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ABSTRACT Ever since the deployment of the first-generation of mobile telecommunications, wireless
communication technology has evolved at a dramatically fast pace over the past four decades. The upcoming
fifth-generation (5G) holds a great promise in providing an ultra-fast data rate, a very low latency, and a
significantly improved spectral efficiency by exploiting the millimeter-wave spectrum for the first time in
mobile communication infrastructures. In the years beyond 2030, newly emerged data-hungry applications
and the greatly expanded wireless network will call for the sixth-generation (6G) communication that
represents a significant upgrade from the 5G network – covering almost the entire surface of the earth
and the near outer space. In both the 5G and future 6G networks, millimeter-wave technologies will play
an important role in accomplishing the envisioned network performance and communication tasks. In this
paper, the relevant millimeter-wave enabling technologies are reviewed: they include the recent developments
on the system architectures of active beamforming arrays, beamforming integrated circuits, antennas for
base stations and user terminals, system measurement and calibration, and channel characterization. The
requirements of each part for future 6G communications are also briefly discussed.

INDEX TERMS 5G communications, 6G communications, antennas, beamforming, calibration, digital ar-
rays, phased arrays, RF integrated circuits, measurement, multibeam arrays, propagation channels, wireless
systems.

I. INTRODUCTION
More than a century ago, in the 1890s, the capability of using
electromagnetic waves to transmit signals wirelessly was
demonstrated, for the first time, in the famous wireless telegra-
phy experiment conducted by Nobel Laureate G. Marconi [1].
It took around 80 years to turn it into commercial applications
with which people can connect each other in real-time. Ever
since then, the technologies of mobile communications have

evolved rapidly due to the developments in communication
theory and multiplexing methods, microelectronics and
integrated circuits (ICs), microwave circuits and antennas,
and so on [2], [3]. Beginning from the 1980s, a new generation
has emerged almost every decade [4]. The first-generation
(1G) of mobile communications was based on analog
communications by using the frequency-division multiplexing
access (FDMA). It only allowed voice signal transfer
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with limited and unstable spatial coverage [5]. The
second-generation (2G) uses digital communications
where the time-division multiplexing access (TDMA) and
code-division multiplexing access (CDMA) were adopted.
The 2G ensured a more stable link, a much wider coverage,
and supported text messaging among users [6], [7]. The
third-generation (3G) employs variations of advanced CDMA
techniques and supports more versatile services, including,
for the first time, multimedia data transfer [7], [8]. With the
help of orthogonal frequency-division multiplexing (OFDM)
and multiple-input multiple-output (MIMO) techniques,
the fourth-generation (4G), including the 3.9G long term
evolution (LTE) and 4G LTE-advanced was developed.
They are able to offer a dramatically faster speed than 3G,
providing a data rate of tens of megabytes per second [9],
[10]. The revolutionary icon of the 4G era was the burgeoning
widespread usage of smart-phones across the world, which
changed the life style of human beings and the way people
connect with each other. In terms of the frequency spectrums
that are designated for the different generations of mobile
communications, we can make two observations. First, more
frequency bands have been gradually released for a larger
channel bandwidth that can meet the demands for higher data
rates [5]. Secondly, all the released frequency bands are below
4 GHz, primarily due to two facts: 1) the electromagnetic
waves below 4 GHz are less susceptible to blockage and
weather changes and 2) the hardware chips and components
are more cost-friendly and power-efficient.

With the fast growing of the number of consumer wireless
devices in use and the expansion of the Internet of Things
(IoT), the amount of mobile data transfer is almost dou-
bled every year, surpassing that of the wired communications
[14]. The 4G mobile network infrastructure can no longer
meet the needs for high-speed wireless data transmission.
Therefore, from the second decade of the 21st century, the
fifth-generation (5G) of mobile communications emerges with
the outlook to the sixth-generation (6G) [11]–[13]. The 5G
has been deployed in 2019 and is on the corner of mas-
sive commercialization. The international telecommunication
union (ITU) has defined three major application scenarios for
5G new radio (NR): they are the enhanced mobile broadband
(eMBB), massive machine type communication (mMTC),
and ultra-reliable low latency communication (URLLC) [see
Fig. 1]. The 5G is expected to support a data rate of a few
gigabits per second (Gb/s), a latency of milli-second, and a
high volume of traffic density with greatly improved spectral,
energy, and cost efficiencies [15]. In order to meet these re-
quirements, a number of enabling network and hardware tech-
nologies have been developed, including ultra-dense network-
ing, all-spectrum access, massive MIMO, and full-duplexing
[16], [17].

Importantly, from the frequency resource point-of-view, the
uniqueness of 5G, in comparison with 3G and 4G, is the uti-
lization of millimeter-wave (mmWave) frequencies in mobile
communications, mainly due to two reasons [18], [19]. First,
the sub-6 GHz spectrum has already been very crowded, filled

FIGURE 1. Conceptual illustration of the 6G communication network that
encompasses the 5G network.

FIGURE 2. The mmWave 5G bands released by different countries.

with distributed bands dedicated for cellular communications,
satellite and aerial communications, and wireless local area
networks (WLANs). On the contrary, at mmWave frequencies
from 6 GHz up to 300 GHz, there are many unlicensed bands
– the available spectrum is abundant. Secondly, the absolute
bandwidth at mmWave frequencies is much larger than that
at the lower microwave frequencies under the same relative
bandwidth. The Third Generation Partnership Project (3GPP)
has divided the 5G New Radio (NR) into FR1 band, i.e., 410
– 7125 MHz, and FR2 band, or also called mmWave band,
i.e., 24.25 – 52.6 GHz [20]. In addition to the narrow bands
around 3.5 GHz and 4.9 GHz, many countries have released
a number of mmWave bands for 5G NR communications
in the Ka-band, Q-band, and even E-band [see Fig. 2] [22].
Consequently, the system architecture, transceiver channels,
ICs, passive and active components, and propagation channel
modeling have become the main cutting edges of research
[23]–[26].
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Moving towards 2030 and beyond, due to the fast growth of
new technologies such as virtual reality, vehicle-to-X network,
unmanned aerial vehicle network, mid-earth-orbit (MEO) and
low-earth-orbit (LEO) satellite network, and oceanic informa-
tion network, the 5G communications would become insuf-
ficient. Therefore, very recently, several countries have called
for or initiated research programs for the sixth generation (6G)
of mobile communications. Although the specs of 6G, such
as frequency bands, data rate requirements, have not been
defined and finalized, its applications have been considered. A
consensus for 6G has been reached – the 6G will be an intelli-
gent mobile communication network of a much larger scale
that encompasses the 5G [13], [27]. While the quasi-two-
dimensional 5G network only covers a limited portion of lands
on earth, the 6G network will extend into three dimensions
and connects the satellites, aircraft, ships, and land-based in-
frastructures, providing a truly global coverage. The mmWave
technologies will play an important role in enabling the vari-
ous wireless links with enhanced speed and reliability superior
to 5G. In addition, the use of terahertz has also been proposed
as a part of the frequency bands for 6G communications [27].
However, the related key devices of terahertz chips, front-end
components, and systems are not yet as mature and reliable
as those operating at mmWave frequencies for long-distance
communications with a high fidelity.

In this paper, the mmWave technologies that are important
to 5G communications are reviewed, including the massive
MIMO system architectures, beamforming chips, antennas for
base stations (BSs) and user terminals (UTs), system measure-
ment and calibration techniques, and wireless channel charac-
terization. Then, the challenges and requirements for future
6G communications are discussed. The paper is organized as
follows. Section II illustrates the system architectures of active
multibeam arrays, including a comparison among different
beamforming strategies. In Section III, the mmWave chips for
beamforming are presented. The mmWave antennas for both
BSs and UTs are described in Section IV, along with a discus-
sion on several advanced antenna technologies. In Section V,
the methods for system calibration and pattern measurement,
RF testing, and system performance testing are reported. Sec-
tion VI presents a brief overview of channel characterization,
followed by conclusions drawn in Section VII.

II. mmWAVE SYSTEMS FOR 5G/6G COMMUNICATIONS
To overcome the large free-space path loss of the radiated
waves at mmWave frequencies, beamforming techniques have
been widely employed in 5G wireless systems for effectively
focusing the radiated energy into the targeted directions. As
shown in Fig. 3, the general architecture for a 5G mmWave
BS is illustrated, including the active antenna units (AAUs),
the baseband units (BBUs), and the core network (CN). The
beamforming AAU contains an antenna array, down/up con-
verters, analog-to-digital converters (ADCs), digital-to-analog
converters (DAC), beam management units, and AAU base-
band signal processing units. To realize the desirable beam-
forming functions, proper amplitude and phase should be

FIGURE 3. An illustration of the system architecture of a 5G base station.

assigned to each antenna element. In this section, several
mainstream beamforming architectures will be described and
compared, followed by a discussion on potential system archi-
tectures for 6G systems.

A. SYSTEM ARCHITECTURE
Based on the methods to phase each antenna element, we
can divide beamforming architectures for 5G wireless systems
into three types: analog beamforming [28]–[37], full-digital
beamforming [38]–[40], and hybrid beamforming [41]–[46]
[see Fig. 4].

Due to its low-cost and implementation convenience, the
analog beamforming has been widely employed, in which
phase shifting is realized in the analog domain, as shown
in Fig. 2(a). Depending on the location of the analog phase
shifting performed in the system, it can be categorized into
intermediate frequency phase shifting [31], local oscillator
(LO) phase shifting [28], and radio frequency (RF) phase
shifting [32], [33]. The phase-shifting can be realized by uti-
lizing digitally-controlled phase shifters, such as a 6-bit phase
shifter, or static analog beamforming structures, such as the
Butler matrices [34], Blass matrices [35], and lenses [36]. It
is worth mentioning that the phase shifter is one of the most
popular schemes in commercial beamforming chips, in which
the digital control of phase shifting can be pre-calibrated and
stored in the memory for fast and precise beam generation.
For example, a Ka-band phased array antenna with 64 radiat-
ing elements based on quad-core monolithic microwave ICs
(MMICs) has been demonstrated, as shown in Fig. 5 [37].

Compared with the analog beamforming, the full-digital
beamforming possesses more flexibility. As shown in
Fig. 4(b), each antenna is directly connected to a transceiver
chain, followed by an ADC/DAC with a high sampling rate
and precision. A Q-band 64-channel full-digital beamforming
transceiver for 5G communications has been proposed and
implemented [40], covering a frequency range from 37 to
42.5 GHz [see Fig. 6]. Due to the employed digital circuit,
this kind of beamforming structure can realize a high beam-
forming performance, especially for multi-beam radiation and
reception. However, the cost of hardware implementation and
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FIGURE 4. Illustrations of the different beamforming system architectures:
(a) analog beamforming, (b) full-digital beamforming, and (c) hybrid
beamforming.

FIGURE 5. Photographs of a Ka-band analog beamforming array module
based on phase shifting chips (reproduced from [37]).

FIGURE 6. Photographs of Q-band digital beamforming array modules
[40].

FIGURE 7. Photographs of a prototype of the hybrid beamforming array
(reproduced from [44]).

the burden of signal processing in the baseband will increase
very quickly as the channel number increases or the channel
bandwidth broadens, limiting its commercialization.

To realize the trade-off between system performance and
hardware complexity, the hybrid beamforming structure was
proposed and has been widely applied in the development
of commercial active antenna units (AAUs), as shown in
Fig. 4(c). In [44], the authors presented a hybrid beamformer
consisting of two RF channels connecting to the baseband and
a 128-element antenna array [see Fig. 7]. In such a structure,
the phase distribution is realized in both the digital and analog
domains, leading to a significant reduction in the number of
RF chains.

Currently, the 5G wireless communication systems mainly
adopts the hybrid beamforming scheme. Depending on the
application scenarios, the BSs [47] and UTs [48] usually have
different requirements. For the BSs, massive MIMO can be
deployed to obtain satisfactory equivalent isotropically radi-
ated power (EIRP), in which the circuit architectures should
be designed by considering the power level. For example,
for a medium EIRP, the multi-channel beamforming ICs with
antenna-in-package (AIP) technologies [49] can be used for
achieving a high level of integration. However, for large EIRP
requirements, additional power amplifiers with advanced pro-
cessing technology can be employed, such as GaN [50]. For
the UT, to achieve high-density integration and low power
consumption, AIP or antenna-in-module (AIM) [51] tech-
nologies are preferable. Besides, to obtain a broad spatial
coverage, many AIPs or AIMs are required to be integrated
together. In general, such hybrid beamforming structures can
have a satisfactory performance with relatively lower com-
plexity, enabling large scale deployment. It is worth noting
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that, in the current mobile communication market, a radio
system is usually supplied by a single company, making it
difficult to interface with the systems or components provided
by any other third party. To address this issue, the concept of
the open radio access network (O-RAN) has been proposed
recently [52]. It allows for open interfaces for 5G equipment,
aiming at establishing a healthier eco-system for 5G commu-
nications.

B. POTENTIAL SYSTEM ARCHITECTURE FOR 6G
COMMUNICATIONS
To further extend the capability of communication systems,
the concept of 6G has recently emerged [13]. The purpose of
from 1G to 5G is to build wireless connections among people,
mainly in the terrestrial land areas or environments. However,
most of the areas on the earth are oceans, deserts, and the near
outer space. The 6G is intended to cover these areas and sup-
port an integrated ground-air-space network [53], covering the
entire earth’s surface and near outer space. Several pioneered
companies have initiated projects for enabling networks of
such kind, including SpaceX [54], Amazon, and OneWeb
[55].

To meet the demands for 6G communications, future wire-
less systems need to be reconfigurable [56] and intelligent
[57]. The reconfigurability should include system hardware
re-uses and mode-switching. Meanwhile, with the rapid de-
velopment of artificial intelligence [57], [58], such as machine
learning [59], a 6G system is also required to be intelligent for
providing better services, including the adaptation to environ-
ments and changes of functionality.

C. SYSTEM REQUIREMENTS FOR ASYMMETRICAL
WIRELESS SYSTEM
Conventionally, the transmitter and receiver antenna arrays are
reciprocal. However, from the system point of view, this is not
necessary since the transmitter and receiver could have differ-
ent requirements and functionality, depending on the specific
application scenarios. Therefore, asymmetric architecture is
an alternative option for future designs, resulting in a better
efficiency and lower cost and complexity.

In order to incorporate the asymmetric property into a full-
digital array, a novel transmitting and receiving beamforming
strategy was proposed recently [60], in which nonrecipro-
cal beamforming was developed. It achieves the asymmet-
rical transmitting and receiving beam patterns, as shown in
Fig. 8(a). The general goal of such a structure is to reduce
both the hardware and baseband resource consumption while
keeping the salient properties of the full-digital arrays. As a
proof-of-concept validation on the proposed system structure,
an asymmetrical full-digital array prototype was developed as
shown in Fig. 8(b). It can be seen that the Tx array employs
16 × 16 full-digital channels surrounded by dummy elements,
while the Rx array only contains two sets of 1 × 16 full-digital
channels. Compared with the conventional arrays having the
same number of transmitting and receiving channels, this
leads to a significant reduction in hardware resources, power

FIGURE 8. (a) System architecture and (b) a prototype photograph of the
asymmetric beamforming arrays.

consumption, and signal processing. For such a system, the
transmitting and receiving beams can still possess a broad
coverage with a high degree of beamforming flexibility.

To appreciate the advantages of the proposed architecture, a
performance comparison among different beamforming array
structures is listed in Table 1. The asymmetrical full-digital
array has properties similar to those of a conventional sym-
metrical one, such as broad instantaneous coverage, low com-
plexity, and high system capacity. The complexity and cost of
system implementation, as well as the total power consump-
tion are greatly reduced. In short, asymmetrical full-digital
array poses as one of the most promising candidates for 6G
communication systems. It will present different design re-
quirements and challenges for beamforming ICs, transceiver
channels, and antenna arrays.

III. mmWAVE BEAMFORMING CHIPS FOR 5G/6G
COMMUNICATIONS
Silicon based mmWave chips are one of the main solutions
for current 5G mmWave arrays and are also one of the most
competitive technologies for 6G mmWave arrays. In this
section, typical architectures of mmWave chips for hybrid
massive MIMO and the performance of currently available
commercial TRx beamformer chips are described. In addition,
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TABLE 1. Comparison Among Different mmWave Beamforming System Architectures

FIGURE 9. (a) Architecture of a 16-element 4-cell 5G hybrid massive
MIMO array module based on 8/4 Tx/Rx beamformer chips. (b) Block
diagram of an 8-channel TRx beamformer chip.

potential chip architectures for asymmetrical massive MIMO
systems are also discussed.

A. mmWAVE CHIPS FOR HYBRID MASSIVE MIMO
A typical hybrid massive MIMO array chipset is shown in
Fig. 9(a), which is composed of 16 antennas, one intermedi-
ate frequency (IF) channel, and one baseband channel. It in-
cludes 8/4 multi-channel beamformer chips and one up/down
converter (UDC) chip that connect to the IF and baseband
channel.

Depending on the type of antenna elements (single- or dual-
polarized), 4-channel or 8-channel TRx beamformer chips
should be used to support a subarray of 2 × 2 elements.
The current 8/4-channel TRx beamformer chip’s function is to
adjust each RF channel’s phase and amplitude. [61] presents
the basic functions of beamformers that have been commer-
cialized in industries. Fig. 9(b) shows a simplified block di-
agram of the 8-channel TRx beamformer chip. A single Tx
chain contains a PA, a digitally-controlled phase shifter, and
an attenuator. A single Rx chain contains a low noise amplifier
(LNA), a digitally-controlled phase shifter, and an attenua-
tor. RF switches are used to switch the operation mode in a
time-division duplex (TDD) based communication system. In
order to combine all the signals from the TRx channels, the

beamformer also contains a power combining/splitting circuit
inside the chip.

Many early works used different manufacturing processes
such as SiGe, CMOS, and SOI, with the channel numbers
ranging from 4 to 32 [47], [62]–[64]. For industrial applica-
tions, most of the chips use SiGe process containing 4 chan-
nels for single-polarized antennas and 8 channels for dual-
polarized antennas. Table 2 lists some commercially available
TRx beamformer chips and their performance parameters are
available in the public domain. Fig. 10 shows a photograph
of a packaged 8-channel TRx beamformer chip using the
WLCSP package from MISIC microelectronics.

The UDC chips are used to interface the baseband cir-
cuits by performing frequency conversion between RF and IF.
Fig. 11 shows the block diagram of a UDC chip. The UDC
chip contains an up converter and a down converter. In the
down converter, the received RF signal will be filtered with
its amplitude controlled. Then the signal will be converted to
IF I/Q signal for baseband processing. In the up converter, the
IF I/Q signal generated at the baseband will be converted to
RF. Then, it will be filtered with its amplitude controlled to
interface with RF beamformer chips.

B. mmWAVE CHIPS FOR ASYMMETRICAL MASSIVE
MIMO SYSTEMS
For asymmetrical massive MIMO systems, since the signal
from each antenna element will be processed in the base-
band, the signal combining/splitting circuit can be eliminated.
Hence, the block diagram of multi-channel mmWave chips
for asymmetric wireless systems is different from that for the
hybrid massive MIMO array systems.

Fig. 12(a) shows the architecture of a Tx array module with
16 antennas elements. The chipsets include four 4-channels
with an up converter for each channel inside the chip. The
number of IF channels is equal to that of the RF channels.
Fig. 12(b) shows an asymmetrical Rx array module containing
8-antenna elements. The chipsets include two 4-channel chips
with down converters inside.

Figs. 13(a) and (b) show the block diagrams of multi-
channel Tx and Rx chips with mixers for asymmetrical
massive MIMO arrays. While the Tx chain contains the typi-
cal transmitter circuits including mixers, filters, PAs, etc., the
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TABLE 2. Some Commercial TRx Beamformer Chips

FIGURE 10. Photographs of the 8-channel TRx beamformer chips with
WLCSP package from (courtesy of MISIC).

FIGURE 11. Block diagram of a UDC chip.

FIGURE 12. (a) The architecture of a 16-element 4-cell asymmetrical
massive MIMO Tx array module based on four 4-channel chips with mixers
inside. (b) The architecture of an 8-element 2-cell asymmetrical massive
MIMO Rx array module based on two 4-channel Rx chips with mixer inside.

FIGURE 13. Block diagrams of (a) a multi-channel Tx chip with mixers and
(b) a multi-channel RX chip with mixers for asymmetrical massive MIMO
arrays.

Rx chain has the typical receiver circuits including mixers, fil-
ters, LNAs, etc. Multi-channel IF signals are used to interface
with the baseband. The multi-channel Tx and Rx chips could
be used to implement asymmetrical massive MIMO arrays
described in sub-Section II.C with different scales.

IV. mmWAVE ANTENNAS AND MODULES FOR 5G/6G
COMMUNICATIONS
Antennas are critical front-end passive components that are re-
sponsible for emitting and receiving electromagnetic waves in
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wireless communication systems [65]. Their electrical prop-
erties, including the input impedance, radiation pattern, gain,
polarization, and passive intermodulation, will affect the sig-
nal coverage, efficiency, noise figure, and linearity of the sys-
tem. For 5G communications, the system requirements call
for new broadband/multiband and fully-integrated mmWave
antennas with dual-polarization and wide beam coverage
[22], [66]. Therefore, extensive efforts have been made on
mmWave antennas for 5G BSs and UTs in academia and in-
dustry. In this section, the recently developed state-of-the-art
mmWave antennas and related advanced technologies will be
discussed.

A. mmWAVE ANTENNAS FOR 5G BSS
For 5G BSs, large antenna arrays with a large number of
elements are required. It can provide a high degree of freedom
for achieving flexible beamforming [67]. In the sub-6 GHz
frequency range, ±45° dipole antennas with vertically as-
sembled balun circuits are commonly used as dual-polarized
radiating elements for BSs [68]. Conventionally, an antenna
is usually designed and fabricated and then connected to the
RF front-end modules using cables. However, such a process
is no longer suitable for massive MIMO arrays at mmWave
frequencies, since phase and amplitude variations caused by
the cables and connectors among a large number of channels
could be significant. For 5G BSs, the antenna array and the
RF front-end circuits need to be fully integrated and jointly
designed [69].

In addition, a wide and stable beamwidth that can be sup-
ported within one or more issued 5G mmWave frequency
bands is much desirable. So far, several types of mmWave an-
tennas for BS applications have been proposed, including the
tapered slot antennas fed by substrate integrated waveguides
(SIWs) [70], magneto electric dipoles [71], vertically-folded
patches [72], metasurface radiators [73], aperture radiators
[74], and so on. However, they do not have dual-polarization,
which limits their applications in 5G BSs.

More advanced dual-polarized antenna elements have also
been proposed, with circular patches [75], cavity-backed
shorted patches [76], and crossed slots [77]. They have the
advantages of being low-profile and low-cost. But their band-
width is only about 10%, which is not wide enough to cover
the 5G bands at Ka-band and Q-band. To further extend the
bandwidth, stacked patches [37], magneto-electric dipoles fed
by SIWs [78], and stacked patches with shorting pins and
parasitic elements [79] were proposed. They can achieve a
matched impedance bandwidth of about 20% with a stable
pattern. Moreover, by exciting multiple characteristic modes
in a metasurface with non-uniform unit cells, dual-band was
realized that simultaneously covers the 5G bands at Ka-band
and Q-band [80]. In addition, antenna elements that support
dual-circularly-polarized radiation have also been proposed
based on a dual-layer SIW structure with broken mirror sym-
metry at the SIW open ends [81].

Other techniques for achieving multibeam antennas using
passive structures have also been considered. These include

the circuit-based Butler matrix beamformer [82] and quasi-
optical architectures using multi-feed lenses [83], [84]. Al-
though the generated beams are static with each beam pointing
in a pre-defined direction, these antennas are low-cost and
light-weight and are useful in certain application scenarios.

B. mmWAVE ANTENNAS FOR 5G UTS
Different from the antennas for BSs, although beamforming
is still necessitated at UTs, the number of elements is lower
due to the limited space. Antennas operating in the sub-6
GHz frequency regime have been investigated for more than
20 years [85], however, the integration of mmWave antennas
and arrays into UTs is a developing field. In addition to the
general requirements of antennas, the UT platform requires
special design considerations as follows [86].

First, it is preferable that the mmWave antennas are fully
incorporated inside a UT. In detail, the antenna structures
should not protrude out of the periphery of a cellphone for
achieving better mechanical protection of the antennas and
having an exterior friendly to the users.

Secondly, the arrays of mmWave antennas should cover
as much as possible the entire sphere with an EIRP greater
than a certain threshold since the orientation of mobile phones
are constantly changing in realistic scenarios [87]. Such a
signal coverage is characterized by the coverage efficiency,
which describes the spatial coverage of an antenna array with
scanned beams [88]. Due to the sub-hemispherical beam steer-
ing coverage of planar phased arrays, in order to obtain a high
coverage, multiple sets of arrays need to be employed on a UT
and their locations have to be optimized.

Thirdly, the user influence needs to be taken into consider-
ation [89]. Due to the small form factor of mmWave antennas,
the human body, such as hands in close proximity to the
mmWave antennas, would dramatically change the antennas’
electrical properties. It can cause severe impedance mismatch,
pattern distortion, and radiation efficiency degradation.

Finally, the integration of antennas and RFICs is another
critical issue [90]. For a UT such as a smart phone, it is very
likely that it will carry more and more sensors which require
space to install. Consequently, the seamless connection be-
tween the RFICs and the antenna arrays to form an integrated
front-end mmWave module not only saves the precious space
in a UT but also improves the overall system performance.

Ever since the mmWave antennas for cellular handsets re-
ported was reported in 2014 [91], much research so far has
been focused on tackling the above issues. Numerous new
antenna designs, layout strategies, and packaging architec-
tures for UT platforms have been proposed and investigated.
In terms of radiation mechanisms, they can be classified into
two types: one utilizes end-fire radiators, while the other em-
ploys broadside radiators. In the case of cellular phones, due
to the geometrical shapes, end-fire antennas are the favorite.
They can be integrated into the multilayer circuit board in-
side the handset frame and radiate out from the sidewalls.
The vertically-polarized end-fire antenna elements have been
proposed by using SIWs with open ends [92], monopoles with
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FIGURE 14. Dual-polarized end-fire antennas for UTs based on (a) LTCC
technology (reproduced from [102]) and (b) flexible printed circuit boards
(reproduced from [103]).

parasitic elements [93], magneto-electric dipoles [94], cavity-
backed slots [95], and folded slots [96]. The horizontally-
polarized mmWave end-fire antennas for UTs have been real-
ized with Yagi-Uda radiators [97], asymmetrical twin dipoles
[98], etc. In contrast, broadside radiators have been less stud-
ied, primarily attributed to their limited application due to the
radiation angular coverage with respect to the array board.
Arrays of patches and slot radiators [99] have been imple-
mented. They are placed on the top and bottom facets or
vertically attached to the bezel regions of a handset. Efforts
have also been made to exploit designs that do not require
cutting a window out of the metallic frame of the handset.
Rather, only narrow slots need to be etched out for allowing
horizontally-polarized radiated waves passing through to the
outside space [100].

Recently, the research in the area has focused on design-
ing dual-polarized antennas and arrays for UTs. In [101], a
vertically-polarized open cavity and a horizontally-polarized
Yagi-Uda radiator was combined to offer dual-polarized
end-fire radiation from 34 to 38 GHz. Based on the low-
temperature cofired ceramics (LTCC) process, as shown in
Fig. 14(a), a folded slot and a via-strip based mesh-grid patch
was realized for achieving dual-polarized radiation at 60 GHz
[102]. By utilizing the SIW structure, two dual-polarized end-
fire radiating elements and their arrays were designed – one is
based on the magneto-electric dipole concept [103] while the
other is enabled by jointly exploiting the open waveguide and
periodic plate loading [104]. In [105], as shown in Fig. 14(b),
a chain-slot structure cut out on the frame of the cellular hand-
set, which is fed by vertical and horizontal probes, was used
to achieve dual-polarized end-fire radiation with the beam
steering capability. The advantage of this design lies in the fact
that the chain-slot does not break the integrity of the frame,
which makes possible the co-location of the sub-6 GHz and
mmWave antennas in the same volume.

Several research reports described the impact of the user
body on the antenna performances and thus the data rates.
It has been shown that at mmWave frequencies, the effect
is much more significant than that at microwave frequencies
[106]. Through simulations and measurements of the signal
coverage of array antennas deployed at different positions on
a UT with different orientations, it was found that at least two
arrays are required to mitigate the hand effect [107]. More
than three sets of arrays were considered recently – they are
placed on the top and the sides of a cell phone.

C. ADVANCED mmWAVE ANTENNA TECHNOLOGIES
Due to the stringent requirements on the antenna bandwidth,
module integration, and unconventional operating platform,
advanced antenna concepts and technologies have emerged
and been investigated. It should be noted that the success-
ful realization of high-performance antenna arrays depends
on the radiators’ structural designs and as well as materials,
packaging, inter-connections, and many other factors. Here,
several related antenna concepts and technologies are briefly
discussed.

1) INTEGRATED FILTENNAS
The 5G communication systems are “band-pass” systems that
require band-pass filters embedded in the front-end circuits to
eliminate interference due to the out-of-band signals. The con-
ventional approach is to cascade an antenna and a band-pass
filter, each matched to a common purely real input impedance.
However, this would result in a large device footprint and a de-
graded impedance matching over a wide bandwidth. In recent
years, the concept of integrating an antenna and a band-pass
filter into a single component, referred to as “filtenna”, has
garnered a lot of attention [108]–[111].

The filtenna has an S11 similar to that of a band-pass filter,
while its frequency-dependent gain curve resembles the shape
of the S21 curve of the band-pass filter. Three strategies have
been used in designing filtennas. The first one involves adding
a band-pass filtering structure in front of the radiator without
increasing the form factor of the resulting component, such as
a horn antenna integrated with a frequency selective surface
placed right at the horn aperture [108]. The second method
treats the radiator as the last resonator in a coupled-resonator
band-pass filter [109], [110]. In such a way, the operational
bandwidth of the original narrowband radiator can be greatly
broadened and a sharp roll-off can be achieved in the gain
response. It can have both linear-polarization and circular-
polarization. The last approach utilizes embedded resonant
structures within the radiator, thereby forming radiation nulls
for realizing the filtering response [111]. Recently, a broad-
band mmWave filtenna has been proposed and demonstrated,
which can be useful candidates for 5G systems [79].

2) SUB-6 GHZ AND mmWAVE DUAL-BAND ANTENNAS
Since both sub-6 GHz and mmWave bands are expected to
be used for 5G communications, shared-aperture antennas
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FIGURE 15. (a) A photograph of the prototype of a sub-6 GHz and
Ka-band shared-aperture end-fire antenna based on SIW structures and
(b) simulated and measured radiation patterns at 26 GHz and 3.5 GHz
(reproduced from [114]).

that simultaneously support the operation at both microwave
and mmWave bands have recently emerged. There is a con-
siderable frequency difference between the two bands and,
therefore, the dimension requirements at the two bands are
different for the antennas. For example, a single patch element
operating at 3.5 GHz occupies an area similar to the size of
an array containing about 8 by 8 elements radiating at 28
GHz. On the one hand, the metallic structure of the low radio
frequency radiator, which is electrically large at mmWave fre-
quencies, can be utilized as the platform to contain mmWave
arrays. On the other hand, the radiating structures working
at mmWave frequencies, which are relatively small in size,
will not strongly affect the proper operation of the antennas
radiating in the sub-6 GHz bands.

By taking advantage of such structure-reusable properties,
several broadside and end-fire coexist designs of sub-6 GHz
and mmWave antennas have been proposed and demonstrated.
By incorporating various types of SIW slot arrays [112] and
partial reflective metasurface radiators [113] into a modified
patch antenna, broadside radiation at the sub-6 GHz 5G band
and a high gain or steerable beam at the mmWave 5G band
can be simultaneously achieved. As shown in Fig. 15, by
embedding an array of SIW-fed dipoles into a low-frequency
dipole, end-fire radiation can be obtained simultaneously at
3.5 and 28 GHz [114]. Alternatively, by embedding SIW
transverse slot arrays into planar monopole-like multi-mode
low-frequency radiators [115], omnidirectional and unidirec-
tional radiation can be achieved at microwave and mmWave
5G bands, respectively. By utilizing the metallic frame with
shunt loading structures for impedance matching at low fre-
quencies and small openings for mitigating radiation blockage
from the embedded mmWave linear end-fire antenna arrays

FIGURE 16. Configuration of a Ka-band phased array antenna module
(reproduced from [122]).

[100], [116], the sub-6 GHz and mmWave 5G bands can
be covered. At the low-frequency communication bands, the
radiation is similar to that supported by a conventional cellular
handset, while at the mmWave 5G bands, beam steering can
be achieved by the end-fire arrays deployed at different places
on the handset facets.

3) AIP AND ANTENNA MODULES
Integrated antennas are more attractive than discrete anten-
nas for 5G communications. they can be classified into two
categories: antenna-on-chip (AOC) and AIP structures [117].
The AOC integrates antennas with front-end circuitry on the
same chip manufactured using mainstream silicon technolo-
gies. However, due to the low resistivity and high permittiv-
ity associated with silicon substrates, the radiation efficiency
of AOC is low [118]. In addition, incorporating an array of
antennas in AOC is also challenging because of the limited
space on a single chip. The AIP packages an antenna and its
array with other integrated radio chips and front-end circuits
and makes them into a surface mount chip-scale device. It can
overcome the shortcomings of AOC by providing a higher
radiation efficiency and a broader bandwidth, while having
a high level of integration. Over the past decade, AIP tech-
nologies have been widely investigated, including the antenna
design, packaging strategies, and interconnection techniques,
particularly for 60 GHz wireless systems [119], [120]. Re-
cently, the AIP technologies have been applied to mmWave
5G front-end antenna modules using LTCC stack-ups, high
density interconnection (HDI) process based on epoxy/glass
RF4, liquid crystal polymers, and embedded wafer level ball
grid array (eWLB) [117], [121].

By seamlessly connecting the antennas and RFICs using
a multi-layer layout, an integrated antenna module can be
devised that improves the overall system performance. As
shown in Fig. 16, based on organic multilayer substrates, a
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FIGURE 17. (a) Illustration of AOD for cellular handsets and (b)
photographs of optically transparent diamond-grid antenna arrays
(reproduced from [129]).

phased array antenna module with 64 dual-polarized elements
was demonstrated by IBM at 28 GHz, achieving a scanning
range of ±50° and throughput of 20.64 Gb/s [122]. Such dual-
polarized antenna array modules for massive MIMO working
in the Ka-band have also been reported by industrial com-
panies, including Nokia Bell Labs [37], Ericsson [123], and
NXP Semiconductors [124]. More recently, based on a multi-
layer vertical interconnection structure, a vertically-polarized
antenna array module was demonstrated where the array was
flip-chip mounted on the top layer of the routing board [125].

4) ANTENNA-ON-DISPLAY (AOD)
Due to the trend of increasing the display size of a UT and the
strong impact of a human body part (e.g., hand) on antenna
performance, deploying antenna arrays in the bezel region of
the UTs becomes more and more challenging. Alternatively,
embedding the antennas into a display screen, if possible, be-
comes another viable path, which is referred to as antenna-on-
display (AOD) [126]. The advantages of such an integration
are that the integrity of the metallic frame is not destroyed
since the display area is less exposed to users’ hands in the
near field.

The first main issue for AOD is the material selection,
where optically invisible conductive and insulating materials
need to be used. The optical transparency of the stack-up radi-
ating structure of the adopted materials should be higher than
80%, in order for the display to function properly with organic
light-emitting diodes or liquid crystal displays. Secondly, the
other main challenge is the proper design of the AOD structure
and module for achieving beam steering, high efficiency, and
wide signal coverage. Over the past decade, various types
of transparent antennas, such as patches, dipole, and wide-
band monopoles, have been studied since a decade ago us-
ing materials including Indium Tin oxide (ITO), silver alloy,
polydimethylsiloxane (PDMS), glass, and so on [126]–[128].
More recently, a phased array based on transparent diamond-
grid patches made of silver alloy was proposed, demonstrating
the possibility of beamforming using AOD located on the rim
of the handset display screen [129] (see Fig. 17).

D. mmWAVE ANTENNAS FOR 6G COMMUNICATIONS
For 6G communications, antenna designs face more chal-
lenges in the following aspects. First, multi-band operation
is needed such that, in the same aperture, multiple services

FIGURE 18. Classification of mmWave measurements and testing.

in different mmWave bands as well as the sub-6 GHz bands
can be supported. This calls for innovative three-dimensional
structural designs and advanced aperture sharing methods.
Secondly, reconfigurable mmWave antennas are highly de-
sirable, for switching between different operational bands or
pattern modes for versatile applications. Thirdly, the large
scale and seamless integration of mmWave chips operating
at different bands with the antennas in the same module is
required. It involves packaging designs, fabrication process,
and heat dissipation consideration.

V. MEASUREMENT TECHNIQUES FOR 5G/6G ARRAY
SYSTEMS
As a large number of RF channels will be used in mmWave
5G BSs, traditional approaches of characterization and mea-
surements would be practically time-consuming. Addition-
ally, the direct-integration of antennas and active components
in a mmWave system would leave no ports for direct antenna
or RF channel measurements. As a result, over-the-air (OTA)
testing has become the mainstream method for system char-
acterization at mmWave frequencies [20], [130], [131].

Based on the procedures, mmWave measurements and test-
ings using the OTA method can be divided into three cate-
gories: pattern measurement and calibration, RF characteristic
testing, and system performance testing [see Fig. 18]. In this
section, a detailed overview of 5G mmWave measurement and
testing will be provided. Moreover, challenges and outlooks of
6G testing will also be discussed.

A. PATTERN MEASUREMENT AND CALIBRATION
Beamforming technique has been widely used in mmWave
systems for it not only enhances the system capacity but
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also mitigates the fading effect by increasing the signal-to-
noise ratio (SNR) [132]. The accurate pattern measurement
requires a proper system calibration, which requires a proper
compensation of both amplitudes and phases among all the
channels. After the system is calibrated, the beamforming
pattern measurement can be performed. Typically, the pattern
measurement and calibration methods of a large-scale array
can be classified into the far-field method, compact antenna
test range (CATR) method, near-field method, and the recently
reported mid-field (MF) method.

Traditionally, pattern measurement and calibration are per-
formed in the Fraunhofer zone, where the distance between
the probe and device under test (DUT) is larger than 2D2/λ0

[133]. Here, D is the largest dimension of the DUT and λ0

is the free-space wavelength at the carrier frequency. At this
distance, the phase variation of the field across the aperture
of the DUT is less than 22.5°. The far-field measurement is
one of the most commonly used approaches for radiation pat-
tern measurements. The measurement process of large-scale
arrays is described in [134], [135]. It shifts the element in an
array successively from 0 to 360 degrees and measures the
complex electric field formed on the designated observation
plane. When the maximum or the minimum power of the
array is obtained, the system calibration is finished. The cali-
bration method is an amplitude-only calibration method. This
has been successfully implemented in calibrating a Ka-band
digital beamforming transmitter array [136]. The calibration
method is straightforward but time-consuming. Improvements
in this conventional calibration have been presented to reduce
the measurement time [137], [138]. Similar to the REV cal-
ibration method, switching the phase shifter in each channel
between 0 and 180 degrees by following a certain order can
also achieve system calibration [28], [139], [140]. It makes the
measurement faster. The aforementioned methods are usually
implemented for analog phased array systems. For full-digital
arrays, orthogonal codes like Zadoff-Chu sequence [141],
Hadamard matrix [142], and Walsh code [143] can be used
in the transmitter array calibration and pattern measurement.
It is performed by encoding the transmitting signals of each
channel and decoding them on the receiving/observation side,
which offers fast system calibration.

Although far-field measurement is direct and efficient, it
might face a challenge in measuring mmWave devices for
the following reasons. First, millimeter waves suffer from a
higher free-space path loss than waves at frequencies below
6 GHz, leading to a lower received signal on the calibration
side. The weaker received signal will introduce uncertainties,
thus affecting the accuracy of the calibration results. Secondly,
mmWave devices and modules are usually physically small,
making them more difficult to achieve system alignment in
the far-field zone. Based on these facts, the CATR and near-
field measurements are more convenient than far-field mea-
surements. The CATR method is based on the geometrical
optics theory, which utilizes a paraboloid reflector to con-
vert a spherical wave into a quasi-plane wave inside a quiet
zone [144]. It can shrink the chamber’s measurement size

and has already been adopted in 5G mmWave system mea-
surements [145], [146]. As the signal impinged on the DUT
has a quasi-planar wavefront in the quiet zone, the calibration
and pattern measurement procedure are similar to that of the
aforementioned far-field method. Besides the CATR method,
the near-field calibration and pattern measurement method
can further minimize the measurement distance. For system
calibration, the most commonly used near-field calibration
method is the back-propagation method, which is based on
the Fourier relationship between the near- and far-zone field
quantities [147], [148]. The back-propagation method can also
be used as an efficient tool to diagnose defective elements in
an active antenna array. Another comprehensive near-field cal-
ibration method is the equivalent currents method. It derives
the equivalent sources on a Huygens surface that is directly
attached to the array aperture [149]. In [150], this method was
performed on an array of 1024 waveguide antennas centered
at 75 GHz. The above two near-field calibration methods use
either planar scanning or spherical scanning to calibrate large-
scale antenna systems. An industrial robot can get involved
in measuring mmWave probe-fed modules and chips [151],
which is compact and lightweight, thereby facilitating chip-
level measurements. For pattern measurement using near-field
data, the near-field to far-field transformation (NFTF) is uti-
lized, which has been well summarized in [152].

In general, the NFTF uses both the amplitude and phase
information at each sampling point on the testing plane. How-
ever, acquiring phase information accurately is not easy at
mmWave frequencies. On the one hand, phase stability and
position precession of the testing system are not guaranteed.
On the other hand, for highly integrated up/down-converter
systems, measuring the absolute phases from the DUT in the
near-field could be difficult. Apart from adding additional
hardware circuits [40], near-filed phaseless measurement is
also a possible solution [153], [154]. It is based on the idea
to reconstruct the phase information from the amplitude-
only data by using different phase retrieval approaches
[155]–[157].

Recently, MF measurements were proposed for 5G
mmWave massive MIMO testing by Keysight Labs [158],
[159]. With the MF method, calibration and pattern measure-
ment procedure can be simplified. Because the test system
probe antennas are in the far field of the antenna elements,
far-field calibration method can be used for system calibra-
tion by precisely moving the probe antenna successively [see
Fig. 19]. Such a calibration approach has been reported in the
literature [40]. For pattern measurement, the far-field array
patterns can be derived by multiplying the measured MF pat-
terns with a correction factor (CF). As an example, a Ka-band
8 × 8 element array was calibrated and measured using the
MF method, and the pattern measurement results are shown
in Fig. 19.

All the above-mentioned calibration methods can be cate-
gorized into off-line calibration, where the calibration is car-
ried out in anechoic chambers or laboratories [160], and on-
line calibration, also referred to as self-calibration, which is a
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FIGURE 19. Calibration and pattern measurement using MF method
(reproduced from [159]).

TABLE 3. OTA RF Metrics for mmWave AAU Conformance Testing

dynamic calibration automatically carried out after the system
is deployed. The phase and amplitude variation in mmWave
active components as a function of time are reported in [161],
indicating the necessity of system self-calibration. In these
self-calibration methods, the mutual coupling-based approach
[162], [163], toggling the phase shifter of the channel [164],
[165], and using a reference antenna through the OTA path
can be applied.

B. RF CHARACTERISTIC TESTING
The RF characteristics, such as adjacent channel leakage ratio
(ACLR), error vector magnitude (EVM), and harmonic sup-
pression level, have long been adopted as efficient metrics to
characterize the performance of RF channels and systems. As
mentioned above, these characteristics are usually recorded
in OTA measurements for mmWave wireless systems. The
typical OTA RF metrics for performance testing of mmWave
AAUs are specified by 3GPP [130], which are summarized
in Table 3. Also, a few new OTA parameters have been in-
vestigated for better describing the performance of the AAU

systems. For instance, Leinonen et al. demonstrated the use
of the EVM-based beamwidth of the radiated beam for char-
acterizing the coverage of the mmWave BSs [166]. A beam
EIRP (BEIRP) was proposed to reflect a certain beam radiated
transmit power in multibeam mmWave AAU system [167].
Based on the measurement distance, the OTA RF character-
istic testing can be classified into the direct far-field (DFF)
method, indirect far-filed (IDFF) method, and NTFT based
method. They have been documented in 3GPP TR 38. 810
[168].

The direct far-field method has been conducted in a far-field
anechoic chamber. As mentioned in sub-Section V.A. It is
the most direct and comprehensive testing method. However,
it still faces several challenges. On the one hand, the phase
curvature of 22.5° in the impinging field might affect the
measurement of wideband modulated signals, which could be
wider than 400 MHz in the mmWave bands. On the other
hand, the measurement distance that satisfies the far-field cri-
terion will become unacceptably large for mmWave arrays
using Blak-Box approach [169]. In addition, a longer distance
will cause more free-space path loss at mmWave frequencies,
which would severely degrade the SNR of the received sig-
nals.

The indirect far-filed method relies on forming a quasi-
plane wave in a short test range, in which the CATR method is
one of the indirect far-field methods that have been approved
by 3GPP [168]. CATR can transform a spherical wave into
a quasi-plane wave in a short range using a reflector, while
the quality of the generated testing zone, i.e., the quiet zone,
is dependent on the performance of the reflector. The size of
the quiet zone is usually half of the size of the reflector [170].
Although CATR is promising for mmWave and even sub-THz
measurements, the cost is high due to the employed reflector.

The NFTF method can also shorten the test range and
has been a mature approach in array calibration and pattern
measurement. However, there still exist some unsolved issues.
For example, the relationship between the modulated signals
measured in the near-field and far-field regions needs to be
theoretically and experimentally investigated and verified.

Apart from the above three methods suggested by 3GPP,
other methods have also been proposed. The plane wave con-
verter (PWC) method is another IDF method, which uses an
active antenna array to form a quasi-plane wave in a short
testing range by adjusting the phase and amplitude of each
channel of the PWC array [171]. Unlike the CATR method,
this method utilizes active components inside the passive re-
flector and achieves an adjustable quiet zone within a reduced
space compared with the CATR method [172]. However, the
PWC method has only been applied to a narrow bandwidth.
The wideband implementation needs to be further studied.
Another method is the MF method as mentioned in sub-
Section V.A. Instead of the complex NFTF, some of the RF
performance parameters are obtained by multiplying the MF
measurement results with a correction factor. The MF method
supports the testing of all the RF performance parameters
listed in Table 3, which has been demonstrated and proved in

VOLUME 1, NO. 1, JANUARY 2021 113



HONG ET AL.: ROLE OF MILLIMETER-WAVE TECHNOLOGIES IN 5G/6G WIRELESS COMMUNICATIONS

detail in [159]. However, the efficiency and accuracy of both
the PWC and MF methods need to be further verified in the
mmWave bands.

C. SYSTEM PERFORMANCE TESTING
The system performance testing includes system throughput,
beam management, and link performance of the UE testing,
etc. It is a systematic evaluation of the DUT in a wireless
environment. Outdoor field testing is direct and accurate but
faces challenges of uncontrollable and unrepeatable channel
parameters. Hence, a channel emulator plays an important role
in system performance testing, which is used to reconstruct
the actual channel environment in the laboratory. It is cur-
rently being developed towards a larger bandwidth, a higher
frequency, and increased channel number for 5G mmWave
communications [173]. The system performance testing meth-
ods, with the help of the channel emulators, include the re-
verberation chamber (RC) method, radiated two steps (RTS)
method, and multi-probe anechoic chamber (MPAC) method.

A RC is made of a metallic stirrer to excite electromagnetic
modes inside a metal-shielded cavity, such that the rich mul-
tipath Rayleigh channels can be constructed [174]. As elec-
tromagnetic modes are quasi-equally distributed in the cavity,
the RC method has often been used for testing the MIMO
capacity of the UE [175] and the absorption of a phantom
[176]. Nevertheless, for highly sparse mmWave channels in
the BSs, the RC method needs to be improved [177].

The RTS method [178] has been approved as a MIMO OTA
test method by 3GPP [179], which is based on the idea of
separating the system performance testing into the antenna
array pattern measurement in the anechoic chamber and the
system performance testing using cables in the laboratory.
After acquiring the complex pattern information of the array,
the pattern information, the transfer matrix linking the DUT
ports and the antenna array ports, and the channel information
can all be generated in the channel emulator. The former
step is performed by measuring at the antenna array ports,
while the latter step is carried out by measuring at the DUT
ports through cables. The RTS method has been used in sys-
tem performance testing at frequencies below 6 GHz [180],
[181]. However, because the antennas and DUTs need to be
separated in this method, its application is limited in testing
highly integrated mmWave terminals. Moreover, the effect of
the antenna is ignored for system performance evaluation.

The MPAC method was standardized by the Cellular
Telecommunications Industry Association (CTIA) to test the
LTE downlink MIMO OTA performance in the early years
[182]. It is one of the mainstream methods for testing the
system performance of 5G mmWave devices. Traditionally,
the MPAC uses several probe antennas enclosing the DUT
in a ring. Each probe is connected to an emulator channel
to construct the targeted multipath environment [183]. The
emulation accuracy in the testing area depends on the num-
ber of probes and their positions. For sparse mmWave chan-
nels, a cost-effective sectored MPAC was proposed in [184],
[185], which uses mmWave switching circuits to select the

FIGURE 20. The conceptual setup of the sectored MPAC testing system
[186].

probes with the strongest effect and map them to the mmWave
channel emulators [see Fig. 20] [186]. It can be used to test
the mmWave massive MIMO systems and UEs for both the
line-of-sight (LOS) and non-line-of-sight (NLOS) links. Nev-
ertheless, the system cost and complexity of the MPAC and
sectored MPAC methods are higher than the RC and RTS
methods. In recent years, probe selection algorithms are under
investigation to further reduce the number of active probes.

D. OUTLOOKS OF TESTING METHODS FOR
6G COMMUNICATIONS
Overall, the unlicensed bandwidth is relatively abundant in
mmWave band, but the free-space path loss becomes far
greater than that of the sub-6 GHz band. They force the test-
ing techniques to move to higher frequencies, broader band-
width, and larger dynamic ranges. For the 6G communica-
tions, new potential technologies will raise new challenges in
OTA measurements. First, for asymmetrical wireless systems
mentioned in Section II, the end-to-end system performance
testing is required because the channel matrices for the down-
link and uplink communications are different. This end-to-end
measurement conception has already been reported in [187]
for 5G performance testing and could be utilized fort testing
asymmetrical wireless systems. Secondly, terminal mobility is
characterized as the Doppler shift included in the state-of-art
system performance testing, but it needs to be greatly im-
proved for testing mmWave satellite communications. The dy-
namic target detection, doppler shift of moving directions, and
link stability should all be considered in system performance
testing in an anechoic chamber, as it is nearly impossible to
do in-situ test by launching a satellite.

VI. CHANNEL CHARACTERIZATION
As frequency increases, the channel characteristics in
mmWave bands are significantly different from those in the
sub-6 GHz bands in terms of large-scale and small-scale fad-
ing [188]. Real-world channel sounding results reveal that
mmWave signals are more vulnerable to surrounding block-
ages. Also, the sparsity nature of the channel is discernible,
which poses several challenges for exploiting the advantages
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of mmWave communications [189], [190]. Moreover, when
large-scale antenna arrays confined within a limited physical
space are used at BSs, they are expected to provide sufficient
directional beamforming gains to combat severe path loss
at mmWave frequencies. An increasing number of elements,
however, presents several new challenges to be addressed,
such as channel hardening, spherical wave propagation, and
spatial non-stationarity [191]. Therefore, the interaction be-
tween antennas and propagation channel needs to be inves-
tigated in order to meet the requirements of future mmWave
massive MIMO systems.

For mmWave communications, the path losses are gener-
ally much higher especially in NLOS scenarios [189], [190].
Additional losses including shadow fading, blockage effect,
foliage attenuation, and off-body fading (e.g., handset on the
right side of the head) need to be taken into account [192],
[193]. The statistical analysis of these effects can be per-
formed via site-specific measurements rather than conducting
cellular-type measurements. Another issue is that most work
so far mainly focuses on omnidirectional path loss characteri-
zation. The effects of beam patterns and antenna polarization
in different transmission schemes still remain unclear.

The small-scale space-time propagation characteristics play
a critical role in mmWave system designs, including the an-
tennas, RF front-ends, access protocols, and network architec-
tures [188], [193]. Apart from the LOS path, multipath propa-
gation occurs that combines the reflected and diffracted paths.
Thus, it is meaningful to study the reflection and diffraction
over various materials in different frequency bands and at dif-
ferent incident angles. Owing to channel bandwidth increase,
relatively high delay resolution results in multipath effects ob-
servable in mmWave sparse channels. Thus, the delay spread
and power decay for each cluster propagating through a phys-
ical or virtual scatterer need to be estimated. The high spatial
resolution of large-scale antenna arrays can leverage the ben-
efits of 3D beamforming in both the azimuthal and elevation
planes. They will enable higher multi-user capacity, coverage
enhancement, and suppression of multi-cell and inter-beam
interference. A major issue of exploiting the channel’s ele-
vation degree of freedom is that the power consumption will
increase as the elevation angle increases. Consequently, a
full description of the three polarizations of mmWave chan-
nels in a uniform Cartesian coordinate system is necessary.
The recent development of mmWave channel measurement
techniques using virtual antenna arrays reveal that the spaced
elements will observe different sets of clusters (so-called spa-
tial non-stationarity property), which can be modeled as a
birth-death process [191]. Overall, with the knowledge of
propagation characteristics and their interactions with the RF
subsystems, the rapid development of the mmWave technolo-
gies could unlock the full potential of the mmWave spectrum
in the future 5G/6G wireless communication systems.

VII. CONCLUSION
In summary, the key enabling mmWave technologies for 5G
communications are reviewed, including the different kinds

of system architectures, multi-channel beamforming chips,
antennas for BSs and UTs, measurement and calibration
techniques, and wireless channel characterization. The
recent developments are described with examples, and
the requirements and challenges for 6G communications
are also discussed. In general, compared with 5G, the 6G
requires the integration of more physical transceiver channels,
more frequency bands, more operation flexibility, and more
diverse functionalities into a communication system with
considerably superior electrical performance. This calls for
the development of low-power highly-linear multi-channel
chips, multi-band multi-polarization compact antennas and
modules, automated efficient calibration and measurement
methods, multi-dimensional beamforming networks, accurate
multi-spectral multi-stage channel models, and many other
enabling mmWave hardwares and related algorithms. It is
believed that the mmWave technology will play a more and
more important role than it ever has been in future commercial
telecommunication infrastructures.
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