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ABSTRACT In this work, we examine the methodology for numerically computing the dispersion diagram
of three-dimensional periodic structures using commercial electromagnetic simulators. Examples of periodic
structures based on body-centered cubic, face-centered cubic, and monoclinic lattices are used to illustrate
this methodology. We first outline the characteristics of these structures in both physical and reciprocal
spaces from a theoretical point of view. On this basis, we provide a comprehensive explanation of how
to adjust the setting in simulation software commonly used in microwave engineering to generate the
dispersion diagrams of these structures. The appropriate simulation conditions are tabulated to serve as a
further guide for other researchers. This study also explores the influence of the elements of the unit cell on
the dispersion characteristics. Additionally, we evaluate and contrast the dispersion properties of identical
periodic elements when having simple cubic, body-centered cubic, and face-centered cubic arrangements.
We found that symmetries, such as those seen in body-centered cubic and face-centered cubic arrangements,
can improve the isotropy and maintain low-dispersion characteristics over a wider frequency range. The
monoclinic structure is also taken as an example to demonstrate that the reported analysis method can
be applied to the dispersion analysis of other more complex noncubic lattices. Our findings offer useful
information for the examination and engineering of three-dimensional periodic structures, which can be used
to design microwave and antenna devices.

INDEX TERMS 3D periodic structure, body-centered cubic lattice, dispersion analysis, electromagnetic
simulation, face-centered cubic lattice, monoclinic lattice.

I. INTRODUCTION
Periodic structures consist of elementary units (atoms,
molecules, metallo-dielectric elements, etc.) that are repeated
regularly at fixed spatial intervals, giving rise to structural
ordering. Manipulation of the geometric and material param-
eters of these unit cells can alter the properties of electromag-
netic waves as they propagate through the periodic arrange-
ment, providing significant flexibility in device design [1], [2],
[3], [4], [5], [6], [7]. In the field of microwave engineering,
these structures are widely used in the design of multiple de-
vices, such as filters, frequency-selective surfaces, leaky wave

antennas and lenses [8], [9], [10], [11], [12], [13]. The most
common method to analyze and characterize the properties of
periodic structures is to study their dispersion diagram [14],
[15]. This dispersion diagram represents the relationship be-
tween frequency and wavevector, providing valuable informa-
tion on phase/group velocity, attenuation, stopband, and cou-
pling between modes [16], [17]. This information is crucial in
determining the geometric/material parameters of the unit cell
in the design of propagating/filtering/radiating devices.

In most cases, engineered periodic structures are ar-
ranged in a rectangular two-dimensional (2D) configuration
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[18], [19] or a simple cubic (sc) three-dimensional (3D)
configuration [20], [21]. For 3D periodic structures, studies
have explored configurations with symmetries. The study re-
vealed that the body-centered cubic (bcc) and face-centered
cubic (fcc) structures are more isotropic and less dispersive
over a larger frequency range compared to the sc configura-
tion [22], [23], [24]. However, these studies did not introduce
a method for the dispersion analysis of 3D periodic structures,
especially those based on more complex configurations.

Several methods exist for computing dispersion diagrams
of periodic structures. For example, equivalent circuit anal-
ysis methods [25], multimodal transfer matrix method [26],
[27], [28], Floquet analysis of the structure [29], etc. These
methods are efficient in analyzing 2D periodic structures
with rectangular configurations or 3D periodic structures with
simple cubic configurations. However, when confronted with
3D periodic elements featuring complex geometries such as
truncated octahedra shape or dodecahedra shape, computa-
tional complexity escalates significantly. Furthermore, these
methods often require the use of in-house code to calculate
dispersion diagrams, which may pose initial challenges in
terms of usability and application. Compared to the com-
putational methods mentioned above, commercial software
with appropriate settings can directly simulate and obtain the
dispersion diagrams of various periodic structures, even those
with complex geometric and/or material configurations. While
it is not possible to directly extract material losses from the
eigensolver tool of commercial software packages, the ability
to calculate dispersion diagrams related to phase shifts (which
only involves the obtaining of the phase constant β) is typi-
cally adequate to meet needs, thus not hindering the common
practice of using commercial software to study dispersion
diagrams of periodic structures.

In this paper, we use the bcc and fcc structures as exam-
ples to explain in detail how to utilize commercial software
(ANSYS HFSS is employed in this study) to obtain the dis-
persion diagram of a 3D periodic structure. In particular, we
discuss and describe the conditions that must be set in the
eigensolver tool of the simulation package. This enables us
to conduct a further detailed analysis and comparison of the
electromagnetic wave dispersion properties of the sc, bcc,
and fcc structures when the physical periodic elements are
metallic spheres and metallic cuboids. The analysis technique
discussed in this study can be easily utilized for other 3D
periodic structures that possess noncubic lattices. The paper
employs a monoclinic lattice as an illustration of this concept.
Our primary objective is to offer a basis for the future devel-
opment of microwave and antenna devices that rely on 3D
periodic structures.

The structure of this paper is as follows. Section II de-
scribes a general method for the analysis of the dispersion
of 3D periodic structures, revisiting some important con-
cepts. In Section II-A, an analysis of periodic structures in
physical space is presented, while Section II-B studies pe-
riodic structures in reciprocal space (the space associated
with wavevectors). Section III-A presents the modeling and

analysis of periodic structures composed of metallic spheres.
In Section III-B, the modeling and analysis are extended to
periodic structures composed of metallic cuboids. The mono-
clinic structure is used as an example in Section IV-A on how
to perform a dispersion analysis on more complex, noncubic
3D periodic structures. Section IV-B presents the modeling
and the simulation results of this monoclinic structure. Some
relevant final conclusions are summarized in Section V.

II. DISPERSION ANALYSIS OF THREE-DIMENSIONAL
PERIODIC STRUCTURES
This section gives a brief outline of how to model and find
the dispersion diagrams of 3D periodic structures. The bcc
structure is chosen as an example from a theoretical point of
view. Additionally, the conditions for configuring the structure
in popular simulation software packages are outlined. This
analysis and simulation setting can be easily adapted to other
3D periodic structures.

A. PHYSICAL SPACE
The fundamental building block of a periodic structure, re-
ferred to as the “unit cell” [14], [16], is periodically arranged
and repeated in space to construct the periodic structure. In-
spired by the study of solid state physics, the concept of a
“lattice” is used to synthesize the geometric layout of periodic
structures [14], [16]. Each point on the lattice is associated
with a unit cell, and the lattice does not depend on the par-
ticular element that comprises the unit cell. This lattice is
known as the “Bravais lattice” if the arrangement and ori-
entation of the lattice points remain invariant at any point
within the lattice. Each Bravais lattice is characterized by
a fundamental set of translation vectors, typically described
as (a1, a2, a3) in a 3D space, and these vectors relate the
position of the lattice points within the structure following
n1a1 + n2a2 + n3a3, ni ∈ Z. These translation vectors are also
called “lattice vectors” and are instrumental in defining the
periodic arrangement of lattice points in the Bravais lattice.

When the Bravais lattice is defined in real or physical
space, it is also called a ‘direct lattice’ or ’physical lattice’.
Fig. 1 illustrates the corresponding physical lattice for unit
cells organized in a bcc configuration. In the upper left of
the lattice arrangement, nine lattice points are highlighted in
purple. These highlighted points show how the lattice point
at the center of a body-centered cube connects to other lattice
points. In this case, the associated lattice vectors are expressed
as

a1 = a

(
1

2
x̂ − 1

2
ŷ − 1

2
ẑ
)

a2 = a

(
1

2
x̂ + 1

2
ŷ − 1

2
ẑ
)

a3 = a

(
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2
x̂ − 1

2
ŷ + 1

2
ẑ
)

(1)

where a is the distance between a lattice point and its second
closest lattice point (also indicated in the figure).
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FIGURE 1. Physical lattice when 3D periodic structures are organized in a
bcc configuration.

Usually, periodic structure analysis is carried out in a mini-
mal region around a Bravais lattice point, called “the primitive
unit cell”. This region occupies the minimum volume that can
fill the full space without overlapping or leaving gaps when
copied and translated along the lattice vectors. An example of
a possible primitive unit cell for a bcc configuration is shown
as a purple-shaded polyhedron in Fig. 1. There can be multiple
choices for this primitive unit cell, each with the same volume
and containing exactly one lattice point. However, we note
that for some choices, the primitive unit cell may not fully
display the symmetry of the Bravais lattice, and the concept of
a Wigner-Seitz (WS) cell is introduced to clearly exhibit the
symmetry of the lattice [14]. The primitive unit cell shown in
Fig. 1 is, in fact, the WS cell of the bcc structure. In contrast to
the primitive unit cell, a cell that can also fill the entire space
but has a relatively larger volume is called a supercell (this
supercell will always enclose more than one lattice point). The
blue-shaded region in Fig. 1 shows a possible cubic supercell
associated with the bcc structure, and we observe that this
cubic cell contains two lattice points (one at the center of the
cell and one formed by the contribution of 1/8th of a point
from each corner).

Given that the WS cell represents the minimum volume
that encompasses the full symmetry of periodic structures,
it is often the preferred choice for studying their properties,
particularly when the WS cell exhibits a relatively simple
configuration. However, in some periodic structures, the shape
of a WS cell can be complicated, which poses challenges
for its direct analysis. In such cases, researchers may turn to
studying a corresponding supercell of the periodic structure
with a simpler shape. For instance, when looking into the
dispersion characteristics of periodic structures, eigenmode
solvers of commercial software programs are commonly used
to generate dispersion diagrams. These programs can be more
difficult to use when the unit cell has nonorthogonal faces or
sides. As a result, we may opt to simulate the supercell of the

periodic structure instead of the more intricate primitive unit
cell.

B. RECIPROCAL SPACE
The mathematical dual lattice of the physical lattice is called
the reciprocal lattice, which is the Bravais lattice in the recip-
rocal space [14]. The reciprocal lattice contains information
about the wavevectors of those plane waves with the same
periodicity as the respective physical Bravais lattice and also
reflects the periodicity of these wavevectors [14], [16]. Lat-
tice points within the reciprocal lattice can be interconnected
through the lattice vectors (b1, b2, b3), which are derived
from the lattice vectors (a1, a2, a3) of the physical lattice
according to the following relationship:

b1 = 2π

V
a2 × a3 (2)

and cyclic permutations, where V = a1 · (a2 × a3) is the vol-
ume of the primitive unit cell in the physical space.

When considering that the physical lattice is bcc with the
corresponding lattice vectors given in (1), the reciprocal lattice
vectors are given by

b1 = 4π

a

(
−1

2
ŷ − 1

2
ẑ
)

b2 = 4π

a

(
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x̂ + 1

2
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)
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a

(
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2
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2
ẑ
)

. (3)

Fig. 2(a) illustrates the reciprocal lattice in this case, from
which it can be found that this lattice is fcc. The points in the
purple lattice in the upper left corner of the lattice arrangement
are used to illustrate how the lattice points at the center of each
face are connected to other lattice points using the reciprocal
lattice vectors.

In reciprocal space, the WS cell, also known as the
first Brillouin zone (BZ), displays the full symmetry of
wavevectors and is widely used to analyze wave propagation
properties, such as electromagnetic bandgaps and dispersion
relations of periodic structures. When the unit cell in the direct
space is highly symmetric, we can simplify the dispersion
analysis by focusing on a subset of the BZ. The minimum
region that contains all the information about wave propaga-
tion is called an irreducible BZ. The shape of the irreducible
BZ is determined by the combined symmetry of the BZ and
the actual unit cell. In Fig. 2(b), the BZ of the bcc structure
is shown and takes the shape of a rhombic dodecahedron.
Additionally, the possible irreducible BZ with the smallest
volume is demonstrated by the black wireframe area. Taking
into account (3), the coordinates of the vertices of the irre-
ducible BZ can be obtained as follows:

� = (0, 0, 0)

X = 4π

a

(
1

2
, 0, 0

)
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FIGURE 2. (a) Reciprocal lattice when the 3D periodic structures are
organized in the bcc configuration. The WS cell is highlighted in light
purple. (b) Brillouin zone and irreducible Brillouin zone when the actual
periodic unit cell is highly symmetric.
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Analysis of the dispersion properties of periodic structures
is usually further simplified by studying the dispersion di-
agrams along the edges of the irreducible BZ, since these
edges represent the boundaries of the dispersion properties.
In the following analysis and examples, we will focus on
demonstrating the one-dimensional (1D) dispersion diagrams
of the periodic structure along the edge of the irreducible BZ,
or 2D dispersion diagrams (also known as isofrequency maps)
along the surface of the irreducible BZ. However, our pro-
posed method is not limited to these dispersion diagrams. It
can be used to obtain dispersion diagrams along any direction
of interest in the reciprocal space, as well as the complete
four-dimensional dispersion diagrams (phase shifts along ev-
ery spatial direction versus frequency).

In this work, the dispersion diagrams are computed by
making use of the eigenmode solver in ANSYS HFSS. In
the remainder of this section, we will study a bcc structure in
which the element of the actual unit cell is a metallic sphere,
as shown in Fig. 3 (the host medium is assumed to be vaccum).

FIGURE 3. Wigner-Seigtz unit cell of a bcc structure in the direct space.
Each unit cell contains a metallic sphere surrounded by vacuum.

The shape of the WS cell corresponding to this structure is a
truncated octahedron of size a. The reciprocal lattice vectors
of this bcc structure are given in (3), and the corresponding BZ
and irreducible BZ areas are shown in Fig. 2(b). Taking this as
an example, we will provide a detailed explanation of how to
obtain the dispersion diagram along the specific contour �R
of the irreducible BZ.

When using the HFSS eigenmode solver to obtain the
dispersion diagram, it is necessary to define each pair of op-
posite faces on the WS cell as coupled (“Primary-Secondary”)
boundary conditions. For each pair of faces, we can define a
unit vector normal to the faces. As illustrated in Fig. 3, the
truncated octahedral-shaped WS cell involves seven pairs of
coupled boundaries, with the corresponding unit vectors given
by

x̂ = (1, 0, 0)

ŷ = (0, 1, 0)

ẑ = (0, 0, 1)

û =
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1√
3
,
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3
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(

− 1√
3
,

1√
3
,

1√
3

)
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(

− 1√
3
,− 1√

3
,

1√
3

)
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(

1√
3
,− 1√

3
,

1√
3

)
. (5)

To obtain the dispersion diagram along a given path in the
BZ, it is necessary to accurately set the phase shift conditions
in the simulator along the seven unit vectors defined in (5).
For the path �R, it is apparent from (4) that its corresponding
wavevector is

k�R = 4π

a

(
1

4
x̂ − 1

4
ŷ + 1

4
ẑ
)

(6)

with a phase associated with this wavevector along an arbi-
trary direction r in the physical space given by

φr(r) = k�R · rr̂. (7)
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TABLE 1. Phase Shift Conditions Related to the Propagation Along the Edges of the Irreducible BZ for a Bcc Structure

FIGURE 4. The WS cell for (a) sc, (b) bcc and (c) fcc configuration when the actual unit cell is composed of metallic spheres. BZ and irreducible BZ for
(d) sc, (e) bcc and (f) fcc.

Along the x-direction (that is, r = xx̂), the corresponding
phase can be calculated as

φx(x) = k�R · xx̂ = 4π

a

(
1

4
x̂ − 1

4
ŷ + 1

4
ẑ
)

· xx̂ = π
x

a
. (8)

As the period along the x-direction for the unit cell
under study is a, the phase along this direction varies from
φx(0) = 0 to φx(a) = π . This means that the phase-shift range
is

�φx ∈ [0, π ] . (9)

Following a similar procedure, the phase-shift variation as-
sociated with the wavevector k�R can be determined along
the directions of other unit vectors. Once all phase shift ranges
have been set up, the simulator directly gives us the dispersion
diagram along the path �R. Dispersion diagrams along other
paths in the BZ, as well as the dispersion properties of other
periodic structures, can be derived by analogies. Table 1 sum-
marizes the phase shift conditions related to the propagation
along the edges of the irreducible BZ for the bcc structure
depicted in Fig. 3. In the Appendix, detailed information is

provided on the phase shift conditions associated with prop-
agation along the edges of the irreducible BZ when the 3D
periodic structures are organized in the fcc configuration.

III. SC, BCC, AND FCC STRUCTURES
In this section, the dispersion diagrams of periodic structures
composed of metallic spheres and cuboids, arranged in sc,
bcc, and fcc lattices, are analyzed and compared. The eigen-
mode solver of ANSYS HFSS is used to obtain the diagrams.

A. ARRANGEMENTS OF METALLIC SPHERES
When the spheres are arranged in the configurations of sc,
bcc, and fcc, the WS cells associated with them are displayed
in Fig. 4(a)–(c). The length of the cell along the Cartesian
coordinate axis is the same for all of them, which is denoted
as a = 2 mm, and the diameter of the metallic spheres is also
the same, being 2r = 0.6a = 1.2 mm. The host medium is
assumed to be a vacuum.

Taking into account the spatial structure of the unit cell
in three dimensions, it is found that for the sc configuration,
the coordination number of the WS cell is 6, 8 for the bcc
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FIGURE 5. Dispersion diagrams of the first four modes in periodic arrangements of metallic spheres with lattices (a) sc, (b) bcc and (c) fcc.

FIGURE 6. Isofrequency maps (2D dispersion diagram) of the fundamental mode in periodic arrangements of metallic spheres with lattices (a) sc, (b) bcc
and (c) fcc. The area within the black dashed line is the first BZ.

configuration, and 12 for the fcc configuration. Consequently,
the volume of the WS cells corresponding to the sc, bcc,
and fcc configurations progressively decreases, indicating a
gradual compaction of the periodic arrangement of metallic
spheres.

Using the analysis introduced in Section II-B, the BZ and
the irreducible BZ corresponding to these three periodic struc-
tures can be obtained, as shown in Fig. 4(d)–(f). As well
reported elsewhere [14], when the physical lattice is sc, the re-
ciprocal lattice retains the sc configuration. In contrast, when
the physical lattice is bcc, the reciprocal lattice is fcc, and
when the physical lattice is fcc, the reciprocal lattice adopts
the bcc configuration. When comparing the BZ of these three
cases, it is clear that the BZ of the periodic structure with
the fcc configuration has the highest symmetry and is most
similar to a spherical shape. This suggests that the dispersion
properties of metallic spheres with a fcc arrangement are more
isotropic.

Using the simulation setup described in Section II-B, the
three periodic structures depicted in Fig. 4(a)–(c) were simu-
lated to obtain their dispersion diagrams. The 1D dispersion
diagrams along the edges of the irreducible BZ are shown in
Fig. 5, and the isofrequency maps (2D dispersion diagram) in
the plane kxky are shown in Fig. 6. As expected, the simula-
tion results demonstrate that the dispersion gradually weakens

and the isotropy of the dispersion properties improves as the
periodic structure configuration changes from sc to bcc to fcc.

B. ARRANGEMENTS OF METALLIC CUBOIDS
In this section, metallic cuboids are used as the elements of the
unit cells and they are arranged in sc, bcc and fcc configura-
tions. The host medium continues to be vacuum, as in previous
sections. Fig. 7(a)–(c) show the unit cell of the three periodic
structures under study. The length along the Cartesian coor-
dinate axis is the same for the three cases; that is, a = 2 mm.
The dimensions of the cuboids in the three structures are also
the same, with lx = 0.55a = 1.1 mm, ly = 0.35a = 0.7 mm,
and lz = 0.15a = 0.3 mm.

Since the cuboid is no longer symmetric along the Cartesian
axis, the shape of the corresponding irreducible BZs is no
longer determined only by the symmetry of the BZ but is de-
termined by the combined symmetry of the BZ and the actual
unit cell. The irreducible BZs for sc, bcc, and fcc composed
of metallic cuboids are shown in Fig. 7(d)–(f), respectively.
It can be observed that, in comparison to the structures com-
posed of metallic spheres, the volumes of the irreducible BZs
relative to the BZ are now larger, caused by the lower level of
symmetry of the periodic structure itself.

The effectiveness of the dispersion analysis method in
Section II is not affected by the differences mentioned above.

VOLUME 4, NO. 3, JULY 2024 573



WANG ET AL.: SIMULATION CONDITIONS TO COMPUTE THE DISPERSION DIAGRAM OF 3D PERIODIC STRUCTURES

FIGURE 7. The WS cell for (a) sc, (b) bcc and (c) fcc configuration when the actual unit cell is composed of metallic cuboids. BZ and irreducible BZ for
(d) sc, (e) bcc and (f) fcc.

To generate the dispersion diagram of the periodic structure
made up of metallic cuboids, the same method and simulation
setting as described in the analysis of metallic spheres in
Section III-A can be used. Fig. 8 shows the isofrequency maps
in the planes kxky, kxkz, and kykz when the metallic cuboids
have sc, bcc, and fcc configurations, respectively. It can be
observed from the results that, due to variations in the actual
unit cells across these three planes, the isofrequency maps
in these planes also differ. This observation further confirms
that the wave propagation is influenced by both the inherent
symmetry of the BZ and the symmetry of the elements of
the physical unit cell. Nevertheless, bcc and fcc structures
usually have a lower level of dispersion over a wider range
of frequencies than sc structures.

IV. MONOCLINIC STRUCTURE
In this section, we use the periodic monoclinic structure as
an example to show the application of the analysis methods
discussed in Section II for studying the dispersion properties
of more complex noncubic structures. We start by analyzing
the physical and reciprocal spaces of this structure. Then, we
use metallic monoclinic elements as the unit cell to obtain
dispersion diagrams through simulations in ANSYS HFSS.

A. PHYSICAL AND RECIPROCAL LATTICES
Fig. 9(a) illustrates the physical lattice of the periodic mono-
clinic stucture. The three side lengths of its corresponding WS
cell are represented by a, b, and c (in the following analysis
and calculation, it is assumed that a and b are smaller than c),
and the angle smaller than 90◦ is represented by α. Based on
this, the lattice vectors in physical space can be expressed as

a1 = ax̂

a2 = bŷ

a3 = c (cos α ŷ + sin α ẑ) . (10)

According to (2), the lattice vectors in the reciprocal space
are then given by

b1 = 2π

a
x̂

b2 = 2π

b
(ŷ − cot αẑ)

b3 = 2π

c sin α
ẑ (11)

with the corresponding reciprocal lattice and BZ shown
in Fig. 9(b). It can be observed that the BZ of the monoclinic
structure is a hexagonal prism. Although the hexagon corre-
sponding to the hexagonal prism is not a regular hexagon, its
opposite sides are equal and parallel to each other, and the
entire hexagon is centrally symmetric.

If now the host medium is assumed to be vacuum and
the element of the periodic structure is a piece of metal
with a monoclinic shape, as shown in Fig. 10(a), three pairs
of coupling boundaries are needed in HFSS to simulate the
dispersion diagrams for this unit cell. The unit vectors per-
pendicular to these three pairs of boundaries are

x̂ = (1, 0, 0)

ẑ = (0, 0, 1)

û = (0,−sinα, cosα) . (12)

Taking into account the symmetry of the physical unit cell
and the BZ, its irreducible BZ is one quarter of the BZ [as
shown in Fig. 10(b)]. Based on the lattice vectors in the
reciprocal space given in (11), the vertex coordinates of the
irreducible BZ can be obtained as

� = (0, 0, 0)

Z =
(

0, 0,
π

c sin α

)
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FIGURE 8. Isofrequency maps (2D dispersion diagram) of the fundamental mode in periodic arrangements of metallic cuboids with lattices (a) sc, (b) bcc
and (c) fcc. The region within the black dashed line is the first BZ.
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. (13)

As described in Section II-B, it is necessary to accurately
set the phase-shift conditions along the x̂, ẑ, and û directions
in the simulator to obtain the dispersion diagram along the
path given in the reciprocal space. In essence, the approach
and computational procedures outlined in Section II-B for
the periodic arrangement with the bcc configuration are repli-
cated. To provide a clearer explanation of the method, we will
illustrate the detailed calculation process by focusing on the
dispersion diagram along the �M1 path.

From (13) we find that the corresponding wavevector for
the path �M1 is

k�M1 = π

a
x̂ +

[
2π

b
−

(π

b
− π cos α

c

) 1

sin2 α

]
ŷ

+
(

π

c sin α
− 2π

b
cot α

)
ẑ . (14)

Along the x-direction, the phase associated with this wavevec-
tor can be calculated as

φx(x) = k�M1 · xx̂ = π

a
x . (15)
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FIGURE 9. (a) Physical lattice and (b) reciprocal lattice for the monoclinic
structure.

FIGURE 10. (a) The WS cell for monoclinic configuration when the actual
unit cell is composed of metallic element with a monoclinic shape. (b) BZ
and irreducible BZ for the periodic structure in pannel (a).

TABLE 2. Phase Shift Conditions Related to Propagation From the Origin �

to the Vertices of the Irreducible BZ for Monoclinic Periodic Structures

As the period along the x-direction for the unit cell under
study is a, the phase along this direction varies from φx(0) =
0 to φx(a) = π . This means that the phase-shift range is

�φx ∈ [0, π ] . (16)

Similarly, along the z-direction, the phase associated with this
wavevector is

φz(z) = k�M1 · zẑ =
(

π

c sin α
− 2π

b
cot α

)
z . (17)

Along the z-direction, the period of the unit cell is c sin α,
which makes the phase along this direction vary from
φz(0) = 0 to φz(c sin α) = −2(c/b) cos απ + π . The phase-
shift range is then given by

�φz ∈
[

0,−2c cos απ

b
+ π

]
. (18)

Along the u-direction, we find

φu(u) = k�M1 · uû = − π

b sin α
u . (19)

Since the period along the u-direction for the unit cell under
study is b sin α, the phase along this direction varies from
φu(0) = 0 to φu(b sin α) = −π . The phase-shift range for this
direction is

�φu ∈ [0,−π ] . (20)

For the simulation of the dispersion diagrams along the
other paths, the corresponding phase shift conditions can be
calculated following the same steps. In Table 2, for simplicity,
we only summarize the phase shift conditions corresponding
to the propagation from the origin � to the vertices of the
irreducible BZ. The phase shift related to propagation along
the irreducible edge of the BZ can be derived from Table 2
through simple deformation.
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FIGURE 11. Isofrequency maps (2D dispersion diagram) of the
fundamental mode on the (a) kxkz plane and (b) kykz plane when the
actual unit cell is metallic monoclicnic element and the periodic structure
arranged by monoclicnic configuration. Only the results within the first BZ
are shown.

B. DISPERSION ANALYSIS
As illustrated in Fig. 10(a), a monoclinic-shaped metallic
piece is taken as the element of the actual unit cell, and
the host medium is considered to be a vacuum. We assume
that the side lengths of the monoclinic unit cell are a =
2 mm, b = 3 mm, and c = 4 mm, with α = π/3. The metal-
lic element has dimensions la = 0.6a = 1.2 mm, lb = 0.6b =
1.8 mm, and lc = 0.6c = 2.4 mm. By substituting these values
into (13), we can calculate the vertices of the irreducible
BZ for this periodic structure. Following the guidelines of
Section IV-A, we can generate the corresponding dispersion
diagrams in HFSS. Thus, in Fig. 11(a) and (b) we show
the isofrequency maps obtained for the fundamental mode
of this monoclinic structure in the planes kxkz and kykz. It
can be observed that the isofrequency map in the kykz plane
is centrosymmetric, while the isofrequency map in the kxkz

plane is symmetric about the kx and kz axes. This observation
aligns with the symmetry characteristics of the BZ for this
monoclinic structure.

V. CONCLUSION
The methodology presented in this article outlines the process
for conducting dispersion analysis of 3D periodic structures
using the eigenmode solver of commercial electromagnetic
simulation software. First, we review some basic concepts
in both physical and reciprocal spaces, describing the rela-
tionship between lattices in these domains. Taking the bcc
structure as an example, we provide detailed steps to perform

FIGURE 12. (a) Physical lattice and (b) reciprocal lattice for the fcc
structure.

the dispersion analysis in ANSYS HFSS and explain how to
set the appropriate conditions in the simulator. We studied
the dispersion characteristics of metallic spheres and cuboids
when they were arranged in sc, bcc, and fcc configurations.
The results show that the bcc and fcc configurations have
advantageous properties, including enhanced isotropy in a
broader frequency range. Using the analysis of the monoclinic
configuration as an example, it is demonstrated that the meth-
ods described in this study can be easily extended to other
3D periodic structures with noncubic lattices. The aim is to
provide more design versatility and increase the potential of
microwave and antenna devices based on 3D periodic struc-
tures.

APPENDIX
In this Appendix, we provide a detailed analysis of the phys-
ical and reciprocal lattices of fcc periodic structure, as well
as how to set the conditions in the HFSS eigenmode solver to
obtain the dispersion diagrams of it.

Fig. 12(a) illustrates an fcc lattice, as well as the con-
nectivity relationships between a given lattice point and its
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TABLE 3. Phase Shift Conditions Related to Propagation Along the Edges of the Irreducible BZ for Fcc Periodic Structures

neighbors for the purple points in the upper left corner. As-
suming the side length of the cube in this upper left corner
is a, the direct-space lattice vectors are given by

a1 = a

(
−1

2
ŷ − 1

2
ẑ
)

a2 = a

(
1

2
x̂ + 1

2
ŷ
)

a3 = a

(
1

2
x̂ + 1

2
ẑ
)

(21)

and, according to (2), the corresponding lattice vectors
[see Fig. 12(b)] in the reciprocal space are

b1 = 4π

a

(
1

2
x̂ − 1

2
ŷ − 1

2
ẑ
)

b2 = 4π

a

(
1

2
x̂ + 1

2
ŷ − 1

2
ẑ
)

b3 = 4π

a

(
1

2
x̂ − 1

2
ŷ + 1

2
ẑ
)

. (22)

In Fig. 12(b), the BZ of the fcc structure is highlighted in
light purple, and its irreducible BZ is represented by black
lines. By using (22), the following coordinates of the vertices
of the irreducible BZ are found:

� = (0, 0, 0)

X = 4π

a

(
1

2
, 0, 0

)

W = 4π

a

(
1

2
,−1

4
, 0

)

M = 4π

a

(
3

8
,−3

8
, 0

)

R = 4π

a

(
1

4
,−1

4
,

1

4

)

FIGURE 13. Periodic structure with fcc configuration, whose actual unit
cell is created by a periodic repetition of a metallic sphere. a is the length
of the corresponding WS cell along a Cartesian coordinate axis.

U = 4π

a

(
1

2
,−1

8
,

1

8

)
. (23)

When a metallic sphere is taken as the element of the unit
cell, with vacuum as the surrounding medium, the resulting
unit cell is represented in Fig. 13, with a being the length of
the WS cell along the Cartesian coordinate axis. In the HFSS
eigenmode solver, the pair of opposite surfaces of the unit cell
is defined as coupled (‘Primary-Secondary’) boundary condi-
tions. For this rhombic dodecahedron shape, it results in six
pairs of coupling boundaries, with the following directional
unit vectors associated with these pairs:

û =
(

1√
2
, 0,

1√
2

)

v̂ =
(

0,
1√
2
,

1√
2

)

ŵ =
(

− 1√
2
, 0,

1√
2

)

m̂ =
(

0,− 1√
2
,

1√
2

)
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p̂ =
(

1√
2
,− 1√

2
, 0

)

q̂ =
(

1√
2
,

1√
2
, 0

)
. (24)

Following the same calculation procedures as in
Section II-B, the phase-shift conditions for the different
sets of boundaries related to propagation along the edges of
the irreducible BZ are summarized in Table 3.
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