
Received 3 April 2023; revised 12 May 2023; accepted 13 May 2023. Date of publication 22 June 2023;
date of current version 7 July 2023.

Digital Object Identifier 10.1109/JMW.2023.3278237

Towards Continuous Real-Time Plant and
Insect Monitoring by Miniaturized

THz Systems
FAWAD SHEIKH 1 (Member, IEEE), ANDREAS PROKSCHA 1 (Graduate Student Member, IEEE),

AMAN BATRA 1, DIEN LESSY 1 (Graduate Student Member, IEEE),
BAHA SALAH 1 (Graduate Student Member, IEEE), BENEDIKT SIEVERT 2 (Member, IEEE),

MARVIN DEGEN 2, ANDREAS RENNINGS 2 (Member, IEEE), MANDANA JALALI 2,
JAN TARO SVEJDA 2 (Member, IEEE), POOYA ALIBEIGLOO 3 (Graduate Student Member, IEEE),

CHRISTIAN PREUSS 3, ENES MUTLU 3 (Graduate Student Member, IEEE),
ROBIN KRESS 3 (Graduate Student Member, IEEE), SIMONE CLOCHIATTI 3, KEVIN KOLPATZECK 4,
TOBIAS KUBICZEK 4, INGRID ULLMANN 5 (Member, IEEE), KONSTANTIN ROOT 5, FABIAN BRIX 6,

UTE KRÄMER 6, MARTIN VOSSIEK 5 (Fellow, IEEE), JAN C. BALZER 4 (Member, IEEE),
NILS G. WEIMANN 3 (Member, IEEE), THOMAS KAISER 1 (Senior Member, IEEE),

AND DANIEL ERNI 2 (Member, IEEE)

(Regular Paper)
1Institute of Digital Signal Processing (DSV), University of Duisburg-Essen (UDE), D-47057 Duisburg, Germany

2General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, and CENIDE – Center for Nanointegration Duisburg-Essen,
University of Duisburg-Essen, D-47048 Duisburg, Germany

3Department High Frequency Electronic Components (BHE), CENIDE – Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen,
D-47048 Duisburg, Germany

4Chair of Communication Systems (NTS), University of Duisburg-Essen, D-47057 Duisburg, Germany
5Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany

6Institute of Molecular Genetics and Physiology of Plants (MGPP), Ruhr University Bochum, D-44801 Bochum, Germany

CORRESPONDING AUTHOR: Fawad Sheikh (e-mail: fawad.sheikh@uni-due.de).

This work was supported in part by the Deutsche Forschungsgemeinschaft through TRR 196 MARIE Projects M01, M03, M05, C02, C05, S01, S03 and S05, under
Grant Project-ID 287022738, in part by the Ministry of Culture and Science of the State of North Rhine-Westphalia (MKW NRW) through Project terahertz.NRW,
in part by the German Federal Ministry of Education and Research (BMBF) in the course of the 6GEM Research Hub under Grant 16KISK038, in part by the EU

and the State of North Rhine Westfalia through Project “Terahertz-lntegrationszentrum (THzlZ)”, under Grant EFRE-0400215, and in part by the Open Access
Publication Fund of the University of Duisburg-Essen. The project terahertz.NRW was supported by the program Netzwerke 2021, an initiative of

the Ministry of Culture and Science of the State of Northrhine Westphalia.

ABSTRACT In this paper, new concepts for continuous 24/7 real-time monitoring of plants and insects
with miniaturized terahertz (THz) systems are described and experimentally tested. Thus, for the first time,
small-scale insights into the instantaneous plant health but also in their long-term growth can be obtained.
Using such compact THz systems, e.g. water uptake, insect infestation and the behavior of pollinators (i.e.
honey bees) and pests can be measured dynamically and non-invasively at virtually any position in the close
biotope surrounding them. In addition to general understanding, this can be used to optimize crop yield and
reduce resource consumption as well as for identifying characteristics of insect-plant interactions induced
by potential environmental stressors. Given such a holistic approach, the proposed concepts may provide a
significant advancement in environmental monitoring technology.

INDEX TERMS 24/7 insect tracking, 24/7 plant monitoring, finite element method (FEM), millimeter
wave multiple-input multiple-output (MIMO) radar, photorealistic ray-tracing, radar cross-section (RCS),
recursive aggregated T-matrix algorithm, resonant tunneling diode (RTD) detector, specific absorption rate,
surface roughness, synthetic aperture radar (SAR), THz measurements and simulations, THz time domain
spectroscopy (THz-TDS), THz-VNA testbed.
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SHEIKH ET AL.: TOWARDS CONTINUOUS REAL-TIME PLANT AND INSECT MONITORING BY MINIATURIZED THZ SYSTEMS

I. INTRODUCTION
Fabian Brix, Ute Krämer, Fawad Sheikh, Andreas Prokscha,
Martin Vossiek, Jan C. Balzer, Nils G. Weimann, Thomas
Kaiser, Daniel Erni

A. ACCESSING CLOSE MODEL ECOSYSTEMS
The responses of central model plants to individual biotic and
abiotic environmental factors have been well characterized in
standardized growth chamber or greenhouse environments at
the morphological, physiological, biochemical and molecular
levels. Work in recent years has highlighted that simulating
natural fluctuations in environmental conditions, in particular
light intensity [1], [2], [3], as well as the combination of
impacts from several environmental factors [4], [5], [6], [7]
can trigger fundamentally different responses in plants that are
more and more in the focus of current research in the plant sci-
ences. These studies, although highly insightful and of critical
importance, only move us one step further towards the ulti-
mate new frontier in phenomics: Multi-level monitoring of the
ecological interactions between plants and their environments
in natural habitats and in agricultural fields. Technological
advances towards miniaturization and an expanded scope of
sensing devices as well as increasing options and volumes for
data transfer and collection [8], [9], [10], [11] will progres-
sively allow to approach this new frontier in the future. Here
we outline our long-term vision, provide the results of some
initial measurements using simple model systems employing
current state-of-the art methodology, and we specify the up-
coming set of objectives towards our longer-term vision.

Our long-term vision is as follows: It would be desirable
to simultaneously and continuously monitor during daytime
and nighttime for a number of individual plants in the field
(1) representative parameters describing the abiotic micro-
environment, (2) output parameters and/or even reporters of
plant physiological health status and plant performance, as
well as (3) the number and activities of organisms interacting
with the plant. In relation to (1), it is desirable to monitor
light/radiation intensity and quality, air composition and hu-
midity, air temperature, as well as soil humidity, temperature
and ideally the composition and the pH of the soil solution in
the immediate vicinity of the roots of the plant. With respect to
(2), it is desirable to qualitatively and quantitatively monitor
plant biomass gain above and below ground, flowering, seed
set, leaf water content, gas exchange and water loss across the
leaf surface, leaf surface temperature and ideally also the com-
position of leaves with respect to nutrient and non-nutrient
elements, for example toxic heavy metals, as well as contents
in major organic compounds such as photoassimilates and
major groups of secondary metabolites.

As an expanded set of plant parameters, it would be in-
sightful to monitor the spectrum and quantities of volatiles
emitted from the leaves, for example ethylene, terpenes and
volatile forms of jasmonate, oxylipins and salicylate, for ex-
ample. Finally, in relation to (3), relevant biotic factors are
microorganisms, herbivores and pollinators, as well as neigh-
boring plants. As a first goal, we envisage to count in a

FIGURE 1. Example of an envisioned environment for monitoring plants
and insects.

localized manner both the visits and numbers of insects and
other small animals present on the plant, identify their types
and activities of insects (e.g. leaf consumption, sucking), be
able to count how many insects are on the plant, and what do
they do (eat, suck). For now, we envisage update rates in the
order of one minute overall.

Accomplishing this would allow to monitor plant perfor-
mance and responses, as well as their interactions with the en-
vironment, in natural ecological settings. This would provide
access to ecologically more relevant phenotypes, for example,
as well as a wealth of ecological and mechanistic insights.
Specifically, we plan to address in case studies in the field, for
example, how dynamics and between-plant variation in leaf
composition relate to plant attractiveness for or deterrence of
herbivory. Combined with high-throughput technologies such
as next-generation sequencing, such comprehensive monitor-
ing could be employed to identify molecular mechanisms
and the genetic basis of newly identified phenotypes in an
ecological context. This could have enormous potential for
fundamental insights into plant biology and towards crop pro-
tection and the breeding of more resilient crops. At present,
the analysis of responses to environmental factors is gener-
ally limited to standardized indoor settings and experimental
designs in which plant responses or health parameters are
assessed destructively at pre-defined time points, which may
or might not be ecologically relevant. Ecological experiments
presently depend to a large extent on manual work, such as
trapping and counting of insects, or collection and ex situ
analysis of soil and leaf samples, for example.

B. MINIATURIZED THZ MONITORING SYSTEMS
The ultimate goal is to develop miniaturized terahertz (THz)
systems that can aid in environmental monitoring of biotopes,
as depicted in Fig. 1, encompassing various aspects such as
assessing the health of plants, detecting insect populations
and species, and tracking applications for pollinators, among
others. This technology could potentially replace the current
method of observation, which relies on human eyesight or
camera capture.
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In particular at THz frequencies, our holistic approach can
provide a new multidimensional paradigm for plant and in-
sect monitoring, as its radical miniaturization program (made
possible only by THz operating frequencies) enables ultra-
high mobility for tiny, rugged, imperceptible sensors and
agile radar imaging systems, their dispersion or positioning
at any observation point in the biotope for pinpoint respective
stochastic status or continuous life cycle monitoring, together
with precise localization and material characterization capa-
bilities.

Systems based on optical sensing have already shown great
potential for automatic insect counting and even allowed
discrimination between female and male mosquitoes [12].
The accuracy of these systems has been further increased by
considering additionally the spectral and time-domain [13].
However, such systems rely on active illumination within the
optical band in a well-defined environment and are therefore
only available as traps, which clearly contradicts the idea of
imperceptible monitoring. Lidar systems are discussed for
field measurements without traps. They can cover a large
range of more than 100 m but require bulky optics and lasers
with several watts of output power, which is dangerous for
humans and insects [14]. In contrast, radar systems have
shown that insect trajectories can be determined directly in
the field by simple means without further measures [15] and
that it is in principle possible to classify insects based on the
radar cross-section (RCS) [16]. However, these experiments
have so far only been performed at frequencies <100 GHz,
which makes the detection and classification of small insects
rather impossible. Therefore, radars that extend into the THz
frequency range (100 GHz−10 THz) are needed to realize the
full potential of insect surveillance in the field.

We shall now focus on our lines of research towards THz
plant and insect monitoring, with a specific emphasis on the
characteristic interactions between model plants and their in-
teracting small organisms such as pollinators and pests in
their immediate ecosystem, particularly in polluted environ-
ments. While our vision is broad, we will provide a report on
the currently operational THz devices, imaging and sensing
techniques, experimental evidence, and modelling efforts that
successfully cover all initial activities of our collaborative re-
search program in THz metrology for continuously observing
local ecosystems.

The remainder of the paper is organized as follows: Start-
ing with THz plant monitoring in Section II, a first report is
given on the development of ultra-compact InGaAs resonant-
tunneling diode (RTD)-based THz sources and detectors
together with a proof-of-concept for water content detection
in a Geranium leaf at 330−500 GHz. Section III describes
a methodology to estimate internal compartments – and in
particular real-time nutrient flows – in plant stems using RCS
measurements in conjunction with ultra-fast electromagnetic
(EM) inverse problem solvers, where a first successful test
has been carried out on a microfluidic 3D-printed stem model
for a frequency range of 110−170 GHz. Moving further to

monitoring scenarios encompassing plants and insects, Sec-
tion IV studies high-resolution THz synthetic aperture radar
(SAR) imaging at 330−500 GHz for distinguishing healthy
from infested Geranium leaves. The latter are loaded with tiny
static insects like aphids or with immobilized honeybees to-
gether with eggs of blow flies. Dynamic imaging is addressed
in Section V using a 94 x 94 multiple-input multiple-output
(MIMO) radar system operating within the E band to suc-
cessfully track a moving ladybug on a considerably reflecting
leaf. In Section VI, a first experimental account is given to
THz insect monitoring using THz time-domain spectroscopy
(TDS) up to 4 THz within a bi-static setup for the precise RCS
estimation and imaging of European honey bees. THz-TDS
(up to 2 THz) is also used in Section VII for preparatory
channel measurements into a bee hive for future queen bee
tracking in e.g. a mating box using a THz harmonic radar.
Section VIII analyzes the interaction of THz radiation with
honey bees along their digital twins to simulate precise RCSs
as well as the EM energy intake for a future detailed EM
microdosimetry. In Section IX, we extend the EM model to
encompass the immediate surroundings through the use of
3D photorealistic THz ray-tracing simulations, with a partic-
ular focus on insect monitoring. As an exemplary numerical
benchmark problem, we showcase the ability to remotely de-
tect the micro motions of Varroa mites on the body surface
of honey bees, highlighting the impressive capabilities of our
approach. A comprehensive conclusion and outlook referring
to all discussed activities are provided in Section X.

II. MINIATURIZED THZ CHIPS FOR WATER CONTENT
MONITORING
Pooya Alibeigloo, Christian Preuss, Enes Mutlu, Robin
Kress, Simone Clochiatti, Nils Weimann

A. ELECTRONIC SIGNAL GENERATION AT THZ
FREQUENCIES
THz technology for practical applications in open environ-
ments requires a small form factor for system integration
and mobility, power efficiency, and robustness, which can
be achieved with electronic systems [17]. Commercial elec-
tronic THz mixers (frequency extenders) rely on discrete,
waveguide-integrated GaAs Schottky diodes [18] and exhibit
high performance but are bulky and too expensive for in-
dustrial use. Electronic THz integrated circuits have shown
strong progress in recent years, with the evolution from simple
source and detector components to chips enabling imaging,
radar, and other complex functions. Besides ICs made in
advanced SiGe and RF-CMOS transistor technologies, III-V
semiconductor devices, based on indium phosphide (InP) and
related materials, comprising heterojunction bipolar transis-
tors, high electron mobility transistors, and RTD leverage this
material systems’ advantageous material properties to further
extend electronic chip performance in terms of power effi-
ciency and maximum output power at THz frequencies.
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B. RESONANT TUNNELING DIODE SOURCES
To overcome the cutoff frequency limit of transistor devices,
electron tunneling structures provide an alternative. In these
devices, the resistive load of antenna and resonator is can-
celled by a negative differential resistance, which occurs
through the parallel addition of a tunneling current to the
classical thermionic diode current. The RTD is currently the
highest frequency electronic oscillator with oscillation fre-
quency of almost 2 THz at room temperature, as demonstrated
in several studies [19], [20], [21], [22]. At THz frequencies,
i.e. beyond fmax of transistors, RTDs offer better DC-to-RF
efficiency since they operate as a fundamental oscillator even
at these frequencies. The RTD consists of an epitaxially grown
III/V compound semiconductor heterostructure. An InGaAs
quantum well is sandwiched between two wide-bandgap In-
AlAs barriers. The layers in the RTD structures are very thin,
with thicknesses ranging from 1 nm to 5 nm, allowing for
ultra-fast electronic tunneling and thus short transit time [23].

When an RTD is biased to a specific level, the energy level
in the quantum well is in resonance with the emitter, resulting
in a tunneling current through device. However, beyond this
bias, the current decreases, leading to a negative differential
resistance in the IV curve. This negative resistance is exploited
to de-attenuate the resonator formed by the diode’s capaci-
tance and the chip-integrated antenna’s inductance, allowing
for oscillations in the THz regime. RTDs therefore form an
ultra-compact oscillator with minimal device count, high en-
ergy efficiency, and good impedance matching.

C. RESONANT TUNNELING DIODE DETECTORS
RTD structures may also be employed as sensitive THz detec-
tors owing to their small capacitance and high nonlinearity at
zero bias. Insertion of a third barrier, which results in a Triple
Barrier Resonant Tunneling Diode (TBRTD) [24], leads to an
asymmetrical current-voltage characteristic at zero bias which
allows rectification. The high responsivity of a TBRTD detec-
tor integrated with a resonant slot antenna [25] was reported.
Additionally, the wideband operation can be achieved by the
integration of a TBRTD with a bow-tie antenna structure [26].
The highest averaged measured responsivity RV was reported
900 V/W with the lowest computed NEP of 2.5 pW/

√
Hz at

257.5 GHz when evaluated at zero bias [27], which would
enable water content measurement in plant leaves in proximity
of the specimen, when combined with RTD sources which
exhibit output power of about 10 μW in this frequency range.
The use of RTD structures for both transmitting and receiving
THz signals holds promise for the realization of compact,
low-cost, robust, and power-efficient THz transceivers, which
can be applied in biological and agricultural settings.

D. PLANT LEAF WATER MONITORING USING A THZ RTD
DETECTOR
Water is central to the functioning of a number of cellular
processes. At a moderate water deprivation of short duration,
the functions of cells are temporally impeded and can recover

and restore all functions upon rehydration. Prolonged water
deprivation will lead to irreversible cell damage and death. Air
pollution, herbicide, etc., can cause some damage to the plant.
A stressed plant leaf will exhibit a change in water content
distribution. Thus, the plant water content and water trans-
port dynamics can be assessed as a marker for health [28].
THz radiation has emerged as a promising non-destructive
technique to study water content in plant tissues, allowing
real-time monitoring of changes in water content under vari-
ous stimuli indoor [29] and outdoor [30]. Traditional methods
used to measure water content in plant tissues often require
destructive techniques that damage or separate the organs of
interest from the plant, making it difficult to monitor real-
time changes. When a detached leaf dries out, its relative
water content reduces at an exponential rate, and its thickness
changes. This drying process can be conveniently monitored
by performing transmission experiments using THz waves. In
the THz region, since the absorption into water is large and the
influence of water dispersion into biological tissue is small for
long wavelengths, we can obtain transmitted images such as
those of a plant leaf non-destructively based on information
on moisture content [28]. Several works have been done for
the detection of water content and water dynamics in different
plant tissues under various conditions [31]. Most of them were
based on THz-TDs systems which are bulky and expensive.

E. MEASUREMENT SETUP AND RESULTS
The THz water content measurements described here were
done in the Integrated Systems Laboratory (headed by Prof.
N. Pohl) at Ruhr University Bochum (Germany). The ex-
perimental setup, shown in Fig. 2(a), is composed of a THz
wave generator (Keysight PNA-X vector network analyzer), a
frequency extender module (VDI WR2.2 VNA-X), the RTD
detector, a lock-in amplifier (MLFI from Zurich Instruments),
a chopper wheel, and a PC for data acquisition. A horn an-
tenna is connected to the waveguide output of the frequency
extender. The THz wave, which is transmitted to the sample, is
detected by the RTD detector, which can be operated at room
temperature.

Fig. 2(b), which is the image of the receiver of Fig. 2(a),
and (c) shows our own designed and fabricated single RTD
detector chip integrated on the PCB test board and the E-beam
fabricated logarithmic spiral antenna, respectively. The reduc-
tion in size and weight of several magnitudes between the
conventional transmitter and the integrated RTD receiver is
clearly visible from Fig. 2(a) and (b). The signal is read by the
lock-in amplifier from the detector at 0.5 kHz chopping fre-
quency and is fed into the PC. The signal frequency is swept in
CW mode between 330 GHz and 500 GHz. A Geranium leaf
is selected for the measurements. The sample (cf. Fig. 2(d))
is mounted on a perfect absorber to avoid standing waves
and reflections from other parts of the measurement setup.
The sample was placed in the middle between the frequency
extender and the RTD detector; each was distanced 18.25 cm
from the leaf.
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FIGURE 2. (a) The measurement Setup for the plant water monitoring with
WR2.2 VNA-X from Virginia Diodes (VDI) and RTD detector module.
(b) Single RTD detector chip integrated on PCB test board, used on the
receive side of the experiment. (c) E-beam fabricated logarithmic spiral
antenna. The TB-RTD is integrated between the two antenna arms. (d) The
Geranium leaf, which is used as a sample for the measurements.

In order to monitor the water content in the plant leaf,
measurements were taken on the two following days. The
voltage of the RTD detector was measured, which correlates
to the water content of the sample, and also the weight of
the leaf each day was measured using an electronic balance
(FS-120 WAAGENET). Between the measurements, the leaf
was kept for about 24 hours at room temperature. The tem-
perature and humidity of the laboratory were in the range of
22.1−22.6 ◦C and 39.2−50.4%, continuously monitored by
an environmental data logger (Testo). To evaluate the feasi-
bility of the analytical method, we compared the measured,
detected voltage of the RTD detector and the weight of the
plant leaf. Due to the water loss of the leaf, THz absorption
was reduced, and the voltage at the RTD detector at each
frequency was increased, which can be observed in the plots
of Fig. 3(a).

Additionally, for the reference measurements, the RTD de-
tector voltage at each frequency was recorded by removing
the Geranium leaf from the setup, which the recorded data are
shown in Fig. 3(b). As can be seen from Fig. 3(a), there is
a significant difference between the recorded voltage during

FIGURE 3. (a) The voltage recorded from the RTD detector during two
consecutive days of measurements of a Geranium leaf. (b) The voltage was
recorded from the RTD detector during two consecutive days of
measurements without leaf (reference measurements).

the measurement days with the leaf; 5.2 dB increase in RTD
detector voltage on the second day in comparison to the first
day of measurements. However, in reference measurements
without the leaf, Fig. 3(b), there is a negligible discrepancy
in average recorded voltages as expected; 0.65 dB change. In
parallel, we measured the weight loss of the Geranium leaf on
the second day by electronic balance. Fig. 4 shows quantita-
tively the correlation of the THz detected voltage versus the
leaf weight during the two days of measurements.

F. THZ-BASED IOT WIRELESS NETWORKS FOR IN-FIELD
PLANT MONITORING
As a possible application use case for THz-based non-
invasive, persistent plant monitoring, precision agriculture, or
smart farming, is an emerging concept aimed at achieving
resource conservation and crop yield optimization through a
smart management system based on distributed plant moni-
toring [32], [33]. One envisioned approach is the aggregation
of terahertz-based sensing data in a low-power, low-data-rate
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FIGURE 4. Representation of the correlation between the detected voltage
from the RTD detector and the leaf weight (i.e. leaf mass) during the
measurements with electronic balance, WAAGENET. The error bars indicate
the variation from the average detected voltage in the whole frequency
range of measurements (330−500 GHz).

cellular wireless network to estimate plant health, in order
to make intelligent farming decisions (fertilizing, watering,
also on with localized control). For such systems, low-cost
THz water content sensors based on robust electronic RTD
transceivers which have both RTD oscillator and detector in a
miniaturized module, could play an important role.

III. PLANT STEM IMAGING BY COMBINING
RCS-MEASUREMENT AND SEMI-ANALYTICAL T-MATRIX
BASED FIELD CALCULATION
Benedikt Sievert, Marvin Degen, Fabian Brix, Ute Krämer,
Daniel Erni, Andreas Rennings

The non-invasive imaging of plants, for example the mea-
surement of transport phenomena within them enables desired
insights. This information can be used to draw conclusions
about the metabolism of the plant [34], [35], resource al-
location within the plant, and the impact of environmental
factors [36]. Thus, we aim for a mobile THz sensor array that
can be attached around the plant’s stem to monitor long dis-
tance transport phenomena involving water, sugars [34], [35]
and potentially other solutes, for example heavy metals [36],
in a non-destructive manner. Before this ultimate sensor array
solution, which can be applied in the natural habitats and
in agricultural fields, we simple rotate the plant around the
stem axis in front of a sub-THz radiator, measure the reflected
signal and determine the radar cross-section (RCS) as a func-
tion of the turning angle. The second, equally important pillar
of our imaging concept is the semi-analytical T-matrix-based
field calculation [37], [38], [39], which is utilized here to
guess the morphology and material parameters of the plant’s
stem based on the RCS agreement between measurement and
simulation.

The efficiency of the simulation technique is due to a tailor-
ing to the quite simple 2D topology of the plant’s stem, which
is visualized in Fig. 5. Inside a layer-wise homogeneous host-
cylinder we have an internal structure including two types of

FIGURE 5. Schematic representation of a plant’s stem including a
selection of involved relevant electromagnetic interactions in the case of
an illumination with a plane wave indicated by the arrows. (a) shows the
overall cross section, (b) the layered interface of the stem’s hull with the
epidermis (dark green) and collenchyma (light green) separating the
parenchyma (orange) from the surrounding medium, and (c) is a
magnification of a vascular bundle, in particular the xylem (brown) and the
phloem (light red), which are the channels carrying the water and
electrolyte flows.

vascular tissues, namely xylem and phloem [34], [35]. They
differ in function and structure. The xylem is lignified. The
basic function of the xylem is to transport water and nutrients
from the roots to the shoots. The phloem, on the other hand,
is made up of living cells and transports organic substances
downwards inside the stem [34], [35]. Overall, this topology is
ideally suited to be simulated using the T-matrix approach. Es-
pecially, for a large number of inclusions in the host cylinder,
our tailored Recursive Aggregated Centered T-matrix Algo-
rithm or short RACTMA [38] provides a high computational
efficiency to solve the forward scattering problem and thus
may play a key role in the inverse scattering analysis. With the
use of the RACTMA we can precisely predict the EM field
behavior in a full-wave manner outside the stem including
the mutual interactions between the inclusions as well as the
different layers of the stem, as visualized in Fig. 5.

The usage of our proposed RACTMA in this context is
manifold. First, we can optimize our measurement setup based
on the insights we got from simulation, which will be es-
pecially helpful for the more complex active THz near-field
array concept, we aim for in the future. Second, we can cor-
relate measurement data with simulation results, and enable
prediction of the stem’s inner structure by inversely fitting the
simulation to the measurement in a very efficient manner.

In the following, we present the first steps towards the
above-mentioned vision concerning 24/7 plant monitoring
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with a mobile THz sensor in a natural population in the field.
These steps include, firstly, a brief discussion of the T-matrix
approach tailored to the special stem’s cross-sectional struc-
ture, and secondly, a presentation of RCS measurement results
of a plant stem mock-up. Here we show that the inverse fitting
of the simulation results to the measurement works for the
3D-printed plant stem mockup. Finally, we quickly present
a cylindrical position system, which is currently being built,
and which is perfectly suited for the challenging imaging task,
since the probes can be moved around the stem’s surface
in a precise manner. Additionally, we can switch to more
advanced setups, like bi-static RCS measurements, offering
more degrees of freedom (cf. Fig. 8).

A. T-MATRIX BASED CALCULATION OF EM FIELD
SCATTERED BY THE PLANT’S STEM
We assume an invariance along the stem’s axis yielding a
2D boundary value problem. The foundation of the T-matrix
approach is the expansion of the unknown field quantity into
a complete set of orthogonal basis functions, which are a
solution of the wave equation. In the 2D cylindrical coordinate
system case, the set of used basis functions are standing or
outgoing cylindrical harmonics depending on the considered
sub-domains.

Initially, each scattering element is analyzed in an isolated
manner, by placing it into the locally surrounding medium as
a host. The T-matrices relating the amplitudes of the incidence
field to the scattered and transmitted field in both regions
(inside and outside the scattering element) can be determined
by integrating over the scatterer’s surface using the extended
boundary condition method (EBCM) [37]. For a circular scat-
tering element, the integration can be done analytically, and
the obtained matrices are diagonal. For all scattering elements
without any inclusions, only the T-matrix relating the am-
plitudes of the regular background field to the amplitudes
of the scattered field in the exterior is required in the fol-
lowing steps. For the other scatter (hosts with inclusions), a
T-matrix of an equivalent scatterer having the same scattering
characteristic as the union of all inclusions, including mutual
interactions, embedded in an infinite domain with the same
material properties as the host, is calculated by assuming the
scattered field of each inclusion, besides the external field, as
part of the exciting background field. This is done under ap-
plication of translation matrices based on the Graf’s addition
theorems [40] and results in a linear system of equations to
be solved for. In particular for a huge number of scattering
elements, this system of equations may be hard to solve due to
a) an increasing number of unknowns an b) its ill-conditioned
nature. To circumvent this issue, recursive algorithms, like
our tailored RACTMA [38] can be applied with a very high
computational efficiency and numerical stability.

In a last step, the mutual interactions of the nested elements
are considered again by enforcing continuity of the tangential
field components under application of the matrices for the
reflection and transmission determined in the first step. The
finally obtained global T-matrix of the entire stem structure

FIGURE 6. Photograph and CAD model of the 3D-printed plant stem
mockup including several air-filled channels.

is independent of the incident field, and thus, can be used for
the scattering analysis of arbitrary incidence fields (caused by
aperture antennas, near-field probes etc.) coming from differ-
ent angles by a simple matrix multiplication of the mentioned
T-matrix with the amplitude vector of the incidence excitation
field.

B. RCS MEASUREMENT OF MOCK-UP STEM STRUCTURE
Before the challenging imaging of a real plant, we consider a
3D-printed mock-up of a plant stem. This approach has sev-
eral advantages, namely the geometry and material parameters
of the structure are known a priori within certain limits. There-
fore, either the measurement setup can be calibrated for best
agreement with simulation, or the simulation parameters can
be finetuned for an acceptable match with the measurement.

The mockup is 3D-printed using conventional white PLA
with an outer stem diameter of 12 mm and an overall height
of 40 mm (cf. Fig. 6). The model features 4 thick (diameter
1.5 mm) and 9 thin (diameter 1 mm) tubes. Both groups (thin
&amp; thick) can be filled independently with fluids using
e.g. demineralized or mineralized water. The PLA is modeled
using a relative permittivity of 2.75 and a loss tangent of 2.5e-
2, which also incorporates equivalent losses due to surface
roughness of the 3D-printing process.

The simplest imaging setup for the stem mock-up is a re-
flection measurement carried out in the far-field. Here, only
one horn antenna directly connected to a WR6.5 frequency
extender (TxRx version operating from 110 GHz to 170 GHz)
and a step motor that turns the stem mock-up is necessary. A
monostatic RCS measurement for 120 GHz and 160 GHz is
carried out. The corresponding results together with the semi-
analytical simulation data are plotted in Fig. 3. In between the
two polar plots the cross section of the plant stem mockup
with air-filled channels of different diameters is shown (cf.
Fig. 7).

By optimization of the essential stem’s parameters, i.e.,
its material properties and allowing for small geometrical
variations to account for manufacturing tolerances, the sim-
ulated data can be fitted nicely to the measured RCS. Given
the large electrical size of the stem, the sensitivity to small
geometrical variations and the relative permittivity of the
mockup is high. This is challenging, as the parameter search
of the inverse problem needs to be quite “global”, of course
within reasonable ranges. However, due to the very efficient
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FIGURE 7. Normalized RCS calculated by RACTMA and measured at
120 GHz and 160 GHz as a function of azimuth angle. The agreement is,
given the complexity of the model, and the significant sensitivity to
material parameters and losses, very good, and has been achieved by
fitting the model’s material properties and mechanical uncertainties. Both
RCS plots are normalized to give equal radiated power.

FIGURE 8. Future cylindrical positioning system offering extended
scanning capabilities including bi-static RCS and along-the-stem axis
measurements.

simulation scheme, we were able to find the geometric and
material settings for an excellent RCS agreement.

Especially for the imaging of real plant stems, the solu-
tion to the inverse problem will be a lot more challenging
since less a priori knowledge is available. Therefore, we are
currently constructing a cylindrical positioning system (cf.
Fig. 8) tailored to our imaging problem and offering extended
options compared to the simple 1D RCS investigation we
presented here. Besides a bi-static RCS investigation, we plan
a mixed, maybe nested near- and far-field measurement series
for accurate and reliable imaging of the plant. Additionally to
EM field scanning in a transversal plane, measurements along
the stem axis will be carried out for the hopefully successful
investigation of fluxes trough the stem.

IV. THZ IMAGING OF LEAF AND INSECTS WITH
VNA-BASED SETUP
Aman Batra, Fabian Brix, Fawad Sheikh, Andreas
Prokscha, Ute Krämer, Thomas Kaiser

In this section, a vector network analyzer (VNA) based
testbed is employed in a monostatic configuration to gener-
ate a high-resolution 3D image of leaves and insects using
the SAR technique [41]. The images are evaluated further in
accordance with the estimation of the link budget and sur-
face properties, which is of significant interest to distinguish

FIGURE 9. 3D SAR imaging geometry.

between an infested (termed as infected) and an uninfested
healthy leaf.

A. TESTBED
The experimental setup is composed of a VNA coupled to a
frequency extender via cables. The low-frequency signal from
the VNA is up-converted by the frequency extender into the
desired spectrum of 330–500 GHz. A horn antenna of length
1.93 mm and a gain of ∼25 dB is mounted on an extender
waveguide flange. With this configuration, a range resolution
proportional to bandwidth corresponds to 0.88 mm, and an
angular resolution of ∼1 mm is achievable [41]. To form the
SAR trajectory, the frequency extender is mounted on a mo-
torized Y+Z stage. The SAR imaging geometry of 3D image
acquisition of an object located at reference distance Rref is
shown in Fig. 9. The range direction is along the x-axis and
y- and z-axis represent the azimuth and elevation directions,
respectively. In the monostatic configuration, the transceiver
or the extender in the current setup located at Pu,v follows
a trajectory along y- and z-axis, and a 2D scanning track is
obtained. The aperture positions in the track along azimuth
and elevation directions are represented by u ∈ (u1, NU ) and
v ∈ (v1, NV), where NU and NV are the numbers of positions
along y- and z-axis, respectively. In this work, the trajectory is
implemented with NU = 161 and NV = 151 with a step-size
of δu = δv =1 mm. At each aperture position, S11 reflec-
tion coefficients are captured with 3001 frequency points and
Rref ≈ 37 cm.

For image reconstruction, the gathered raw data is pro-
cessed with the time-domain Back-Projection Algorithm
(BPA). The detailed description of the testbed compo-
nents/devices and BPA is available in [41]. Furthermore, two
imaging environments are considered. The first environment
is defined as A, which focuses on plant monitoring where two
leaf samples of the plant Geranium are considered as shown
in Fig. 10(a). One of the leaves shown in Fig. 10(a) belongs
to a plant that is infested with aphids, which are sap-sucking
insects. With time, the aphids grow and leave their skin on the
leaf surface as visible in Fig. 10(a). The leaf of an uninfested
plant, which is marked in Fig. 10(a).
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FIGURE 10. Imaging environments with (a) infested (termed as infected)
and uninfested healthy leaf and (b) insects.

The second environment addresses insect monitoring and
is termed here as environment B. The environment consists of
honeybees and eggs of blow flies which belong to the family
of Calliphoridae. The photo of the mapping environment is
shown in Fig. 10(b). The orientation of the bee is important
in defining the scattered power from the bee’s front and back
surfaces. Therefore, two bees in a different orientation as
shown in Fig. 10(b) are pasted on a styrofoam.

B. RESULTS
With the presented testbed in Section II.A, the raw data is cap-
tured and processed with BPA for 3D image reconstruction.
The resulting 3D images and evaluated properties for both
environments are presented in this section.

In Fig. 11, the resulting SAR image of the environment A
is shown. Focusing on the leaf surface, the resulting image
based on maximum intensity projection (MIP) scheme [42]
along range direction is presented. A high-resolution image
of the leaves is obtained and the intensity scale is normalized
with respect to the maximum magnitude of reflection from the
mapped environment, which is provided by the healthy leaf
in the range of −72 dB. For the infested leaf, the complete
leaf surface is observable. However, the skeleton of a healthy
leaf is not flat compared to the infested leaf. The curved side
portion of the healthy leaf resulted in weak reflection. It is

FIGURE 11. SAR image of environment with infested and uninfested
(healthy) leaf.

assumed that the energy received from the curved portion is
below the noise level of the employed system. Hence, the
curved portion is not visible in the resulting SAR image.
For evaluation of the differentiation between the leaves, the
mapped leaf area in the second quadrant is considered and
shown in Fig. 12, where Fig. 12(a) and (b) represents the
area from the aphid-infested and the healthy leaf, respectively.
Considering the surface scattering mechanism, there can be
two primary sources of differentiation. First is the reflected
power from the leaf. The healthy leaf surface is smoother
in comparison to the infested leaf. Besides, the presence of
leftover remains of the aphids also increases the roughness.
With the employed SAR geometry, the smoother surface re-
sults in higher reflected power, and the same is observed.
From Fig. 12, it is estimated that the maximum magnitude of
reflection from the infested leaf is around ∼6 dB lower than
the healthy leaf. Second is the formation of the leaf surface.
It is observed that the mapped area of the leaf surface of the
infested leaf has a larger degree of discontinuity in compari-
son to the uninfested control, as visible in Fig. 12(a) and (b).
One of the causes for this could be the disruption in surface
properties of the infested leaf resulting from the presence of
aphid remains and an unbalanced distribution of water.

Similar to the environment A, a high-resolution image of
mapped space with insects is acquired and shown in Fig. 13.
The outer shell of the honey bee reflects significant energy and
hence the three main body parts of the bee anatomy, which are
the head, thorax, and abdomen, are observed in the resulting
SAR image shown in Fig. 13(a). As the bee’s front- and back
body are not symmetrical, it is examined that the reflected
energy from the bee’s back body is comparatively less than the
front. It differs by a magnitude of around 10 dB. Furthermore,
both the eggs of blue flies are also well mapped as shown in
Fig. 13(b).

V. MILLIMETERWAVE RADAR IMAGING FOR INSECT
MOTION SENSING
Ingrid Ullmann, Konstantin Root, Martin Vossiek

As a preliminary study, we conducted a scaled experiment
for the envisaged system and application. Whereas the ul-
timate goal is to use THz radar for monitoring very small
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FIGURE 12. Mapped area for evaluation of differentiation between
(a) an infested leaf and (b) an uninfested (healthy) leaf.

insects such as aphids, in the preliminary study, a millimeter-
wave radar that is already available was used. Since with such
a radar it seems impossible to monitor insects of the size of
an aphid, we imaged insects of larger size. The results are
expected to translate to smaller sizes of insects for shorter
wavelengths (i.e. higher frequencies in the THz range).

For the preliminary study, we measured the movements of a
ladybug (Coccinellidae), which had a length of approximately
8 mm. We used a multiple-input-multiple-output (MIMO)
imaging radar, operating in stepped-frequency-continuous-
wave mode at 72 GHz–82 GHz. The MIMO radar has 94
transmit and 94 receive channels. It allows for a range reso-
lution of approx. 15 mm and a lateral resolution of approx.
3 mm at a distance of 20 cm. In the experiment, the insect was
placed on a plant located at approx. 18 cm in front of the radar.

FIGURE 13. SAR image of environment with insects, (a) honey bees and
(b) eggs of blow flies.

The plant was tilted so that its leaves faced the radar, as shown
in Fig. 14.

A sequence of radar data was recorded while the insect was
moving freely on the leaf. For each time frame, an image was
reconstructed. Each image shows the reflection from the leaf
and that from the insect, as shown in Fig. 15(b). As can be
seen, compared to the photo on the top, it is hard to recognize
the bug. To display the bug’s movement more clearly, it is
useful to cancel out the leaf’s reflection. In order to do so,
we subtracted the average of the previous 10 frames from
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FIGURE 14. Measurement setup consisting of millimeter wave MIMO
imaging radar and the plant onto which the insect was placed.

FIGURE 15. (a) Ladybug on the leaf, (b) reconstructed radar image, and
(c) image with compensation of leaf.

each image. It is assumed that the leaf’s reflection does not
change over this time, whereas the location of the insect’s
reflection changes as it moves. A subtraction image is shown
in Fig. 15(c) on the bottom. A reflection, which corresponds
to the insect, is now clearly visible.

Fig. 16 shows a number of frames from the recorded se-
quence of reconstruction images. A sequence of photos is
shown in Fig. 17. The camera was not time-synchronized with
the radar. The trajectory on which the insect had been moving
can be reconstructed from the radar images. It is shown in
Fig. 18, along with the reflection of the leaf. The trajectory is
reasonable when comparing it to the photos.

VI. EXPERIMENTAL RCS DETERMINATION AND IMAGING
OF HONEY BEES WITH THZ TIME-DOMAIN
SPECTROSCOPY
Tobias Kubiczek, Jan C. Balzer

The RCS describes how much energy is reflected from an
object under a certain angle. The relationship between the
wavelength (= frequency) of the electromagnetic wave and
the object size plays a central role. If the wavelength is much
smaller than the object, the wave is reflected from the sur-
face. If the object size is much smaller than the wavelength
of the electromagnetic wave, the object may be invisible to
the radar. Currently, radar systems with a frequency in the
range of 6 GHz to 12 GHz are commonly used for the RCS
determination of insects [43], [44]. Recently, investigations
have been carried out to measure the activities of honey bees at
24 GHz [15] and 77 GHz [45]. Here, the wavelength is in the
order of insects. Thus, no details can be detected. Therefore, it
is imperative to move to higher frequencies to reliably detect
and classify smaller insects. In the following, we will show
the first RCS measurements on bees beyond 300 GHz.

For the broadband RCS measurement, a THz time-domain
spectroscopy (THz-TDS) system is employed. A sub-100 fs
laser pulse from a mode-locked fiber laser is down converted
into the THz frequency range via a photoconductive switch.
For the detection, a similar device is used. The conductivity
is gated by the same laser pulse, while the photocurrent is
measured. The photocurrent is proportional to the incident
THz wave. The temporal resolution is achieved by delaying
the laser pulse at the detector. In this way, electromagnetic
waves with frequencies between 100 GHz and 6 THz can
be generated and detected. A detailed overview is given by
Balzer et al. [46].

To measure the RCS of a honey bee, a bistatic setup is
chosen since no optoelectronic transceivers for a monostatic
setup are commercially available. An overview of the setup
is shown in Fig. 19. The divergent beam from the transmitter
antenna (Tx) is collimated by a low-loss TPX lens with a focal
length of 50 mm. Within the collimated radiation, a honey
bee with a sample holder is attached to a turntable to enable
angle-dependent RCS measurement. The scattered electro-
magnetic wave is detected by the receiver antenna (Rx). The

VOLUME 3, NO. 3, JULY 2023 923



SHEIKH ET AL.: TOWARDS CONTINUOUS REAL-TIME PLANT AND INSECT MONITORING BY MINIATURIZED THZ SYSTEMS

FIGURE 16. Sequence of radar image reconstruction frames.

angle between Tx and Rx is 30◦. Since the energy scattered by
the bee is expected to be low, it is important to use a sample
holder with a minimal RCS. Therefore, we designed a cone
with a base diameter of 15 mm and an angle of 9◦ leading to a
height of 50 mm. The side view of the sample holder is shown
in Fig. 19(b). Assuming an ideal surface, the cone reflects
the incident electromagnetic radiation away from the receiver.

FIGURE 17. Sequence of photos showing the bug’s movement.

The sampler holder was fabricated by an Ultimaker S5 fused
deposition modelling (FDM) 3D printer. Tough polylactid was
used as the material.

The bee used for the study, was soaked in ethanol fresh after
its natural death by a beekeeper. This is to prevent the bee from
drying out to enable the most realistic measurements possi-
ble. The ethanol-soaked bee was then glued onto the sample
holder. A photo is shown in Fig. 19 For the measurement, the
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FIGURE 18. Radar image of the leaf and reconstructed trajectory of insect
movement, indicated by red dots.

FIGURE 19. Measurement setup with (a) schematic of the top view.
(b) schematic of the sample holder, and (c) a photograph of the
mounted bee.

bee was rotated by 360◦ in 0.3◦ steps. At each position, the
reflected radiation was measured, and 2000 THz-TDS traces
were collected and averaged. In addition, an empty measure-
ment without the sample holder and a reference measurement
against a metal plate was performed. To investigate the limita-
tions of the measurement setup, a dynamic range calculation
was performed by subtracting the amplitude spectrum of the
empty path from the amplitude spectrum of the reference
measurement. The result is shown in Fig. 20. The dynamic
range at 150 GHz is 24 dB and increases for 250 GHz to
30 dB. The peak dynamic range is reached at 605 GHz with
41 dB. This dynamic range allows the determination of the
RCS in the range from about 100 GHz up to 2 THz.

First, in Fig. 21(a) diagram of the recorded intensities for
all angular steps as a function of time, also called radargram,
is shown. The delay range of 50 ps is dominated by reflections
from the sample holder. Here, it is noteworthy that this comes
from the scattering of the glue which is used to fixate the
bee. The other reflections can be attributed to the bee. This
demonstrates that the setup is capable of detecting reflections
from a bee with a high resolution. To further ensure a proper
calculation and enhance the quality of the calculated RCS, a

FIGURE 20. Dynamic range of the employed setup, calculated by
substracting a measurement without any sample and a measurement
without any sample and a measurement against a metal plate as a
reference measurement.

FIGURE 21. Radargram consisting of the recorded intensities for each step
after band pass filtering and removing frequency components lower than
100 GHz and above 3 THz.

windowing of the radargram must occur to remove the reflec-
tions of the sample holder. Here an inverse Tukey window was
used with a 10 ps width centered around the time delay of
49 ps. In addition, broadband Tukey windowing is performed
over the entire time trace to smooth the edges and ensure a
correct fast Fourier transform (FFT) without discontinuities.

Fig. 22 visualizes the reflected intensity normalized by the
reference measurement performed against a metal plate for
145 GHz, 244 GHz, 462 GHz, and 945 GHz. The head of the
bee is oriented in the 0◦ direction, as indicated in the figure.
Since the total power of the incoming wave cannot be mea-
sured in this measurement geometry, these representations do
not correspond to the RCS, but to an equivalent representation.

At 145 GHz and 244 GHz, high reflectivity is seen from
the side of the bee at 270◦. In addition, other features are
clearly visible at different angles that could be assigned to a
wing, the head, and the feet of the bee. Since the resolution
for detectable features also increases with higher frequencies,
the plots for 462 GHz and 945 GHz show many narrow
deflections. However, the complex surface structure of the
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FIGURE 22. Measurement normalized reflection factor from a bee
measured in bistatic geometry for different rotation angles and
frequencies (a) 145 GHz, (b) 244 GHz, (c) 462 GHz, and (d) 945 GHz. The
bee in the middle is indicating the orientation of the bee with respect to
the plots. The head of the bee is orientated in 0◦ direction.

FIGURE 23. Back-projected measurement of rotated bee.

bee makes interpretation of the localized peaks difficult.
To validate the measured RCS, we use a back-projection
algorithm for a 2D reconstruction of the recorded data [47],
[48]. This corresponds to the inverse synthetic aperture radar
(ISAR) imaging [41]. As the incoming radiation is collimated,
the presented algorithm was altered by changing the position
of the transmitting antenna to a far distance to emulate the
collimated beam. The result can be seen in Fig. 23, revealing
the body shape of the bee. In addition, the tip of the sample
holder can be seen centered in the bee body and the right
wing of the bee.

VII. TRACKING OF HONEY BEES INSIDE THE HIVE USING
THZ HARMONIC RADAR
Kevin Kolpatzeck, Jan C. Balzer

Radar systems are a promising solution for tracking
insects in their natural environment. Unlike cameras, they

can operate in the dark and make it possible to follow an
insect’s movement even if it is concealed by plant parts.
However, the small RCS of an insect makes it difficult to
distinguish it from the highly scattering environment in which
it often resides. A good solution to this problem is the use
of harmonic radar. An antenna tag containing a non-linear
device is placed on an individual insect, so that it re-radiates
the second harmonic of the radar’s transmit signal. A receiver
that only receives the second harmonic blocks out the linear
clutter of the environment and detects the tagged insect
with high sensitivity. The potential of entomologic harmonic
radar has been demonstrated in the microwave range up to
about 20 GHz for the tracking of – among other insects
– moths [49], honeybees [50], bumble bees [51], carabid
beetles [52], butterflies [53], and hornets [54]. Distances of up
to 1 km have been reported [55]. A comprehensive review of
entomologic radar including a comparison to other methods
for insect monitoring is given in [56].

There is great scientific interest in being able to track in-
dividual honeybees – specifically the queen bee – not only
outdoors but also inside the hive. This is impossible with
existing systems for two main reasons. Firstly, microwave
radar with a wavelength of a few centimeters cannot provide
the sub-cm accuracy required for tracking the motion of a
bee across and between individual honeycombs. Secondly, the
size of the antenna tag is determined by the frequency being
used and is thus of the order of several millimeters. Such a
large antenna does not allow the bee to move freely within the
hive [55]. Both problems can be solved by moving into the
THz frequency range.

A THz harmonic radar makes it possible to track insects
with (sub-)millimeter accuracy. Moreover, small planar an-
tennas for the THz frequency range can be easily placed on
the opalite bee signing plate that is customarily used to mark
the queen bee within the hive without hindering its natural
movement. One challenge of using THz radiation within a
beehive may be the reflection and absorption losses of the
honeycombs. A photograph of a styrofoam bee mating box
that can be conveniently used as a lab-sized beehive con-
taining three honeycombs and a photograph of an individual
honeycomb are shown in Figs. 24 and 25, respectively.

To quantify the transmission loss, we perform transmis-
sion measurements of different vacated honeycombs using
a Menlo Systems Tera K15 THz time-domain spectroscopy
(THz-TDS) system. The collimated THz beam that passes
through the honeycomb has a diameter of approximately
15 mm. A photograph of the measurement setup and plots
of the measured transfer functions are depicted in Figs. 26
and 27, respectively. The transfer functions show a strongly
frequency-selective behavior that varies strongly among the
three different samples. Most notably, there are strong reso-
nances in the frequency range between 200 GHz and 700 GHz
that can be attributed to multiple internal reflections within the
honeycomb. The experiment showed a strong dependence of
the resonant frequencies and the depth of the resonances on
the angle of incidence. The attenuation in the frequency range
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FIGURE 24. Styrofoam bee mating box containing three honeycombs.

FIGURE 25. Sample of a single vacated honeycomb.

FIGURE 26. Photograph of the THz-TDS transmission setup for measuring
the transfer functions of honeycombs.

above 700 GHz is strikingly flat with values ranging between
−12 dB for honeycomb 2 and −26 dB for honeycomb 3. For
tracking the queen bee within the hive using harmonic radar,
the lower end of the THz range, particularly the frequency
range below 200 GHz, appears to be a good candidate. It
should be noted that the apparently strong frequency depen-
dence visible in the plot for frequencies below 200 GHz can
be attributed to the lacking dynamic range of the THz-TDS
system at those frequencies.

FIGURE 27. Measured transfer functions of three different vacated
honeycombs.

VIII. THZ INTERACTION WITH WESTERN HONEY BEES
Mandana Jalali, Jan Taro Svejda, Daniel Erni

Insects are vital entities of our ecosystem, whose popula-
tions are dramatically diminished due to overuse of pesticides
as well as the decline of available habitats. It has been re-
cently conjectured in an evaluation report issued by the Swiss
administration [57] that the progressing diffusion of 5G and
future 6G mobile communication services into the living
world and the ecosphere may affect arthropodes in a different
way than postulated in the regulation framework for the elec-
tromagnetic (EM) exposure limits proposed by ICNIRP [58].
Because of their small size and the resulting conformity to
operating wavelengths insects may suffer from an increased
sensitivity against EM radiation in particular at frequencies
in the multi-GHz up to the THz range. Given their vital role
as pollinators, honey bees are of particular concern since the
number of their colonies dropped by the turn of the millen-
nium [59]. Although these figures are currently increasing, the
24/7 real-time monitoring of European honey bees (Apis mel-
lifera) has revived the 70+ year tradition of radar entomology
in remote sensing in ecology and conservation [56].

The main focus of radar entomology usually lies in (preci-
sion) migration path tracking, as well as mass, density, and
number estimation of insect swarms. Our vision on honey
bee monitoring addresses interactions in the close ecosphere
around plants allowing for a 24/7 observation of e.g. the
dynamical flight patterns and the duration of stay (on the
blossom) using their highly specific mm-wave/THz RCS for
identification and selection [60] against alternative pollinators
(or pests). Such a modern approach would allow to track the
kinetics of social behavior of honey bees in their habitats and
natural environment in order to detect environmental stress,
as well as understanding their complex dynamics. This may
also include the observation of e.g. queen bee movements
in bee hives as well as the assessment of the energy intake
of honey bees when exposed to mm-wave up to THz radi-
ation and its comparison to the ICNIRP safety limits [58].
In [61], [62], pioneering EM exposure studies were per-
formed on western honey bees in the frequency range of
0.6−120 GHz, distinguishing between worker bees, drones,
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TABLE 1 Experimental Data for the Effective Dielectric Function (i.e. The
Permittivity and Conductivity) of Western Honey bees [62]

larvae, and queens, and confirming an increased absorption
when aiming at 5G frequencies (and beyond). In either case,
namely in EM dosimetry [62] and RCS analysis [44] for
radar-based bee monitoring, anatomically detailed full-wave
computational EM models in conjunction with realistic exper-
imental validation become increasingly important.

Accordingly, the interaction of EM radiation with a Euro-
pean honey bees is numerically investigated in the range of
10 GHz up to 500 GHz.

The study relies on a conformally accurate EM 3D model
of the honey bee for either a virtual dosimetry or a scattering
analysis. This digital twin is based on a realistic 3D image
model with a shell mesh in STL format. The latter is imported
into the FEM-based simulation platform COMSOL Multi-
physics in order to fix and modify the mesh for a subsequent
conversion into a volumetric object. COMSOL with its un-
structured mesh is well suited for this task and simultaneously
serves as a prime reference model for our digital twins.

The corresponding material properties of the honey bee’s
inner structure, namely its dispersive permittivities and con-
ductivities are required. Currently, only few data on aggregate
effective material parameters in the lower frequency ranges
are available [62] (cf. Table 1).

Based on this data set a bulk material model for the honey
bee has been set up where its frequency range is further ex-
tended into the THz range using a multipole Debye model [63]
(cf. (1)) keeping the first four terms in the summation.

ε = ε∞ +
4∑

i=1

�εi

1 + jωτi
+ σs

jωε0
(1)

The measured sparse data of Table 1 are first interpolated
using corresponding spline functions, yielding an extended
data set. This set is then used for the nonlinear function fitting
of the Debye model, where 10 coefficients have to be deter-
mined within an evolutionary algorithm-based optimization
procedure, which minimizes the least-square error between
experimental data and Debye model. The resulting dielectric
function covers now the whole frequency range of interests
namely from 0.1 GHz up to 2 THz where its permittivity
and conductivity are illustrated in the Fig. 28, while the fitted

FIGURE 28. The retrieved dielectric function showing the Debye model of
the permittivity (solid blue line), the interpolated measured permittivity
(dash-dotted blue line), the Debye model of the conductivity (solid red
line), and the interpolated measured conductivity (dash-dotted red line).
The fitted conductivity is very close to the interpolated measured
conductivity and hence the red dash-dotted line is hardly visible. The
markers depict the available experimental data [62].

TABLE 2 The Coefficients of the Fitted Debye Model for the Four First
Terms in the (1)

FIGURE 29. Simulated spectral response of the normalized SCS of the
honey bee for a plane wave illumination from the left (i.e. x-direction).
Typical RCS values are estimated between -38 dBsm and -43 dBsm at
40 GHz for y-polarization.

Debye coefficients are summarized in the Table 2. Currently
we are focusing on the inner anatomy of the bee in order to
complement the present bulk model with the cuticula and the
most relevant organs.

For both, the exposure and scattering analysis, the volu-
metric bee model (cf. Fig. 29) together with the established
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FIGURE 30. 3D-FDTD simulation of the far field scattering patterns of the
European honey bee at (a) 40 GHz, (b) 65 GHz, (c) 125 GHz, and
(d) 250 GHz.

FIGURE 31. 3D-FDTD simulation of the electric field‘s absolute value for a
plane wave illumination from the left (y-direction). The field distribution
displays the penetration behavior into the volumetric bee model at
different frequencies between 20–500 GHz.

Debye model are imported into the finite-difference time-
domain (FDTD) computational electromagnetics simulation
platform EMPIRE XPU. The bee model is illuminated with a
plane wave from the left (x-direction) while covering the fre-
quency range 10−500 GHz. The resulting spectral response
of the normalized scattering cross-section (SCS), is depicted
in Fig. 29.

The normalized SCS of the honey bee displays distinct
peaks at 40 GHz, 65 GHz, 125 GHz, and 250 GHz, where
the associated far field scattering characteristics are illustrated
in Fig. 30. Such spectral fingerprints may become character-
istic for the identification of honey bees in insect monitoring
together with the azimuthally resolved RCS (not shown here)
at a corresponding frequency.

A preliminary account towards a virtual dosimetry of the
honey bee is given in Fig. 31 displaying the electric field

penetration into the volumetric bee model. The light halo
at 20 GHz hints towards a resonant interaction due to the
commensurability between wavelength and bee size. At fre-
quencies above 100 GHz the field, penetration gets less
prominent and wings and legs start contributing to the scat-
tering cross section.

A resilient virtual dosimetry has to rely on power densities
in conjunction with specific absorption rates (i.e. SAR values)
in the bee’s proper inner anatomy. First steps towards an
inhomogeneous bee model have already been taken by includ-
ing the thin exoskeleton (cuticula) based on experimentally
validated material properties. A brief numerical analysis has
already shown that the shielding effect by the cuticula is rather
small, which is, though, a surprising result.

IX. 3D PHOTOREALISTIC THZ RAY-TRACING
SIMULATIONS FOR INSECT SENSING
Fawad Sheikh, Andreas Prokscha, Aman Batra, Dien Lessy,
Baha Salah, Thomas Kaiser

Sensing the slow movement of a tiny object requires high
frequency, which improves the ability to perceive subtle
details and alterations in movement. The level of detail that
can be acquired relies on the resolution, which is determined
by the wavelength of the waves employed to sense the object.
THz frequencies seem promising to provide sub-millimeter
accuracy for sensing micro-motion in tiny objects.

Measuring living organisms, particularly small ones such
as insects, can pose a significant challenge due to their size
and mobility. However, a potential alternative solution is to
conduct 3D Photorealistic THz Raytracer (PRT) simulation
from TMTC [64] which can offer initial results for studying
THz sensing with reduced computation time compared to full
wave simulation. This PRT is capable of integrating a wide
range of fascinating and intricate details of insects, ranging
from the unique patterns on their wings and bodies to the fine
structures of their legs and antennae. Therefore, these intricate
structures can imitate the random roughness of insects, which
is significant in the context of THz frequencies.

A. MICRO-MOTION SIGNATURES FROM VARROA MITE
Varroa mites (Varroa destructor) are external parasitic mites
that infest honey bees [65], [66]. The body of Varroa mites is
covered with a layer of hair-like projections, known as setae,
which give them a rough appearance. The setae are thought
to be important for the mites’ ability to cling onto the bees
and move around their body. If left unchecked, Varroa mites
can lead to significant declines in honey bee populations and
even the collapse of entire colonies [65], [66]. As honey bees
are important pollinators for many crops, these declines can
also have negative impacts on agricultural productivity and
ecosystem health.

A 3D model of a Varroa mite and western honey bee (Apis
mellifera), known as the digital twin [8], [67], [68], has been
created, and their electrical properties (cf. Fig 28) have been
incorporated. Fig. 32 depicts a realistic 3D model of the Var-
roa mite used in the study, while Fig. 33 shows the 3D model
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FIGURE 32. The ventral (left) and dorsal (right) views of a Varroa mite.

FIGURE 33. Demonstration of the micro-motion of Varroa mite (dorsal
view) on its host bee.

depicting the position of the Varroa mite on the host bee. The
study also takes into account the random roughness of the
insects when they are exposed to THz frequencies, since the
physical features of the insect’s body become rough at these
frequencies. The Beckmann-Kirchhoff (B-K) model has been
used to simulate the relative backscatter power from the insect
(mite), with the simulation relying on scattered power rather
than specular power [69]. The transceiver (TRX) and insect
(mite) are positioned 0.2 m apart.

The simulations are performed using a TRX horn that oper-
ates at a carrier frequency of 300 GHz. The transmit output
power is 0 dBm. Additional information about the specific
horn used can be found in [70], [71]. To provide an overview
of the simulation approach, three different scenarios are em-
ployed and summarized below:
� Scenario I: As part of this first scenario, simulations

are conducted to record the relative backscatter power
while rotating the mite in 1◦ increments, starting at 0◦
and ending at 360◦.

� Scenario II: In the second scenario, simulations are
conducted to record the relative backscatter power while
rotating the mite in 7.5◦ increments. This is done with
and without the hosting bee, starting at 0◦ and ending at
90◦. A total of 13 steps are recorded and compared.

� Scenario III: During the third scenario, the mite un-
dergoes 13 rotations, and during each rotation, three
walking steps are taken, with a stride length of λ/6 or
0.166 mm, to record the relative backscatter power.

FIGURE 34. PRT-simulated relative backscatter power of a full 3D mite
model recorded in a monostatic geometry for different rotation angles at
300 GHz (Scenario I).

FIGURE 35. Relative backscatter power for 13 rotation steps (Scenario II)
of a full 3D mite model in its initial position.

B. THZ RAY-TRACING SIMULATION RESULTS
Backscattering of EM waves relies mainly on the body rough-
ness in insects, the angle of incidence, the complex refractive
index of insects, and the wavelength involved. When it comes
to THz frequencies, the roughness of the body tends to
be more prominent, which leads to a significantly stronger
backscatter factor. The effect of the mite’s rough body on
T-rays is examined in ray-tracing simulations by rotating the
mite, and the findings are illustrated in the Figs. 34–36.

Fig. 34 depicts the ratio of the power of backscattered
signals to the power of transmitted signals of a full 3D mite
model. The ray-tracing simulations are conducted at 1◦ inter-
vals using a monostatic configuration and a carrier frequency
of 300 GHz. It is worth noting that the results obtained from
the 0◦ to 360◦ rotation do not include the host bee. As can be
acquired from Fig. 34, the rough surface of the mite model
causes incident, reflection, and scattering angles to vary ran-
domly across its body, and some rotational positions produce
comparatively stronger backscatter power from the mite. The
mite model used is symmetric in terms of its body halves, and
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FIGURE 36. Recorded relative backscatter power from a walking mite with
a stride length of λ/6 or 0.166 mm (Scenario III).

this characteristic is also evident in the outcomes. As such, an
azimuth angle of 101◦ corresponds to its symmetrical angle
of 259◦, with a relative backscatter power of -42.89 dB. Simi-
larly, an azimuth angle of 134◦ corresponds to its symmetrical
angle of 226◦, with a relative backscatter power of -29.72 dB.
The aforementioned results correspond to Scenario I.

Further, in Fig. 35, the PRT simulation results for Scenario
II are illustrated. Regardless of whether the Varroa mite is
alone or on a host bee, it assumes the same posture, and
this is worth noting. In other words, the orientation of the
Varroa mite is consistent when conducting THz ray-tracing
simulations for both cases. It is evident that the rotation of
the Varroa mite can be readily differentiated in the presence
and absence of a host bee. As expected, in the presence of
a host bee, the RCS is increased which results in enhanced
relative backscatter power. The reason for this is that the bee,
being larger in size and having a higher RCS, has a greater
influence on the overall RCS with respect to the mite contri-
bution. However, when considering only the Varroa mite, even
slight rotational variations have a significant impact on the
backscattered power. It is worth noting that the level of detail
in the digital twin and the details of the mite’s anatomical
structure contribute to this variation in power. As such, even
minor alterations in orientation towards the transceiver (TRX)
appear to be noticeable in these power results. The average
relative backscattered power recorded in the presence of host
bee is −57.49 dB. In contrast, when considering the Varroa
mite alone, the average decrease in relative backscatter power
is 18.53 dB. The findings emphasize that 3D photorealistic
THz ray-tracing is a fortunate choice for sensing the rotation
of small objects like the Varroa mite.

Next, the Scenario III results are presented in Fig. 36.
This scenario is more advanced and intricate, as it exhibits
the combined effects of rotation and stride length. The Var-
roa mite follows a linear trajectory with a step size of λ/6
mm, indicating micro-motions that are a fraction of the cho-
sen wavelength. It is noteworthy that the movement occurs
perpendicular to the direction of EM wave propagation. We

observed that the backscattered power, which is dependent
on the mite’s body structure, changes with every step and
rotation. Interestingly, we noticed a significant decrease in
backscattered power for the same rotation but different steps.
For instance, when the mite is at its initial location (i.e., first
step) and rotated at 82.5◦, the backscattered power recorded
is −67.78 dB. However, at λ/6 mm location, the power de-
creased significantly to −97.44 dB. Our simulation results
demonstrate that the micro-motion of the Varroa mite can be
accurately captured using 3D PRT simulation. No doubt, the
employed PRT is a reliable tool for THz sensing of micro-
motion in creatures within this wavelength range. Thus, it can
provide initial models for studying THz sensing in conditions
where measuring insects can be quite challenging.

X. CONCLUSIONS AND OUTLOOK
Pooya Alibeigloo, Christian Preuss, Enes Mutlu, Robin
Kress, Simone Clochiatti, Nils G. Weimann

To have THz sensors for water content and plant growth
monitoring, which can play a role in future smart farming
and precision agriculture, we aim to develop and use our
low-cost, compact-size, battery-driven, robust electronic RTD
transceivers. Our future envisioned approach is to utilize and
integrate such tiny chips deployed in the field with a cellular
wireless network for localized control of the health and water
content in plants to achieve a smart farming management
system based on distributed plant monitoring [32].
Benedikt Sievert, Marvin Degen, Fabian Brix, Ute Krämer,
Daniel Erni, Andreas Rennings

To exploit the full potential of non-invasive THz plant
monitoring, the mutual interactions between the different scat-
tering elements in the plant’s stem must be taken into account.
We address this challenging inverse scattering analysis by
combining a very efficient semi-analytical full-wave model
with a tailored meassurement setup.
Aman Batra, Fabian Brix, Fawad Sheikh, Andreas
Prokscha, Ute Krämer, Thomas Kaiser

Regards to the VNA-based THz imaging results, a 3D
high-resolution environment focusing on plants and insects is
mapped at a distance of 37 cm. Due to the available high spa-
tial resolution, the three main body parts of the honey bees are
well observed. Moreover, the plant leaves in an aphid-infested
and an uninfested healthy state are considered. It is observed
that the scattering behavior from both leaf surfaces differs and
it can be utilized to distinguish between them. Besides, a SAR
3D cube has the potential to provide wide information related
to the health of the plant such as water content, and infesta-
tion classification by analyzing the leaf-layered structure and
presence of insects.
Ingrid Ullmann, Konstantin Root, Martin Vossiek

We demonstrated capturing insect movement with a
millimeter-wave imaging radar successfully. Once MIMO
radars in the THz range are technologically available, it can
be possible the capture movements of much smaller insects.
In future research, a more elaborate signal processing strat-
egy for eliminating the background reflection will have to be

VOLUME 3, NO. 3, JULY 2023 931



SHEIKH ET AL.: TOWARDS CONTINUOUS REAL-TIME PLANT AND INSECT MONITORING BY MINIATURIZED THZ SYSTEMS

investigated along with the hardware. At present, insect move-
ment can be captured, however, sensing of stationary insects
is not possible with the employed background suppression
technique. For real-world applications however, it is necessary
to account for both moving and stationary insects.
Tobias Kubiczek, Jan C. Balzer

We have shown that the broadband RCS of bees can
be determined using THz-TDS. The high bandwidth of the
THz-TDS system enables broadband RCS characterization of
insects, which can be used for insect radar. Further investiga-
tions include repeating the measurement for different antenna
positions and rotating the insect not only in azimuth, but
in azimuth and elevation. This allows for view-independent
characterization of insects with radar.
Kevin Kolpatzeck, Jan C. Balzer

THz harmonic radar is a promising approach for tracking
of insects in highly scattering environments. For example, the
moderate transmission loss of honeycombs at the lower end
of the THz range – particularly at frequencies below 200 GHz
– can make it possible to follow the path of a bee carrying a
nonlinear tag inside the bee hive in real time. The development
of highly sensitive harmonic radar for the THz range is a com-
pelling research topic that requires contributions from several
different fields of THz science. Areas of interest include the
development of high-power transmitters and sensitive har-
monic receivers, the design of small and efficient nonlinear
tags, the investigation of suitable beam steering concepts, as
well as the development of signal processing solutions for
robust real-time tracking.
Mandana Jalali, Jan Taro Svejda, Daniel Erni

Our further modeling efforts will focus on the material
characterization at THz frequencies of specific bee parts,
namely the wings, the cuticula, and the internal parts of the
bee. In collaboration with entomologists, it will be necessary
to decide which organs (e.g., gastrointestinal tract, visual and
ventral nerve cords, etc.) are most important for evaluating
the impact of EM energy intake and must in the following be
included into an inhomogeneous version of the bee model. In
perspective, such a functionalized digital twin could be suit-
able to predict/explain EM-induced stress as well as provide a
reliable tool for developing realistic and highly selective bee
monitoring scenarios.
Fawad Sheikh, Andreas Prokscha, Aman Batra, Dien Lessy,
Baha Salah, Thomas Kaiser

The 3D photorealistic ray-tracer can efficiently simulate
complex sensing scenarios involving intricate objects, making
it a valuable tool for sensing living organisms at THz frequen-
cies. However, to achieve accurate results in ray-tracing, it is
necessary to build and employ surface-based models since
insects are not empty hulls or homogeneous solids. These
surface-based models take into account the internal anatom-
ical structures. Currently, the 3D morphable model is used to
describe the variation of insect body shapes, and the same
homogeneous properties are applied to the entire body of
both Varroa mite and western honey bee. Therefore, additional
measurements of insects’ dielectric properties are required to

validate the current approach. Nevertheless, the next step in
the PRT simulation involves introducing different dielectric
properties for each insect body part in the sensing scenario.
This approach will lead to the development of an adaptive
backscattering model and enable the sensing of insect pop-
ulations from afar through machine learning.

The authors listed have come together and are committed to
collaborative research aimed at achieving the goal of minia-
turizing THz systems for future environmental monitoring
applications.
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