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ABSTRACT The upper part of the frequency spectrum (millimeter waves, MMW) applied by modern
communications technologies (5G and beyond), makes skin the dominantly exposed tissue to electromagnetic
fields. In this work, a methodology for murine skin dosimetry evaluation is presented, intended to contribute
to animal studies with mice exposed to MMW radiation, in particular 27.5 GHz. A stratified skin model
is proposed and the variations of the skin layers’ thicknesses during a hair cycle are measured in mice.
The variations of skin layers’ dielectric properties due to age, based on the changes of total body water,
are also evaluated. The impact of these variations in dosimetric metrics (i.e., mean absorbed power density,
APD, and power loss) within each layer is assessed and found to be significant. Changes in the skin layers’
thicknesses throughout a hair cycle considerably affect the APD, resulting in a two-fold increase, compared
to changes in the dielectric properties due to aging or due to hair presence inside the skin.

INDEX TERMS Dosimetry, electromagnetic fields, EMF, 5G, murine skin, mice, millimeter waves, MMW.

I. INTRODUCTION
The evolution of mobile communications facing new de-
mands regarding speed (high-data rates), synchronization
(low-latency), and the number of connected devices (IoT),
has led the industry to use the upper part of the frequency
spectrum (millimeter waves, MMW). Compared to the well-
studied lower part of the frequency spectrum, MMW elec-
tromagnetic fields impose new challenges to the study of
potential health effects on humans. Their shorter wavelength
results in significantly lower penetration depth in human tis-
sues [1]. Thus, skin, as the outermost tissue of the human
body, is dominantly exposed and consequently studied [2].
Skin is an organ with a highly complex anatomy involving
different types of cells at different depths. Moreover, it is an
organ with a dynamic anatomy, since the distribution of these

different types of cells changes with time (e.g., keratinization,
hair cycle).

A large number of dosimetry studies on human skin is avail-
able in the literature, [1], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12]. A stratified model of human skin is applied in most
of them [1], [3], [4], [5], [6], [8], [9], [10], [11], [12], distin-
guishing between different skin layers (i.e., Stratum Corneum,
Epidermis, Dermis) and underlying tissues (i.e., Subcutaneous
Fat, Muscle). Some of them also investigate the impact of
skin appendages on dosimetry, like sweat glands [6], [7], [8],
[12] or others [5]. The impact of variations of skin strata
thicknesses [1], [3], [4], [9], [10], [11], or dielectric properties
with age [9] in dosimetry, has also been studied.

A significant number of studies dealing with dosimetry of
rodents (i.e., rats and mice) is already available in the liter-
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ature, [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
but most of them focus on specific exposure setups used for
animal studies [13], [14], [16], [17], [18], [19], [21], [22] for
frequencies lower than that of MMW. Consequently, exposure
specific to murine skin has not been investigated. In [20],
MMW frequencies (i.e., 37-74 GHz) are considered and a
stratified skin model is applied for dosimetry evaluation. In
[15], variation of dielectric properties in rats’ tissues with age
is evaluated. In this work, for the first time, a method for
the dosimetric evaluation of murine skin exposure to MMW
(27.5 GHz) is presented, considering the variations of skin
strata thicknesses and dielectric properties with age and hair
presence inside the skin. The aim of the current work is to
contribute to the dosimetry of the animal study, which will
be performed within the SEAWave Project [23] focusing on
the effects of MMW on the skin. Animal studies investigating
the impact of radiofrequency and microwave radiation should
report organ-specific dosimetry, especially for the organs and
tissues implicated in the biological effects investigated. There-
fore, it is necessary to be able to correlate the absorbed power
at various depths and locations of cell types with the ob-
served biological endpoints, since different cell types in the
skin result in different types of cancer. In MMW frequen-
cies, dosimetry of the skin exposed to radiation is influenced
mainly by its structure along wave propagation. In order to
study the variability in dosimetry resulting from the variation
of skin anatomy it is preferable to use 1-D models, since the
size of anatomical structures in the skin and their develop-
ment in time make 3-D modeling with full-wave simulations
prohibitive in terms of computational resources.

II. MATERIALS AND METHODS
The study is focused on mouse skin, since this is the tissue that
dominantly absorbs electromagnetic energy at this frequency.
To this aim, a planar stratified model of mice skin layers
has been considered. An analytical solution of Maxwell’s
equations for this model is used to evaluate the field values
and other relevant dosimetric quantities inside the skin. The
implemented analytical solution is validated against both the-
oretical and experimental data presented in [20]. Exposure
variations emanating from changes in skin layers thicknesses
and dielectric properties (permittivity, conductivity), due to
age and hair content, are also evaluated.

A. MOUSE SKIN MODEL
1) GEOMETRY OF THE MODEL
The mouse skin model developed in this study follows the
approach of human skin models already used in dosimet-
ric studies, e.g., [1], [3], [9], [10]. In this context, a planar
geometrical structure is used to model mouse skin and un-
derlying tissues, consisting of five different layers (Fig. 1): a)
Keratinized stratum (KS), consisting of stratum corneum and
stratum lucidum, b) Viable epidermis (VE), c) Dermis (DE),
d) Hypodermis (consisting of fat, FT) and e) Muscle (MS).

These layers can be identified in a hematoxylin & eosin
(H&E) stained, cross-sectional mouse skin sample image
(Fig. 2).

FIGURE 1. Layered model of mouse skin used for dosimetric study.

FIGURE 2. Representative image of a cross-sectional mouse skin section
at postnatal day 2 and layer identification. KS, keratinized stratum; VE,
viable epidermis; DE, dermis; HD, hypodermis; MS, muscle. Scale bar =
100 µm.

For the determination of the skin layers’ thicknesses, mean
values are available in the literature [24]. However, marked
age- and genetic background-dependent variations in mouse
skin thickness associated to the hair cycle phase have been
observed [25], [26], [27]. The hair cycle is a periodic phe-
nomenon, consisting in phases of growth (anagen), regression
(catagen) and rest (telogen), and occurs many times through-
out the life period of a mouse. The first hair cycle in particular,
largely synchronous, is a crucial period because the hair fol-
licles are actively producing new hairs and establishing the
initial pattern and direction of hair growth.

Thus, we focused on the examination of skin during the
first hair cycle of CD1 mice, to capture the variations of
skin layers’ thicknesses. To this aim, dorsal skin samples
were collected from mice at different ages, specifically 2,
5, 10, 15 and 21 days old, (n=3 for each age) and pro-
cessed for histology according to standard procedures. After
H&E staining, transversal skin sections were analyzed under
a light microscopy and images acquired using the software
NIS-Elements BR 4.00.05 (Nikon Instruments Europe B.V.;
Florence, Italy).

Fig. 3 reveals that hair follicles begin elongating around the
midpoint of the anagen phase (P5), with their length peaking
during the late anagen phase (P10). Subsequently, this length
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FIGURE 3. H&E-stained images of cross-sectional mouse skin samples at
postnatal days 2, 5, 10, 15 and 21 to illustrate the hair cycle
phase-dependent variation of thickness during the first hair cycle. Scale
bar = 300 µm.

TABLE 1 Measurements of Mouse Skin Layers’ Thicknesses During the
First Hair Cycle

gradually diminishes until it reaches its minimum during the
telogen phase (P21).

For each mouse skin sample, 12 measurements were taken
for each skin compartment, according to Fig. 2. The results of
the measurements for the different skin layers as a function of
the mouse age are summarized in Table 1.

2) DIELECTRIC PROPERTIES OF TISSUE LAYERS
The dielectric properties of murine skin found in [20] were
used. In [20], skin samples of both shaved hairy and hairless
mice were studied. The measured power reflection coefficient
was higher in hairless compared to hairy, even shaved, mice.
This was attributed to the volume that the hairs occupy within
the hairy skin, thus decreasing the effective free water content
of skin, since hairs do not contain free water. As a result,
in [20], the estimated dielectric properties for epidermis and
dermis layers were found different for hairy and hairless mice.
The results in [20], clearly suggest that the hair volume con-
tent of the viable epidermis and dermis affects the dielectric
properties of these two layers. In addition, measurements of
the hair volume content in different postnatal days (P2-P21)
show a variation during a hair cycle in the range of 1.06%-
3.16% V/V, for viable epidermis and dermis layers. In order
to estimate the corresponding dielectric properties’ variation,
we applied Lichtenecker’s mixing formula:

εk
L = f1 · εk

1 + f2 · εk
2 (1)

where εL is the permittivity of the dielectric mixture, ε1 is
the permittivity of the first component (i.e., viable epidermis-
dermis of hairless mice), ε2 is the permittivity of the second
component (i.e., hair) and f1, f2 are the volume contents of the
first and second components of the composite/mixture ( f1 +
f2 = 1), respectively. Each value of k describes a specific
microgeometry (topology) of a composite [28]. Parameter k
varies within the [−1,1] range, describing a transition from
anisotropy for k = −1 to anisotropy for k = 1. The two
extreme values of k (i.e., −1 and 1) correspond to two ‘ex-
treme’ topologies of the composite material, regarding its
interaction with electromagnetic fields: Both components are
considered parallel plates either parallel (k= −1) or perpen-
dicular (k = 1) to the incident electric field [29].

In order to test the applicability of the Lichtenecker mixing
formula to our case, we applied the formula to our mixture
(i.e., viable epidermis-dermis of hairless mice and hair) using
the values of dielectric properties from [20] and compared the
results with the ones given for hairy mouse, also in [20]. Note
that, following the approach in [20], we consider the same
dielectric properties for both viable epidermis and dermis
layers. The complex permittivity considered for hair was [5],
[30]:

εhair = 2.6 − 0.1 j (2)

Our calculations show that the application of Lichte-
necker’s formula to a composite made of hairs embedded in
hairless mice skin can adequately predict the dielectric prop-
erties of hairy mice (deviation < 0.5%) for all three different
frequencies examined (i.e., 40 GHz, 50 GHz and 60 GHz). It is
remarkable that the best fit of the data for all three frequencies
was achieved for the same values of k and f2, namely k = 0.11
and f2 = 0.03 or 3% V/V of hairs in the skin. This is an
expected result, since neither the topology (k) nor the hair
volume content ( f2) of the skin samples measured in [20]
changes with frequency.
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FIGURE 4. Relative permittivity (top, blue points) and conductivity
(bottom, red points) during a hair cycle (viable epidermis and dermis) for a
mixture of hairless mouse skin layers with hairs. Conductivity and relative
permittivity values for hairy mouse in [20] are also plotted (black dashed
lines).

Using the value of k (k = 0.11) estimated above and the
hair volume content of epidermis and dermis layers measured
in mice skin samples at different postnatal days (P2-P21), we
evaluated the variability of the dielectric properties for these
layers during a hair cycle, Fig. 4.

It’s worth mentioning that this variability emanates from
the hair volume content variability alone. As will be shown
later, this variability is not significant compared to the one
emanating from the Total Body Water (TBW) variation with
age (i.e., postnatal day). Consequently, it is not taken into
account in dosimetry evaluations hereafter.

The Swiss Webster (hairy) mouse values were applied in
the current study. The one-term Debye model [20] was used
to calculate the properties for the frequency considered in
this work (27.5 GHz). The dielectric properties for fat and
muscle layer of [1], [31] were also used. The applied values
are summarized in Table 2.

It should be mentioned here that the dielectric properties
values reported in Table 2 correspond to individuals of a
specific age. However, it is known that these properties vary
with age [9], [15], [32]. In the gigahertz frequency range,
electromagnetic fields interaction with tissues dominantly re-
sults from free water molecule polarization (γ -dispersion) [3].
The water content of tissues varies with age and so do their
dielectric properties. In this context, the Total Body Water
(TBW), defined as the ratio of the mass of the water in an
individual’s body to the total mass of the body, is used as a

TABLE 2 Dielectric Properties Assumed for Mouse Skin at 27.5 GHz

proxy for the evaluation of variations of the dielectric proper-
ties with age [9], [32]. Wang et al. [32] applied Lichtenecker’s
logarithmic Formula (3), considering tissues as a mixture of
organic material and water.

εr = εα
rw · ε1−α

rt (3)

where εrw is the relative permittivity of water, εrt is the rela-
tive permittivity of the organic material and α is the hydrated
rate (α = ρ · TBW, where ρ is the mass density). Since the
relative complex permittivity of a tissue ε̇r is given by

ε̇r = ε′
r − jε′′

r = εr − j σ
ωε0

= εr
(
1 − j 1

ωτ

)
(4)

substituting (4) into (3) results in

ε̇r = ε

α−αA
1−αA
rw · ε

1−α
1−αA
rA

(
1 − j 1

ωτ

) (5)

where εrA is the relative permittivity for tissue at age A and
αA is the hydrated rate for tissue at age A. Equation (5) gives
the complex permittivity at different ages, if the TBW as a
function of age is known and the dielectric properties at age
A are also known. This approach was followed by Sacco
et al. [9] to evaluate the age-dependence of electromagnetic
power deposition in human skin. The authors considered no
variations of TBW on the outermost skin layer (i.e., SC) with
age, since this layer is mostly impacted by environmental and
physiological conditions.

Following the approach of Wang [32] and Sacco [9], and
considering that the dielectric properties of the skin layers at
age A are known (Table 2), it was necessary to determine the
TBW of mice as a function of age in the literature. In [33],
Bailey et al. studied the body composition of 111 white male
mice in terms of protein, water, fat and ash as a function of
age. Data for only 16 of them are published. Curve fitting
of these data, using the least square method, resulted in the
equation:

TBW = −2.93 · ln
(
age

) + 79.97 (6)

where TBW is evaluated in terms of percentage and age in
terms of postnatal days. The relative permittivity of water was
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FIGURE 5. Relative permittivity (top) and conductivity (bottom) vs
postnatal age for mouse skin layers (viable epidermis, dermis, fat and
muscle) due to changes in TBW.

FIGURE 6. Stratified mouse skin model used for electromagnetic analysis.

evaluated using the Ellison et al. model [34], for a temperature
of 32.8 οC [20], while the mass density values in [9] for each
skin layer were used. To determine the age A of the mice at
which the dielectric properties were assessed, we made the
approximation of A = 28 days, based on the reported weight
range in [20] (i.e., 20-25 g) and the growth chart provided
[35]. The variation of dielectric properties as a function of age
(postnatal days) for the considered skin layers is plotted in
Fig. 5.

This variation originates from the change of TBW with age
and it is significant during the first days of life. The dielectric
properties tend to a constant value after several postnatal days.

B. COMPUTATIONAL METHOD
The stratified mouse skin model presented in Fig. 1 was used
for the electromagnetic analysis. The model considered here
is irradiated with a TEM-polarized plane wave (Fig. 6).

The direction of the propagation (along z-axis) is perpen-
dicular to the interfaces of the skin layers. The electric (E)
and magnetic (H) field values are calculated analytically using

FIGURE 7. Model verification: E field values comparison, using the
analytical and the FDTD method. Frequency 27.5 GHz, incident power
density 1 W/m2, normal incidence of TEM wave, median layers’
thicknesses for postnatal day 10.

the transmission and reflection coefficients at all tissue inter-
faces [36]. The muscle layer is considered as the terminating
layer, i.e., no reflections at the tissue interfaces underlying
the muscle layer are taken into account. This approach has
already been applied successfully in previous studies [4], [9],
[10] and offers an important speed advantage over other com-
putational methods (e.g., FDTD, FEM). The calculations were
performed with MATLAB (The MathWorks Inc., Natick, MA,
USA).

C. METHOD VALIDATION
The developed method and corresponding MATLAB code
was initially verified against a commercially available soft-
ware (Sim4Life, ZMT, Switzerland) which implements the
FDTD method (Fig. 7).

A stratified model of skin was also used with the FDTD
method. Periodic boundary conditions were used on the sides
and perfectly matched layers on top and bottom. The model
was irradiated with a TEM plane wave of incident power
density of 1 W/m2 in air. As can be inferred from Fig. 7, the
results using the two methods are in a very good agreement
(deviation < 2%).

We tested our method against the results (both theoretical
and experimental) presented in [20]. Alekseev et al. measured
the power reflection coefficients of both shaved hairy and hair-
less mouse skin samples using waveguides, in the 37-74 GHz
frequency range. Additionally, they evaluated all the parame-
ter values (skin layers dimensions, dielectric properties) that
give the best fit of their model to the experimental data. The
results for the hairy murine skin only are presented in chart
form (Fig. 1 in [20]). Lacking the exact data, we digitized this
chart and tried to reproduce the results using our model by
applying the same parameter values (skin layers dimensions,
dielectric properties) as in [20], (Fig. 8).

The results obtained with our method appear to be in good
agreement with both theoretical and experimental data in [20].
It should be noted here that the two different branches of
the curve in Fig. 8 (37–53 GHz and 54–74 GHz) stem from
the fact that two different rectangular waveguides were used
for the measurements performed by Alekseev et al. The first
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FIGURE 8. Comparison of the power reflection coefficient as evaluated
from the proposed model in this work (yellow, green lines) and from the
model (blue, brown lines) and measurements (blue, brown circles) in [20].

waveguide (37–53 GHz) had dimensions of 5.2 mm × 2.6 mm
with a cutoff wavelength of λc1 = 10.4 mm, while the second
one (54–74 GHz) had dimensions of 3.6 mm × 1.8 mm
with λc1 = 7.2 mm, [3]. The application of the effective
permittivity (as suggested in [3]) which is a function of cutoff
wavelength, leads to the two different branches of Fig. 8, one
for each of the two different waveguides used in [20].

D. DOSIMETRIC QUANTITIES
According to the International Commission on Non-Ionizing
Radiation Protection (ICNIRP), the absorbed power density
(APD) level, Sab (W/m2), is considered the relevant metric for
the basic restriction for frequencies higher than 6 GHz [37].
Consequently, Sab is evaluated at the interfaces of the skin
layers by using the formula based on the Poynting vector:

Sab =
∫∫

A
Re [S] · ds

A
=

∫∫
A

Re
[
E × H∗] · ds

A
(7)

The mean value of absorbed power density within each skin
layer, Sab, is also evaluated:

Sab = ∫z2
z1

Sab (z) dz

∫z2
z1

dz
(8)

where z1, z2 are the coordinates of the boundaries of the con-
sidered layer. The power loss per normal surface area within
each layer of the skin is, then, calculated by the difference of
the APD entering the layer minus the APD leaving it:

PL = Sab (z2) − Sab (z1) (9)

III. RESULTS AND DISCUSSION
The dosimetric study of mouse skin is focused on the first
hair cycle (postnatal days 2–21). The reason for the selection
of this time period of mouse life is twofold: a) The largest
variability of layers’ thicknesses occurs during this period
(Fig. 3). b) The largest variability of the dielectric properties
of mouse skin layers due to water content also occurs during
this period (Fig. 5). Consequently, the APD and the PL are
expected to vary more during this time period compared to
any other. Therefore, the study of this time period provides the
safest way to evaluate the worst-case scenario for the temporal
variations of absorbed power.

FIGURE 9. Skin layers’ thickness at different postnatal days (2-21): Median
(red line), interquartile range (blue box) and min-max values (dotted black
line). KS: Keratinized stratum, VE: Viable epidermis, DE: Dermis, FT: Fat.

FIGURE 10. APD, Sab, at skin layer interfaces for different postnatal days.

The variability of the skin layers’ thicknesses during the
first hair cycle is presented in Fig. 9. Thickness values cor-
respond to four different skin samples for each of the three
different individual animals measured at five different postna-
tal days. Thus, the variability presented in Fig. 9 originates
from sampling uncertainty (four different evaluation points)
and interindividual variability (three different mice), which
also includes sex variability, since the three mice are of both
sexes (not only male or only female). The significant variation
of the skin layers’ thicknesses throughout a hair cycle, domi-
nated by the variation of the subcutaneous fat layer, presented
in the literature (Fig. 3), is confirmed by the measurement
results shown in Fig. 9.

First, the absorbed power density (APD) at layers’ inter-
faces is evaluated (Fig. 10) by using the median values for
the layers’ thicknesses at different postnatal days (Fig. 9) and
by setting the layers’ dielectric properties to the values found
in the literature for animals at age A (i.e., 28 days). Large
variations of the APD (Sab) are observed during the first hair
cycle. These can be attributed to the large variations of skin
layers’ thicknesses.

In Fig. 11 the distribution of power loss in each of the
skin layers (KS, VE, DE and FT) due to the variability of the
layers’ thicknesses (Fig. 9) is presented using boxplot charts
when the dielectric constants are kept constant with postnatal
age (i.e., at 28 days, as found in the literature). The same
distribution (of power loss) is depicted in Fig. 11 when the
dielectric properties of the layers change with age (due to
the change in TBW) in addition to the layers’ thicknesses. The
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FIGURE 11. Power loss, PL, within each skin layer (KS, VE, DE, FT), on
different postnatal days for constant dielectric properties (dark-colored
boxes) and for dielectric properties changing with age, i.e., with TBW
(light-colored boxes with dotted whiskers).

FIGURE 12. Mean APD, Sab, within each skin layer (KS, VE, DE, FT), on
different postnatal days for constant dielectric properties (dark-colored
boxes) and for dielectric properties changing with age, i.e., with TBW
(light-colored boxes with dotted whiskers).

comparison shows that the impact of considering dielectric
variations with age has a much lower impact on the power
loss within each skin layer compared to the impact that the
variation of the skin layers’ thicknesses has during the first
hair cycle. The maximum power per normal surface area
deposited within any skin layer and for any postnatal day is
0.45 W/m2 (dermis layer on postnatal day 15) for incident
power density of 1 W/m2.

In Fig. 12 the distribution of the mean APD, Sab (8), within
each skin layer is presented. The mean APD is progressively
decreasing as depth increases, as expected (Fig. 10). Again,
the impact of considering dielectric properties variations with
age is much lower compared to that originating from the skin
layers’ thicknesses variation.

Organ-specific dosimetry is an important aspect of bio-
logical experiments with animals addressing the health risk
concerns of wireless communications. Kuster and Schönborn
[38] in their guidelines recommend that the experimental
setup should enable an accurate description of the distribution
and magnitude of the induced fields inside the different tissues
and organs. This is particularly important in cases where the
biological responses of specific organs/tissues are being inves-
tigated [39]. Therefore, for frequencies that can penetrate deep
in the body of the animals, the organ-averaged specific absorp-
tion rate (oSAR) provides an acceptable proxy of exposure

quantification for risk assessment purposes [21], [39], [40]. In
MMW the absorption of energy is of concern mainly for the
skin, i.e., a single organ. However, this organ presents a struc-
ture which entails various types of cells that result in different
biological responses. Therefore, it should be attempted to
characterize exposure of each cell type, if possible. To achieve
this, the stratified structure of the skin can be exploited.
Reported oSAR can have considerable variability due to un-
certainty of the geometrical/anatomical representation of the
animal and uncertainty of the dielectric parameters assigned
to the different tissues/organs [39]. Similarly, the dosimetry at
the skin layers’ scale can vary considerably due to the anatom-
ical and physiological changes that affect the values of the lay-
ers’ thicknesses and dielectric properties, as described above.

IV. CONCLUSION
A dosimetric study for mouse skin irradiated at 27.5 GHz and
normal incidence was performed. The study was performed
at the macroscopic scale, taking into account (for the first
time) the variation of skin layers’ thicknesses due to the hair
cycle and the changes in the dielectric properties due to age
(and, correspondingly, water content) and the hair cycle. It
was shown that the impact of layer thickness variation on dosi-
metric metrics is significantly larger compared to the one of
dielectric properties. The full dosimetric evaluation of animals
during a long-term study needs to consider also the layer of fur
at different time periods (hair cycle) and conditions (wet and
dry), on which work is ongoing.

COMPLIANCE WITH REGULATIONS
This animal study was performed according to the Euro-
pean Community Council Directive 2010/63/EU, approved
by the local Ethical Committee for Animal Experiments of
the ENEA, and authorized by the Italian Ministry of Health
(n° 107/2023-PR).
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