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ABSTRACT This paper introduces a method based on a deep neural network (DNN) that is perfectly
capable of processing radar data from extremely thinned radar apertures. The proposed DNN processing
can provide both aliasing-free radar imaging and super-resolution. The results are validated by measuring
the detection performance on realistic simulation data and by evaluating the Point-Spread-function (PSF)
and the target-separation performance on measured point-like targets. Also, a qualitative evaluation of a
typical automotive scene is conducted. It is shown that this approach can outperform state-of-the-art subspace
algorithms and also other existing machine learning solutions. The presented results suggest that machine
learning approaches trained with sufficiently sophisticated virtual input data are a very promising alternative
to compressed sensing and subspace approaches in radar signal processing. The key to this performance is
that the DNN is trained using realistic simulation data that perfectly mimic a given sparse antenna radar
array hardware as the input. As ground truth, ultra-high resolution data from an enhanced virtual radar are
simulated. Contrary to other work, the DNN utilizes the complete radar cube and not only the antenna channel
information at certain range-Doppler detections. After training, the proposed DNN is capable of sidelobe-
and ambiguity-free imaging. It simultaneously delivers nearly the same resolution and image quality as would
be achieved with a fully occupied array.

INDEX TERMS Neural networks, super-resolution, sparse antenna arrays, compressed sensing, self-
supervised learning, radar simulation.

I. INTRODUCTION
Radar sensors are among the most popular sensors for auto-
motive driving applications. Compared to lidar and camera
sensors, they are robust, cheap, and do not suffer due to
harsh weather conditions, such as snow, rain, and fog [1].
Also, radar sensors can directly measure the radial speed of
objects by exploiting the Doppler effect, which drastically
improves the classification of moving entities such as bicycles
and pedestrians [2], [3], [4].

However, one of the main disadvantages of radar sensors
is the low angular resolution, which is typically below that of
lidar sensors.

Therefore, the aim of many hardware and signal processing
approaches is to obtain high-resolution angular information.

To limit both the hardware complexity and the amount of
received data, one objective is to restrict the number of phys-
ical antennas. Among the most common ways to achieve this
is by using multiple-input multiple-output (MIMO) antenna
arrays, followed by subspace methods for direction of arrival
(DoA) estimation, such as MUSIC [5], ESPRIT [6], or, more
recently, compressed sensing (CS) methods [7], [8], [9], [10],
[11], [12].

Another approach to reduce the number of antennas re-
quired is to sparsely sample the entire array aperture by not
spacing the antennas equidistantly. This is done, for exam-
ple, by deploying minimum redundancy arrays [13], co-prime
arrays [14], or nested arrays [15]. A further approach is to
design the antenna placement by optimizing certain properties
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FIGURE 1. Image (a) shows the sparse MIMO antenna arrray configuration
that is derived from a small subset of the antennas of the AVR-QDM-110
radar system from Symeo GmbH, an indie Semiconductor company. The
measurement scene used for evaluation is depicted in (b). The results for
the conventional delay-and-sum (DaS) beamforming and the proposed
approach using a deep neural network (DNN) applied to the sparse array
configuration are presented in (c) and (d), respectively. As visible the DaS
beamformer is not able to process the sparse data at all, wheras the DDN
trained with our novel approach yield a nearly perfect result.

of the expected signal, for example by minimizing the main-
lobe width and at the same time constraining or minimizing
the sidelobe level as demonstrated in [16] and [17], or more
suitable for CS applications, the coherence of the signal [18].

In this work, high-resolution and aliasing-free radar images
are generated from sparse antenna configurations that would
lead to severe ambiguities and aliasing with conventional sig-
nal processing methods. The proposed deep learning–based
signal processing scheme is not only applied to simulated data
but also tested on real measurements, as shown in Fig. 1.

In our previous work [19], we applied a deep neural
network (DNN) to radar range-angle images to drastically
alleviate clutter and noise in real-world measurement scenar-
ios. This was achieved by simulating both enhanced high-
resolution noise and clutter-free data as the ground truth and
radar data of an accurate digital twin of the radar sensor under
test as input. As a consequence, the DNN, which was trained
exclusively in a simulation environment, successfully learned
to remove clutter and sharpen the image. The simulations
were generated using the radar ray tracing implementation we
proposed in [20].

Compared to other existing work, our previous work in [19]
firstly utilized realistic radar simulations for radar image

FIGURE 2. The image shows the overall concept of this approach. In (a),
the complete DNN is trained using only simulated data and attempts to
reproduce the high-resolution simulated and enhanced ground truth data
as well as possible. After training, the DNN can be applied in real
measurement scenarios (inference), as shown in (b).

enhancement with respect of noise and clutter reduction.
There and in this work, the simulations were conducted
in a realistic environment, resembling a city landscape, see
Fig. 6(a). This way, real-world structures, such as building,
trees, and other objects are accurately mapped to the gen-
erated radar images. However, this was implemented for a
fully occupied array and only the magnitude of the simulated
range-angle image was used as input.

Here, our previous work is extended in two fundamental
ways. Firstly, we consider severely thinned antenna arrays
and show that even for extremely sparse array configurations,
an image reconstruction is still possible. Secondly, a novel
feature vector is proposed, which combines information by
applying beamsteering on the sparse antenna array and utiliz-
ing the covariance matrix from raw channel data at the same
time. Further, the training data is extended by synthetic data
with closely spaced targets to improve the target separation
performance even further. Compared to our previous work, an
algorithm to extend the approach for multiple Doppler detec-
tions in the same range bin is proposed and evaluated. Also,
the antenna radiation pattern is considered in the training data
simulation, which was omitted in our previous work.

Compared to other existing work for DoA estimation, this
work firstly utilizes the complete range-angle-image selected
at specific Doppler detections instead of using only single
range-Doppler detections. Also, the usage of high realistic
simulation data for DoA estimation, especially for sparse ar-
rays, is completely novel.

In detail, for the training of the DNN, two special datasets
are generated with our realistic ray tracing simulator presented
in [20]. The first simulated dataset is designed to resemble
realistic measurement data as close as possible, serving as
a digital twin of the real-world sensor. The second dataset
is simulated using the corresponding enhanced virtual sensor
with the same parameters but with a significant higher num-
ber of antennas, leading to a higher angular resolution. The
proposed training concept is briefly summarized in Fig. 2.

Consequently, the first dataset can be used as the input for
the DNN, whereas the second dataset can be used as ground
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truth. This will be further described in Section III. Because of
the easy scalability of simulation data, the DNN can be trained
very thoroughly with large input and ground truth datasets.
Since the simulated data is so close to reality, this DNN can
then be directly applied to real measurement data.

The training and preprocessing code of the proposed
approach is also published here: https://github.com/
ChristianSchuessler/Sparse-Array-Radar-Imaging.

II. RELATED WORK
This section provides an overview of the existing work on
sparse array processing and deep learning approaches for
radar imaging.

In [21], [22], [23], signal processing techniques were pre-
sented to interpolate the signal between antenna channels of
sparse array configurations or to extrapolate small antenna
arrays to larger ones. Recently, machine learning algorithms
were applied to the array interpolation or extrapolation prob-
lem in [24], [25], and [26]. In [24], this was done by using
real measurement data in a self-supervised way. For the input
data, certain channels of the fully occupied array were ignored
and the remaining channels have to be predicted by the neu-
ral network. This work uses a similar network architecture
(U-Net) as our approach, but our work does not require full
range-Doppler-channel tensors, instead only 2D images as
input turned out be sufficient. Further, it directly predicts the
reconstructed image by realistic, but high resolution simu-
lated ground-truth data. This ground-truth data is completely
noise free and has a much higher resolution compared to the
deployed fully occupied array, which cannot be achieved by
common self-supervised approaches based on real measure-
ment data.

In comparison, [25] was purely based on synthetic data in
combination with a smaller neural network for training. The
authors suggest that interpolating the signal requires neural
networks with fewer parameters compared to estimating
the DoA directly. Interestingly, even the target separation
performance could be improved, the results seem to be to
some extend unstable for single target scenarios at different
bearing angles.

The DoA can also be estimated directly by neural net-
works, as shown in various works, such as [27], [28], [29],
[30], [31], [32], [33]. These methods typically outperform
traditional methods, such as MUSIC or ESPRIT, especially
in environments with a low signal-to-noise ratio (SNR) [30].
Most works in this context have relied on training data from
synthetic point-like targets, requiring only a single snapshot
of the antenna channels. However, in [32], real measurement
data and a region of interest in the fast-time were additionally
used as input for the neural network. In [34] and [35], DoA
approaches were also applied to distributed sparse arrays. The
performance of our approach is compared to [30] in the results
and shows a significant better performance, due to more realis-
tic training data and by utilizing complete range-angle images.

FIGURE 3. Image of the deployed automotive FMCW MIMO radar device
AVR-QDM-110 from Symeo GmbH, an indie Semiconductor company.

Similar approaches can be found in the radar imaging
domain, where the DoA of a signal is only considered im-
plicitly, since a complete image has to be reconstructed at
once. The authors in [36] used CS reconstructions of fully
sampled simulated and measured data to teach the network
to reproduce these results from low-resolution data. They
consequently called their approach CS-DNN, since it can pro-
duce similar or even better results compared to traditional CS
methods. Other similar approaches using DNNs in the radar
imaging domain can be found in [37], [38], [39], [40], [41],
[42]. Our approach adopts the concept of using 2D images
as input by utilizing range-angle images, which are suited for
automotive radar applications.

The reason for the popularity of NN architectures is their
often better performance compared to traditional subspace
or compressed sensing methods. Also, typically most DoA
NN architectures do not need an estimation of the number of
targets, e.g. model order as compared to subspace methods
such as MUSIC or ESPRIT. For CS methods, the number
of targets does not have to be estimated directly, but also
hyperparameters for different loss terms and the number of
iterations have to be tuned. However, tasks like proper feature
engineering, collecting and generating enough training data
can make NN architectures hard to build.

III. RADAR SYSTEM SETUP AND SIGNAL PROCESSING
In this section, the radar system, the frequency modulated
continuous wave (FMCW) modulation scheme, and the corre-
sponding signal processing workflow are presented. Follow-
ing that, the input and ground truth data generation for the
DNN is described in more detail.

Here, matrices are denoted in upper-case bold letters (M),
vectors in lower-case bold letters (v), and scalars in lower-case
letters (a).

A. RADAR SYSTEM SETUP
An image of the radar unit attached to a test vehicle is depicted
in Fig. 3. The radar system consists of a MIMO FMCW radar
device with the parameters stated in Table 1. Since the radar
operates in MIMO mode, a virtual array can be constructed
by combining the TX and RX antenna channels [43]. Sparse
virtual arrays can be constructed by omitting certain TX and
RX channels in the subsequent processing chain. Certain
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TABLE 1. Radar Parameters

FIGURE 4. The full antenna array of the chosen array configuration of the
AVR-QDM-110 with 3 TX and 16 RX antennas, and consequently 48 virtual
elements in the MIMO array, is shown in (a) with an virtual element
spacing of 0.58λ. Two sparse variants are formed by omitting several RX
antennas, in (b) and (c).

antenna configurations with their corresponding virtual ar-
rays, which are evaluated in this work, are depicted in Fig. 4.
As can be seen, while the fully occupied array can be con-
structed well with the MIMO configuration of the investigated
radar sensor, it is difficult to construct meaningful sparse array
configurations. Therefore, we tried to keep the overall aperture
size large, while restricting the number of RX antennas dras-
tically. Fig. 4 shows that there are still pairs of three virtual
antennas, which is due to the original MIMO configuration of
the radar sensor. However, this article shows that even under
this suboptimal configuration high resolution ambiguity-free
radar images can be obtained.

B. FMCW SIGNAL MODEL
The intermediate frequency (IF) signal, also called beat signal,
of an FMCW radar can be given as

sIF(iTX, iRX, t )

=
N−1∑
k=0

Akexp(2π j(μtτk (iTX, iRX) + fcτk (iTX, iRX))), (1)

with each transmit (TX) and receive (RX) antenna channel
index denoted as iTX and iRX, respectively. The complete
signal is composed as a coherent summation of the modulation

term including the round trip delay τk of all targets N in the
scene with amplitude Ak , as defined in the equation below:

τk (iTX, iRX) = ||xiTX − xk ||2 + ||xiRX − xk||2
c

, (2)

with c being the speed of light and xTX, xRX, and xk represent-
ing the position of the antennas and targets, respectively. The
frequency slope μ, also called the chirp-rate of the FMCW
radar, is given by the bandwidth B divided by the chirp dura-
tion Tc

μ = B

Tc
. (3)

A more detailed description of FMCW radar signal process-
ing can be found in various review and tutorial papers, such
as [44].

For the ground truth data simulation, the identical radar
parameters to those described in Table 1 are used. However,
in contrast to the sparse input data generation, a single TX is
combined with 256 RX antennas that are placed as a uniform
linear array (ULA). The 3-dB beamwidth (i.e. resolution) for
linear arrays can be estimated as [45, p. 11]

θ3 = 51.05λ

D
, (4)

for wavelength λ and aperture length D. The resolution of the
full not sparse input antenna array is then:

θ i
3 ≈ 51.05λ

48 · 0.58λ
= 1.83 deg., (5)

and for the enhanced ground truth radar sensor

θ
g
3 ≈ 51.05λ

256 · 0.5λ
= 0.4 deg. (6)

C. INPUT DATA PROCESSING
For all the following computations, we assume far-field
conditions, meaning that spherical waves originating from
point-scatterers can be approximated by plane waves, given
that the scatterer is sufficiently far away. This assumption
implies that each target lies in the same range bin, which is
typical in automotive radar applications [43].

First, an FFT is applied along the fast- and slow-time
dimension of sIF to obtain range and Doppler information
for each TX–RX channel combination. In the next step only
the magnitude of all range-Doppler images is taken to be
processed into a single mean image using all range-Doppler
images. This does improve the SNR for the following Doppler
bin selection, and also ensures that for each antenna channel
the same range-Doppler pixel is taken in all further processing
steps.

Afterwards, one single Doppler bin, typically the bin with
maximum amplitude, is selected for each range bin. This
leads to the 2D signal SIF in the frequency domain, that has
dimensions in channel and range. In the second stage, the TX
and RX antenna channels are sorted to form a virtual antenna
array, which corresponds to a non-uniform linear array, as in
Fig. 4(b) and (c).
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Essentially, two features are generated out of the signal SIF

as described below:
1) Typically, for ULA configurations, a fast fourier trans-

form (FFT) is also applied in the channel direction to
obtain angular information. However, this is not imme-
diately possible for sparse arrays, since there are gaps
in the signal. Instead, a common delay-and-sum (DaS)
beamforming method that applies steering weights for
an angle hypothesis is chosen [45]. The steering weights
for an arbitrary array configuration are shown below:

v(θ ) =

⎛
⎜⎜⎝

w0 · e−j 2π
λ sin (θ )x0

...

wNv−1 · e−j 2π
λ sin (θ )xNv−1

⎞
⎟⎟⎠ , (7)

where xi denotes the one dimensional virtual array posi-
tion, and θ is the current steering angle. The number of
virtual antennas is denoted by Nv, which is the product
of NTX and NRX. To reduce the sidelobe level, a window
function implemented via the weights w can be applied.
However, for simplicity all weights w are set to 1, since
this approach already lead to good results. Moreover, we
apply the beamsteering in the sine domain, such as for
u = sin(θ ), so that this approach is also suited to extrap-
olate linear arrays where the beamsteering processing
can be replaced by an often faster FFT.
The complete beamforming process for all angles θ ,
resulting in the vector is, can then be stated as a matrix
multiplication for each range index ri with the processed
signal SIF with steering matrix V, as shown below:

is(ri ) = SIF(ri )V. (8)

The shape of V is Nv × Nθ , with Nθ being the number
of steering angles. The entries of V are

V =

⎛
⎜⎜⎝

e−j 2π
λ u0x0 . . . e−j 2π

λ uNθ
x0

...
. . .

...

e−j 2π
λ u0xNv−1 . . . e−j 2π

λ uNθ
xNv−1

⎞
⎟⎟⎠ . (9)

The computed vector is(ri ) has the length Nθ , which
is equal to the required angular bins for the DNN. For
ULA configurations, this matrix multiplication is equal
to a discrete Fourier transform [45] and can therefore be
replaced by an FFT. This feature was selected, because
it already worked very well in our previous work for
radar image enhancement [19]. Instead of only using the
magnitude, additional phase information of the signal
was selected as feature in this work, as it showed good
results in [36].

2) Secondly, the covariance matrix is used as an input for
the DNN. It has a shape of Nv × Nv and is computed for
each range bin as described in the equation below:

�(ri ) = SIF(ri )SH
IF(ri )

||SIF(ri )SH
IF(ri )||2

. (10)

The symbol || · ||2 denotes the Frobenius norm of the
matrix. Since the resulting matrix is Hermitian, only
the upper or lower triangular is utilized for further pro-
cessing, as already shown by [33]. This approach saves
memory for larger antenna arrays, since our network
is only designed for 450 angular bins. Furthermore, in
order to fit a single angular line for each range index,
the covariance matrix has to be unrolled to a vector
and padded with zeros in case the resulting vector is
smaller than the number of angular bins. The complete
operation is summarized in the equation below:

icov(ri ) = pad(unroll(triu(�(ri )))). (11)

For large antenna arrays (e.g., full array), the resulting
vector would be too large for the designed angular bins.
In this case, the matrix is cropped symmetrically before
unrolling. This discards some information but still im-
proves the results considerably.
The real and imaginary part and as well as the phase
information of the covariance was chosen since it lead
to good results in the work [30] for DoA estimation.

The final input matrix Iin(ri ) is real valued and composed
of the following Nfeat features:

Iin(ri ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

Abs(is(ri ))

Phase(is(ri ))

Real(icov(ri ))

Imag(icov(ri ))

Phase(icov(ri ))

⎞
⎟⎟⎟⎟⎟⎟⎠

. (12)

Computing these features for each range bin leads to the final
DNN input image of shape Nr × Nθ × Nfeat.

In comparison, in a conventional FMCW radar signal
processing pipeline, the beamforming is only applied to
detections in the range-Doppler map. In this work, the beam-
forming is applied for each range bin to obtain image-like
data. In this way, the DNN can also exploit the spatial relation
between neighbouring range bins.

The complete signal processing workflow starting from the
raw, 3D radar cube is depicted in Fig. 5(b) and compared to
the common signal processing in Fig. 5(a).

D. GROUND TRUTH DATA PROCESSING
The generation of the ground truth signal is described in de-
tail in our earlier work [19]. It is based on a matched filter
approach and resembles the description in [46]. The advan-
tages of this technique are that this reconstruction approach
is also valid for targets that are not located in the far field.
This is especially relevant for the deployed large array. Also,
using matched filters typically results in a better resolution
with a lower sidelobe level. These advantages come at the
price of a longer reconstruction runtime. However, since this
reconstruction technique is only used to generate ground truth
data, it does not have to be executed in real-time during the
actual measurement process. Doppler and range information
are obtained in an identical way to the input data procedure.
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FIGURE 5. The upper image describes the normal radar signal processing scheme. In the first step, the slow and fast-time is converted to range and
Doppler information via a 2D-FFT. Then, targets are detected in the range-Doppler map, and for each detection, the angle is estimated. In contrast, in the
proposed approach (b), after computing the range-Doppler image for each virtual channel, the maximum value of each range bin in Doppler direction is
taken. Afterwards, different features are extracted from the range-channel data. These are then used as an input for the DNN, resulting in high-resolution
range-angle maps.

Examples for input and ground truth signals are shown in
Fig. 6(a), along with virtual camera images of the simulated
scene.

E. EXTENSION FOR MULTIPLE DOPPLER DETECTIONS IN A
SINGLE RANGE BIN
Obviously, the proposed DNN is only able to process a range-
angle image for a single Doppler detection in each range bin.
In most cases this might be sufficient, as for example shown
in [47], where the sum projections on each dimension of the
radar cube are utilized to create detections in an automotive
radar scenario. But in general, more than one Doppler detec-
tion for a single range bin should be considered. The proposed
approach can be extended by running the same DNN multiple
times for different Doppler detections in the following way:

1) Create Doppler detections for each range bin and sort
them by their strength

2) Run the DNN for the strongest Doppler detection in
each range bin

3) Run the DNN for the second strongest Doppler detec-
tion. If no second strongest detection does exists take
the strongest one.

4) Repeat the procedure for the remaining Doppler
detections.

IV. DEEP LEARNING APPROACH
In this section, the deployed DNN is briefly described and a
description of the training data generation is given.

A. DEEP NEURAL NETWORK
The DNN used for this approach is a conventional U-Net [48]
augmented with an attention mechanism, adapted from [49].
This network was chosen because it showed good results in
previous work related to radar and especially to radar imaging
tasks [19], [24], [41], [42]. The complete DNN is depicted
in Fig. 7, featuring the Nfeat = 5 input channels as described
in the previous section. A softmax activation function can be
added as the last activation function for a classification task.
It should be mentioned, that the same network architecture
as in our previous work [19] was adapted. The difference in
the performance is achieved by choosing more suitable input
features as described in the previous section.

In this setup, there are two ways to formulate the proposed
problem. Firstly, it can be stated as a detection problem. In the
machine learning context, this is often described as a binary
classification problem, where the decision has to be made if a
target is present at a specific pixel or not. Secondly, the prob-
lem can be viewed as a (potentially ill-posed) inverse problem.
The first problem formulation is almost always chosen for the
DoA deep learning approaches mentioned in Section II.

The second problem formulation is very common in com-
pressed sensing and in the deep learning image reconstruction
methods mentioned in Section II.

Depending on how the problem is formulated, a differ-
ent preprocessing of the ground truth data, a different loss
function, and different activation functions are chosen. If the
problem is formulated as a detection problem, every pixel in
the output image is set to either zero or one depending on
whether a detection is present or not. Furthermore, the binary
cross-entropy (BCE) loss is commonly chosen as the loss
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TABLE 2. Problem Formulations

FIGURE 6. The upper images in (a) show example data for the two
different antenna configurations generated by ray tracing simulations. The
image in the first column depicts a virtual camera image of the simulated
scene, and the second column image shows range-angle (RA) maps
produced by the DaS beamforming technique. Since the array is sparse,
sidelobes dominate and no angular information can be perceived by the
human eye. The range-Doppler (RD) map is depicted in the third column
image, and the ground truth image, based on the ULA with 256 elements,
is presented in the right column. The lower images in (b) show the same
information, although without a simulated camera image. Here,
synthetically generated static point-like targets were generated, which are
closely spaced in angular direction.

function. Other possible loss functions for imbalanced class
distributions, such as focal loss [50] have also been deployed
for DoA estimation [27].

Nevertheless, if the problem is stated as an inverse prob-
lem, the L2-Norm will typically be chosen with an optional
regularization term to incorporate prior information. In com-
pressed sensing, the signal is often expected to be sparse,
and therefore, the L1-Norm on the estimated signal itself is
added. Table 2 summarizes the differences of both problem
formulations for the proposed approach. Here, the variable
Xest describes the estimated radar image and Ytru describes
the ground truth radar image. For the classification tasks, each

pixel of the simulated ground truth range-angle image is set to
either zero or one.

The preprocessing in the regression task allows for a scaling
of the ground truth image with the scaling factor β. This is
required if the pixels are too close to the background, since
the DNN might optimize them to a minimum with all pixels
being set to zero. Scaling the values to from zero may lead the
learning process to another more suitable minimum, where the
foreground pixels are detected properly. In our approach, β =
10 has generated satisfactory results. We did not conduct a
exhaustive grid search for this parameter, but setting the value
to β = 1 resulted in a training process that did not converge.

In the loss term, the sparsity assumption of the output image
can be adjusted via the parameter α. Setting this parameter
to zero already leads to good results, since the ground truth
data initially encodes the sparsity information. In our case,
even relatively small values (α = 0.1) degraded the results
slightly. However, in scenarios with less training data, setting
α to a value different to zero could be beneficial. Also, the
use of the logarithmized input magnitude data, instead of the
linear magnitude, improves the training performance in this
scenario.

Both problem formulations were thoroughly investigated,
but the training for the regression task achieved better results
in respect to detection performance and aliasing artifacts. This
is because the sidelobes could not be fully removed in the
ground truth data and were therefore equally weighted as real
targets in the classification task. Also, the amplitude in the
ground truth image still contains useful information that is
completely removed when each target is set to a fixed value
of one.

B. TRAINING DATA GENERATION
Accurate generation of sufficient training data is crucial for
the performance of the DNN. For this, two approaches are
pursued.

The first approach uses data generated by realistic radar
simulations in a detailed virtual world based on the approach
presented in [20]. The procedure is identical to that in [19],
where the virtual sensor was placed randomly at predefined
positions on a virtual map imported from the open source
simulator CARLA [51]. Additionally, for each virtual mea-
surement, the position of the virtual sensor was moved in a
random direction with a random velocity of between 0 and
6 m

s . In this way, 13 000 virtual measurements were generated.
However, although these data accurately resembles real-

world measurements, it does not contain enough examples
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FIGURE 7. The complete Attention U-Net architecture for the proposed problem, slightly adapted from [19]. Each input image consists of C channels with
width W and height H, denoted as C × W × H in the scheme. For example, the input image consists of two channels with a width of 450 (representing the
angular dimension) and a height of 630 (representing the range dimension).

with closely spaced targets in the same range bin. Conse-
quently, this dataset does not sufficiently challenge the DNN
to produce high-resolution output but mainly reduces noise
and sidelobes.

Therefore, as a second approach for the generation of train-
ing data, we also simulated 5500 synthetic datasets composed
of closely separated point-like targets. This synthetic dataset
with point-like targets could not be used on its own to train the
network. However, in combination with sufficient ray tracing
simulation data, the results could be improved to a relevant
extent.

The two datasets were mixed together randomly, and 17 500
entries were used for training, 500 for validation, and 500
for test purposes. Again, examples for both generated input
images are shown in Fig. 6.

V. RESULTS
In this section, the proposed DNN technique is compared to
a common convolutional neural network (CNN)-based DoA
algorithm trained on the covariance matrix of the proposed
sparse antenna array configurations.1 This CNN DoA esti-
mator proposed in [30] was chosen as the baseline, since it
showed very good and robust performance in a comparison
conducted in [27]. The training and pre-processing is de-
scribed in more detail in Section V-A.

Furthermore, a conventional DaS beamforming technique
using a hanning window, and the MUSIC algorithm were
used for comparison. For the MUSIC approach, the number
of targets were estimated using the AIC criterion [52] with
exact formulas taken from [53].

A. REFERENCE IMPLEMENTATION
The baseline DoA estimator from [30] relies on the normal-
ized covariance matrix � generated by the antenna channels

1Our DNN approach and the conventional CNN DoA estimator are both
convolutional networks, but for the sake of simplicity, the former is abbrevi-
ated as DNN and the other as CNN in the following.

as input:

� = xxH

||xxH||2 . (13)

Here, x denotes the MIMO antenna channels resorted as for
the virtual array depicted in Fig. 4. Compared to the proposed
approach, the beamforming technique takes only a single an-
tenna channel line as input and no additional input is required.
Before being passed on to the CNN, the complex covari-
ance matrix is split and stacked to a tensor of the dimension
3 × Nv × Nv according to the following conversion:

�T =

⎛
⎜⎝Re(�)

Im(�)

arg(�)

⎞
⎟⎠ . (14)

The CNN is loosely trained following the instructions
from [27], although adjusted to the fewer targets and a higher
SNR, expected in our test data. The processing steps are as
follows:

1) Generate a random number of targets N (between 1 and
3).

2) Assign an amplitude to each target, which is chosen
from a specific range.

3) Create an IF signal with a single time-snapshot, as de-
scribed above.

4) Add complex normally distributed noise to the signal
with a random SNR value from a specific predefined
range (from 3 to 30 dB in this work).

In this case, the SNR is defined as the ratio between the
weakest scatterer and the noise power, as adapted from [54].
The data were generated online, and the neural network was
trained on 20 million samples.
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FIGURE 8. PSF of the proposed DNN approach compared to a conventional DaS beamforming. The first two columns show the PSF of a conventional DaS
beamforming, the first (a) for a fully occupied array and the second (b) for the sparse array configuration. The same is shown for the DNN approach in the
right two columns.

FIGURE 9. Evaluation of the proposed DNN approach on a realistic automotive radar scene. The first two columns show the results using a conventional
DaS beamforming, the first (a) for a fully occupied array and the second (b) for the sparse array configuration. The same is shown for the DNN approach
in the right two columns.

B. EVALUATION OF RESOLUTION AND
POINT-SPREAD-FUNCTION
To evaluate the proposed DNN approach, several real-world
measurements were conducted.

In the first test, a single metal cylinder at a distance of
approximately 5.7 m was observed and the corresponding
point spread function (PSF) of the DNN result compared
to the conventional DaS beamforming approach. The results
are presented in Fig. 8. Clearly, the DNN not only led to a
much sharper PSF but also removed aliasing artifacts almost
completely.

In the second test, the DNN results were compared to the
DaS beamforming approach in realistic automotive scenarios,
shown in Fig. 9. Similar to the previous results, the DNN

results were almost aliasing-free, even for 4 RX antennas,
which are significantly more challenging.

As in comparison, the conventional DaS beamforming
technique was not capable of evaluating useful angular infor-
mation due to massive aliasing artifacts.

In the third test, the angular resolution of the implemented
DNN was evaluated and compared to the MUSIC algorithm
and a state-of-the-art CNN beamforming approach introduced
before. The results are depicted in Fig. 10. The evaluation of
the CNN approach for a full array was not possible, since
the full covariance matrix required for this approach was too
large. Comparing the results for the sparse array configura-
tions, the DNN approach outperformed the other algorithms in
terms of sidelobe suppression and resolution. In particular, for
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FIGURE 10. Evaluation of the proposed DNN approach compared to a conventional CNN approach as well as a MUSIC beamformer in a scenario testing
the angular resolution. The first column shows the results of a state-of-the-art CNN for the sparse array. Since the input covariance matrix is too large, the
results could not be generated for the full array configuration. The second and third column depict the imaging results using the super-resolution
algorithm MUSIC for a fully occupied ULA and the sparse array configuration. The fourth and fifth column show the results of the DNN approach, again
for the fully occupied and the sparse array, respectively. (a) presents the results for the sparse array from Fig. 4 using 6 RX antennas, and (b) gives the
results for the second configuration using 4 RX antennas. In (c), the camera image of the two cylinders acting as point-like targets is shown.

the array configuration with only 4 RX antennas depicted in
Fig. 10(b), the DNN is still capable of separating both targets.
Due to the high aliasing, this is not feasible with the other
approaches presented.

C. EVALUATION OF DETECTION AND FALSE-ALARM
PROBABILITY
As a fourth test, the proposed DNN approach was evaluated in
terms of precision, detection rate, and false alarm rate. These
metrics are briefly described below.

1) The detection rate PD, also called recall:

PD = TP

TP + FN
, (15)

2) The false alarm rate PFA:

PFA = FP

TN + FP
, (16)

3) The precision, as the ratio between correct detections
and all detections:

Precision = TP

TP + FP
. (17)

Here, TP and TN denote true positives and true negatives,
respectively. FP and FN describe false positives and false
negatives, respectively. The approach was again applied to

simulated data, which were neither used for training or val-
idation. The test set consisted of 50 images, in which again
each range bin with at least one detection in the ground truth
data was considered.

The evaluation was conducted for each simulated dataset in
the following way.

1) Create the range-Channel image and extract the neces-
sary features for the deployed DoA estimators.

2) Apply the DNN approach on the complete test image
and store the resulting image.

3) Iterate over all range bins and apply the beamforming
algorithms (CNN and MUSIC). For the DNN approach
take the selected line from the already processed image.

4) Apply a peak search algorithm for the currently se-
lected range bin to find possible detections. As peak
search algorithm, the find_peaks method from the
python library scipy2 was used. The sensitivity of the
peak search was varied with the prominence parameter,
which according to the documentation is a measure of
how much a peak stands out from the surrounding base-
line.3. For more information about the algorithm and its

2[Online]. Available: https://docs.scipy.org
3[Online]. Available: https://docs.scipy.org/doc/scipy/reference/generated/

scipy.signal.peak_prominences.html

VOLUME 3, NO. 3, JULY 2023 989

https://docs.scipy.org
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.peak_prominences.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.peak_prominences.html


SCHUESSLER ET AL.: SUPER-RESOLUTION RADAR IMAGING WITH SPARSE ARRAYS USING ADNN TRAINED WITH ENHANCED VIRTUAL DATA

FIGURE 11. Evaluation of three metrics for the comparison of the DNN approach with the conventional CNN method. The columns indicate the specific
metrics, which are detection rate, false alarm rate, and precision. The rows indicate the performance, for the specific metric, of the investigated
algorithms. An estimated detection is counted if the distance to the ground truth detection is less than or equal to the maximum distance dmax in the
angular bins.

parameters, the reader is refered to documentation of the
algorithm.

5) A detected peak is counted as successfully detected (TP)
if

psuc =
{

TP, |xest − xtrue| ≤ dmax

FP, otherwise
, (18)

where, xest denotes the pixel position of the estimated
target, xtrue is the correct target position, and dmax

describes the maximum tolerated distance in pixels be-
tween xest and xtrue. In the proposed evaluation scenario,
dmax = 2 and dmax = 4 was tested. For the sake of
simplicity, one estimated detection can be assigned to
multiple ground truth detections. A false negative (FN)
detection was counted if the a peak was present in
the ground truth signal, but was not detected by the
beamforming algorithm. In case no peak was detected
and was not present in the ground truth signal, a true
negative (TN) was counted.

Further, every spectrum assigned to the peak finding
method was normalized to a range of 0 and 1. Since the
CNN approach used for comparison in particular suffers from
severe sidelobes, only peaks higher than 0.5 were counted.
Even the proposed DNN beamforming did not considerably
benefit from this additional threshold, this resulted in a fairer
comparison.

The results are shown in Fig. 11. It is apparent that all
algorithms exhibited a rather low detection rate. This may
be due to the fact that the ground truth image was gener-
ated with a much higher angular resolution, which prevented
smaller arrays from resolving every target. It is nonetheless
obvious that the proposed DNN approach outperformed the

CNN method significantly. This is presumably due to the
improved ratio between the mainlobe and the sidelobe mag-
nitudes of the detected targets. Consequently, the peak search
algorithm could more easily identify peaks as targets in-
stead of noise or aliasing artifacts. Interestingly, the MUSIC
approach for only 6 RX antennas showed a slightly worse de-
tection performance compared by using only 4 RX antennas.
This might be explained by the fact, that the aperture size
for both antenna configurations is identical, but the MUSIC
algorithm with only 4 antennas creates more sidelobes, which
may be at the same position as real targets.

The same behavior could be observed for the false-alarm
rate, which is considerably lower for the DNN approach
compared to the MUSIC and CNN techniques. Even with
an additional threshold during the peak search, the distortion
from sidelobes was still very severe in the other approaches.

Contrary to the detection rate, the false-alarm rate of the
MUSIC algorithm with 6 RX antennas is significantly better
compared by using only 4 antennas. This fits our previous
explanation, that the detections for 4 RX antennas mainly
stems from sidelobes, which also lead to large a amount
of false detections resulting in a high false-alarm rate. The
same argumentation can be applied to the precision metric,
which is similar for the MUSIC with the CNN technique and
the DNN approach showing the best results. As expected,
all beamforming algorithms exhibited a higher detection rate
with increasing dmax.

Interestingly, in this comparison, the difference between
both DNN approaches was not very significant. This may
be explained by the dataset used for comparison, which
contained simulated but quite realistic radar images, where
the task of differentiating two closely spaced targets did not
happen often. Therefore, even though the DNN trained with
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FIGURE 12. Image (a) shows the camera image with the approaching truck and image (b) shows the corresponding range-Doppler image, in which the
truck can clearly be separated in the Doppler direction. The generated Doppler detections are sorted and used to generate three range-angle images by
applying the DNN, as shown in image (c). All images are stacked onto each other and the maximum value for each pixel along these images is taken to
generate a merged image , see image (d).

4 RX antennas had a lower resolution, it still showed a good
sidelobe suppression, while maintaining a sufficient resolution
for most of the tasks at hand.

D. EVALUATION OF A DYNAMIC SCENE
Here, the approach described in Section III-E with the DNN
trained for 6 RX antennas is evaluated on a dynamic scene,
in which a truck is moving towards the radar unit. In this
case, not only the maximum Doppler is chosen, but the peak
search algorithm utilized in the previous section was used
to obtain up to three Doppler peaks for each range bin. The
result is depicted in Fig. 12. The final image is created by
stacking all three single images onto each other and taking
the maximum projection along the new channel dimension, as
shown in image d) in Fig. 12. Alternatively, also detections
from each single image could be collected and written in a
common detection list.

This example illustrates, that evaluating multiple Doppler
peaks is a reasonable measure, since only in the second image

(Fig. 12(c) the detections originating from the truck are clearly
visible.

VI. CONCLUSION AND FUTURE WORK
This work demonstrates that adequately preprocessed radar
data from an extremely thinned aperture can be processed
aliasing-free and with super-resolution using a DNN. For this,
the DNN was specially trained with sufficient realistic sim-
ulation data obtained from advanced ray tracing simulations
and with synthetically generated point-like targets. These tar-
gets were closely spaced to explicitly train the resolution
capability of the DNN. With the two evaluated sparse array
configurations, it could be seen that the proposed approach
outperformed even state-of-the-art machine learning DoA al-
gorithms and super-resolutions techniques such as MUSIC.

In the following, we discuss possible reasons why this ap-
proach is beneficial in the proposed scenarios and make some
suggestions for further improvements.
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The first advantage of the proposed approach is that the
input data do not consist of only a single covariance matrix or
a single snapshot of the antenna array data. Instead, the com-
plete range-angle map and covariance information are given to
the DNN, which can exploit specific spatial features encoded
in the input data to improve the radar image result. In addition,
due to advanced ray tracing simulation, the training data used
are much more realistic than simple point-like targets used in
other approaches.

However, there are some possible areas for further improve-
ment. The proposed DNN is quite large, and it should be
investigated if similar performance is possible with smaller
architectures with fewer parameters.

Furthermore, optimized array configurations should also be
analyzed, since the virtual antenna array configurations inves-
tigated were limited by the MIMO configurations, and in this
work, only the RX channels were reduced. However, the fact
that this approach performs well even on such unconventional
array configurations opens up more flexibility to array design.

The evaluation of the proposed approach also revealed sev-
eral promising aspects for future work. Because this approach
works well for the unconventional array configurations pre-
sented, it provides an unprecedented flexibility for the array
design, which often suffers from strict limitations in terms of
spatial constraints, power consumption, calibration issues, and
raw data size.

Additionally, since the virtual antenna positions are compa-
rably widely spaced, this approach is promising for the fusion
and joint DoA estimation of distributed radar sensors.

Finally, also, other more recent neural network architec-
tures, such as vision transformer [55], [56], which have been
already applied successfully to radar applications [57] could
be investigated in respect of image quality and runtime per-
formance in the future.
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