latter may
be found as a root of q′(ξ ) = 0, where the prime indicates
differentiation with respect of the argument of the func-
tion, and we readily show that ξs = θ2. The SDP is de-
fined by the conditions �m q(ξ ) = �m q(ξs) = constant and
�e q(ξ ) ≤ �e q(ξs), which in our case lead to

cos(ξ ′ − θ2) cosh ξ ′′ = 1 (39)

where the notation ξ = ξ ′ + jξ ′′ is implied, and we find that
the SDP is given as

ξ ′ = θ2 ± arccos sech ξ ′′ , −∞ < ξ ′′ <∞ . (40)

In this expression, the upper (lower) sign in should be se-
lected in the positive (negative) range of ξ ′′, so that the SDP
approaches the vertical asymptotes ξ ′ = θ2 ± π/2. The in-
tegration along the SDP is most conveniently performed by
introducing a new variable of integration s via the substitution
q(ξ ) = q(ξs)− s2, which in our case becomes [24]

cos(ξ − θ2) = 1− js2 , −∞ < s <∞ (41)

with the Jacobian

dξ

ds
=

√
2 j√

1− js2/2
−→
s→0

√
2 e jπ/4 . (42)

It thus follows that the SDP in the ξ -plane passes through the
saddle point θ2 at an angle of π/4, as illustrated in Fig. 3.
Upon solving (41) for ξ , we may express the SDP in terms of
the real parameter s as [25]

ξSDP = θ2 + j ln
[
1− js2 + (1− j)s

√
1− js2/2

]
. (43)

In the s-plane, the SDP is along the real axis, with the saddle
point at the origin. The SDP contribution to ER

θ1 may now be
found as

ESDP
θ1 ≈

e− j�2

√
π�2

∫ ∞
−∞

G(s) e−�2s2
ds (44)

where

G(s) = dξ

ds

‖(ξ ) f (ξ )

∣∣∣
ξ = ξSDP

. (45)

Referring to Fig. 3, we note that when the angle θ2 exceeds a
certain value, the SDP may cross the kz2 branch cut on II4,
enter the bottom sheet, and emerge again on the top sheet
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when this branch cut is crossed for the second time. Further-
more, when θ2 is further increased towards the interface, the
SDP will eventually also cross the kz2 branch cut on I4, which
occurs for θ2 > θcb, where θcb denotes the angle of capture of
the branch point, which in view of (40) is given as

θcb = ξ ′b − arccos sech ξ ′′b . (46)

We can show that in the lossless case θcb is equal to the critical
angle

θc = arcsin
(
1/
√
ε
)

(47)

of a plane wave incident in the lower half-space. The integrand
remains continuous along the SDP despite the branch cut
crossings, which may be ensured by choosing the �e κ > 0
branch of the complex square root. Since the branch cut on I4

is crossed only once when θ2 > θcb, the SDP continues on the
bottom sheet to j∞, and in order to form a closed contour
with the original path C on the top sheet of the ξ -plane, it is
necessary to augment the SDP by a path around the branch
cut Cb, as illustrated in Fig. 3(b). On this path �m κ = 0 with
�e κ > 0 on the right side of the cut and �e κ < 0 on the left.
The contribution to ER

θ1 from this branch cut path (BCP) is
found as

EBCP
θ1 ≈ 1√

π�2

∫
Cb

[[
‖(ξ )]] f (ξ ) e�2q(ξ )dξ , θ2 > θcb

(48)
where

[[
‖(ξ )]] = 4 cos ξ κ (ξ )/ε

cos2 ξ − κ2(ξ )/ε2
, �e κ (ξ ) > 0 (49)

represents the jump in 
‖(ξ ) across the branch cut. It is ad-
vantageous for the convergence of the integral to deform Cb

to the steepest descent path CBCP emanating from the branch
point ξb, which is permissible as there are no singularities in
the region of the complex plane swept in this deformation.
This new BCP may be determined as

ξ ′ = θ2 + arccos
[
cos(ξ ′b − θ2) cosh ξ ′′b sech ξ ′′

]
(50)

with ξ ′′b ≤ ξ ′′ <∞, and we note that it approaches the ver-
tical asymptote ξ ′ = θ2 + π/2 for ξ ′′ → ∞. To evaluate (48)
along CBCP it will be convenient to introduce a new variable of
integration s via the transformation q(ξ ) = q(ξb)− s2, which
in our case becomes

cos(ξ − θ2) = cos(ξb − θ2)− js2 ≡ ζ (s) , 0 ≤ s <∞
(51)

with the Jacobian given as

dξ

ds
= 2 js√

1− ζ 2(s)
(52)

and upon solving (51) for ξ we find

ξBCP = θ2 + j ln
[
ζ (s)− j

√
1− ζ 2(s)

]
. (53)

Expressing the BCP integral in the s-plane we thus obtain

EBCP
θ1 ≈ e− j�2 cos(ξb−θ2)

√
π�2

∫ ∞
0

B(s) e−�2s2
s ds , θ2 > θcb

(54)
where

B(s) = 2 j√
1− ζ 2(s)

[[
‖(ξ )]] f (ξ )

∣∣∣∣
ξ = ξBCP

. (55)

In view of the rapidly decreasing exponentials in the inte-
grands of (44) and (54), the integrals may readily be evaluated
by suitable numerical quadrature rules. However, to gain more
insight into the behavior of the fields for k1r 
 1, we will
evaluate these integrals asymptotically by the saddle-point
method with �2 as the large parameter, retaining terms up to
the second order in �−1

2 . We begin with ESDP
θ1 and approxi-

mate G(s) in (44) by the truncated Maclaurin series

G(s) ≈ G(0)+ G′(0) s+ G′′(0)
s2

2
(56)

where the primes indicate differentiation with respect to the
function argument, and then integrate term-by-term in closed
form [23, Sec. 4.2b], to obtain

ESDP
θ1 ≈

[
G(0)+ G′′(0)

4�2

]
e− j�2

�2
. (57)

Note that it was necessary to retain the first three terms in (56)
because the term odd in s integrates to zero. As a result, we
obtain

ESDP
θ1 ≈ − sin θ2 cos(θ2−θ )
‖(θ2)

e− j�2

�2

− sin θ2
ϒ(θ2)

8 j

e− j�2

�2
2

(58)

where

ϒ(θ2) = [(9− 3 cot2 θ2
)

cos(θ2−θ )

+12 cot θ2 sin(θ2−θ )− (1− 3 cot θ2 cot θ )] 
‖(θ2)

− [12 cos θ2 cos(θ2−θ )− 8 sin(θ2−θ )] 
′‖(θ2)

− 4 cos(θ2−θ )
′′‖ (θ2) (59)

with the required derivatives of the reflection coefficient listed
in Appendix C. The leading first-order term in (58) represents
the geometric-optical reflected field and the second-order term
represents the diffraction field.

To derive the asymptotic form of EBCP
θ1 , we first approxi-

mate B(s) in (54) by the two-term Maclaurin expansion

B(s) ≈ B(0)+ B′(0)s (60)

in which B(0) = 0, since s = 0 corresponds to ξ = ξb and
[[
‖(ξb)]] = 0, and the coefficient B′(0) may be found as

B′(0) = lim
s→0

B(s)

s
= − 4

√
2 j

ε

√
sin ξb

sin θ2
tan ξb

cos(ξb−θ )

sin(ξb−θ2)
�

(61)
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where

� = lim
s→0

κ (ξ )

s
H=
√
−2 j sin ξb cos ξb

sin(ξb−θ2)
. (62)

After this substitution, the integral may be evaluated in a
closed form, and we obtain

EBCP
θ1 ≈ B′(0)

4�2
2

e−k1
√
ε−1 (z+h) e− jk2ρ (63)

where we have used (36) in the exponent. The branch cut
contribution is thus a second-order effect with O(�−2

2 ) range
dependence. Furthermore, it is an inhomogeneous surface
wave that propagates along the interface with the phase ve-
locity corresponding to the medium of the lower half-space
and decreases exponentially in the direction normal to the
interface. In the lossy case with a complex-valued k2, this
wave also decreases exponentially as it propagates away from
the dipole.

The complete asymptotic electric field Eθ1 may now be
found as

Eθ1 ≈ ED
θ1 + ESDP

θ1 + U (θ− θcb) EBCP
θ1 (64)

where U (·) denotes the Heaviside unit step function. When
the dipole and the field point are at the interface (h = 0, θ =
π/2), this reduces to

Eθ1 ≈ 2 jε

(ε − 1)

[
ε

e− jk1ρ

(k1ρ)2
− 1√

ε

e− jk2ρ

(k1ρ)2

]
(65)

which behaves as O(ρ−2), as a result of a partial cancellation
of the direct and SDP fields. We note that the asymptotic
interface field comprises two waves, one propagating with the
phase velocity of the upper half-space, and the other with the
phase velocity of the lower half-space.

It should be noted here that the Sommerfeld pole ξp in Fig. 3
is never encountered by the SDP, even for θ2 = π/2, in view
of its location in the fast wave region of the ξ−plane [26,
Sec. 19.5]. Nevertheless, it may still be necessary to take this
pole into account if it lies close to the saddle point, which
can only occur if the lower half-space is highly lossy. In this
case, the so-called modified saddle-point procedure should
be employed, which contributes an extra term known as the
Norton surface wave [22]. On the other hand, the branch cut
contribution is then negligible.

V. ASYMPTOTIC TRANSMITTED FIELD
We find the transmitted field in the lower half-space of
Fig. 1(b) from Eθ2 = − sin θ ′ Ez2 − cos θ ′ Eρ2, where Ez2 and
Eρ2 are given by the integrals (11) and (15), respectively. We
then extend the integration path to the entire real axis and re-
place the Hankel function by its two-term asymptotic form, as
in the case of the reflected field. After these transformations,
we change the variable of integration via

kρ = k2 sin ξ (66)

which implies kz2 = k2 cos ξ and kz1 = k1κ (ξ ), where

κ (ξ ) =
√

1− ε sin2 ξ . (67)

Under the transformation (66), the four-sheeted Riemann sur-
face in kρ-plane, as described in Appendix B, is mapped
into a two-sheeted Riemann surface in the angular spectrum
ξ -plane, with the top sheet of the latter shown in Fig. 4,
where relatively high lower half-space losses are assumed for
illustration purposes only. The substitution (66) removes the
branch cuts associated with kz2, but not those associated with
kz1 remain. The branch point ξb, which is the image of k1 from
the kρ−plane in Fig. 2, satisfies the relationships

sin ξb = 1√
ε
, cos ξb =

√
1− 1

ε
(68)

from which we find

ξb = − j ln

(
j√
ε
+
√

1− 1

ε

)
(69)

and the Sommerfeld pole kp is similarly mapped into

ξp = − j ln

[
j√
ε + 1

+
√

ε

ε + 1

]
. (70)

These transformations and the substitutions z = − r cos θ ′
and ρ = r sin θ ′, where θ ′ is the supplementary elevation an-
gle indicated in Fig. 1(b), allow us to express Eθ2 as

Eθ2 ≈ 1√
π�

∫
C

F (ξ ) e�q(ξ ) dξ , � = k2r (71)

with

q(ξ ) = − j

[
cos(ξ − θ ′)+ h

r

κ (ξ )√
ε

]
(72)

F (ξ ) = − g(ξ )√
2 j

√
sin ξ

sin θ ′
� (ξ ) (73)

g(ξ ) = 2ε cos ξ sin ξ

κ (ξ )+ cos ξ√
ε

(74)

� (ξ ) = cos(ξ − θ ′)+ j

8�

(
1− 3 cot θ ′ cot ξ

)
. (75)

The integration path C in (71), which is the image of the
real-axis path in Fig. 2, is illustrated in Fig. 4. To efficiently
evaluate the integral in (71), we deform C into the steepest-
descent path CSDP passing through the saddle point ξs, where
the latter is a root of the equation

q′(ξ ) = j

[
sin(ξ − θ ′)+ h

r

√
ε

sin ξ cos ξ

κ (ξ )

]
= 0 . (76)

We further introduce the transformation

q(ξ ) = q(ξs)− s2 (77)
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FIGURE. 4. Top Riemann sheet of the ξ-plane, which is a mapping of
sheets I and III of the kρ-plane under the transformation kρ = k2 sin ξ. The
Roman numerals indicate the mapped sheets and their subscripts indicate
the quadrants, with the quadrant boundaries marked by dashed black
lines. On this sheet �m kz1 < 0 everywhere excepting the branch cuts,
where �m kz1 = 0. Only the branch cut involved in the subsequent path
deformations is depicted and is drawn in a solid blue line, with the branch
point ξb indicated by a green cross symbol. The path C, drawn in a solid red
line, is the image of the real axis integration path in kρ-plane. This path is
subsequently deformed into the steepest descent path CSDP through the
saddle point ξs = θ′ . Not shown is the Sommerfeld pole ξp, which lies in I4
very close to ξb just below the branch cut. To afford better picture clarity,
the plots were generated for a lossy case with ε = 4 − j2.
(a) θ′ < θcb. CSDP crosses the branch cut twice with the saddle point θ′

located on the bottom sheet path segment between the crossings.
(b) θ′ > θcb. CSDP crosses the branch cut once and lies in part on the bottom
sheet, as indicated by the dashed red line, which necessitates that the
path wrapped around the branch cut Cb be added, so that CSDPand the
original path C may be reconnected on the top sheet at infinity. On the left
side of Cb �e kz1 > 0, while on the right �e kz1 < 0. The branch cut is
subsequently deformed into the steepest descent path CBCP, as shown by
the dash-dot green line. The Sommerfeld pole is not captured by these
path deformations.

which maps the SDP into the real axis in the s-plane and the
saddle point into the origin, and we may express (71) as

ESDP
θ2 ≈

e�q(ξs )

√
π�

∫ ∞
−∞

G(s) e−�s2
ds (78)

with

G(s) = dξ

ds
F (ξ )

∣∣∣
ξ = ξSDP

(79)

which presumes that ξSDP is expressed in terms of s via (77).
The Jacobian of the transformation is found as

dξ

ds
= −2s

q′(ξ )
−→
s→0

√
−2

q′′(ξs)
(80)

where

q′′(ξ ) = j

{
cos(ξ − θ ′)+ h

r

√
ε

·
[

1− 2 sin2 ξ

κ (ξ )
+ ε sin2 ξ cos2 ξ

κ3(ξ )

]}
.

(81)

For arbitrary values of h/r > 0, a closed form solution of
(76) is not available and an explicit expression of the SDP
in terms of s cannot be obtained. The saddle point can in
this case be found by a numerical root search in the complex
ξ -plane, or alternatively (76) can be converted to a quartic
polynomial equation in sin2 ξs, which yields four candidate
roots on the top and bottom Riemann sheets. To avoid these
complications, we will henceforth assume that h/r � 1 and
separate the factor

ψ (ξ ) = e− jk1h κ (ξ ) (82)

from the exponential in (71) and include it in F (ξ ). This
simplifies (72) to q(ξ ) = − j cos(ξ − θ ′) and the saddle point
is found at ξs = θ ′, with q(ξs) = − j, hence the saddle-point
method procedure of the previous section is applicable with
θ ′ and � substituted for θ2 and �2, respectively. The ξ -plane
is of course different, since the transformation (66) is now
employed, but the SDP is still given by (43), except with θ ′
taking the place of θ2, so that CSDP now passes through the
saddle point ξs = θ ′, as illustrated in Fig. 4. When θ ′ > 0,
CSDP encounters the branch cut and it can either be deformed
to bypass it while remaining entirely on the top sheet, or it can
be allowed to cross the branch cut unperturbed and enter the
bottom sheet, which is the preferred approach and we follow
it here. For a sufficiently large θ ′ the SDP will capture the
branch point, with the angle of capture θcb still given by (46),
which in the lossless case is equal to the critical angle θc (47).
Note that for θ ′ < θcb the SDP crosses the branch cut twice
and the saddle point ξs = θ ′ is located on the bottom sheet
path segment extending between the two crossings, whereas
for θ ′ > θcb the SDP crosses the branch cut only once with
the saddle point on the top sheet, as depicted in Fig. 4 (a)
and (b), respectively. However, in the latter case the SDP
originates on the bottom sheet and it must be augmented by
the path Cb around the branch cut, so that the deformed path
and the original path C may be reconnected at infinity on the
top sheet [27, Sec. 15.8]. To effect a continuous transition
between the sheets when the branch cut is crossed along the
SDP, we should select the branch of κ with �e κ > 0 when
θ ′ ≤ θcb, and the branch with �e κ < 0 when θ ′ > θcb. It
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should be noted that the Sommereld pole ξp, which lies on
the top sheet just below the branch cut and to the left of ξb in
Fig. 4, is never encountered by the SDP as it sweeps through
the bottom sheet region near the pole location for θ ′ < θcb.

We will now evaluate the integral in (78) asymptotically by
the saddle-point method with � = k2r as the large parameter,
retaining terms up to the second order in�−1. Since we allow
the possibility of small losses in the lower half-space, it will
be convenient to first obtain an asymptotic expansion for real
values of � and then continue � analytically into a range of
complex values [23, p. 370]. We first approximate G(s) by a
truncated Maclaurin series, as in (56), and then integrate term-
by-term in closed form to obtain

ESDP
θ2 ≈ − g(θ ′)ψ (θ ′)

e− j�

�

+ 1

2 j

{
g′′(θ ′)+ g′(θ ′)

[
cot θ ′ + 2

ψ ′(θ ′)
ψ (θ ′)

]

− g(θ ′)
[

1

sin2 θ ′
− cot θ ′

ψ ′(θ ′)
ψ (θ ′)

− ψ
′′(θ ′)
ψ (θ ′)

]}
ψ (θ ′)

e− j�

�2

(83)

where the required derivatives of g(ξ ) and ψ (ξ ) are listed
in Appendix C. In evaluating this expression, the branch
of κ with �e κ > 0 should be selected when θ ′ ≤ θcb, and
the branch with �m κ < 0 when θ ′ > θcb. The leading first-
order term of (83) yields the geometric-optical transmitted
field, which may also be derived by the plane-wave reci-
procity method [17], while the second-order term represents
the diffraction field. Both waves propagate with the phase
velocity of the lower medium and suffer an exponential decay
in the lossy case.

In the lossless case with real-valued ξb, this second-order
term is unbounded for θ ′ = ξb, i.e., at the critical angle θc,
as a result of vanishing κ (θ ′) in the denominators of of (109)-
(111). This failure of the saddle point method can be attributed
to the fact that the radius of analyticity of the Maclaurin
expansion reduces to zero when the saddle point θ ′ approaches
the branch point ξb. To mitigate this break-down at the critical
angle one has to resort to the uniform saddle-point method, but
the solution is then expressed in terms of parabolic cylinder
functions and does not lend itself to a ready physical interpre-
tation [28]–[31].

Specializing (83) for field points at the interface, we find
that the first-order term goes to zero and we obtain

ESDP
θ2 ≈

−2 j

(ε − 1)
√
ε

e−k1h
√
ε−1 e− jk2ρ

(k1ρ)2
, θ ′ = π/2 (84)

which exhibits O(ρ−2) range dependence. Note that the am-
plitude of this wave decreases exponentially with the distance
h of the dipole from the interface.

As already mentioned above, when θ ′ > θcb the SDP in-
tegral through the saddle point must be augmented by the
integral along the path wrapped around the branch cut Cb.
On this path �m κ = 0 with �e κ > 0 on the left side of the

cut and �e κ < 0 on the right. When the path C in (71) is so
deformed and the integrals along both sides of the branch cut
are combined, we obtain

EBCP
θ2 ≈ 1√

π�

∫
Cb

Q(ξ ) e− j� cos(ξ−θ ′ ) dξ , θ ′ > θcb (85)

where

Q(ξ ) = u(ξ )√
2 j

√
sin ξ

sin θ ′
� (ξ )α(ξ ) (86)

with

u(ξ ) = 4ε
κ (ξ ) cos ξ sin ξ

κ2(ξ )− cos2 ξ

ε

, �e κ (ξ ) > 0 (87)

and

α(ξ ) = cos [k1h κ (ξ )]+ j
cos ξ√
ε

sin [k1h κ (ξ )]

κ (ξ )
. (88)

To evaluate the integral efficiently, we further deform Cb into
the steepest-descent path CBCP, which we may define in terms
of a real parameter s as

cos(ξ − θ ′) = cos(ξb − θ ′)− js2 ≡ ζ (s) , 0 ≤ s <∞
(89)

where s = 0 corresponds to ξb. The Jacobian of this transfor-
mation is found as

dξ

ds
= −2 js√

1− ζ 2(s)
(90)

and we may express (85) in the s-plane as

EBCP
θ2 ≈ e− j� cos(ξb−θ ′ )

√
π�

∫ ∞
0

B(s) e−�s2
s ds (91)

with

B(s) = −2 j√
1− ζ 2(s)

Q (ξBCP) (92)

where

ξBCP = θ ′ − j ln
[
ζ (s)− j

√
1− ζ 2(s)

]
(93)

specifies the steepest-descent path CBCP, as illustrated in
Fig. 4(b). To derive the asymptotic approximation to (91), we
first expand B(s) into a Maclaurin series as in (60), where the
leading coefficient B(0) is again zero, and we find

B′(0) = lim
s→0

B(s)

s
= 4

√
2 j ε2

√
sin ξb

sin θ ′
tan ξb cot(θ ′−ξb)

·
(

1+ jk1h
√
ε − 1/ε

)
� (94)

where

� = lim
s→0

κ (ξ )

s
H=
√

2 jε sin ξb cos ξb

sin(θ ′−ξb)
. (95)

We then evaluate the integral in a closed form, which yields

EBCP
θ2 ≈ B′(0)

4�2
e− jk1(ρ−√ε−1 z) (96)

VOLUME 1, NO. 3, JULY 2021 755



MICHALSKI AND MOSIG: ON THE COMPLETE RADIATION PATTERN OF A VERTICAL HERTZIAN DIPOLE ABOVE A LOW-LOSS GROUND

where we have used (68) in the exponent. The branch cut
contribution, also referred to as the lateral wave, is thus a
second-order effect with O(r−2) range dependence. If the me-
dia are lossless, this wave propagates in the lower half-space
along a direction specified by the critical angle θc = ξb.

It should be noted here that in the lossless case the coeffi-
cient B′(0) becomes infinite for θ ′ = θc, since the denomina-
tor in (95) goes to zero there, and thus the approximation (96)
is no longer applicable in the vicinity of this angle. We recall
that this problem also occurs in the second-order term of (83).

Specializing (96) for observation points at the interface

EBCP
θ2 ≈ 2 jε

(ε − 1)

(
1+ jk1h

√
ε − 1/ε

) e− jk1ρ

(k1ρ)2
, θ ′ = π/2

(97)
which is a wave that propagates along the surface in the lower
half-space, but with the phase velocity corresponding to the
upper medium.

The complete asymptotic field Eθ2 may now be computed
as

Eθ2 ≈ ESDP
θ2 + U (θ ′− θcb

) EBCP
θ2 (98)

for any angle in the range 0 < θ ′ < π/2. In the special case
where both the dipole and the field point are at the interface,
we can combine (84) and (97) with h = 0, to obtain

Eθ2 ≈ 2 j

(ε − 1)

[
ε

e− jk1ρ

(k1ρ)2
− 1√

ε

e− jk2ρ

(k1ρ)2

]
(99)

which agrees with (65) when multiplied by ε, as mandated
by the boundary condition for the normal component of the
electric field at the surface.

VI. PHYSICAL INTERPRETATION OF THE ASYMPTOTIC
SOLUTION
It will be instructive to briefly summarize the physical prop-
erties of the asymptotic field expressions derived above. We
assume for the purposes of this discussion that the VED re-
sides on a lossless dielectric half-space as illustrated in Fig. 5,
where we show the wavefronts of the field constituents that
obtain in this case [19], [30, Sec. 2.6.4]. The structure has
azimuthal symmetry with respect to the dipole axis, hence
the dashed lines represent cones with half-angles θc, where
θc is the critical angle given by (47). The wavefront denoted
by A represents the spherical wave in the upper half-space,
comprising the direct wave (24) and the reflected wave (58)
which both propagate with the phase velocity in the air and
comprise terms with 1/r and 1/r2 decay with range. The
wavefront B represents the inhomogeneous wave (63) which
propagates along the interface in air, but with the phase ve-
locity corresponding to the dielectric lower half-space. This
evanescent wave, which decreases in magnitude exponentially
with distance from the interface, as indicated by the hatching,
only exists in the region between the upper cone and the planar
boundary below. The wavefront denoted by C represents the
spherical wave (83) transmitted into the lower half-space,
which is a superposition of terms with 1/r and 1/r2 range

FIGURE. 5. Wavefronts of the field constituents generated by a VED on a
lossless half-space. A is the spherical wave in air. B is the inhomogeneous
wave propagating along the surface. C is the spherical wave in the
dielectric. D is the lateral wave (head wave). A and C arise from the saddle
points, while B and D are the branch cut contributions. All waves have the
ρ−2 range dependence along the interface.

dependence. Finally, the wavefront D represents the lateral
wave (head wave) given by (96), which propagates in the
lower half-space in the direction specified by θc, and only
exists in the region between the lower cone and the planar
interface above. Both wavefronts C and D propagate with the
phase velocity in the dielectric. Along the interface, the phase
velocity of the lateral wave D matches that of the spherical
wave A in air, and the phase velocity of the evanescent wave
B matches that of the spherical wave C in the dielectric.

VII. NUMERICAL RESULTS AND DISCUSSION
In the numerical studies we have used the formulation of
Section III with the required Sommerfeld integrals evalu-
ated using either a Gaussian quadrature between the zeros of
the Bessel function, followed by extrapolation, or a double-
exponential rule, depending on the relative values of ρ and
|z| [32], [33]. Unless otherwise stated, the results presented
here are obtained by these methods and will be referred to as
“exact” for convenience. We also include in most cases the
corresponding asymptotic saddle-point method results based
on the formulas derived in the Sections IV and V. Although
approximate, these formulas have proven indispensable in the
interpretation of the computed radiation patterns. To indepen-
dently validate our results, we have relied on a commercial
code FEKO [34].

We first consider the case of a VED located on a planar
interface between air (ε1 = 1) and a lossless dielectric with
ε2 = 4. We note for later reference that the corresponding
critical angle is found from (47) as θc = 30◦, or 150◦ if
measured from the positive z axis. For this configuration,
which corresponds to Fig. 1 with h = 0, we plot in Fig. 6
the transverse (to the radius in spherical coordinates) elec-
tric field pattern at a fixed radius r/λ0 = 10, normalized to
the maximum magnitude. In the upper half-space we also
include plots of the direct dipole field and the reflected field
accounting for the lower half-space. In Fig. 7 we superpose the
asymptotic field pattern on the exact and FEKO pattern plots
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FIGURE. 6. Normalized electric field pattern plots at r/λ0 = 10 for a
lossless case with ε1 = 1, ε2 = 4, and h = 0. Shown is the direct dipole
field (dash-dotted green line), the correction field accounting for the lower
half-space (dashed red line), and the total field in both half-spaces
(continuous blue line). We note the “extinction” of the total field pattern
at the interface and the scalloping in the lower half-space in the angular
range between the interface and the critical angle θ = 150◦.

FIGURE. 7. For the case of Fig. 6 (ε1 = 1, ε2 = 4, h = 0, r/λ0 = 10), the
asymptotic field pattern (dash-dot red line) is compared with the exact
pattern (continuous blue line) and the FEKO pattern (dashed green line).
Excellent agreement is observed, except for the asymptotic pattern near
the critical angle (θc = 150◦), where the asymptotic formulas are not
applicable. The exact and FEKO plots are indistinguishable in this figure.

FIGURE. 8. Normalized electric field plots just above the interface z = 0
for the case of Fig. 6 (ε1 = 1, ε2 = 4, h = 0) in the range 10 < ρ/λ0 < 25.
We note that the asymptotic standing wave pattern (dash-dotted red line)
approaches the exact pattern (continuous blue line) with the increasing
radial distance. Clearly, the radiated field does not vanish at the interface,
where it exhibits the ρ−2 range dependence.

for the same configuration as in Fig. 6. Excellent agreement
is observed, except in the vicinity of the critical angle θc in
the lower half-space, where the asymptotic formulas derived
in (83) and (96) become invalid. Despite this localized glitch,
these formulas will be most helpful in the explanation of the
subsurface radiation patterns in the angular range between the
interface and θc. In this example, the average discrepancy be-
tween the exact and FEKO patterns is 1.6 %, while the average
discrepancy between the exact and the asymptotic patterns is
2.2 %, excluding a 30◦ angular range centered at θc.

Perhaps the most striking feature of the pattern in Fig. 6
is the sharp dip in the field magnitude when the observation
point crosses the interface at a constant radius r. This cu-
rious phenomenon, which has been referred to as interface
extinction of the radiation pattern [18], does not occur when
ε2 = ε1. On the contrary, the radiation pattern of a VED in
a homogeneous space has a maximum in the bisecting hori-
zontal plane. We note that the pattern “extinction” observed
in Fig. 6 is not complete, since the interface field is small,
but not zero. In fact, our asymptotic analysis has shown that
the interface fields in the upper and lower half-spaces are
given by (65) and (99), respectively. Note that, consistent with
the boundary conditions, these fields are identical, except that
the upper half-space expression is larger in amplitude by the
factor ε = ε2/ε1. The pattern dip is thus more pronounced on
the bottom side of the interface, which is also discernible in
Fig. 6. According to the formulas (65) and (99), the asymp-
totic interface fields are of the second order in (k1ρ)−1, and
both comprise two waves, one propagating with the phase
velocity in the air, and the other with the phase velocity in
the dielectric, which is consistent with our discussion of the
wavefronts in Fig. 5 at the end of Section VI. The interference
of these two waves results in a standing wave pattern along
the interface, as illustrated in Fig. 8, where we plot the surface
field magnitude in the upper half-space multiplied by (k1ρ)2

in the range 10 < ρ/λ0 < 25. We note that, as expected, the
asymptotic field approaches the exact field with increasing
radial distance. Based on the expressions (65) and (99), the
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FIGURE. 9. As in Fig. 7 (ε1 = 1, ε2 = 4, h = 0, r/λ0 = 10), except that only
the transmitted field pattern is shown, with the lateral wave omitted in the
asymptotic pattern plot. The exact pattern is indicated by a blue
continuous line and the asymptotic pattern by a dash-dot red line. We note
that, with the lateral wave omitted, the pattern scalloping is no longer
present.

standing pattern has a period of 1/(
√
ε2 −√ε1 ), which can

also be observed in Fig. 8. Returning to Fig. 6, we note that the
pattern dip on the air side of the interface occurs as a result of
a partial cancellation of the direct and reflected fields. On the
dielectric side, the dip occurs because the geometrical-optics
transmitted field, given by the leading term of the asymp-
totic expression (83), goes to zero at the interface. To shed
more light at this interface extinction phenomenon, we refer
to Fig. 5 and note that the geometrical-optics terms of the
spherical waves A and C, which are of the first-order in r−1,
must vanish at the interface, since they have different phase
velocities and this mismatch would make it impossible to
satisfy the boundary conditions. However, the same does not
apply to the second-order terms of these waves, which can
match across the interface with the second-order waves D and
B. Consequently, when the field pattern is plotted at a fixed
radius r, we observe two lobes contributed by the geometrical-
optics terms that decay with distance as r−1, with an interface
dip at θ = π/2, where the field decays more rapidly as r−2.
We have found that a small indentation of the pattern appears
at the interface as soon as even the slightest media contrast
is introduced, and that its depth increases very rapidly with
the increasing contrast. The second curious phenomenon ob-
served in Fig. 6 is the rippling in the transmitted field pattern
between the critical angle cone and the interface [16], [17],
which we attribute to the interference of the spherical wave
C and the lateral wave D illustrated in Fig. 5 and given by
(83) and (96), respectively. This is confirmed by the results in
Fig. 9, where we show the transmitted field pattern for the case
of Fig. 7, but with the lateral wave omitted in the asymptotic
field plot. The asymptotic pattern is now smooth and devoid of
undulations in the angular range θc < θ ′ < π/2, which indi-
cates that the ripples are indeed caused by the interference of
the lateral wave with the spherical wave. It is notable that the
frequency of these ripples increases and their amplitude de-
creases with increasing observation angles θ ′ > θc. To explain
these effects, let us express the superposition of the waves C

FIGURE. 10. As in Fig. 7 (ε1 = 1, ε2 = 4, h = 0), but for the radius increased
tenfold to r/λ0 = 100. The exact pattern is plotted by a continuous blue
line and the asymptotic pattern by a dash-dot red line. We note that the
frequency of the ripples has increased and their amplitude has diminished.

and D as

Eθ2 = a e− jk2r + b e− jk2r cos(θ ′−θc ) (100)

where a and b are coefficients dependent on r and θ ′. The
corresponding field pattern is now readily found as

|Eθ2| =
√

(a2 + b2)+ 2ab cos

[
2k2r sin2

(
θ ′ − θc

2

)]
(101)

where we have assumed real a and b for simplicity. We now
recall that, for a fixed r, a decreases in magnitude as θ ′ ap-
proaches the interface angle π/2, where the first-order part of
a goes to zero. Consequently, the amplitude of the oscillations
in (101) decreases with growing θ ′. Furthermore, these oscil-
lations become more frequent as θ ′ increases, in view of the
fact that the argument of the cosine increases with the square
of the sine of (θ ′ − θc)/2, and they cease completely when
θ ′ � θc. In the latter case the spherical wave C and the lateral
wave D propagate along the same direction and with equal
phase velocities, hence there can be no interference between
their wavefronts. We also note that increasing the radius r
reduces the amplitude of the ripples, since the product of the
coefficients ab decreases in magnitude with r. However, the
frequency of the oscillations increases with r, in view of the
k2r factor in the argument of the cosine. This is confirmed by
the results of Fig. 10 , where we have increased the radius
tenfold to r/λ0 = 100. In this example, the average discrep-
ancy between the exact and the asymptotic patterns is just
0.04 %, still excluding the 30◦ angular range centered at θc.
We note a remarkable improvement in the accuracy of the
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FIGURE. 11. As in Fig. 10 (ε1 = 1, ε2 = 4, r/λ0 = 100), but with the dipole
at the height h/λ0 = 0.5 above the interface. Only the exact pattern is
shown, to reduce clutter.

FIGURE. 12. As in Fig. 11 (ε1 = 1, ε2 = 4, r/λ0 = 100), but with the dipole
at the height h/λ0 = 5 above the interface.

asymptotic formulas when the radius is increased from 10 to
100 wavelengths.

In all cases discussed so far, an interfacial dipole was as-
sumed with h = 0. To examine the effect of the height of the
dipole above the interface, we present in Fig. 11 and Fig. 12
results for the case of Fig. 10, but with h/λ0 = 0.5 and 5,
respectively, where we have omitted the asymptotic pattern
plots for better picture clarity. Note that the upper half-space
patterns now show some undulations due to the interference

FIGURE. 13. Directive gain pattern plot for the case of Fig. 12 (ε1 = 1,
ε2 = 4, r/λ0 = 100), but for h/λ0 = 10.

FIGURE. 14. As in Fig. 13 (ε1 = 1, ε2 = 4, h/λ0 = 10, r/λ0 = 100), but for a
slightly lossy lower half-space with the loss tangent tan δ2 = 0.005.

FIGURE. 15. Spectral-domain transmission-line network analogue of the
physical configuration of Fig. 1, where the two semi-infinite sections
joined at z = 0 correspond to the upper and lower half-spaces. We assume
h > 0, but the field coordinate z is unrestricted.
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FIGURE. 16. (a) Schematic of proper (�m kzn < 0) and (b) improper
(�m kzn > 0) Riemann sheets in the complex kρ−plane. Small losses are
assumed for better picture clarity. In the losses case, the branch points
±kn move to the real axis and the hyperbolic branch cuts fall on the real
and imaginary axes.

FIGURE. 17. Schematic representation of the four-sheeted Riemann
surface associated with kz1 and kz2, where the hyperbolic branch cuts
defined by �m kzn = 0 are implied. A continuous transition between two
sheets can only be effected by crossing a branch cut joining these sheets.

of the direct and reflected waves, which grow in amplitude
and frequency when the dipole height above the surface is
increased. The behavior of the subsurface patterns is for h > 0
strongly influenced by the exponential factor ψ (θ ′), which
appears in both the geometrical-optics and the second-order
terms of (83). This factor represents a propagating wave when
θ ′ < θc, but it decays exponentially with increasing θ ′ > θc at
a rate that grows with k1h. On the other hand, the amplitude
of the lateral wave (96) grows linearly with k1h, according
to (94). In the h/λ0 = 0.5 case of Fig. 11, we observe strong
ripples at the beginning of the θ ′ > θc angular range where the
geometrical-optics term of (83) and the lateral wave (94) are
of similar magnitude, but closer to the interface both waves
drop below the −40 dB level. With h/λ0 increased tenfold
to 5, which is the case presented in Fig. 12, the contribution
from (83) is completely negligible when θ ′ > θc due to the
strong exponential decay of ψ (θ ′), so that the transmitted
field pattern in this angular range is solely determined by
the lateral wave (94), and thus no interference ripples are
present. In the upper half-space the pattern undulations are
now more pronounced, as expected for this dipole height
above the interface. A null in the rippling is observed in the
vicinity of θ ≈ 65◦, which corresponds to the Brewster angle,
at which the geometrical-optics reflected wave vanishes and
thus cannot interfere with the direct wave of the dipole.

In the results presented so far, the focus has been on the
normalized electric field patterns. We close this section with

two directive gain pattern plots, referred to an isotropic source.
The plot in Fig. 13 is for the case of Fig. 12, except that
the dipole is at h/λ0 = 10 above the interface, and a similar
plot is presented in Fig. 14, but for a lossy lower half-space
with a loss tangent of 0.005. These plots are for the most part
self-explanatory, but we may add a general observation that,
in the lossless case, more than half of the power radiated by
the dipole is delivered to the lower half-space, and that the
transmitted fields diminish rapidly with the increasing loss
tangent of the dielectric.

VIII. CONCLUSION
The complete radiation pattern of a vertical Hertzian dipole
on or above a lossless or low-loss dielectric half-space has
been studied using the Sommerfeld formalism, with the in-
tegrals evaluated numerically. Furthermore, to facilitate the
physical interpretation of these results, a detailed asymptotic
saddle-point integration analysis has been presented, includ-
ing effects of the second order in the inverse distance from
the dipole. Based on this analysis, two distinctive phenomena
observed in the complete radiation pattern, viz., the so-called
interface pattern extinction and the rippling of the subsurface
pattern, have been explained. It has been found, in particular,
that the pattern “extinction” at the interface is not complete,
and that the pattern ripples in the lower half-space are caused
by the interference of the lateral wave, also known as the
head wave, with the spherical geometrical-optics wave. These
conclusions have been illustrated and fully supported by nu-
merical results, which include directive gain pattern plots in
both half-spaces.

APPENDIX A
SPECTRAL DOMAIN TRANSMISSION-LINE NETWORK
ANALOGUE
The electromagnetic fields due to sources in plane-stratified
media of infinite lateral extent are most easily obtained in
the spectral domain, where they may be expressed in closed
form in terms of the voltages and currents on the transmission-
line network analogue of the structure along the z axis [35].
The spectral-domain equivalent network for the problem of
Fig. 1, which is illustrated in Fig. 15, comprises two semi-
infinite transmission line sections corresponding to the upper
and lower half-spaces, with the propagation constants kzn and
characteristic impedances Ze

n , n = 1, 2, given as

kzn =
√

k2
n − k2

ρ , Ze
n = η0

kzn

k0εn
(102)

where kρ is the transverse spectral variable. In general, two
such transmission-line networks may be required, correspond-
ing to the transverse-magnetic (TM) and transverse-electric
(TE) partial fields, but the VED only excites the former, which
is distinguished by the superscript e. When the TM or TE
network is excited by a unit-strength voltage or current source,
the resulting voltage and current at any location z represent
the corresponding transmission-line Green functions. As indi-
cated in Fig. 15, the VED gives rise to a voltage source ve at
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z = h on the TM network [35]. Furthermore, it is found that
the resulting electromagnetic field may be expressed in terms
of the corresponding current transmission line Green function
Ie
v (z|h), and we can show that [20], [23]

Ie
v (z|h) = 1

2Ze
1

{
e− jkz1|z−h| −←−
 e

1 e− jkz1(z+h) if z ≥ 0(
1−←−
 e

1

)
e− jkz1he jkz2z if z < 0

(103)
where

←−

 e

1 =
Ze

2 − Ze
1

Ze
2 + Ze

1
(104)

is the voltage reflection coefficient looking out of the left
terminal of the transmission line section 1, corresponding to
the upper half-space.

APPENDIX B
RIEMANN SURFACES
The function kzn (n = 1, 2) is double-valued in the complex
kρ-plane, with branch points ±kn. For a unique definition of
the integrands it is thus necessary to introduce branch cuts
that separate two Riemann sheets on which the square root
branches can be unambiguously specified. Furthermore, it is
convenient in the present context to define these cuts by the
condition �m kzn = 0, so that the sign of �m kzn remains the
same on an entire Riemann sheet. These particular branch
cuts follow hyperbolae passing through the branch points, as
illustrated by the wiggly curves in Fig. 16. On the hyperbolic
extensions of these cuts, the condition �e kzn = 0 is satisfied,
and the regions where �e kzn > 0 are shaded. If a continuous
transition between two Riemann sheets is desired, this may be
accomplished by enforcing the condition�e kzn > 0 on a path
crossing a branch cut. Since the integrands in our problem
involve both kz1 and kz2, they may be defined over a four-
sheeted Riemann surface, which is schematically represented
in Fig. 17 [27, Sec. 15.B].

APPENDIX C
DERIVATIVES OF �‖(ξ), g(ξ) AND ψ(ξ)
The derivatives of 
‖(ξ ) required in (59) are found as


′‖(ξ ) = − 2(ε − 1)

εκ (ξ )δ2(ξ )
sin ξ (105)


′′‖ (ξ ) = − 2(ε − 1)

εκ (ξ )δ2(ξ )

{
ε cos ξ

κ2(ξ )
+ 2

sin2 ξ

δ(ξ )

[
1+ cos ξ

εκ (ξ )

]}
(106)

where κ (ξ ) is given by (30) and where

δ(ξ ) = cos ξ + κ (ξ )

ε
. (107)

The derivatives of g(ξ ) and ψ (ξ ) required in (83) are found
as

g′(ξ ) = − 2ε

δ(ξ )

[
1− 2 cos2 ξ − γ (ξ )

δ(ξ )
cos ξ sin2 ξ

]
(108)

g′′(ξ ) = − 2ε
sin ξ

δ(ξ )

{
4 cos ξ + γ (ξ )

δ(ξ )
(2− 5 cos2 ξ )

−
[
ε(ε − 1)

κ3(ξ )δ(ξ )
+ 2

γ 2(ξ )

δ2(ξ )

]
cos ξ sin2 ξ

}
(109)

× ψ
′(ξ )

ψ (ξ )
= jk1h

ε

κ (ξ )
sin ξ cos ξ (110)

× ψ
′′(ξ )

ψ (ξ )
= − jk1h

ε

κ (ξ )

{
1− 2 cos2 ξ

− ε

κ2(ξ )

[
1+ jk1h κ (ξ )

]
sin2 ξ cos2 ξ

}
(111)

where κ (ξ ) is given in (67) and where

δ(ξ ) = κ (ξ )+ cos ξ√
ε
, γ (ξ ) = ε cos ξ

κ (ξ )
+ 1√

ε
. (112)

Care should be taken in the above expressions to evaluate κ (ξ )
on the appropriate Riemann sheet.
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